Movatterモバイル変換


[0]ホーム

URL:


JP2000058355A - Transformer for power supply to rotating body - Google Patents

Transformer for power supply to rotating body

Info

Publication number
JP2000058355A
JP2000058355AJP10230375AJP23037598AJP2000058355AJP 2000058355 AJP2000058355 AJP 2000058355AJP 10230375 AJP10230375 AJP 10230375AJP 23037598 AJP23037598 AJP 23037598AJP 2000058355 AJP2000058355 AJP 2000058355A
Authority
JP
Japan
Prior art keywords
rotating body
transformer
coil
iron core
secondary coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP10230375A
Other languages
Japanese (ja)
Inventor
Yukio Odawara
幸生 小田原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oita Prefectural Government
Original Assignee
Oita Prefectural Government
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oita Prefectural GovernmentfiledCriticalOita Prefectural Government
Priority to JP10230375ApriorityCriticalpatent/JP2000058355A/en
Publication of JP2000058355ApublicationCriticalpatent/JP2000058355A/en
Withdrawnlegal-statusCriticalCurrent

Links

Landscapes

Abstract

Translated fromJapanese

(57)【要約】【目的】 回転体に設置した回路に非接触で電力を供給
する。【構成】 変圧器に内鉄形の鉄心を用い、2次コイル
(5)が回転体の回転の軸(1)を中心とし、鉄心
(4)の枠の中を通って環状に巻かれている。鉄心
(4)には1次コイル(2)が巻かれ、また、2次コイ
ル(5)を前記の回転体から支持するプレート(8)と
2次コイルのリード線(6)が通過する間隙(7)が設
けられている。鉄心(4)及び1次コイル(2)を固定
側に置き、2次コイル(5)を回転体と一体で回転さ
せ、電磁結合により回転体の回路に電力を供給する。
(57) [Summary] [Purpose] To supply electric power to a circuit installed on a rotating body in a non-contact manner. [Constitution] An inner core iron core is used for a transformer, and a secondary coil (5) is annularly wound around the axis of rotation (1) of a rotating body through a frame of an iron core (4). I have. A primary coil (2) is wound around the iron core (4), and a gap through which a plate (8) supporting the secondary coil (5) from the rotating body and a lead wire (6) of the secondary coil pass. (7) is provided. The iron core (4) and the primary coil (2) are placed on the fixed side, the secondary coil (5) is rotated integrally with the rotating body, and power is supplied to the circuit of the rotating body by electromagnetic coupling.

Description

Translated fromJapanese
【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、機械において回転
体の種々の物理量を検出するため、回転体に置かれた回
路に電力を供給する変圧器(インダクタンス)の構造に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a transformer (inductance) for supplying power to a circuit placed on a rotating body in order to detect various physical quantities of the rotating body in a machine.

【0002】[0002]

【従来の技術】回転体の種々の物理量を検出するうえ
で、固定側から回転体に置かれた検出器や回路に直接配
線できないという障害がある。回転体に電力を供給する
公知の方法では、図1に示すスリップリング機構や、図
2及び図3に示す回転トランスなどがある。スリップリ
ング機構は長期に亘りブラシとスリップリングの機械的
接触を良好に保つため、精密な工作,組立が必要であ
り、スリップリングやブラシからの漏電を防ぐ絶縁,物
が触れて接触事故を起こさないようにケースに入れるこ
と,ブラシが摩耗するため定期的に部品の交換や保守が
必要である。これに対し、回転トランスでは電磁誘導を
用いるため交流変換回路が必要であるが、非接触のため
接触不良は発生せず、絶縁は容易で、保守は不要であ
る。特に、回転トランスを回転体の端面の回転中心に設
置した図2の方式は、小型のもので電力供給が可能で有
効な手段である。図3の方式は図2のものと機能は同じ
であるが、機械の回転軸の外周に取り付ける点が異な
る。
2. Description of the Related Art In detecting various physical quantities of a rotating body, there is an obstacle that it is not possible to directly wire a detector or a circuit placed on the rotating body from a fixed side. Known methods for supplying power to the rotating body include a slip ring mechanism shown in FIG. 1 and a rotary transformer shown in FIGS. 2 and 3. The slip ring mechanism requires precise work and assembly to maintain good mechanical contact between the brush and the slip ring for a long period of time. The parts need to be replaced and maintained regularly because they are worn in a case and the brushes are worn. On the other hand, a rotary transformer requires an AC conversion circuit because of the use of electromagnetic induction. However, since it is non-contact, no contact failure occurs, insulation is easy, and maintenance is unnecessary. In particular, the system shown in FIG. 2 in which the rotary transformer is installed at the center of rotation of the end face of the rotary body is an effective means that is small and can supply power. The method of FIG. 3 has the same function as that of FIG. 2, except that it is mounted on the outer periphery of the rotating shaft of the machine.

【0003】[0003]

【発明が解決しようとする課題】回転トランスで回転体
の端面の中心部に設置する方式(図2)は、取り付けは
比較的容易であるが、取り付ける空間がない場合や取り
付けることが困難な場合などがあり、全てには適用でき
ない。一方、機械の回転軸の外周に取り付ける方式(図
3)では、鉄心が1次コイル及び2次コイルを全面的に
被う外鉄形変圧器の構造になっているため、回転軸の径
が大きくなるとそれに応じて鉄心の径も増大し、製作費
の増大を招く傾向がある。そこで、本発明は機械の回転
軸の外周に取り付ける公知の方式において、回転軸によ
り鉄心の製作費が増大し、製作が困難になることを解決
する。
The method of installing the rotating transformer at the center of the end face of the rotating body (FIG. 2) is relatively easy to install, but when there is no space to install or when it is difficult to install. And so on, not applicable to all. On the other hand, in the method of attaching to the outer periphery of the rotating shaft of the machine (FIG. 3), since the iron core has a structure of a shell-type transformer that entirely covers the primary coil and the secondary coil, the diameter of the rotating shaft is reduced. As the diameter increases, the diameter of the iron core also increases, which tends to increase the manufacturing cost. In view of the above, the present invention solves the problem of increasing the manufacturing cost of the iron core due to the rotating shaft and making it difficult in the known method of mounting the core around the rotating shaft of the machine.

【0004】[0004]

【課題を解決する手段】変圧器の鉄心に巻くコイルの巻
き方を緩くし、このコイルと鉄心の間に遊びを作れば、
鉄心に対するコイルの動きの自由度は増す。これを利用
してコイルが回転できるようにすれば、電磁誘導により
回転体への電力供給が実現できる。内鉄形の鉄心を用い
た変圧器で、2次コイルが回転体と共に回転できるよう
に、2次コイルを回転体の回転の軸を中心とし、この鉄
心の枠の中を通して円形に巻く。この鉄心には1次コイ
ルが巻かれ、また、2次コイルを前記の回転体から支持
するプレート及び2次コイルのリード線が通過するため
の間隙が設けられる。この変圧器において、鉄心及び1
次コイルを固定側に置き、2次コイルを回転体と共に回
転させ、回転体に置かれた回路に電力を供給する。
Means for Solving the Problems If the winding of the coil wound around the iron core of the transformer is loosened and play is created between this coil and the iron core,
The freedom of movement of the coil relative to the iron core is increased. If the coil can be rotated using this, power can be supplied to the rotating body by electromagnetic induction. In a transformer using an inner iron core, the secondary coil is wound around the axis of rotation of the rotating body in a circular shape through the core frame so that the secondary coil can rotate together with the rotating body. The iron core is wound with a primary coil, and a plate for supporting the secondary coil from the rotating body and a gap through which a lead wire of the secondary coil passes are provided. In this transformer, an iron core and one
The secondary coil is placed on the fixed side, the secondary coil is rotated together with the rotating body, and power is supplied to a circuit placed on the rotating body.

【0005】[0005]

【発明の実施の形態】回転体への電力供給用変圧器の一
般的な使用目的は、機械の回転している箇所でトルクや
温度など各種の物理量を検出するため、検出器や送信器
など回転する箇所に置く回路に非接触で電力を供給する
ことである。図4はこの変圧器の構造の概略と、代表的
な取り付けの例である。図5はこれを図4のXX方向か
ら見たものである。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A general purpose of a transformer for supplying electric power to a rotating body is to detect various physical quantities such as torque and temperature at a rotating portion of a machine. It is to supply electric power to a circuit placed in a rotating place in a non-contact manner. FIG. 4 shows an outline of the structure of this transformer and an example of a typical installation. FIG. 5 shows this as viewed from the direction XX in FIG.

【0006】機械の回転軸(9)に、変圧器の2次コイ
ル(5)を支持するプレート(8)と回転側の回路を取
り付ける回転板(10)を取り付ける。回転板(10)には
金属板を使用し、磁気遮蔽を行うことができる。これら
の物理的な回転の軸を(1)とする。変圧器の鉄心
(4)は内鉄形を用い、これに1次コイル(2)を巻
く。また、鉄心(4)に間隙(7)を設け、2次コイル
(5)が回転する際にプレート(8)と2次コイルのリ
ード線(6)が通過できるようにする。プレート(8)
は鉄心(4)の間隙(7)を横切るので、電磁誘導によ
る損失を少なくするため、材質は固体絶縁物や、金属を
用いた場合でも電磁誘導を受け難い構造のものとする。
2次コイル(5)は回転の軸(1)を中心とし、鉄心
(4)の枠の中を通して円形に巻く。この変圧器で、鉄
心(4)及び1次コイル(2)を機械等の固定側に置
き、2次コイル(5)を機械の回転軸(9)及び回転板
(10)と一体で回転させる。
A plate (8) for supporting the secondary coil (5) of the transformer and a rotating plate (10) for attaching a circuit on the rotating side are attached to the rotating shaft (9) of the machine. A metal plate can be used for the rotating plate (10) to provide magnetic shielding. The axis of these physical rotations is (1). The core (4) of the transformer is of a core type, and the primary coil (2) is wound around it. A gap (7) is provided in the iron core (4) so that the plate (8) and the lead wire (6) of the secondary coil can pass when the secondary coil (5) rotates. Plate (8)
Since the material crosses the gap (7) of the iron core (4), in order to reduce the loss due to electromagnetic induction, the material is made of a structure that is hardly susceptible to electromagnetic induction even when a solid insulator or metal is used.
The secondary coil (5) is wound circularly around the axis of rotation (1) and through the frame of the iron core (4). With this transformer, the iron core (4) and the primary coil (2) are placed on a fixed side of a machine or the like, and the secondary coil (5) is rotated integrally with the rotating shaft (9) and the rotating plate (10) of the machine. .

【0007】電力供給の原理は一般の変圧器と同様であ
る。1次コイルのリード線(3)に交流電圧を加えると
1次コイル(2)により鉄心(4)に発生した磁束が2
次コイル(5)と鎖交とし、2次コイルのリード線
(6)に交流電圧が発生し、1次コイル(2)から2次
コイル(5)へ電力を供給できる。1次コイル(2)に
加える電圧は、スイッチング電源の一方式であるフライ
バック式コンバータのように、高速で直流電圧をオンオ
フする方法でも良い。回転体への電力供給用変圧器で
は、2次コイル(5)はその回転に関係なく鉄心(4)
の同じ位置を通過するので、磁気回路的に同じ条件、即
ち一定の効率で電力を供給することができる。
The principle of power supply is the same as that of a general transformer. When an AC voltage is applied to the lead wire (3) of the primary coil, the magnetic flux generated in the iron core (4) by the primary coil (2) becomes 2
The secondary coil (5) is linked, and an AC voltage is generated on the lead wire (6) of the secondary coil, so that electric power can be supplied from the primary coil (2) to the secondary coil (5). The voltage applied to the primary coil (2) may be a method of turning on and off a DC voltage at a high speed, such as a flyback converter, which is a type of switching power supply. In a transformer for supplying electric power to a rotating body, the secondary coil (5) has an iron core (4) regardless of its rotation.
, The power can be supplied under the same conditions as the magnetic circuit, that is, with constant efficiency.

【0008】[0008]

【実施例】回転軸のトルク検出における実施回路の概略
を図6に示す。概略は、機械の回転軸(9)に貼られた
歪ゲージのブリッジ回路(F)の電位差(f1)によりこ
の箇所のトルクを検出し、増幅回路(G)で増幅し、変
調回路(H)でパルス幅変調によるオンオフ信号に変換
し、これにより赤外LED(I)を点滅し、光による信
号を送信する。これを固定側のフォトダイオード(J)
で受光して電気信号に変換し、増幅回路(K)で増幅
し、復調回路(L)でアナログ信号に変換し、検出信号
(l1)を得る。固定側(A,B)から回転側の回路
(D,E,F,G,H,I)への電力の供給はスイッチ
ング回路(B)及び回転体への電力供給用変圧器(C)
により行う。
FIG. 6 schematically shows an embodiment of a circuit for detecting the torque of a rotating shaft. In general, the torque at this point is detected by the potential difference (f1) of the bridge circuit (F) of the strain gauge attached to the rotating shaft (9) of the machine, amplified by the amplifier circuit (G), and amplified by the modulation circuit (H). To convert the signal into an on / off signal by pulse width modulation, whereby the infrared LED (I) is turned on and off, and a signal based on light is transmitted. This is fixed photodiode (J)
The light is converted into an electric signal by the amplifier, amplified by an amplifier circuit (K), converted into an analog signal by a demodulator circuit (L), and a detection signal (11) is obtained. The supply of power from the fixed side (A, B) to the circuit on the rotating side (D, E, F, G, H, I) is performed by a switching circuit (B) and a transformer for supplying power to the rotating body (C).
Performed by

【0009】鉄心(4)は枠の外側の寸法が縦35mm×横
25mm×厚10mm,枠の断面 5mm×10mmのフェライト製コア
を用い、幅 4mmの間隙(7)を設け、これに被覆導線を
45回巻き、1次コイル(2)とした。2次コイル(5)
は被覆導線を45回巻き、直径60mm,断面直径 5mmの環状
のコイルとした。機械の回転軸(9)の材質は軟鋼で、
直径12mmである。これに磁気遮蔽を兼ねてアルミニウム
製の回転板(10)を取り付け、回転板(10)から20mm離
して2次コイル(5)を塩化ビニル製のプレート(8)
で支持し、また、回転板(10)の2次コイル(5)と反
対側の面に回路(D,E,F,G,H,I)を設置し
た。この際に2次コイル(5)は、間隙(7)からの漏
洩磁束の影響を受けないように、間隙(7)の位置から
できるだけ離した。
[0009] The outer dimension of the frame of the iron core (4) is 35 mm long and wide.
Using a ferrite core of 25 mm x 10 mm, cross section of frame 5 mm x 10 mm, a gap (7) with a width of 4 mm is provided, and a covered conductor is inserted into this gap.
The primary coil (2) was wound 45 times. Secondary coil (5)
Was made into an annular coil with a diameter of 60 mm and a cross-sectional diameter of 5 mm by winding a covered wire 45 times. The material of the rotating shaft (9) of the machine is mild steel,
It is 12 mm in diameter. A rotating plate (10) made of aluminum is also attached to this as a magnetic shield, and the secondary coil (5) is placed at a distance of 20 mm from the rotating plate (10), and a plate (8) made of vinyl chloride.
The circuit (D, E, F, G, H, I) was installed on the surface of the rotating plate (10) opposite to the secondary coil (5). At this time, the secondary coil (5) was separated from the position of the gap (7) as much as possible so as not to be affected by the leakage magnetic flux from the gap (7).

【0010】電力供給の動作の概略は次の通りである。
スイッチング回路(B)のクロック(b2)は周波数30kH
zでオンとオフの各時間が等しく発振し、トランジスタ
(b3)をオンオフする。トランジスタ(b3)がオンにな
ると、直流電源(A)の+極から1次コイル(2)を通
って直流電源(A)の−極に流れる電流が増加に転じ
る。この時、2次コイル(5)に電磁誘導による電圧が
発生するが、整流回路(D)のダイオード(d1)に阻止
され電流は流れない。次にトランジスタ(b3)がオフに
なると、1次コイル(2)に蓄積された電磁エネルギに
より1次コイル(2)とコンデンサ(b5)の間に電気振
動が起きる。この時、コンデンサ(b5)にトランジスタ
(b3)側を+として充電が行われ、同時に1次コイル
(2)の電流は減少し、2次コイル(5)からダイオー
ド(d1)の順方向に流れる電流が発生し、コンデンサ(d
2)を充電する。さらに、コンデンサ(b5)の充電が終了
し最大電圧になると、次にコンデンサ(b5)のトランジ
スタ(b3)側から1次コイル(2)を経て直流電源
(A)の+極側に放電する電流が流れ、これにより2次
コイル(5)からダイオード(d1)の順方向に流れる電
流が発生し、コンデンサ(d2)を充電する。これら一連
のサイクルを繰り返し、回転体への電力供給用変圧器
(C)を介して直流電源(A)から整流回路(D)のコ
ンデンサ(d2)に電力が供給され、このコンデンサ(d
2)の出力(d3)を電源として回転側の回路(E,F,
G,H,I)が動作する。
The outline of the operation of power supply is as follows.
The clock (b2) of the switching circuit (B) has a frequency of 30 kHz.
At z, the on and off times oscillate equally, turning on / off the transistor (b3). When the transistor (b3) is turned on, the current flowing from the positive pole of the DC power supply (A) to the negative pole of the DC power supply (A) through the primary coil (2) starts to increase. At this time, a voltage is generated in the secondary coil (5) by electromagnetic induction, but is blocked by the diode (d1) of the rectifier circuit (D) and no current flows. Next, when the transistor (b3) is turned off, electric vibration occurs between the primary coil (2) and the capacitor (b5) due to the electromagnetic energy stored in the primary coil (2). At this time, the capacitor (b5) is charged by setting the transistor (b3) side to +, and at the same time, the current of the primary coil (2) decreases and flows from the secondary coil (5) in the forward direction of the diode (d1). A current is generated and the capacitor (d
2) Charge. Further, when the charging of the capacitor (b5) is completed and reaches the maximum voltage, the current discharged from the transistor (b3) side of the capacitor (b5) to the positive electrode side of the DC power supply (A) through the primary coil (2). Flows, thereby generating a current flowing from the secondary coil (5) to the diode (d1) in the forward direction, and charges the capacitor (d2). These series of cycles are repeated, and power is supplied from the DC power supply (A) to the capacitor (d2) of the rectifier circuit (D) via the transformer (C) for supplying power to the rotating body.
Using the output (d3) of 2) as a power supply, the circuit (E, F,
G, H, I) operate.

【0011】安定化回路(E)は、整流出力(d3)の電
圧を僅かに降下させ、安定化出力(e1)の電圧を一定に
保つ役割をする。コンデンサ(b5)の容量は0.2μFであ
る。また、歪ゲージのブリッジ回路(F)に用いた4枚
の歪ゲージの抵抗値は何れも350Ωである。スイッチン
グ回路(B)の入力電圧(b1)を10Vとし、整流出力
(d3)の出力電流を70mA前後に保つように制御し、この
条件で整流出力(d3)の電圧は13Vとなり、また、回転
体への電力供給用変圧器(C)による電力供給効率は約
60%となった。
The stabilizing circuit (E) slightly lowers the voltage of the rectified output (d3) and keeps the voltage of the stabilized output (e1) constant. The capacitance of the capacitor (b5) is 0.2 μF. The resistance values of the four strain gauges used in the bridge circuit (F) of the strain gauges are all 350Ω. The input voltage (b1) of the switching circuit (B) is set to 10 V, and the output current of the rectified output (d3) is controlled to be around 70 mA. Under this condition, the voltage of the rectified output (d3) becomes 13 V. The power supply efficiency of the transformer (C) for supplying power to the body is approximately
60%.

【0012】[0012]

【発明の効果】発明した回転体への電力供給用変圧器
は、公知の回転トランスで回転軸の外周に取り付ける方
式の持つ欠点、すなわち回転軸の径が大きくなると鉄心
の径が増大し、これにより鉄心の製作費が大きくなり、
或いは製作が困難になるという点を解決する。これは、
公知の回転トランスが外鉄形の鉄心により1次コイル及
び2次コイルを全体的に被う構造であるのに対し、発明
した回転体への電力供給用変圧器では内鉄形の鉄心を用
い、鉄心が1次コイルと2次コイルを連結する構造であ
り、このため回転軸の径によって変化するのは2次コイ
ルの径のみで、鉄心の形状や大きさは変化せず、従って
鉄心の製作費が大きくなったり、製作が困難になること
はないからである。また、公知の回転トランスの持つ長
所の非接触で電力の供給ができる点、電気的絶縁が容易
で保守が不要という点は失われない。発明した変圧器の
取り付けは、理論的にこの鉄心の枠の中を2次コイルが
通っておれば性能を発揮できるので、取り付けにあたっ
て精密な工作や取り付けは必要とせず、簡易的な扱いが
できる。これにより、従来、各種設備や試験装置で回転
トランスの利用範囲が限定されていたものを、低廉に且
つ簡易にすることにより、民生用機器にも適用範囲を広
げる事が可能となる。
The transformer for supplying electric power to the rotating body according to the invention is disadvantageous in that the transformer is mounted on the outer periphery of the rotating shaft with a known rotating transformer, that is, as the diameter of the rotating shaft increases, the diameter of the iron core increases. This increases the cost of manufacturing the iron core,
Or, it solves the point that production becomes difficult. this is,
While the known rotary transformer has a structure in which the primary coil and the secondary coil are entirely covered by an outer iron core, the transformer for supplying power to the rotating body invented uses an inner iron core. The core has a structure that connects the primary coil and the secondary coil. Therefore, only the diameter of the secondary coil changes with the diameter of the rotating shaft, and the shape and size of the core do not change. This is because the production cost does not increase or the production becomes difficult. In addition, the advantages of the known rotary transformer that power can be supplied in a non-contact manner and that electrical insulation is easy and maintenance is unnecessary are not lost. The installation of the invented transformer can theoretically exhibit its performance if the secondary coil passes through the frame of the iron core, so it does not require precise work or installation, and can be handled easily. . This makes it possible to expand the range of applications to consumer equipment by simplifying the range of use of the rotary transformer in various facilities and test apparatuses at low cost and simplicity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】トルク検出におけるスリップリング機構の使用
例の概略図。
FIG. 1 is a schematic diagram of a usage example of a slip ring mechanism in torque detection.

【図2】回転体の端面の回転中心に取り付ける方式の回
転トランスの概略図、鉄心のコア及びコイルは回転の軸
を通る破断面を示す。
FIG. 2 is a schematic view of a rotary transformer of a type mounted on a rotation center of an end face of a rotary body, in which a core and a coil of an iron core show a fractured surface passing through a rotation axis.

【図3】回転軸の外周に取り付ける方式の回転トランス
の概略図、鉄心のコア及びコイルは回転の軸を通る破断
面で示す。
FIG. 3 is a schematic view of a rotary transformer of a type mounted on the outer periphery of a rotary shaft, in which a core and a coil of an iron core are shown by a broken surface passing through a rotary shaft.

【図4】回転体への電力供給用変圧器の取り付けの例を
示す図面、2次コイル(5),プレート(8),回転板
(10)は回転の軸を通る断面で示す。
FIG. 4 is a drawing showing an example of mounting a power supply transformer on a rotating body, in which a secondary coil (5), a plate (8), and a rotating plate (10) are shown in a cross section passing through the axis of rotation.

【図5】図4をXXの方向から見た図面である。FIG. 5 is a drawing in which FIG. 4 is viewed from a direction XX.

【図6】回転体への電力供給用変圧器を、回転軸のトル
ク検出における電力供給に応用した例の回路のブロック
図である。
FIG. 6 is a block diagram of a circuit in which a transformer for supplying power to a rotating body is applied to power supply in torque detection of a rotating shaft.

【符号の説明】[Explanation of symbols]

1 物理的な回転の軸、 2 1次コイル、3
1次コイルのリード線、4 鉄心、
5 2次コイル、6 2次コイルのリード線、
7 間隙、8 プレート、9 機械の回転軸、
10 回転板、A 直流電源、
B スイッチング回路、b1 スイッチング回路の入
力、 b2 クロック、b3 トランジスタ、
b4 ダイオード、b5 コンデンサ、C 回転体への
電力供給用変圧器、D 整流回路、d1 ダイオード、
d2 コンデンサ、d3 整流回路の出力、E 安
定化回路、 e1 安定化回路の出力、F 4枚
の歪ゲージによるブリッジ回路、f1 電位差、G 増幅
回路、 H 変調回路、I 赤外LE
D、 J フォトダイオード、K 増幅回
路、L 復調回路、 l1 検出信号
1 axis of physical rotation, 2 primary coil, 3
Primary coil lead wire, 4 iron core,
5 secondary coil, 6 secondary coil lead wire,
7 gap, 8 plate, 9 machine axis of rotation,
10 rotating plate, A DC power supply,
B switching circuit, b1 switching circuit input, b2 clock, b3 transistor,
b4 diode, b5 capacitor, transformer for supplying power to C rotating body, D rectifier circuit, d1 diode,
d2 capacitor, d3 rectifier circuit output, E stabilization circuit, e1 stabilization circuit output, F bridge circuit with four strain gauges, f1 potential difference, G amplifier circuit, H modulator circuit, I infrared LE
D, J photodiode, K amplification circuit, L demodulation circuit, l1 detection signal

Claims (1)

Translated fromJapanese
【特許請求の範囲】[Claims]【請求項1】 第2のコイルが回転体の回転の軸を中心
として、第1のコイルが巻かれた内鉄形鉄心の枠の中を
通って円形に巻かれ、該鉄心には第2のコイルを該回転
体から支持するプレートと第2のコイルのリード線が通
過する間隙を設けてあり、第1のコイルを1次コイル,
第2のコイルを2次コイルとし、1次コイル及び前記鉄
心を固定側に置き、2次コイルを回転体と一体で回転さ
せ、回転体に電力を供給することを特徴とする回転体へ
の電力供給用変圧器。
1. A second coil is wound around an axis of rotation of a rotating body as a center through a frame of an inner iron core around which the first coil is wound, and the second core is wound around the core in a second manner. And a gap through which a lead wire of the second coil passes through a plate supporting the first coil from the rotating body.
The second coil is a secondary coil, the primary coil and the iron core are placed on a fixed side, the secondary coil is rotated integrally with the rotating body, and power is supplied to the rotating body. Transformer for power supply.
JP10230375A1998-08-171998-08-17 Transformer for power supply to rotating bodyWithdrawnJP2000058355A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
JP10230375AJP2000058355A (en)1998-08-171998-08-17 Transformer for power supply to rotating body

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
JP10230375AJP2000058355A (en)1998-08-171998-08-17 Transformer for power supply to rotating body

Publications (1)

Publication NumberPublication Date
JP2000058355Atrue JP2000058355A (en)2000-02-25

Family

ID=16906887

Family Applications (1)

Application NumberTitlePriority DateFiling Date
JP10230375AWithdrawnJP2000058355A (en)1998-08-171998-08-17 Transformer for power supply to rotating body

Country Status (1)

CountryLink
JP (1)JP2000058355A (en)

Cited By (61)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2006103879A (en)*2004-10-052006-04-20Asyst Shinko IncCarriage
JP2010096104A (en)*2008-10-172010-04-30Mayekawa Mfg Co LtdPower feeding mechanism for display using wind turbine
JP2010268531A (en)*2009-05-122010-11-25Nagano Japan Radio Co Power transmission system
US8320034B2 (en)2009-01-212012-11-27Seiko Epson CorporationOptical scanning apparatus and image forming apparatus
KR101483690B1 (en)*2013-05-102015-01-16(주)다이나텍Wireless power supply system
EP3035483A1 (en)*2014-12-182016-06-22Schleifring und Apparatebau GmbHInductive rotary joint with U-shaped ferrite cores
KR20170032521A (en)*2015-09-142017-03-23재단법인 포항산업과학연구원Wireless power receiving apparatus and rotating apparatus having the same
CN111315303A (en)*2017-10-302020-06-19爱惜康有限责任公司Response algorithm for surgical system
US11701185B2 (en)2017-12-282023-07-18Cilag Gmbh InternationalWireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices
US11701139B2 (en)2018-03-082023-07-18Cilag Gmbh InternationalMethods for controlling temperature in ultrasonic device
US11737668B2 (en)2017-12-282023-08-29Cilag Gmbh InternationalCommunication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems
US11744604B2 (en)2017-12-282023-09-05Cilag Gmbh InternationalSurgical instrument with a hardware-only control circuit
US11751958B2 (en)2017-12-282023-09-12Cilag Gmbh InternationalSurgical hub coordination of control and communication of operating room devices
US11775682B2 (en)2017-12-282023-10-03Cilag Gmbh InternationalData stripping method to interrogate patient records and create anonymized record
US11771487B2 (en)2017-12-282023-10-03Cilag Gmbh InternationalMechanisms for controlling different electromechanical systems of an electrosurgical instrument
US11779337B2 (en)2017-12-282023-10-10Cilag Gmbh InternationalMethod of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices
US11786251B2 (en)2017-12-282023-10-17Cilag Gmbh InternationalMethod for adaptive control schemes for surgical network control and interaction
US11793537B2 (en)2017-10-302023-10-24Cilag Gmbh InternationalSurgical instrument comprising an adaptive electrical system
US11801098B2 (en)2017-10-302023-10-31Cilag Gmbh InternationalMethod of hub communication with surgical instrument systems
US11818052B2 (en)2017-12-282023-11-14Cilag Gmbh InternationalSurgical network determination of prioritization of communication, interaction, or processing based on system or device needs
US11832899B2 (en)2017-12-282023-12-05Cilag Gmbh InternationalSurgical systems with autonomously adjustable control programs
US11839396B2 (en)2018-03-082023-12-12Cilag Gmbh InternationalFine dissection mode for tissue classification
US11844579B2 (en)2017-12-282023-12-19Cilag Gmbh InternationalAdjustments based on airborne particle properties
US11857152B2 (en)2017-12-282024-01-02Cilag Gmbh InternationalSurgical hub spatial awareness to determine devices in operating theater
US11864728B2 (en)2017-12-282024-01-09Cilag Gmbh InternationalCharacterization of tissue irregularities through the use of mono-chromatic light refractivity
US11864845B2 (en)2017-12-282024-01-09Cilag Gmbh InternationalSterile field interactive control displays
US11871901B2 (en)2012-05-202024-01-16Cilag Gmbh InternationalMethod for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage
US11890065B2 (en)2017-12-282024-02-06Cilag Gmbh InternationalSurgical system to limit displacement
US11896443B2 (en)2017-12-282024-02-13Cilag Gmbh InternationalControl of a surgical system through a surgical barrier
US11896322B2 (en)2017-12-282024-02-13Cilag Gmbh InternationalSensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub
US11903587B2 (en)2017-12-282024-02-20Cilag Gmbh InternationalAdjustment to the surgical stapling control based on situational awareness
US11911045B2 (en)2017-10-302024-02-27Cllag GmbH InternationalMethod for operating a powered articulating multi-clip applier
US11925350B2 (en)2019-02-192024-03-12Cilag Gmbh InternationalMethod for providing an authentication lockout in a surgical stapler with a replaceable cartridge
US11931027B2 (en)2018-03-282024-03-19Cilag Gmbh InterntionalSurgical instrument comprising an adaptive control system
US11969216B2 (en)2017-12-282024-04-30Cilag Gmbh InternationalSurgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution
US11969142B2 (en)2017-12-282024-04-30Cilag Gmbh InternationalMethod of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws
US11986185B2 (en)2018-03-282024-05-21Cilag Gmbh InternationalMethods for controlling a surgical stapler
US11986233B2 (en)2018-03-082024-05-21Cilag Gmbh InternationalAdjustment of complex impedance to compensate for lost power in an articulating ultrasonic device
US11998193B2 (en)2017-12-282024-06-04Cilag Gmbh InternationalMethod for usage of the shroud as an aspect of sensing or controlling a powered surgical device, and a control algorithm to adjust its default operation
US12009095B2 (en)2017-12-282024-06-11Cilag Gmbh InternationalReal-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes
US12029506B2 (en)2017-12-282024-07-09Cilag Gmbh InternationalMethod of cloud based data analytics for use with the hub
US12035890B2 (en)2017-12-282024-07-16Cilag Gmbh InternationalMethod of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub
US12035983B2 (en)2017-10-302024-07-16Cilag Gmbh InternationalMethod for producing a surgical instrument comprising a smart electrical system
US12042207B2 (en)2017-12-282024-07-23Cilag Gmbh InternationalEstimating state of ultrasonic end effector and control system therefor
US12048496B2 (en)2017-12-282024-07-30Cilag Gmbh InternationalAdaptive control program updates for surgical hubs
US12059169B2 (en)2017-12-282024-08-13Cilag Gmbh InternationalControlling an ultrasonic surgical instrument according to tissue location
US12059218B2 (en)2017-10-302024-08-13Cilag Gmbh InternationalMethod of hub communication with surgical instrument systems
US12062442B2 (en)2017-12-282024-08-13Cilag Gmbh InternationalMethod for operating surgical instrument systems
US12076010B2 (en)2017-12-282024-09-03Cilag Gmbh InternationalSurgical instrument cartridge sensor assemblies
US12127729B2 (en)2017-12-282024-10-29Cilag Gmbh InternationalMethod for smoke evacuation for surgical hub
US12133773B2 (en)2017-12-282024-11-05Cilag Gmbh InternationalSurgical hub and modular device response adjustment based on situational awareness
US12144518B2 (en)2017-12-282024-11-19Cilag Gmbh InternationalSurgical systems for detecting end effector tissue distribution irregularities
US12207817B2 (en)2017-12-282025-01-28Cilag Gmbh InternationalSafety systems for smart powered surgical stapling
US12226151B2 (en)2017-12-282025-02-18Cilag Gmbh InternationalCapacitive coupled return path pad with separable array elements
US12226166B2 (en)2017-12-282025-02-18Cilag Gmbh InternationalSurgical instrument with a sensing array
US12295674B2 (en)2017-12-282025-05-13Cilag Gmbh InternationalUsage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures
US12310586B2 (en)2017-12-282025-05-27Cilag Gmbh InternationalMethod for adaptive control schemes for surgical network control and interaction
US12318152B2 (en)2017-12-282025-06-03Cilag Gmbh InternationalComputer implemented interactive surgical systems
US12329467B2 (en)2017-10-302025-06-17Cilag Gmbh InternationalMethod of hub communication with surgical instrument systems
US12383115B2 (en)2017-12-282025-08-12Cilag Gmbh InternationalMethod for smart energy device infrastructure
US12396806B2 (en)2017-12-282025-08-26Cilag Gmbh InternationalAdjustment of a surgical device function based on situational awareness

Cited By (81)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JP2006103879A (en)*2004-10-052006-04-20Asyst Shinko IncCarriage
JP2010096104A (en)*2008-10-172010-04-30Mayekawa Mfg Co LtdPower feeding mechanism for display using wind turbine
US8320034B2 (en)2009-01-212012-11-27Seiko Epson CorporationOptical scanning apparatus and image forming apparatus
US8498036B2 (en)2009-01-212013-07-30Seiko Epson CorporationOptical scanning apparatus and image forming apparatus
JP2010268531A (en)*2009-05-122010-11-25Nagano Japan Radio Co Power transmission system
US11871901B2 (en)2012-05-202024-01-16Cilag Gmbh InternationalMethod for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage
KR101483690B1 (en)*2013-05-102015-01-16(주)다이나텍Wireless power supply system
US11087921B2 (en)2014-12-182021-08-10Schleifring GmbhInductive rotary joint with U-shaped ferrite cores
EP3035483A1 (en)*2014-12-182016-06-22Schleifring und Apparatebau GmbHInductive rotary joint with U-shaped ferrite cores
CN105719821A (en)*2014-12-182016-06-29滑动环及设备制造有限公司Inductive rotary joint with u-shaped ferrite cores
KR102465019B1 (en)*2015-09-142022-11-10재단법인 포항산업과학연구원Wireless power receiving apparatus and rotating apparatus having the same
KR20170032521A (en)*2015-09-142017-03-23재단법인 포항산업과학연구원Wireless power receiving apparatus and rotating apparatus having the same
US11925373B2 (en)2017-10-302024-03-12Cilag Gmbh InternationalSurgical suturing instrument comprising a non-circular needle
US12329467B2 (en)2017-10-302025-06-17Cilag Gmbh InternationalMethod of hub communication with surgical instrument systems
US12121255B2 (en)2017-10-302024-10-22Cilag Gmbh InternationalElectrical power output control based on mechanical forces
US12059218B2 (en)2017-10-302024-08-13Cilag Gmbh InternationalMethod of hub communication with surgical instrument systems
US12035983B2 (en)2017-10-302024-07-16Cilag Gmbh InternationalMethod for producing a surgical instrument comprising a smart electrical system
JP2021500997A (en)*2017-10-302021-01-14エシコン エルエルシーEthicon LLC Surgical system reaction algorithm
CN111315303B (en)*2017-10-302024-03-08爱惜康有限责任公司Reaction algorithm for surgical systems
CN111315303A (en)*2017-10-302020-06-19爱惜康有限责任公司Response algorithm for surgical system
US11911045B2 (en)2017-10-302024-02-27Cllag GmbH InternationalMethod for operating a powered articulating multi-clip applier
US11819231B2 (en)2017-10-302023-11-21Cilag Gmbh InternationalAdaptive control programs for a surgical system comprising more than one type of cartridge
US11793537B2 (en)2017-10-302023-10-24Cilag Gmbh InternationalSurgical instrument comprising an adaptive electrical system
US11801098B2 (en)2017-10-302023-10-31Cilag Gmbh InternationalMethod of hub communication with surgical instrument systems
US11918302B2 (en)2017-12-282024-03-05Cilag Gmbh InternationalSterile field interactive control displays
US12042207B2 (en)2017-12-282024-07-23Cilag Gmbh InternationalEstimating state of ultrasonic end effector and control system therefor
US11832899B2 (en)2017-12-282023-12-05Cilag Gmbh InternationalSurgical systems with autonomously adjustable control programs
US12396806B2 (en)2017-12-282025-08-26Cilag Gmbh InternationalAdjustment of a surgical device function based on situational awareness
US12383115B2 (en)2017-12-282025-08-12Cilag Gmbh InternationalMethod for smart energy device infrastructure
US11844579B2 (en)2017-12-282023-12-19Cilag Gmbh InternationalAdjustments based on airborne particle properties
US11857152B2 (en)2017-12-282024-01-02Cilag Gmbh InternationalSurgical hub spatial awareness to determine devices in operating theater
US11864728B2 (en)2017-12-282024-01-09Cilag Gmbh InternationalCharacterization of tissue irregularities through the use of mono-chromatic light refractivity
US11864845B2 (en)2017-12-282024-01-09Cilag Gmbh InternationalSterile field interactive control displays
US11786251B2 (en)2017-12-282023-10-17Cilag Gmbh InternationalMethod for adaptive control schemes for surgical network control and interaction
US11890065B2 (en)2017-12-282024-02-06Cilag Gmbh InternationalSurgical system to limit displacement
US11896443B2 (en)2017-12-282024-02-13Cilag Gmbh InternationalControl of a surgical system through a surgical barrier
US11896322B2 (en)2017-12-282024-02-13Cilag Gmbh InternationalSensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub
US11903587B2 (en)2017-12-282024-02-20Cilag Gmbh InternationalAdjustment to the surgical stapling control based on situational awareness
US11779337B2 (en)2017-12-282023-10-10Cilag Gmbh InternationalMethod of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices
US11771487B2 (en)2017-12-282023-10-03Cilag Gmbh InternationalMechanisms for controlling different electromechanical systems of an electrosurgical instrument
US11775682B2 (en)2017-12-282023-10-03Cilag Gmbh InternationalData stripping method to interrogate patient records and create anonymized record
US11701185B2 (en)2017-12-282023-07-18Cilag Gmbh InternationalWireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices
US11751958B2 (en)2017-12-282023-09-12Cilag Gmbh InternationalSurgical hub coordination of control and communication of operating room devices
US12318152B2 (en)2017-12-282025-06-03Cilag Gmbh InternationalComputer implemented interactive surgical systems
US11969216B2 (en)2017-12-282024-04-30Cilag Gmbh InternationalSurgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution
US11969142B2 (en)2017-12-282024-04-30Cilag Gmbh InternationalMethod of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws
US12310586B2 (en)2017-12-282025-05-27Cilag Gmbh InternationalMethod for adaptive control schemes for surgical network control and interaction
US12295674B2 (en)2017-12-282025-05-13Cilag Gmbh InternationalUsage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures
US11998193B2 (en)2017-12-282024-06-04Cilag Gmbh InternationalMethod for usage of the shroud as an aspect of sensing or controlling a powered surgical device, and a control algorithm to adjust its default operation
US12009095B2 (en)2017-12-282024-06-11Cilag Gmbh InternationalReal-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes
US12029506B2 (en)2017-12-282024-07-09Cilag Gmbh InternationalMethod of cloud based data analytics for use with the hub
US12035890B2 (en)2017-12-282024-07-16Cilag Gmbh InternationalMethod of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub
US11744604B2 (en)2017-12-282023-09-05Cilag Gmbh InternationalSurgical instrument with a hardware-only control circuit
US11818052B2 (en)2017-12-282023-11-14Cilag Gmbh InternationalSurgical network determination of prioritization of communication, interaction, or processing based on system or device needs
US12048496B2 (en)2017-12-282024-07-30Cilag Gmbh InternationalAdaptive control program updates for surgical hubs
US12053159B2 (en)2017-12-282024-08-06Cilag Gmbh InternationalMethod of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub
US12059169B2 (en)2017-12-282024-08-13Cilag Gmbh InternationalControlling an ultrasonic surgical instrument according to tissue location
US11737668B2 (en)2017-12-282023-08-29Cilag Gmbh InternationalCommunication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems
US12059124B2 (en)2017-12-282024-08-13Cilag Gmbh InternationalSurgical hub spatial awareness to determine devices in operating theater
US12062442B2 (en)2017-12-282024-08-13Cilag Gmbh InternationalMethod for operating surgical instrument systems
US12076010B2 (en)2017-12-282024-09-03Cilag Gmbh InternationalSurgical instrument cartridge sensor assemblies
US12096985B2 (en)2017-12-282024-09-24Cilag Gmbh InternationalSurgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution
US12096916B2 (en)2017-12-282024-09-24Cilag Gmbh InternationalMethod of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub
US12256995B2 (en)2017-12-282025-03-25Cilag Gmbh InternationalSurgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution
US12239320B2 (en)2017-12-282025-03-04Cilag Gmbh InternationalMethod of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices
US12127729B2 (en)2017-12-282024-10-29Cilag Gmbh InternationalMethod for smoke evacuation for surgical hub
US12133773B2 (en)2017-12-282024-11-05Cilag Gmbh InternationalSurgical hub and modular device response adjustment based on situational awareness
US12133709B2 (en)2017-12-282024-11-05Cilag Gmbh InternationalCommunication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems
US12144518B2 (en)2017-12-282024-11-19Cilag Gmbh InternationalSurgical systems for detecting end effector tissue distribution irregularities
US12193636B2 (en)2017-12-282025-01-14Cilag Gmbh InternationalCharacterization of tissue irregularities through the use of mono-chromatic light refractivity
US12207817B2 (en)2017-12-282025-01-28Cilag Gmbh InternationalSafety systems for smart powered surgical stapling
US12226151B2 (en)2017-12-282025-02-18Cilag Gmbh InternationalCapacitive coupled return path pad with separable array elements
US12226166B2 (en)2017-12-282025-02-18Cilag Gmbh InternationalSurgical instrument with a sensing array
US11701139B2 (en)2018-03-082023-07-18Cilag Gmbh InternationalMethods for controlling temperature in ultrasonic device
US12121256B2 (en)2018-03-082024-10-22Cilag Gmbh InternationalMethods for controlling temperature in ultrasonic device
US11986233B2 (en)2018-03-082024-05-21Cilag Gmbh InternationalAdjustment of complex impedance to compensate for lost power in an articulating ultrasonic device
US11844545B2 (en)2018-03-082023-12-19Cilag Gmbh InternationalCalcified vessel identification
US11839396B2 (en)2018-03-082023-12-12Cilag Gmbh InternationalFine dissection mode for tissue classification
US11986185B2 (en)2018-03-282024-05-21Cilag Gmbh InternationalMethods for controlling a surgical stapler
US11931027B2 (en)2018-03-282024-03-19Cilag Gmbh InterntionalSurgical instrument comprising an adaptive control system
US11925350B2 (en)2019-02-192024-03-12Cilag Gmbh InternationalMethod for providing an authentication lockout in a surgical stapler with a replaceable cartridge

Similar Documents

PublicationPublication DateTitle
JP2000058355A (en) Transformer for power supply to rotating body
EP0923182A2 (en)Non-contact power transmitting device
JP5545415B2 (en) Power transmission system and power transmission device
JP2005338894A (en)Rotor torque measurement device
KR101623900B1 (en)Motor in which a rotor is electrically connected to a power supply in a contactless manner
EP0319905A1 (en)Power feeding system for a rotor
CN202092664U (en)Rotation state detection device for bicycle and wheel hub for bicycle
JP4448802B2 (en) Electromagnetic cooker
JP2005117843A (en)Brushless generator
JPH06339293A (en)Rotation detector for small dc motor
JP2001016877A (en) Ultrasonic motor drive circuit
KR0119030Y1 (en) Wireless power supply device for rotating equipment using magnetic flux
JP2006266709A (en)Insulator leakage current measurement apparatus
CN209982293U (en)Motor structure with speed synchronous detection function
JPH10262349A (en) Electrostatic induction type power supply
CN208241048U (en)Conducting slip ring component and power generating hub
JP6516589B2 (en) Rotary contactless power supply transformer and torque detector using the same
JP2000002738A (en)Direct current leak detector
JPH0715332Y2 (en) Vehicle generator
CN211121045U (en) Resolver and detection system
JPH05118938A (en) Torque transformer
CN107733101B (en)Wide-area intelligent mutual inductance power-taking control system
JPH05273017A (en) Capacitive electromagnetic flowmeter detector
JP2006191276A (en)Transmitting device for electric power and information by proximity magnetic field coupling
WO2012102051A1 (en)Induction signal elimination circuit

Legal Events

DateCodeTitleDescription
A300Withdrawal of application because of no request for examination

Free format text:JAPANESE INTERMEDIATE CODE: A300

Effective date:20051101


[8]ページ先頭

©2009-2025 Movatter.jp