【0001】[0001]
【発明の属する技術分野】本発明は排ガス中に含まれる
一酸化炭素(CO)や炭化水素(HC)を酸化するのに必要
な量より過剰な酸素が含まれている排ガス中の、窒素酸
化物(NOx)を効率よく浄化できる排ガス浄化用触媒
と、その触媒を用いた排ガス浄化方法に関する。[0001] The present invention relates to nitrogen oxides in exhaust gas containing an excess amount of oxygen that is necessary to oxidize carbon monoxide (CO) and hydrocarbons (HC) contained in the exhaust gas. The present invention relates to an exhaust gas purifying catalyst capable of efficiently purifying substances (NOx ), and an exhaust gas purifying method using the catalyst.
【0002】[0002]
【従来の技術】リーンバーンエンジンにおいて、常時は
酸素過剰の燃料リーン条件で燃焼させ、間欠的に燃料ス
トイキ〜リッチ条件とすることにより排ガスを還元雰囲
気としてNOxを還元浄化するシステムが開発され、実用
化されている。そしてこのシステムに最適な触媒とし
て、リーン雰囲気でNOxを吸蔵し、ストイキ〜リッチ雰
囲気で吸蔵されたNOxを放出するNOx吸蔵元素を用いた
NOx吸蔵還元型の排ガス浄化用触媒が開発されている。BACKGROUND ART In a lean-burn engine, normally is burned with oxygen excess fuel lean condition, the system reduces and purifies NOx exhaust gas as a reducing atmosphere is developed by the intermittent fuel stoichiometric-rich condition, Has been put to practical use. And as the best catalysts for this system, occludes NOx in lean atmosphere, withthe NOx storage element that releases NOx occluded in the stoichiometric-rich atmosphere
NOx storage-and-reduction type exhaust gas purifying catalyst has been developed.
【0003】例えば特開平5-317652号公報には、Baなど
のアルカリ土類金属とPtをアルミナなどの多孔質酸化物
担体に担持した排ガス浄化用触媒が提案されている。ま
た特開平 6-31139号公報には、Kなどのアルカリ金属と
Ptをアルミナなどの多孔質酸化物担体に担持した排ガス
浄化用触媒が提案されている。さらに特開平5-168860号
公報には、Laなどの希土類元素とPtをアルミナなどの多
孔質酸化物担体に担持した排ガス浄化用触媒が提案され
ている。For example, Japanese Patent Application Laid-Open No. 5-317652 proposes an exhaust gas purifying catalyst in which an alkaline earth metal such as Ba and Pt are supported on a porous oxide carrier such as alumina. Also, JP-A-6-31139 discloses that an alkali metal such as K is used.
An exhaust gas purifying catalyst in which Pt is supported on a porous oxide carrier such as alumina has been proposed. Further, Japanese Patent Application Laid-Open No. H5-168860 proposes an exhaust gas purifying catalyst in which a rare earth element such as La and Pt are supported on a porous oxide carrier such as alumina.
【0004】このNOx吸蔵還元型触媒を用いれば、空燃
比をリーン側からパルス状にストイキ〜リッチ側となる
ように制御することにより、排ガスもリーン雰囲気から
パルス状にストイキ〜リッチ雰囲気となる。したがっ
て、リーン側ではNOxがNOx吸蔵元素に吸蔵され、それ
がストイキ又はリッチ側で放出されてHCやCOなどの還元
性成分と反応して浄化されるため、リーンバーンエンジ
ンからの排ガスであってもNOxを効率良く浄化すること
ができる。また排ガス中のHC及びCOは、貴金属により酸
化されるとともにNOxの還元にも消費されるので、HC及
びCOも効率よく浄化される。[0004] By using this NOx storage-and-reduction type catalyst, by controlling so that the stoichiometric-rich side in a pulsed manner the air-fuel ratio from the lean side, the stoichiometric-rich atmosphere exhaust gas from a lean atmosphere in pulses . Thus, NOx is occluded inthe NOx storage element is in the lean side, because it is purified by reacting with reducing components, such as being released in the stoichiometric or rich side HC and CO, in exhaust gases from lean-burn engines can efficiently purify NOx even. Further, HC and CO in the exhaust gas are oxidized by the noble metal and consumed in the reduction of NOx , so that HC and CO are also efficiently purified.
【0005】[0005]
【発明が解決しようとする課題】ところが排ガス中に
は、燃料中に含まれる硫黄(S)が燃焼して生成したSO
2が含まれ、それがリーン雰囲気の排ガス中で貴金属に
より酸化されてSO3となる。そしてそれがやはり排ガス
中に含まれる水蒸気により容易に硫酸となり、これらが
NOx吸蔵元素と反応して亜硫酸塩や硫酸塩が生成し、こ
れによりNOx吸蔵元素が被毒劣化することが明らかとな
った。また、アルミナなどの多孔質酸化物担体はSOxを
吸着しやすいという性質があることから、上記硫黄被毒
が促進されるという問題がある。However, in the exhaust gas, SO (S) contained in the fuel is produced by combustion of SO.
2 which is oxidized by precious metals in lean exhaust gas to SO3 . And it is also easily converted into sulfuric acid by the water vapor contained in the exhaust gas.
Sulfites and sulfates are produced by the reaction withthe NOx storage element, therebythe NOx storage element is revealed that degradation poisoning. The porous oxide support such as alumina from the the property that easily adsorbs SOx, there is a problem that the sulfur poisoning is facilitated.
【0006】そして、このようにNOx吸蔵元素が亜硫酸
塩や硫酸塩となって被毒劣化すると、もはやNOxを吸蔵
することができなくなり、その結果上記触媒では、耐久
試験後(以下、耐久後という)のNOxの浄化性能が低下
するという不具合があった。本発明はこのような事情に
鑑みてなされたものであり、NOx吸蔵元素の硫黄被毒を
抑制して耐久性を一層向上させることを目的とする。[0006] When thusthe NOx storage element is deteriorated poisoning become sulfites and sulfates, it becomes impossible to occlude NOx longer, with the result the catalyst after the durability test (hereinafter, durable purification performance of the NOx in) that after there has been a problem of a decrease. The present invention has been made in view of such circumstances, and has as its object to suppress the sulfur poisoning of the NOx occluding element to further improve the durability.
【0007】[0007]
【課題を解決するための手段】上記課題を解決する本発
明の排ガス浄化用触媒の特徴は、多孔質酸化物からなる
担体と、担体に担持されたPt,Pd及びRhから選ばれる少
なくとも1種の貴金属と、担体に担持されたIrと、担体
に担持されたアルカリ金属,アルカリ土類金属及び希土
類元素から選ばれる少なくとも1種のNOx吸蔵元素と、
よりなることにある。The feature of the exhaust gas purifying catalyst of the present invention which solves the above-mentioned problems is that a carrier made of a porous oxide and at least one kind selected from Pt, Pd and Rh supported on the carrier are provided. A noble metal, Ir supported on a carrier, and at least one NOx storage element selected from alkali metals, alkaline earth metals, and rare earth elements supported on the carrier,
Is to become.
【0008】また本発明の排ガス浄化方法の特徴は、多
孔質酸化物からなる担体と、担体に担持されたPt,Pd及
びRhから選ばれる少なくとも1種の貴金属と、担体に担
持されたIrと、担体に担持されたアルカリ金属,アルカ
リ土類金属及び希土類元素から選ばれる少なくとも1種
のNOx吸蔵元素とを含むNOx吸蔵還元型の排ガス浄化用
触媒を、空燃比(A/F)が18以上で運転され間欠的に
燃料ストイキ〜リッチ雰囲気とされるリーンバーンエン
ジンからの排ガスと接触させ、排ガス中に含まれるNOx
を燃料リーン雰囲気でNOx吸蔵元素に吸蔵し、燃料スト
イキ〜リッチ雰囲気でNOx吸蔵元素から放出されたNOx
を還元することにある。Further, the exhaust gas purification method of the present invention is characterized in that a carrier made of a porous oxide, at least one noble metal selected from Pt, Pd and Rh supported on the carrier, and an Ir supported on the carrier. , alkali metal supported on a carrier, a NOx storage-and-reduction type exhaust gas purifying catalyst comprising at least one NOx storage element selected from alkaline earth metals and rare earth elements, the air-fuel ratio (a / F) is operated at 18 or more is intermittently contacted with the exhaust gas from lean-burn engines with fuel stoichiometric-rich atmosphere, NOx contained in the exhaust gas
The occludedthe NOx storage element in the fuel-lean atmosphere, the fuel stoichiometric ~ NOx released fromthe NOx storage element in a rich atmosphere
Is to reduce.
【0009】[0009]
【発明の実施の形態】本発明の排ガス浄化用触媒は、P
t,Pd及びRhから選ばれる少なくとも1種の貴金属を担
持している。これにより初期の浄化活性を高く維持する
ことができる。そして本発明の排ガス浄化用触媒は、P
t,Pd及びRhから選ばれる少なくとも1種の貴金属に加
えてIrを担持している。Irは高い還元活性を示す。また
Irは、Pt,Pd及びRhと比べて耐熱性に優れている。した
がってIrは、高温が作用しても粒成長しにくく、耐久後
にも高い還元活性を有している。そのためIrを担持する
ことで、リッチ雰囲気において硫黄被毒が生じたNOx吸
蔵元素から離脱するSOxが還元浄化されるため、NOx吸
蔵元素のNOx吸蔵能が復活する。BEST MODE FOR CARRYING OUT THE INVENTION The exhaust gas purifying catalyst of the present invention comprises P
It carries at least one noble metal selected from t, Pd and Rh. As a result, the initial purification activity can be kept high. And the exhaust gas purifying catalyst of the present invention
It carries Ir in addition to at least one noble metal selected from t, Pd and Rh. Ir shows high reduction activity. Also
Ir has better heat resistance than Pt, Pd and Rh. Therefore, Ir does not easily grow grains even when a high temperature is applied, and has high reduction activity even after durability. Therefore, by carrying Ir, SOx released from the NOx storage element that has been poisoned by sulfur is reduced and purified in a rich atmosphere, so that the NOx storage capacity of the NOx storage element is restored.
【0010】したがって本発明の排ガス浄化用触媒及び
排ガス浄化方法によれば、初期から高い浄化活性を示す
とともに、NOx吸蔵元素の硫黄被毒を効果的に抑制する
ことができ、耐久後にも高いNOx浄化能が発現される。
担体を構成する多孔質酸化物としては、アルミナ、シリ
カ、ジルコニア、チタニア、シリカ−アルミナなどを用
いることができ、中でも活性が高く耐熱性に優れたγ−
アルミナが特に望ましい。この多孔質酸化物の粒径は特
に制限されない。Therefore, according to the exhaust gas purifying catalyst and the exhaust gas purifying method of the present invention, a high purification activity can be exhibited from the beginning, and the sulfur poisoning of the NOx occluding element can be effectively suppressed, and even after endurance, the high purification efficiency can be obtained.the NOx purification performance is expressed.
As the porous oxide constituting the carrier, alumina, silica, zirconia, titania, silica-alumina and the like can be used. Among them, γ- having high activity and excellent heat resistance can be used.
Alumina is particularly desirable. The particle size of the porous oxide is not particularly limited.
【0011】また担体には、セリアを含むことが好まし
い。セリアの酸素吸蔵放出能により、浄化性能が一層向
上する。またジルコニアで安定化されたセリア(セリア
−ジルコニア複合酸化物)を用いれば、その耐久性が一
層向上する。貴金属としては、Pt,Rh,Pdから選ばれる
少なくとも1種を用いることができる。その担持量は、
担体体積1リットル当たりに、Pt及びPdの場合は 0.1〜
20gが好ましく、 0.5〜10gが特に好ましい。またRhの
場合は0.01〜10gが好ましく、0.05〜5gが特に好まし
い。It is preferable that the carrier contains ceria. Purification performance is further improved by the oxygen storage / release capability of ceria. The use of ceria stabilized with zirconia (ceria-zirconia composite oxide) further improves the durability. As the noble metal, at least one selected from Pt, Rh, and Pd can be used. The carrying amount is
0.1 to 0.1 for Pt and Pd per liter of carrier volume
20 g is preferred, and 0.5 to 10 g is particularly preferred. In the case of Rh, the amount is preferably 0.01 to 10 g, particularly preferably 0.05 to 5 g.
【0012】Irの担持量は、担体体積1リットル当たり
に0.05〜10gの範囲とすることが好ましい。Irの担持量
がこれより少ないとNOx吸蔵元素の硫黄被毒を抑制する
ことが困難となり、これより多く担持しても効果が飽和
するとともにコストアップとなる。またNOx吸蔵元素と
しては、アルカリ金属、アルカリ土類金属及び希土類元
素から選ばれる少なくとも一種を用いることができる。
中でもアルカリ度が高くNOx吸蔵能の高いアルカリ金属
及びアルカリ土類金属の少なくとも一方を用いるのが好
ましい。The supported amount of Ir is as follows:
It is preferably in the range of 0.05 to 10 g. Ir loading
NO if lessxReduces sulfur poisoning of occluded elements
The effect is saturated even if it is carried more than this.
Cost increases. Also NOxWith occlusion elements
And alkali metal, alkaline earth metal and rare earth elements
At least one member selected from the group consisting of elements can be used.
Above all, high alkalinity and NOxAlkali metal with high storage capacity
And at least one of alkaline earth metals.
Good.
【0013】アルカリ金属としては、リチウム、ナトリ
ウム、カリウム、ルビジウム、セシウム、フランシウム
が例示される。アルカリ土類金属とは周期表2A族元素を
いい、バリウム、ベリリウム、マグネシウム、カルシウ
ム、ストロンチウムなどが例示される。また希土類元素
としては、スカンジウム、イットリウム、ランタン、セ
リウム、プラセオジム、ネオジム、ジスプロシウム、イ
ッテルビウムなどが例示される。Examples of the alkali metal include lithium, sodium, potassium, rubidium, cesium, and francium. The alkaline earth metal refers to a Group 2A element in the periodic table, and examples thereof include barium, beryllium, magnesium, calcium, strontium, and the like. Examples of the rare earth element include scandium, yttrium, lanthanum, cerium, praseodymium, neodymium, dysprosium, and ytterbium.
【0014】NOx吸蔵材の担持量は、担体体積1リット
ルに対して0.05〜1.0モルの範囲が望ましい。担持量が
0.05モルより少ないとNOx吸蔵能力が小さくNOx浄化性
能が低下し、 1.0モルを超えて含有しても効果が飽和し
他の成分量の低下による不具合が生じる。そして本発明
の排ガス浄化方法では、上記した本発明の排ガス浄化用
触媒を用い、空燃比(A/F)が18以上で運転され間欠
的に燃料ストイキ〜リッチ雰囲気とされるリーンバーン
エンジンからの排ガスと接触させる。すると燃料リーン
雰囲気では、排ガス中に含まれるNOが触媒上で酸化され
てNOxとなり、それがNOx吸蔵元素に吸蔵される。そし
て間欠的に燃料ストイキ〜リッチ雰囲気とされると、NO
x吸蔵元素からNOxが放出され、それが触媒上で排ガス
中のHCやCOと反応して還元される。The loading amount of the NOx occluding material is preferably in the range of 0.05 to 1.0 mol per 1 liter of the carrier. Loading amount
If the amount is less than 0.05 mol, the NOx storage capacity is small and the NOx purification performance is reduced. Even if the amount exceeds 1.0 mol, the effect is saturated and a problem occurs due to a decrease in the amount of other components. The exhaust gas purification method of the present invention uses the above-described exhaust gas purification catalyst of the present invention and operates at an air-fuel ratio (A / F) of 18 or more and intermittently sets a fuel stoichiometric to rich atmosphere. Contact with exhaust gas. Then the fuel-lean atmosphere, NOx is NO contained in exhaust gas is oxidized on the catalyst, which are inserted inthe NOx storage element. And if the fuel stoichiometric-rich atmosphere is set intermittently, NO
NOx is released from thex storage element, which is reduced on the catalyst by reacting with HC and CO in the exhaust gas.
【0015】このとき、Irは耐熱性に優れ、かつ高い還
元活性を有している。したがってリッチ雰囲気において
SOxを還元することができ、NOx吸蔵元素に吸着したSO
xをリッチ時に容易に脱離させて還元することができ
る。これにより耐久性が向上し、高いNOx浄化能を長期
間維持することができる。At this time, Ir has excellent heat resistance and high reductivity. So in a rich atmosphere
SOx can be reduced and SO adsorbed on NOx storage element
x can be easily desorbed and reduced when it is rich. This can improve durability, to maintain highthe NOx purification performance long term.
【0016】[0016]
【実施例】以下、実施例及び比較例により本発明を具体
的に説明する。 (実施例1)γ-Al2O3粉末とTiO2粉末とを重量比で1対
1となるように混合し、ボールミルにて24時間ミリング
して充分に混合した。この混合粉末 500gを1000gの水
に分散させ、酢酸バリウム所定量を加えてよく攪拌して
溶解させた後、濃縮・乾固し、 550℃で2時間焼成し
た。The present invention will be specifically described below with reference to examples and comparative examples. (Example 1) γ-Al2 O3 powder and TiO2 powder were mixed at a weight ratio of 1 to 1, and were thoroughly mixed by milling in a ball mill for 24 hours. 500 g of this mixed powder was dispersed in 1000 g of water, a predetermined amount of barium acetate was added, and the mixture was thoroughly stirred and dissolved. The mixture was concentrated, dried and calcined at 550 ° C. for 2 hours.
【0017】次に、炭酸水素アンモニウム( NH4HCO3)
100gを 500gの水に溶解した溶液中に、上記で得られ
た酢酸Ba担持粉末全量を混合し、15分間攪拌した後吸引
濾過・乾燥して炭酸Ba担持粉末とした。この炭酸Ba担持
粉末全量を1000gの水に分散させ、そこへ所定濃度のジ
ニトロジアンミン白金錯体及び硝酸ロジウムの混合水溶
液の所定量を混合して30分間攪拌し、濾過後 110℃で2
時間乾燥し、 450℃で2時間焼成してPtを担持した。Next, ammonium hydrogen carbonate (NH4 HCO3 )
The whole amount of the Ba acetate-supported powder obtained above was mixed with a solution prepared by dissolving 100 g in 500 g of water, stirred for 15 minutes, suction-filtered and dried to obtain Ba carbonate-supported powder. The total amount of the Ba carbonate-supported powder was dispersed in 1000 g of water, and a predetermined amount of a mixed aqueous solution of a predetermined concentration of a dinitrodiammineplatinum complex and rhodium nitrate was mixed therein, stirred for 30 minutes, filtered, and filtered at 110 ° C for 2 hours.
The mixture was dried for 4 hours and calcined at 450 ° C. for 2 hours to carry Pt.
【0018】さらにBaとPt及びRhを担持した混合粉末全
量を1000gの水に分散させ、そこへ所定濃度の硝酸イリ
ジウム水溶液の所定量を混合して30分間攪拌し、濾過後
110℃で2時間乾燥し、 450℃で2時間焼成してIrを担
持した。そしてBa,Pt,Rh及びIrを担持した混合粉末全
量を1000gの水に分散させ、そこへ所定濃度の酢酸カリ
ウム及び酢酸リチウム混合水溶液の所定量を混合して30
分間攪拌し、濾過後 110℃で2時間乾燥し、 450℃で2
時間焼成してK及びLiを担持した。Further, the total amount of the mixed powder carrying Ba, Pt and Rh is dispersed in 1000 g of water, a predetermined amount of an iridium nitrate aqueous solution having a predetermined concentration is mixed therein, and the mixture is stirred for 30 minutes.
It was dried at 110 ° C. for 2 hours and calcined at 450 ° C. for 2 hours to carry Ir. Then, the whole amount of the mixed powder supporting Ba, Pt, Rh and Ir was dispersed in 1000 g of water, and a predetermined amount of a mixed aqueous solution of potassium acetate and lithium acetate having a predetermined concentration was mixed therewith.
After stirring, the solution was filtered and dried at 110 ° C for 2 hours.
After calcination for a time, K and Li were supported.
【0019】得られた触媒粉末を水でスラリー化し、容
量 1.3Lのセラミックス製ハニカム担体基材にコートし
た。コート量はモノリス担体基材1L当たり 300gであ
る。これを 250℃で15分乾燥させた後 500℃で30分焼成
してモノリス触媒を得た。モノリス触媒1リットルに対
して、Ptは2g、Rhは 0.5g、Irは2g、Baは 0.3モ
ル、K及びLiはそれぞれ 0.1モル担持されている。The obtained catalyst powder was slurried with water and coated on a 1.3 L ceramic honeycomb carrier substrate. The coating amount is 300 g per liter of the monolith carrier substrate. This was dried at 250 ° C. for 15 minutes and then calcined at 500 ° C. for 30 minutes to obtain a monolith catalyst. With respect to 1 liter of the monolith catalyst, 2 g of Pt, 0.5 g of Rh, 2 g of Ir, 0.3 mol of Ba, and 0.1 mol of each of K and Li are supported.
【0020】(比較例1)Irを担持しなかったこと(P
t,Rh,Ba,K,及びLiを担持)以外は実施例1と同様
にして、比較例1のモノリス触媒を調製した。 (比較例2)Pt及びRhを担持しなかったこと(Ir,Ba,
K,及びLiを担持)以外は実施例1と同様にして、比較
例2のモノリス触媒を調製した。Comparative Example 1 No Ir was supported (P
A monolith catalyst of Comparative Example 1 was prepared in the same manner as in Example 1 except that t, Rh, Ba, K, and Li were supported). (Comparative Example 2) Pt and Rh were not supported (Ir, Ba,
A monolith catalyst of Comparative Example 2 was prepared in the same manner as in Example 1 except that K and Li were supported.
【0021】<試験・評価>実施例及び比較例の各触媒
をそれぞれ実験室用反応器に配置し、表1に示す組成の
モデル排ガスを、ガス空間速度100,000h-1の条件で導入
した。触媒床温度 350℃で、リッチガス定常状態からリ
ーンガス定常状態にガスを切換えて排出ガスのNOx濃度
が定常になるまでに、それぞれの触媒が吸蔵したNOx量
(初期NOx吸蔵量)を測定した。結果を表2に示す。<Test / Evaluation> Each of the catalysts of Examples and Comparative Examples was placed in a laboratory reactor, and a model exhaust gas having the composition shown in Table 1 was introduced at a gas space velocity of 100,000 h-1 . The catalyst bed temperature 350 ° C., until the concentration of NOx emissions by switching gas from rich steady state lean gas steady state is stationary, NOx amount which each catalyst has occluded (initialthe NOx storage amount) measurement did. Table 2 shows the results.
【0022】[0022]
【表1】また実施例と比較例の各触媒を、 1.8Lのリーンバーン
エンジンの排気系にそれぞれ取付け、硫黄濃度が200ppm
となるように硫黄添加剤が添加された燃料を用い、エン
ジンベンチにて市街地走行を模したパターンで50時間の
促進耐久試験を行った。[Table 1] The catalysts of the example and the comparative example were attached to the exhaust system of a 1.8 L lean burn engine, respectively, and the sulfur concentration was 200 ppm.
A 50-hour accelerated endurance test was performed on an engine bench in a pattern simulating urban driving, using a fuel to which a sulfur additive was added.
【0023】耐久後のそれぞれの触媒を無機化学分析
し、付着しているS(硫黄)量を測定した。結果をNOx
吸蔵元素に対するSのモル比で表2に示す。また耐久後
のそれぞれの触媒について、初期NOx吸蔵量と同様にし
てNOx吸蔵量(耐久後NOx吸蔵量)を測定した。結果を
表2に示す。Each catalyst after the durability test was subjected to inorganic chemical analysis, and the amount of S (sulfur) attached was measured. NOx result
Table 2 shows the molar ratio of S to occluded elements. For each of the catalysts after the durability test, the NOx storage amount (the NOx storage amount after the durability test) was measured in the same manner as the initial NOx storage amount. Table 2 shows the results.
【0024】[0024]
【表2】表2より、比較例1と比較例2を比較すると、比較例1
は初期のNOx吸蔵能に優れているものの耐久試験により
NOx吸蔵能が大きく低下している。また比較例2の触媒
は、耐硫黄被毒性に優れ耐久試験時のNOx吸蔵量の低下
度合いは比較例1より小さいものの、初期のNOx浄化能
に不足している。[Table 2] From Table 2, when Comparative Example 1 and Comparative Example 2 are compared, Comparative Example 1
Is excellent in initial NOx storage capacity, but endurance test
NOx storage capacity is greatly reduced. Further, the catalyst of Comparative Example 2 is excellent in sulfur poisoning resistance, and the degree of decrease in the NOx storage amount during the durability test is smaller than Comparative Example 1, but is insufficient in the initial NOx purification ability.
【0025】一方、実施例1の触媒は初期におけるNOx
吸蔵量が多く初期の活性が高い。そして実施例1の触媒
は、比較例1及び比較例2の触媒に比べて耐久後のNOx
吸蔵能が高く、かつ硫黄被毒量は比較例1より少なく比
較例2より僅かに多い。すなわち、PtとRhを担持するこ
とで初期活性を確保することができ、Irを担持すること
で硫黄被毒を抑制できることがわかり、実施例1の触媒
が初期から耐久後まで高いNOx浄化能を示すのは、Pt及
びRhに加えてIrを担持したことによる効果であることが
明らかである。On the other hand, the catalyst of Example 1 has NOx in the initial stage.
High storage capacity and high initial activity. The catalyst of Example 1, NOx after the durability test compared to the catalyst of Comparative Example 1 and Comparative Example 2
The occlusion capacity is high, and the sulfur poisoning amount is smaller than Comparative Example 1 and slightly larger than Comparative Example 2. That is, it is possible to secure the initial activity by carrying Pt and Rh, notice that can suppress the sulfur poisoning by carrying Ir, catalyst of Example 1 is higher from the initial to after the durabilitythe NOx purification performance Is apparently due to the effect of supporting Ir in addition to Pt and Rh.
【0026】[0026]
【発明の効果】すなわち本発明の排ガス浄化用触媒及び
排ガス浄化方法によれば、NOx吸蔵元素の硫黄被毒をさ
らに抑制することが可能となり、初期から耐久試験後ま
で安定して高いNOx浄化性能が得られ、触媒の耐久性が
格段に向上する。According to the exhaust gas purifying catalyst and the exhaust gas purifying method of the present invention, it is possible to further suppress the sulfur poisoning of the NOx occluding element, and to stably maintain the high NOx from the initial stage to after the endurance test. Purification performance is obtained, and the durability of the catalyst is significantly improved.
フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) F01N 3/10 F01N 3/28 301C 3/24 F02D 41/04 305Z 3/28 301 B01D 53/36 102H F02D 41/04 305 102B B01J 23/56 301A Fターム(参考) 3G091 AA02 AA12 AA13 AA17 AB06 BA11 BA14 BA39 CB02 FB10 FB11 FB12 FC02 GA06 GA20 GB01X GB02W GB03W GB04W GB04X GB05W GB06W GB07W GB10X GB16X GB17X 3G301 HA01 HA06 HA15 HA18 JA15 JA21 JA25 JA33 MA01 MA11 NE13 NE14 NE15 4D002 AA12 AC10 BA04 CA07 DA01 DA02 DA03 DA04 DA05 DA06 DA11 DA21 DA25 DA46 DA47 GA01 GB01 GB02 GB03 GB11 GB20 HA10 4D048 AA06 AB02 BA03X BA06Y BA07Y BA08Y BA10X BA14X BA15X BA18Y BA19Y BA30X BA31Y BA32X BA33X BA41X BB02 BC05 DA01 DA03 DA08 EA04 4G069 AA03 BA01A BA01B BA02A BA03A BA04A BA04B BA05A BA13B BB02A BB02B BB04A BC01A BC02A BC03A BC03B BC04A BC04B BC05A BC06A BC07A BC08A BC09A BC10A BC11A BC12A BC13A BC13B BC38A BC39A BC40A BC42A BC43A BC44A BC71A BC71B BC72A BC74A BC74B BC75A BC75B CA08 CA13 EA19 EC22Y ED07Continued on the front page (51) Int.Cl.7 Identification symbol FI Theme coat II (reference) F01N 3/10 F01N 3/28 301C 3/24 F02D 41/04 305Z 3/28 301 B01D 53/36 102H F02D 41/04 305 102B B01J 23/56 301A F-term (reference) 3G091 AA02 AA12 AA13 AA17 AB06 BA11 BA14 BA39 CB02 FB10 FB11 FB12 FC02 GA06 GA20 GB01X GB02W GB03W GB04W GB04X GB05W GB06W GB07W GB10X GB16XHA17MA1 3 NE13 NE14 NE15 4D002 AA12 AC10 BA04 CA07 DA01 DA02 DA03 DA04 DA05 DA06 DA11 DA21 DA25 DA46 DA47 GA01 GB01 GB02 GB03 GB11 GB20 HA10 4D048 AA06 AB02 BA03X BA06Y BA07Y BA08Y BA10X BA14X BA15X BA18Y BA19Y BA30X BA31 DA03 BA31 BA03 DA03 AA03 BA01A BA01B BA02A BA03A BA04A BA04B BA05A BA13B BB02A BB02B BB04A BC01A BC02A BC03A BC03B BC04A BC04B BC05A BC06A BC07A BC08A BC09A BC10A BC11A BC12A BC13A BC13B BC38A BC39A BC40A BC42A C71A BC71B BC72A BC74A BC74B BC75A BC75B CA08 CA13 EA19 EC22Y ED07
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP11079756AJP2000271428A (en) | 1999-03-24 | 1999-03-24 | Exhaust gas purification catalyst and exhaust gas purification method |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP11079756AJP2000271428A (en) | 1999-03-24 | 1999-03-24 | Exhaust gas purification catalyst and exhaust gas purification method |
| Publication Number | Publication Date |
|---|---|
| JP2000271428Atrue JP2000271428A (en) | 2000-10-03 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP11079756APendingJP2000271428A (en) | 1999-03-24 | 1999-03-24 | Exhaust gas purification catalyst and exhaust gas purification method |
| Country | Link |
|---|---|
| JP (1) | JP2000271428A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| KR100665606B1 (en)* | 2005-04-14 | 2007-01-09 | 희성엥겔하드주식회사 | Rhodium solution containing 400 ppm or more of iridium components as impurities for the preparation of catalyst compositions for exhaust gas purification of internal combustion engines |
| US7399729B2 (en) | 2003-12-22 | 2008-07-15 | General Electric Company | Catalyst system for the reduction of NOx |
| WO2010147127A1 (en)* | 2009-06-17 | 2010-12-23 | 日立建機株式会社 | Exhaust gas treatment device for diesel engine |
| KR20190037444A (en)* | 2017-09-29 | 2019-04-08 | 한국화학연구원 | High performance nitrogen oxide reduction catalyst and method for producing the same |
| WO2020005026A1 (en)* | 2018-06-29 | 2020-01-02 | 한국화학연구원 | Denox catalyst having improved nox reduction performance, method for producing same, and nox reduction method |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US7399729B2 (en) | 2003-12-22 | 2008-07-15 | General Electric Company | Catalyst system for the reduction of NOx |
| KR100665606B1 (en)* | 2005-04-14 | 2007-01-09 | 희성엥겔하드주식회사 | Rhodium solution containing 400 ppm or more of iridium components as impurities for the preparation of catalyst compositions for exhaust gas purification of internal combustion engines |
| WO2010147127A1 (en)* | 2009-06-17 | 2010-12-23 | 日立建機株式会社 | Exhaust gas treatment device for diesel engine |
| CN102449277A (en)* | 2009-06-17 | 2012-05-09 | 日立建机株式会社 | Exhaust gas treatment device for diesel engine |
| KR20190037444A (en)* | 2017-09-29 | 2019-04-08 | 한국화학연구원 | High performance nitrogen oxide reduction catalyst and method for producing the same |
| KR102051857B1 (en)* | 2017-09-29 | 2019-12-04 | 한국화학연구원 | High performance nitrogen oxide reduction catalyst and method for producing the same |
| WO2020005026A1 (en)* | 2018-06-29 | 2020-01-02 | 한국화학연구원 | Denox catalyst having improved nox reduction performance, method for producing same, and nox reduction method |
| Publication | Publication Date | Title |
|---|---|---|
| JP3291086B2 (en) | Exhaust gas purification catalyst and exhaust gas purification method | |
| JP3494147B2 (en) | Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification method | |
| JPH08168675A (en) | Exhaust gas purification catalyst | |
| WO1999029417A1 (en) | Catalyst for purifying exhaust gas and process for purifying exhaust gas | |
| JP3965676B2 (en) | Exhaust gas purification catalyst and exhaust gas purification system | |
| JP3544400B2 (en) | Exhaust gas purification catalyst | |
| JP3144880B2 (en) | Method for producing three-way catalyst with excellent low-temperature activity | |
| JP3685463B2 (en) | Exhaust gas purification catalyst | |
| JP2001289035A (en) | Exhaust gas purification method and exhaust gas purification device | |
| JP2001300262A (en) | Exhaust gas purification device and exhaust gas purification catalyst | |
| JP2001300312A (en) | Exhaust gas purification catalyst | |
| JP3446915B2 (en) | Exhaust gas purification catalyst | |
| JP2000271428A (en) | Exhaust gas purification catalyst and exhaust gas purification method | |
| JPH10249199A (en) | Exhaust gas purification catalyst | |
| JP2001079405A (en) | Exhaust gas purifying catalyst, honeycomb structure carrying exhaust gas purifying catalyst, and method of purifying the same | |
| JPH10174868A (en) | Exhaust gas purification catalyst | |
| JP2001070790A (en) | Exhaust gas purification catalyst | |
| JP3673816B2 (en) | Exhaust gas purification catalyst and exhaust gas purification method | |
| JP2001179100A (en) | Hydrogen generation catalyst, exhaust gas purification catalyst, and exhaust gas purification method | |
| JPH09299795A (en) | Exhaust gas purification catalyst | |
| JP2000325787A (en) | Method for producing exhaust gas purifying catalyst | |
| JP2000042369A (en) | Exhaust gas purification apparatus, exhaust gas purification method and exhaust gas purification catalyst for internal combustion engine | |
| JPH0871424A (en) | Exhaust gas purification catalyst | |
| JP2005288382A (en) | Exhaust gas purification catalyst | |
| JP3379125B2 (en) | Exhaust gas purification catalyst |