【0001】[0001]
【発明の属する技術分野】本発明は、少なくとも一方が
透明である一対の電極間に挟まれた少なくとも1以上の
有機蛍光体よりなる発光層を含んで成る素子部及び該素
子部を保護する保護膜を有する有機EL素子およびその
製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an element portion comprising a light emitting layer comprising at least one or more organic phosphors sandwiched between a pair of electrodes, at least one of which is transparent, and a protection for protecting the element portion. The present invention relates to an organic EL device having a film and a method for manufacturing the same.
【0002】[0002]
【従来の技術】近年、情報機器の多様化等にともなっ
て、従来より一般に使用されているCRTに比べて消費
電力や空間占有面積が少ない平面表示素子のニーズが高
まり、このような平面表示素子の一つとしてEL素子
(エレクトロルミネッセンス素子)が注目されている。2. Description of the Related Art In recent years, with the diversification of information equipment and the like, the need for a flat display element which consumes less power and has a smaller space occupied area than conventional CRTs has been increased. As one of them, an EL element (electroluminescence element) has attracted attention.
【0003】そして、このEL素子は使用する材料によ
って無機EL素子と有機EL素子に大別され、有機EL
素子においては、電子注入層と正孔(ホール)注入層か
らそれぞれ電子と正孔を発光部内に注入させて、このよ
うに注入された電子と正孔とを発光中心で再結合させ、
有機材料を励起させて、この材料が励起状態から基底状
態に戻るときに蛍光を発光するようになっている。[0003] These EL elements are roughly classified into inorganic EL elements and organic EL elements depending on the materials used.
In the device, electrons and holes are respectively injected into the light emitting portion from the electron injection layer and the hole (hole) injection layer, and the injected electrons and holes are recombined at the emission center.
The organic material is excited to emit fluorescence when the material returns from the excited state to the ground state.
【0004】上記の有機EL素子においては、5〜20
V程度の低い電圧で駆動できるという利点があり、ま
た、このような有機EL素子においては、発光材料であ
る蛍光物質(有機蛍光体)を選択することによって適当
な色彩に発光する発光素子を得ることができ、フルカラ
ーの表示装置等としても利用できるという期待があり、
近年、このような有機EL素子について様々な研究が行
われるようになった。In the above organic EL device, 5 to 20
There is an advantage that it can be driven at a voltage as low as about V. In such an organic EL element, a light emitting element which emits light of an appropriate color can be obtained by selecting a fluorescent substance (organic fluorescent substance) as a light emitting material. Is expected to be used as a full-color display device, etc.
In recent years, various studies have been conducted on such organic EL devices.
【0005】この有機EL素子における素子部は、少な
くとも一方が透明である一対の電極(正孔注入電極と電
子注入電極)間に挟まれた少なくとも1以上の有機蛍光
体よりなる発光部を含んだ構造であり、具体的には以下
の構造が知られている。すなわち、正孔注入電極と電子
注入電極の間に正孔輸送層と発光層と電子注入層を積層
させたDH構造と称される三層構造のものや、正孔注入
電極と電子注入電極の間に正孔輸送層と電子輸送性に富
む発光層が積層されたSH−A構造と称される二層構造
のものや、正孔注入電極と電子注入電極の間に正孔輸送
性に富む発光層と電子輸送層が積層されたSH−B構造
と称される二層構造のものが、それである。The element portion of the organic EL device includes a light emitting portion made of at least one organic phosphor sandwiched between a pair of transparent electrodes (a hole injection electrode and an electron injection electrode), at least one of which is transparent. Structure, specifically, the following structures are known. That is, a three-layer structure called a DH structure in which a hole transport layer, a light-emitting layer, and an electron injection layer are stacked between a hole injection electrode and an electron injection electrode, or a hole injection electrode and an electron injection electrode. It has a two-layer structure called an SH-A structure in which a hole transport layer and a light-emitting layer having an electron-transport property are stacked, or has a high hole-transport property between a hole injection electrode and an electron-injection electrode. This is a two-layer structure called an SH-B structure in which a light emitting layer and an electron transport layer are stacked.
【0006】ここで、有機EL素子においては、例えば
上記素子部における電極の酸化を防止する等の目的で、
該素子部を保護膜で被覆した構成としており、そのよう
なものとして、特開8−111286号公報に記載の保
護膜にシリコン窒化(SiN)膜を用いたものが提案さ
れている。Here, in the organic EL device, for the purpose of, for example, preventing oxidation of the electrodes in the device portion,
The element portion is configured to be covered with a protective film, and as such a device, a device using a silicon nitride (SiN) film as a protective film described in Japanese Patent Application Laid-Open No. 8-111286 has been proposed.
【0007】[0007]
【発明が解決しようとする課題】しかしながら、上記公
報に記載のシリコン窒化膜はスパッタ法やプラズマCV
D法によって形成されているが、膜の残留応力を低減す
るために、これらの方法において成膜時の温度は約10
0℃になる。このため、有機EL素子の保護膜としてシ
リコン窒化膜を用いると、この成膜温度のために、素子
部が熱的ダメージを受け不均一な発光となって輝度が低
下したり、また、残留応力を完全に無くすことができな
いため保護膜に歪みや剥がれが生じる等、の問題が生じ
る。However, the silicon nitride film described in the above-mentioned publication is not suitable for sputtering or plasma CVD.
Although formed by the method D, in order to reduce the residual stress of the film, the temperature at the time of film formation in these methods is about 10
It reaches 0 ° C. For this reason, when a silicon nitride film is used as a protective film of an organic EL device, the device portion is thermally damaged due to the film formation temperature, resulting in non-uniform light emission, lowering luminance, and reducing residual stress. Cannot be completely eliminated, causing problems such as distortion and peeling of the protective film.
【0008】本発明は上記問題に鑑みてなされたもので
あり、一対の電極間に挟まれた有機蛍光体よりなる発光
層を含んでなる素子部と該素子部を保護する保護膜とを
備える有機EL素子において、保護膜を従来よりも低温
で成膜可能とし、膜応力及び熱的ダメージを小さくする
ことを目的とする。The present invention has been made in view of the above problems, and has an element portion including a light emitting layer composed of an organic phosphor sandwiched between a pair of electrodes, and a protective film for protecting the element portion. In an organic EL device, a protective film can be formed at a lower temperature than before, and the object is to reduce film stress and thermal damage.
【0009】[0009]
【課題を解決するための手段】本発明は、スパッタ法や
プラズマCVD法によってSiN膜よりも低い温度で成
膜可能な材料を、保護膜として用いることに着目してな
されたものである。このような材料を得るべく鋭意検討
した結果、SiCN膜が好ましいことを実験的に見出し
た。SiCN膜はSiNに炭素が添加されたもので、従
来のSiN膜よりも低い温度(室温程度)で成膜して
も、残留する膜応力を小さくできる。SUMMARY OF THE INVENTION The present invention has been made by paying attention to using a material which can be formed at a lower temperature than a SiN film by a sputtering method or a plasma CVD method as a protective film. As a result of intensive studies to obtain such a material, it has been experimentally found that a SiCN film is preferable. The SiCN film is obtained by adding carbon to SiN. Even when the SiCN film is formed at a lower temperature (about room temperature) than the conventional SiN film, the remaining film stress can be reduced.
【0010】本発明者等の検討によれば、保護膜として
SiCN膜を用いたものは、従来に比べて、連続発光さ
せた場合にも均一な発光が得られ輝度が低下するという
ことが少なく長期にわたって輝度の高い安定した発光が
行えること、及び、残留応力の影響が少なく保護膜に膜
歪みや剥がれが生じ難いこと、を実験的に確認すること
ができた。According to the study of the present inventors, a device using an SiCN film as a protective film can provide uniform light emission even when continuous light emission is performed, and it is less likely that the luminance is reduced as compared with the related art. It has been experimentally confirmed that stable light emission with high luminance can be performed over a long period of time, and that the protective film is less affected by residual stress and hardly causes film distortion or peeling.
【0011】請求項1記載の発明は、斯かる知見に基づ
いてなされたものであり、素子部(6)を覆う保護膜
(7)をSiCN膜から構成したことを特徴としてお
り、保護膜(7)を従来よりも低温で成膜可能とするこ
とができ、それによって、熱的ダメージおよび膜応力を
小さくできるため、長期の使用において輝度の高い安定
した発光が行える。The invention according to claim 1 is based on such knowledge, and is characterized in that the protection film (7) covering the element portion (6) is made of a SiCN film. 7) can be formed at a lower temperature than in the prior art, whereby thermal damage and film stress can be reduced, so that stable light emission with high luminance can be performed in long-term use.
【0012】ここで、保護膜(7)は、シラン、メタ
ン、窒素、水素を原料ガスとするプラズマCVDによっ
て形成されたもの(請求項2の発明)とできる。また、
請求項3記載の発明によれば、基板(1)上に、少なく
とも一方が透明である一対の電極(2、5)およびこれ
ら電極の間に挟まれた少なくとも1以上の有機蛍光体よ
りなる発光部(3、4)を有する素子部(6)を形成し
た後、シラン、メタン、窒素、水素を原料ガスとするプ
ラズマCVDによって、該基板上において該素子部を覆
うように保護膜(7)を形成することを特徴としてい
る。Here, the protective film (7) can be formed by plasma CVD using silane, methane, nitrogen and hydrogen as source gases (the invention of claim 2). Also,
According to the third aspect of the present invention, at least one of the pair of electrodes (2, 5), at least one of which is transparent, and at least one or more organic phosphors sandwiched between these electrodes are formed on the substrate (1). After forming the element portion (6) having the portions (3, 4), a protective film (7) is formed on the substrate by plasma CVD using silane, methane, nitrogen, and hydrogen as a source gas so as to cover the element portion. Is formed.
【0013】それによって、従来のSiN膜よりも低い
温度で保護膜としてのSiCN膜を形成でき、熱的ダメ
ージおよび膜応力を低減した有機EL素子を製造し得る
製造方法を提供することができる。なお、上記した括弧
内の符号は、後述する実施形態記載の具体的手段との対
応関係を示す一例である。[0013] This makes it possible to form a SiCN film as a protective film at a temperature lower than that of a conventional SiN film, and to provide a manufacturing method capable of manufacturing an organic EL device with reduced thermal damage and film stress. In addition, the code | symbol in a parenthesis mentioned above is an example which shows the correspondence with the concrete means of embodiment described later.
【0014】[0014]
【発明の実施の形態】以下、本発明を図に示す実施形態
について説明する。図1は本発明に係る有機EL素子1
00の一実施形態を示す断面図である。図1に示す有機
EL素子100の素子部は、上述のSH−A構造と称さ
れる二層構造としているが、上述のSH−B構造または
DH構造であってもよい。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing a first embodiment of the present invention. FIG. 1 shows an organic EL device 1 according to the present invention.
FIG. 1 is a cross-sectional view showing one embodiment of the present invention. The element portion of the organic EL element 100 shown in FIG. 1 has a two-layer structure called the above-mentioned SH-A structure, but may have the above-mentioned SH-B structure or DH structure.
【0015】1はガラス基板で、この基板1上には、透
明電極(正孔注入電極)2、正孔輸送層3、電子輸送層
(発光層)4、陰極(電子注入電極)5が順次積層され
た素子部6が形成され、素子部6を覆うように保護膜7
が形成されている。透明電極(正孔注入電極)2は、例
えばITO(インジウムとスズの酸化物)からなり、ガ
ラス基板1上にパターン形成されており、正孔を正孔輸
送層3へ注入する。正孔輸送層3は、例えばTPD
(N、N’−ジフェニル−N、N’(3メチルフェニ
ル)1、1’−ビフェニル−4、4’−ジアミン)など
の有機蛍光体からなり、透明電極2から得た正孔を電子
輸送層4へ輸送する。Reference numeral 1 denotes a glass substrate, on which a transparent electrode (hole injection electrode) 2, a hole transport layer 3, an electron transport layer (light emitting layer) 4, and a cathode (electron injection electrode) 5 are sequentially arranged. A stacked element section 6 is formed, and a protective film 7 is formed so as to cover the element section 6.
Are formed. The transparent electrode (hole injection electrode) 2 is made of, for example, ITO (oxide of indium and tin), is patterned on the glass substrate 1, and injects holes into the hole transport layer 3. The hole transport layer 3 is made of, for example, TPD
(N, N'-diphenyl-N, N '(3-methylphenyl) 1,1'-biphenyl-4,4'-diamine) and the like, and transports holes obtained from the transparent electrode 2 by electron transport. Transport to Layer 4.
【0016】電子輸送層(発光層)4は、例えばZnB
OX(ベンゾオキサジアゾールフェライト亜鉛錯体)、
Alq(トリス(8−キノリール)アルミニウム)、B
Alq(ビス(2メチル8キノリール)(2、3ジメチ
ルフェノレール)アルミニウム)などの有機蛍光体から
なり、陰極5から注入された電子を輸送する。このとき
電子の一部は正孔との結合によりホスト材料を励起して
発光する。本実施形態では、これら両輸送層3、4によ
り発光部が構成される。The electron transporting layer (light emitting layer) 4 is made of, for example, ZnB
OX (benzoxadiazole ferrite zinc complex),
Alq (Tris (8-quinolyl) aluminum), B
It is made of an organic phosphor such as Alq (bis (2-methyl-8-quinolyl) (2,3 dimethylphenolyl) aluminum) and transports electrons injected from the cathode 5. At this time, some of the electrons excite the host material by bonding with holes to emit light. In the present embodiment, the light-emitting portion is constituted by the transport layers 3 and 4.
【0017】陰極(対向電極、電子注入電極)5は、例
えばAg−MgやAl−Li等からなり、電子を電子輸
送層4に注入する。保護膜7は、SiCN膜からなって
おり、本実施形態では、シラン(SiH4)、メタン
(CH4)、窒素(N2)、水素(H2)を原料ガスと
してプラズマCVDで形成されたものである。The cathode (counter electrode, electron injection electrode) 5 is made of, for example, Ag—Mg or Al—Li, and injects electrons into the electron transport layer 4. The protective film 7 is made of a SiCN film. In the present embodiment, the protective film 7 is formed by plasma CVD using silane (SiH4 ), methane (CH4 ), nitrogen (N2 ), and hydrogen (H2 ) as source gases. Things.
【0018】斯かる有機EL素子100は、ガラス基板
1上に、透明電極2をパターン形成し、その上に、正孔
輸送層3、電子輸送層4、陰極5を順次、蒸着等により
積層して素子部6を形成した後、室温でシラン、メタ
ン、窒素、水素を原料ガスとするプラズマCVDによっ
て素子部6を覆うように保護膜7を形成することにより
製造することができる。In such an organic EL device 100, a transparent electrode 2 is formed in a pattern on a glass substrate 1, and a hole transport layer 3, an electron transport layer 4, and a cathode 5 are sequentially laminated thereon by vapor deposition or the like. After forming the element portion 6 by using the above method, it can be manufactured by forming a protective film 7 so as to cover the element portion 6 by plasma CVD using silane, methane, nitrogen, and hydrogen as source gases at room temperature.
【0019】そして、有機EL素子100においては、
透明電極2と陰極5との間に電界印加すると、正孔が透
明電極2から正孔輸送層3、電子輸送層4へと輸送さ
れ、一方、電子が陰極5から電子輸送層4へ注入され、
電子輸送層4において正孔と電子とが結合して発光す
る。この光はガラス基板1の素子部形成面とは反対側か
ら取り出すことができる。In the organic EL device 100,
When an electric field is applied between the transparent electrode 2 and the cathode 5, holes are transported from the transparent electrode 2 to the hole transport layer 3 and the electron transport layer 4, while electrons are injected from the cathode 5 to the electron transport layer 4. ,
Holes and electrons are combined in the electron transport layer 4 to emit light. This light can be extracted from the opposite side of the glass substrate 1 from the element portion forming surface.
【0020】ところで、上記有機EL素子100によれ
ば、保護膜7として従来のSiN膜よりも低い温度(室
温程度)で成膜しても残留する膜応力の小さいSiCN
膜を用いているため、従来に比べて、連続発光させた場
合にも均一な発光が得られ輝度が低下するということが
少なく長期に渡り輝度の高い安定した発光が行え、ま
た、残留応力(膜応力)の影響が少なく保護膜7に膜歪
みや剥がれが生じ難くできる。According to the organic EL element 100, even if the protective film 7 is formed at a lower temperature (about room temperature) than the conventional SiN film, the residual SiCN film stress is small.
Since the film is used, uniform light emission can be obtained even when continuous light emission is performed, luminance is not reduced, and stable light emission with high luminance can be performed over a long period of time. Film stress) is less affected, and film distortion and peeling of the protective film 7 are less likely to occur.
【0021】従って、素子部6の熱的ダメージを低減
し、また、膜歪みや剥がれが少ないため長期の使用にお
いて輝度の高い安定した発光が可能な有機EL素子を提
供することができる。Accordingly, it is possible to provide an organic EL element which can reduce thermal damage to the element section 6 and can emit light with high luminance and stability over a long period of use because of little film distortion and peeling.
【0022】[0022]
【実施例】以下、図1に示した有機EL素子100に基
づく実施例を示す。 (実施例1)25mm×60mm×1.1mmのサイズ
のガラス基板1上にITO電極(透明電極)2を100
nmの厚さで作製したものを透明電極基板とした。この
基板をイソプロピルアルコールにて10分間超音波洗浄
した後、更にアルカリ洗剤で10分間超音波洗浄し、純
水で10分間流水洗浄した後、N2ガンで乾燥した。An embodiment based on the organic EL device 100 shown in FIG. 1 will be described below. (Example 1) 100 ITO electrodes (transparent electrodes) 2 were placed on a glass substrate 1 having a size of 25 mm x 60 mm x 1.1 mm.
A substrate having a thickness of nm was used as a transparent electrode substrate. The substrate was ultrasonically cleaned with isopropyl alcohol for 10 minutes, further ultrasonically cleaned with an alkali detergent for 10 minutes, washed with pure water for 10 minutes, and then dried with a N2 gun.
【0023】この透明電極基板を市販の蒸着装置の基板
ホルダに固定し、グラファイト製のるつぼにTPDを5
00mg入れ、また別のグラファイト製のるつぼにAl
q3を500mg入れて真空槽を5×10-4Paまで減
圧した。その後、TPD入りの前記るつぼを蒸着速度
0.1nm/秒で透明電極基板上に蒸着して膜厚40n
mの正孔注入層3を成膜した。この時の基板温度は室温
とした。これを真空槽より取り出すことなく、正孔注入
層3の上に、もう一つのるつぼよりAlq3を電子輸送
層(発光層)4として60nm積層蒸着した。蒸着条件
は、蒸着速度が0.1nm/秒、基板温度は室温とし
た。This transparent electrode substrate was fixed to a substrate holder of a commercially available vapor deposition apparatus, and TPD was placed in a graphite crucible.
00mg and Al in another graphite crucible
500 mg of q3 was charged, and the pressure in the vacuum chamber was reduced to 5 × 10−4 Pa. Thereafter, the crucible containing the TPD was vapor-deposited on the transparent electrode substrate at a vapor deposition rate of 0.1 nm / sec.
m of the hole injection layer 3 was formed. The substrate temperature at this time was room temperature. Without taking it out of the vacuum chamber, Alq3 was deposited on the hole injection layer 3 as an electron transporting layer (light emitting layer) 4 in a thickness of 60 nm from another crucible. The deposition conditions were a deposition rate of 0.1 nm / sec and a substrate temperature of room temperature.
【0024】次に、モリブデン製の抵抗加熱ボートにM
g(マグネシウム)を1gを入れ、また、別のモリブデ
ン製の抵抗加熱ボートにAg(銀)を500mg装着し
た。その後、真空槽を5×10-4Paまで減圧してか
ら、Mgを入れたボートを蒸着速度1.0nm/秒で蒸
着させ、同時に抵抗加熱法によりAgを蒸着速度0.0
5nm/秒で蒸着させ、AgとMgの混合金属電極を発
光層上に100nm積層蒸着し対向電極とした。Next, the resistance heating boat made of molybdenum
g (magnesium) was charged, and another molybdenum resistance heating boat was equipped with 500 mg of Ag (silver). Thereafter, the pressure in the vacuum chamber was reduced to 5 × 10−4 Pa, and then a boat containing Mg was deposited at a deposition rate of 1.0 nm / sec.
Vapor deposition was performed at a rate of 5 nm / sec, and a mixed metal electrode of Ag and Mg was laminated and vapor-deposited to a thickness of 100 nm on the light emitting layer to form a counter electrode.
【0025】素子部6が形成されたガラス基板1をプラ
ズマCVD装置に設置し、真空槽を5×10-4Paまで
減圧してから、SiH4を20sccm、N2を400
sccm、CH4を10sccm、H2を50sccm
導入し、反応圧力1.1×102Pa、RFパワー10
Wで高周波(13.56MHz)プラズマを発生させ
た。これにより有機EL素子表面上に室温でSiCN膜
(保護膜)7を1.0μmの厚さに成膜した。The glass substrate 1 on which the element section 6 is formed is placed in a plasma CVD apparatus, the pressure in the vacuum chamber is reduced to 5 × 10−4 Pa, and then SiH4 is set to 20 sccm and N2 is set to 400
sccm, 10 sccm of CH4, the H2 50 sccm
Introduced, reaction pressure 1.1 × 102 Pa, RF power 10
A high frequency (13.56 MHz) plasma was generated at W. Thus, a SiCN film (protective film) 7 having a thickness of 1.0 μm was formed on the surface of the organic EL element at room temperature.
【0026】本例により得られた有機EL素子100の
ITO電極2を陽極、Mg/Ag混合電極を陰極5と
し、印加電圧10V、電流密度130mA/cm2とし
たところ、6000cd/m2の輝度の均一な緑色発光
を観察することができた。また、SiCN膜7に膜歪み
や剥がれは生じなかった。 (実施例2)SiCN膜7の成膜以外は実施例1と同様
にしてガラス基板1上に素子部6を形成した。その後、
素子部6が形成されたガラス基板1をプラズマCVD装
置に設置し、真空槽を5×10-4Paまで減圧してか
ら、SiH4を20sccm、N2を500sccm、
CH4を20sccm、H2を100sccm導入し、
反応圧力1.1×102Pa、RFパワー10Wで高周
波(13.56MHz)プラズマを発生させた。これに
より室温でSiCN膜7を1.0μmの厚さに成膜し
た。When the ITO electrode 2 of the organic EL device 100 obtained in this example was used as the anode and the Mg / Ag mixed electrode was used as the cathode 5 and the applied voltage was 10 V and the current density was 130 mA / cm2 , the luminance was 6000 cd / m2 . A uniform green light emission could be observed. Also, no film distortion or peeling occurred in the SiCN film 7. (Example 2) An element portion 6 was formed on a glass substrate 1 in the same manner as in Example 1 except that the SiCN film 7 was formed. afterwards,
The glass substrate 1 on which the element portion 6 was formed was placed in a plasma CVD apparatus, and the pressure in the vacuum chamber was reduced to 5 × 10−4 Pa. Then, SiH4 was set at 20 sccm, N2 was set at 500 sccm,
20 sccm of CH4 and 100 sccm of H2 were introduced,
High-frequency (13.56 MHz) plasma was generated at a reaction pressure of 1.1 × 102 Pa and an RF power of 10 W. Thus, a SiCN film 7 was formed at room temperature to a thickness of 1.0 μm.
【0027】得られた有機EL素子100のITO電極
2を陽極、Mg/Ag混合電極を陰極5として、印加電
圧10V、電流密度125mA/cm2としたところ、
5500cd/m2の輝度の均一な緑色発光を観察する
ことができた。また、SiCN膜7に膜歪みや剥がれは
生じなかった。 (比較例1)SiCN膜7の成膜以外は実施例1と同様
にしてガラス基板1上に素子部6を形成した。その後、
素子部6が形成されたガラス基板1をプラズマCVD装
置に設置し、真空槽を5×10-4Paまで減圧してか
ら、SiH4を20sccm、N2を400sccm、
H2を100sccm導入し、反応圧力1.1×102
Pa、RFパワー10Wで高周波(13.56MHz)
でプラズマを発生させた。これにより素子部6の表面上
に100℃でSiN膜を1.0μmの厚さに成膜した。When the ITO electrode 2 of the obtained organic EL device 100 was used as an anode and the Mg / Ag mixed electrode was used as a cathode 5, an applied voltage of 10 V and a current density of 125 mA / cm2 were obtained.
Uniform green light emission with a luminance of 5500 cd / m2 could be observed. Also, no film distortion or peeling occurred in the SiCN film 7. Comparative Example 1 An element portion 6 was formed on a glass substrate 1 in the same manner as in Example 1 except that the SiCN film 7 was formed. afterwards,
The glass substrate 1 on which the element section 6 was formed was placed in a plasma CVD apparatus, and the pressure in the vacuum chamber was reduced to 5 × 10−4 Pa. Then, SiH4 was 20 sccm, N2 was 400 sccm,
H2 was introduced at 100 sccm, and the reaction pressure was 1.1 × 102.
Pa, RF power 10W, high frequency (13.56MHz)
To generate plasma. As a result, an SiN film having a thickness of 1.0 μm was formed on the surface of the element portion 6 at 100 ° C.
【0028】得られた有機EL素子のITO電極2を陽
極、Mg/Ag混合電極を陰極5として、印加電圧10
Vとしたところ、不均一な緑色発光を観察した。 (比較例2)SiCN膜7の成膜以外は実施例1と同様
にしてガラス基板1上に素子部6を形成した。その後、
素子部6が形成されたガラス基板1をプラズマCVD装
置に設置し、真空槽を5×10-4Paまで減圧してか
ら、SiH4を20sccm、N2を400sccm、
H2を100sccm導入し、反応圧力1.1×102
Pa、RFパワー10Wで高周波(13.56MHz)
でプラズマを発生させた。これにより素子部6の表面上
に室温でSiN膜を1.0μmの厚さに成膜した。しか
し、膜の残留応力のためにSiN膜に剥がれが生じた。The ITO electrode 2 of the obtained organic EL device was used as an anode, the Mg / Ag mixed electrode was used as a cathode 5, and an applied voltage of 10 was applied.
At V, uneven green light emission was observed. (Comparative Example 2) An element portion 6 was formed on a glass substrate 1 in the same manner as in Example 1 except that the SiCN film 7 was formed. afterwards,
The glass substrate 1 on which the element section 6 was formed was placed in a plasma CVD apparatus, and the pressure in the vacuum chamber was reduced to 5 × 10−4 Pa. Then, SiH4 was 20 sccm, N2 was 400 sccm,
H2 was introduced at 100 sccm, and the reaction pressure was 1.1 × 102.
Pa, RF power 10W, high frequency (13.56MHz)
To generate plasma. Thus, a 1.0 μm-thick SiN film was formed on the surface of the element section 6 at room temperature. However, the SiN film was peeled off due to the residual stress of the film.
【図1】本発明に係る有機EL素子の一実施形態を示す
断面図である。FIG. 1 is a cross-sectional view showing one embodiment of an organic EL device according to the present invention.
1…ガラス基板、2…透明電極、3…正孔輸送層、4…
電子輸送層、5…陰極、6…素子部、7…保護膜。DESCRIPTION OF SYMBOLS 1 ... Glass substrate, 2 ... Transparent electrode, 3 ... Hole transport layer, 4 ...
Electron transport layer, 5: cathode, 6: element part, 7: protective film.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP11011056AJP2000208253A (en) | 1999-01-19 | 1999-01-19 | Organic electroluminescent element and manufacture thereof |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| JP11011056AJP2000208253A (en) | 1999-01-19 | 1999-01-19 | Organic electroluminescent element and manufacture thereof |
| Publication Number | Publication Date |
|---|---|
| JP2000208253Atrue JP2000208253A (en) | 2000-07-28 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| JP11011056APendingJP2000208253A (en) | 1999-01-19 | 1999-01-19 | Organic electroluminescent element and manufacture thereof |
| Country | Link |
|---|---|
| JP (1) | JP2000208253A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2006114519A (en)* | 2002-01-24 | 2006-04-27 | Semiconductor Energy Lab Co Ltd | Manufacturing method of light-emitting device |
| WO2008108244A1 (en)* | 2007-03-08 | 2008-09-12 | Tokyo Electron Limited | Electronic device, method for fabricating electronic device, structure of sealing film, apparatus for fabricating electronic device, and plasma processing equipment |
| JP2009509036A (en)* | 2005-09-15 | 2009-03-05 | アプライド マテリアルズ インコーポレイテッド | Method for improving transmittance of sealing film |
| US7696683B2 (en) | 2006-01-19 | 2010-04-13 | Toppan Printing Co., Ltd. | Organic electroluminescent element and the manufacturing method |
| JP2012094538A (en)* | 2002-01-24 | 2012-05-17 | Semiconductor Energy Lab Co Ltd | Manufacturing method for light-emitting device |
| US9236418B2 (en) | 2002-01-24 | 2016-01-12 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device |
| CN112349861A (en)* | 2019-12-27 | 2021-02-09 | 广东聚华印刷显示技术有限公司 | Light-emitting device, packaging structure thereof and manufacturing method thereof |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2006114519A (en)* | 2002-01-24 | 2006-04-27 | Semiconductor Energy Lab Co Ltd | Manufacturing method of light-emitting device |
| JP2012094538A (en)* | 2002-01-24 | 2012-05-17 | Semiconductor Energy Lab Co Ltd | Manufacturing method for light-emitting device |
| JP2013175470A (en)* | 2002-01-24 | 2013-09-05 | Semiconductor Energy Lab Co Ltd | Light emitting device |
| US8779467B2 (en) | 2002-01-24 | 2014-07-15 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device having a terminal portion |
| US9236418B2 (en) | 2002-01-24 | 2016-01-12 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device |
| US9312323B2 (en) | 2002-01-24 | 2016-04-12 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device having insulator between pixel electrodes and auxiliary wiring in contact with the insulator |
| US9627459B2 (en) | 2002-01-24 | 2017-04-18 | Semiconductor Energy Laboratory Co., Ltd. | Display device having sealing material |
| US9653519B2 (en) | 2002-01-24 | 2017-05-16 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device, method of preparing the same and device for fabricating the same |
| JP2009509036A (en)* | 2005-09-15 | 2009-03-05 | アプライド マテリアルズ インコーポレイテッド | Method for improving transmittance of sealing film |
| US7696683B2 (en) | 2006-01-19 | 2010-04-13 | Toppan Printing Co., Ltd. | Organic electroluminescent element and the manufacturing method |
| WO2008108244A1 (en)* | 2007-03-08 | 2008-09-12 | Tokyo Electron Limited | Electronic device, method for fabricating electronic device, structure of sealing film, apparatus for fabricating electronic device, and plasma processing equipment |
| CN112349861A (en)* | 2019-12-27 | 2021-02-09 | 广东聚华印刷显示技术有限公司 | Light-emitting device, packaging structure thereof and manufacturing method thereof |
| Publication | Publication Date | Title |
|---|---|---|
| US6949878B2 (en) | Multicolor light emission apparatus with multiple different wavelength organic elements | |
| US20060250079A1 (en) | Intermediate layers treated by cf4-plasma for stacked organic light-emitting devices | |
| JP3524711B2 (en) | Organic electroluminescence device and method of manufacturing the same | |
| JP2009147364A (en) | Double-doped layer phosphorescent organic light-emitting device | |
| JP2003059668A (en) | Organic light-emitting device | |
| KR100844788B1 (en) | Fabrication method for organic light emitting device and organic light emitting device fabricated by the same method | |
| JPH08111286A (en) | Manufacturing method of organic electroluminescence device | |
| JP3691192B2 (en) | Organic electroluminescence device | |
| JPH08259934A (en) | EL device | |
| JP3553672B2 (en) | Organic electroluminescence device | |
| Chen et al. | DC sputtered indium-tin oxide transparent cathode for organic light-emitting diode | |
| JP2003115393A (en) | Organic electroluminescence element and its manufacturing method, image display equipment | |
| JPH08185983A (en) | Organic electroluminescent device | |
| JP3847496B2 (en) | Electronic device and manufacturing method thereof | |
| JP2000208253A (en) | Organic electroluminescent element and manufacture thereof | |
| JPWO2002094965A1 (en) | Organic electroluminescence device | |
| JP4310843B2 (en) | Method for manufacturing organic electroluminescent device | |
| KR100236011B1 (en) | Organic electroluminescence device and method for fabricating the same | |
| JPH1131587A (en) | Organic electroluminescent element and manufacture thereof | |
| JP4337567B2 (en) | Method for manufacturing organic electroluminescence element | |
| JPH11329746A (en) | Organic el element | |
| JPH11242994A (en) | Light emitting element and its manufacture | |
| JP4507305B2 (en) | Organic EL device and method for manufacturing the same | |
| JP4434460B2 (en) | Organic electroluminescence device | |
| JP4132458B2 (en) | Organic EL device |
| Date | Code | Title | Description |
|---|---|---|---|
| A621 | Written request for application examination | Free format text:JAPANESE INTERMEDIATE CODE: A621 Effective date:20050314 | |
| A977 | Report on retrieval | Free format text:JAPANESE INTERMEDIATE CODE: A971007 Effective date:20071129 | |
| A131 | Notification of reasons for refusal | Free format text:JAPANESE INTERMEDIATE CODE: A131 Effective date:20071204 | |
| A521 | Request for written amendment filed | Free format text:JAPANESE INTERMEDIATE CODE: A523 Effective date:20080121 | |
| A131 | Notification of reasons for refusal | Free format text:JAPANESE INTERMEDIATE CODE: A131 Effective date:20080507 | |
| A02 | Decision of refusal | Free format text:JAPANESE INTERMEDIATE CODE: A02 Effective date:20090113 |