DESCRIZIONEDESCRIPTION
"Procedimento per la produzione di microparticelle polimeriche sagomate""Process for the production of shaped polymeric microparticles"
DESCRIZIONEDESCRIPTION
La presente invenzione si riferisce ad un procedimento per la preparazione di microparticelle polimeriche sagomate.The present invention relates to a process for the preparation of shaped polymeric microparticles.
Il termine "sagomato" à ̈ utilizzato nella presente descrizione per indicare particelle aventi una forma diversa dalla forma sferica o sostanzialmente sferica, che costituisce la forma termodinamicamente favorevole e che può pertanto essere facilmente ottenuta in diverse dimensioni, con diversi polimeri, in procedimenti di tipo batch.The term "shaped" is used in the present description to indicate particles having a shape different from the spherical or substantially spherical shape, which constitutes the thermodynamically favorable shape and which can therefore be easily obtained in different dimensions, with different polymers, in processes of the type batch.
In particolare, l'invenzione si riferisce alla produzione di microparticelle sagomate ingegnerizzate. Con il termine "ingegnerizzate", si intendono indicare particelle aventi un'idonea microstruttura e formulazione, come ad esempio microparticelle con una porosità controllata, oppure microparticelle polimeriche preventivamente caricate con molecole bioattive.In particular, the invention relates to the production of engineered shaped microparticles. The term "engineered" refers to particles having a suitable microstructure and formulation, such as microparticles with a controlled porosity, or polymeric microparticles previously loaded with bioactive molecules.
Negli ultimi decenni, si à ̈ verificato un crescente interesse verso la produzione di microparticelle polimeriche sagomate per diverse applicazioni che vanno dall'ingegneria tessutale (Soft Matter, 2009, 5, 1312-1319) a microserbatoi per la somministrazione di farmaci, quali micro e nanoveicoli destinati ad essere introdotti nel corpo (Macromolecular Research, vol. 17, n. 3, pagg. 163-167 (2009); Small 2007, 3, n.3, 412-418, Journal of Controlled Release 104 (2005) 51-66; Biomaterials 29 (2008) 2113-2124; Biomed Microdevices (2007) 9:223-234).In recent decades, there has been a growing interest in the production of shaped polymeric microparticles for various applications ranging from tissue engineering (Soft Matter, 2009, 5, 1312-1319) to micro-tanks for the administration of drugs, such as micro and nanovehicles intended to be introduced into the body (Macromolecular Research, vol. 17, n. 3, pp. 163-167 (2009); Small 2007, 3, n.3, 412-418, Journal of Controlled Release 104 (2005) 51 -66; Biomaterials 29 (2008) 2113-2124; Biomed Microdevices (2007) 9: 223-234).
In particolare, nel campo dell'ingegneria tessutale dove sono altamente desiderate proprietà anisotrope, l'attenzione si à ̈ focalizzata recentemente su microparticelle polimeriche aventi forme diverse da quella sferica. Forme diverse da quella sferica possono anche essere utilizzate nella fotonica e come sonde per analisi reologica (Langmuir 2005, 21, 2113-2116). Altre possibili applicazioni riguardano forme avanzate di erogazione di farmaci, forme di rilascio controllato di farmaci ed applicazioni relative al targeting ed al riconoscimento (Biomaterials 27 (2006) 4034-4041).In particular, in the field of tissue engineering where anisotropic properties are highly desired, attention has recently focused on polymeric microparticles having shapes other than spherical. Shapes other than spherical can also be used in photonics and as probes for rheological analysis (Langmuir 2005, 21, 2113-2116). Other possible applications concern advanced forms of drug delivery, controlled drug delivery forms and applications related to targeting and recognition (Biomaterials 27 (2006) 4034-4041).
Per questi scopi, la morfologia della particella (cioà ̈ la forma e la dimensione) deve essere ingegnerizzata in accordo con la funzione dell'agente particellare (J. Am. Chem. Soc. 2005, 127, 10096-10100).For these purposes, the particle morphology (ie shape and size) must be engineered according to the function of the particle agent (J. Am. Chem. Soc. 2005, 127, 10096-10100).
In contrasto con la produzione della forma sferica termodinamicamente favorevole, facilmente ottenibile, forme diverse devono essere prodotte e consolidate con modalità più sofisticate. In letteratura sono noti tre metodi principali per la produzione di microparticelle sagomate.In contrast to the easily obtainable thermodynamically favorable spherical shape production, different shapes have to be produced and consolidated in more sophisticated ways. Three main methods for the production of shaped microparticles are known in the literature.
Un primo approccio à ̈ quello microfluidico (Langmuir 2005, 21, 2113-2116), in cui goccioline polimeriche, formate sottoponendo a sforzo di taglio un polimero in una fase acquosa continua in una giunzione a T, sono vincolate ad assumere forme non sferiche mediante confinamento utilizzando appropriate geometrie di microcanale.A first approach is the microfluidic one (Langmuir 2005, 21, 2113-2116), in which polymeric droplets, formed by subjecting a polymer to shear stress in a continuous aqueous phase in a T junction, are constrained to assume non-spherical shapes by means of confinement using appropriate microchannel geometries.
Quantunque questo procedimento consenta di ottenere forme precise, soffre di limitazioni per ciò che riguarda il numero limitato di forme che possono essere ottenute (principalmente cilindri o parallelepipedi e dischetti), il numero limitato di polimeri utilizzabili e la limitata velocità di produzione, essendo le microparticelle prodotte una ad una. Un altro approccio si fonda su un procedimento di stampaggio, dove la forma à ̈ definita dalle cavità dello stampo stesso. In questo caso, il principale problema à ̈ la presenza di uno strato continuo che collega le microparticelle che restano quindi collegate l'una dall'altra.Although this process allows to obtain precise shapes, it suffers from limitations as regards the limited number of shapes that can be obtained (mainly cylinders or parallelepipeds and discs), the limited number of usable polymers and the limited production speed, being the microparticles produced one by one. Another approach is based on a molding process, where the shape is defined by the cavities of the mold itself. In this case, the main problem is the presence of a continuous layer that connects the microparticles which therefore remain connected to each other.
E' possibile contrastare questo problema utilizzando stampi particolari, costituiti da PFPE oppure più vantaggiosamente utilizzando, come materiale dello stampo PDMS trattato superficialmente, ma l'ottimizzazione del processo per variare il tipo di polimero e la forma può essere comunque dispendiosa in termini di tempo.It is possible to counteract this problem by using particular molds, made of PFPE or more advantageously by using surface treated PDMS as the mold material, but the optimization of the process to vary the type of polymer and the shape can still be expensive in terms of time.
Inoltre, con tale metodo, per alcuni polimeri sarebbe difficile o anche impossibile produrre determinati spessori (superiori ad alcuni µm). Infine, tanto più ampia à ̈ l'area di lavoro, quanto più difficile à ̈ evitare la presenza dello strato continuo. In ogni caso, anche evitando tale strato, i suddetti metodi noti come detto non permettono di realizzare sempre un'adeguata microstruttura.Furthermore, with this method, for some polymers it would be difficult or even impossible to produce certain thicknesses (higher than a few µm). Finally, the larger the work area, the more difficult it is to avoid the presence of the continuous layer. In any case, even by avoiding such a layer, the aforesaid methods known as said do not always allow to realize an adequate microstructure.
WO2008/031035 descrive un ulteriore procedimento, in cui microsfere polimeriche sono inglobate in una matrice polimerica e sottoposte a stiramento. Le particelle di partenza sono riscaldate al di sopra della loro temperatura di transizione vetrosa o sottoposte a plasticizzazione mediante solvente. In linea di principio questo metodo potrebbe conservare la microstruttura e/o preservare eventuali agenti attivi con opportuni accorgimenti. Tuttavia, il metodo à ̈ comunque dipendente dal materiale utilizzato à ̈ limitato in termini di forme ottenibili, nonché dispendioso in termini di tempo.WO2008 / 031035 describes a further process, in which polymeric microspheres are incorporated in a polymeric matrix and subjected to stretching. The starting particles are heated above their glass transition temperature or subjected to plasticization by means of a solvent. In principle, this method could preserve the microstructure and / or preserve any active agents with suitable precautions. However, the method is still dependent on the material used and is limited in terms of obtainable shapes, as well as time-consuming.
Lo scopo principale della presente invenzione à ̈ quello di fornire un procedimento per la produzione di microparticelle polimeriche sagomate che sia versatile in termini di materiali utilizzabili e forme realizzabili e a basso costo.The main object of the present invention is to provide a process for the production of shaped polymeric microparticles which is versatile in terms of usable materials and forms that can be produced and at low cost.
Un altro scopo dell'invenzione à ̈ quello di fornire un procedimento che consenta di produrre particelle ingegnerizzate che presentano specifiche proprietà o che mantengono proprietà ingegnerizzate di particelle sferiche.Another object of the invention is to provide a process which allows to produce engineered particles which exhibit specific properties or which maintain engineered properties of spherical particles.
In vista di tali scopi, costituisce oggetto dell'invenzione un procedimento come definito nelle rivendicazioni che seguono, che costituiscono parte integrale della presente descrizione.In view of these purposes, the subject of the invention is a process as defined in the following claims, which form an integral part of the present description.
Il procedimento secondo l'invenzione prevede l'impiego, come materiale di partenza, di microparticelle sferiche preformate. Nella forma più vantaggiosa di attuazione, si impiegano particelle sferiche preformate ingegnerizzate, cioà ̈ presentanti una microstruttura, come ad esempio una porosità o una carica di principi attivi, che sostanzialmente corrisponde alla microstruttura che si intende ottenere per le microparticelle sagomate, costituenti il prodotto finale desiderato.The process according to the invention provides for the use, as starting material, of preformed spherical microparticles. In the most advantageous embodiment, engineered preformed spherical particles are used, that is, having a microstructure, such as a porosity or a charge of active ingredients, which substantially corresponds to the microstructure to be obtained for the shaped microparticles, making up the final product desired.
Le microparticelle sferiche di partenza, ingegnerizzate e non, possono essere ottenute con una varietà di metodi di per sé noti, tra cui ad esempio essiccazione a spruzzo, polimerizzazione interfacciale, incapsulazione hot-melt, emulsione, microincapsulazione con evaporazione di solvente, coacervazione, microfluidica e preferibilmente tramite membrana porosa, ecc.The starting spherical microparticles, engineered or not, can be obtained with a variety of methods known per se, including for example spray drying, interfacial polymerization, hot-melt encapsulation, emulsion, microencapsulation with solvent evaporation, coacervation, microfluidic and preferably via a porous membrane, etc.
Microparticelle così ottenute sono trasformate nella forma non sferica desiderata, con l'impiego di uno stampo appropriato che presenta microcavità (non tra loro interconnesse) aventi la forma desiderata, generalmente disposte a schiera o a matrice.Microparticles thus obtained are transformed into the desired non-spherical shape, with the use of an appropriate mold which has microcavities (not interconnected) having the desired shape, generally arranged in an array or matrix.
Preferibilmente, ciascuna microparticella sferica viene posizionata in una rispettiva microcavità dello stampo e viene quindi sottoposta a rammollimento mediante esposizione ad un solvente, atto a plasticizzare il materiale polimerico, o ad una miscela di solvente e non solvente, allo stato liquido o, preferibilmente, allo stato vapore. Alternativamente, il rammollimento può essere coadiuvato da eventuale riscaldamento ad una temperatura preferibilmente < 60°C e ancora più preferibilmente < 40°C. Alternativamente, in casi meno stringenti per la conservazione della microstruttura e/o per principi attivi più resistenti alla temperatura, il rammollimento può essere ottenuto mediante trattamento termico, sottoponendo a riscaldamento ad una temperatura compresa nel campo di rammollimento del polimero impiegato, che generalmente à ̈ compresa tra la temperatura di transizione vetrosa e la temperatura di fusione (per polimeri cristallini), preferibilmente non superiore al 40% del valore di temperatura di transizione vetrosa e preferibilmente non superiore ai 50°C.Preferably, each spherical microparticle is positioned in a respective microcavity of the mold and is then subjected to softening by exposure to a solvent, suitable for plasticising the polymeric material, or to a mixture of solvent and non-solvent, in the liquid state or, preferably, in the steam state. Alternatively, the softening can be assisted by possible heating to a temperature preferably <60 ° C and even more preferably <40 ° C. Alternatively, in less stringent cases for the conservation of the microstructure and / or for more temperature-resistant active ingredients, softening can be obtained by heat treatment, subjecting to heating at a temperature included in the softening range of the polymer used, which generally is comprised between the glass transition temperature and the melting temperature (for crystalline polymers), preferably not higher than 40% of the glass transition temperature value and preferably not higher than 50 ° C.
Il procedimento consente sicuramente di evitare la formazione di uno strato continuo che interconnette (scum layer) le microstrutture ed à ̈ applicabile a qualsiasi tipo di polimero suscettibile di rammollimento ed a qualsiasi dimensione da submicrometrica a sub-millimetrica. Si rende possibile la deformazione di microparticelle sferiche di dimensione da pochi micron di diametro a centinaia di micron, preferibilmente da 2 µm a 600 µm, più preferibilmente da 10 a 300 µm rimanendo la dimensione minima vincolata alla capacità di manipolare in modo automatizzato le microparticelle e la dimensione massima alle cinetiche di plasticizzazione. Nel caso di cavità con la base strutturata à ̈ possibile ottenere una ulteriore topografia di superficie della microparticella sagomata che può essere anche submicrometrica fino a poche decine di nanometri.The procedure certainly avoids the formation of a continuous layer that interconnects (scum layer) the microstructures and is applicable to any type of polymer susceptible to softening and to any size from submicrometric to sub-millimeter. It is possible to deform spherical microparticles with a size from a few microns in diameter to hundreds of microns, preferably from 2 µm to 600 µm, more preferably from 10 to 300 µm while remaining the minimum size bound to the ability to manipulate the microparticles in an automated way and the maximum dimension to the plasticization kinetics. In the case of cavities with a structured base, it is possible to obtain a further surface topography of the shaped microparticle which can also be submicrometric down to a few tens of nanometers.
In particolare, la formatura in cavità di stampo assistita da solvente permette di operare a temperatura ambiente, evitando da un lato l'alterazione di agenti attivi, quali farmaci o biomolecole, inglobate nelle microparticelle sferiche preformate, dall'altro l'alterazione della microstruttura.In particular, the solvent-assisted mold cavity forming allows to operate at room temperature, avoiding on the one hand the alteration of active agents, such as drugs or biomolecules, incorporated in the preformed spherical microparticles, on the other hand the alteration of the microstructure.
Ad esempio, se si desidera mantenere una determinata microstruttura porosa che permette un certo profilo di rilascio di agenti attivi inglobati nella microparticella, Ã ̈ altamente preferibile l'impiego di un trattamento con solvente in fase vapore a temperatura ambiente.For example, if you want to maintain a certain porous microstructure that allows a certain release profile of active agents incorporated in the microparticle, it is highly preferable to use a vapor phase solvent treatment at room temperature.
E' altresì contemplato l'impiego di microparticelle caricate con diversi farmaci o biomolecole. Ad esempio, nel caso di microaghi, microparticelle caricate con diversi farmaci possono essere utilizzate contemporaneamente in diverse cavità permettendo l'ottenimento di una schiera di microparticelle sagomate idonee al rilascio multiplo di farmaci.The use of microparticles loaded with different drugs or biomolecules is also contemplated. For example, in the case of microneedles, microparticles loaded with different drugs can be used simultaneously in different cavities allowing to obtain an array of shaped microparticles suitable for multiple drug release.
Il consolidamento delle microparticelle sagomate si esegue per evaporazione del solvente o tramite raffreddamento, nel caso di formatura assistita da un incremento di temperatura.The consolidation of the shaped microparticles is carried out by evaporation of the solvent or by cooling, in the case of forming assisted by an increase in temperature.
In una forma preferita di attuazione, prima del consolidamento, le microparticelle allo stato rammollito sono sottoposte ad una leggera pressione, esercitata ad esempio tramite un controstampo, quale una lastra di vetro, che viene posto a contatto con le microparticelle all'interno della cavità di stampo, al fine di migliorare la loro formatura in termini di fedeltà alla geometria della cavità (ad esempio per ottenere spigoli vivi, in caso di forme di tipo prismatico).In a preferred embodiment, before consolidation, the microparticles in the softened state are subjected to a slight pressure, exerted for example by means of a counter-mold, such as a glass plate, which is placed in contact with the microparticles inside the cavity. mold, in order to improve their forming in terms of fidelity to the geometry of the cavity (for example to obtain sharp edges, in the case of prismatic shapes).
Si intende che il materiale costituente le cavità di stampo deve essere meno adesivo rispetto al materiale del controstampo, e.g. stampo di PDMS e controstampo di vetro.It is understood that the material constituting the mold cavities must be less adhesive than the material of the counter mold, e.g. PDMS mold and glass counter mold.
Il procedimento consente naturalmente di ottenere un'ampia varietà di forme non sferiche, come ad esempio dischi, ellissoidi, barrette, forme prismatiche, di vario genere. Il procedimento à ̈ applicabile a qualsiasi polimero termoplastico da scegliere in base al tipo di applicazione tra un'ampia varietà di polimeri, in combinazione con un'appropriata scelta del solvente o sistema solvente/non solvente.The process naturally allows to obtain a wide variety of non-spherical shapes, such as discs, ellipsoids, bars, prismatic shapes, of various kinds. The process is applicable to any thermoplastic polymer to be chosen according to the type of application from a wide variety of polymers, in combination with an appropriate choice of solvent or solvent / non-solvent system.
Nel caso di bioapplicazioni, polimeri preferiti sono ad esempio PLA, PLGA, PCL, gelatina, così come qualsivoglia polimero biodegradabile o biocompatibile termoplastico.In the case of bio-applications, preferred polymers are for example PLA, PLGA, PCL, gelatin, as well as any biodegradable or biocompatible thermoplastic polymer.
Come già indicato, le microparticelle sferiche di partenza possono contenere un'ampia varietà di additivi, come agenti attivi funzionali, farmaci, biomolecole attive, ligandi che facilitano il targeting delle microparticelle ad uno specifico sito in vivo.As already indicated, the starting spherical microparticles can contain a wide variety of additives, such as functional active agents, drugs, active biomolecules, ligands that facilitate the targeting of microparticles to a specific site in vivo.
Nei disegni ammessi:In the permitted designs:
- la fig. 1 Ã ̈ un'illustrazione schematica dell'apparecchiatura di stampo utilizzata nel procedimento secondo l'invenzione;- fig. 1 is a schematic illustration of the mold apparatus used in the method according to the invention;
- la fig. 2 Ã ̈ un'illustrazione schematica di un dispositivo vaporizzatore;- fig. 2 is a schematic illustration of a vaporizer device;
- le figg. 3a e 3b sono fotografie che illustrano microparticelle ottenute mediante il procedimento dell'esempio 1;- figs. 3a and 3b are photographs illustrating microparticles obtained by the method of Example 1;
- le figg. 4a e 4b presentano immagini al microscopio confocale relative a microparticelle porose, rispettivamente prima del processo di formatura e dopo il processo di formatura; e- figs. 4a and 4b present confocal microscope images relating to porous microparticles, respectively before the forming process and after the forming process; And
- la fig. 5 Ã ̈ una fotografia ottenuta tramite microcopio a scansione elettronica relativa a microsfere sagomate, ottenute nell'esempio 2.- fig. 5 is a photograph obtained by means of an electronic scanning microcope relating to shaped microspheres, obtained in example 2.
Per l'attuazione del procedimento secondo l'invenzione, Ã ̈ stata utilizzata un'apparecchiatura del tipo illustrata schematicamente nelle figg. 1 e 2.To carry out the process according to the invention, an apparatus of the type illustrated schematically in figs was used. 1 and 2.
Tale apparecchiatura comprende uno stampo 2, presentante una pluralità di microcavità di stampo 4. Lo stampo può essere realizzato con diversi materiali e ottenuto mediante diversi metodi idonei, quali tecnologie di litografia, RIE, ecc. Nelle prove effettuate, si à ̈ utilizzato uno stampo di PDMS, prodotto in due stadi utilizzando la tecnica di "replica moulding".This equipment comprises a mold 2, presenting a plurality of mold microcavities 4. The mold can be made with different materials and obtained by means of different suitable methods, such as lithography technologies, RIE, etc. In the tests carried out, a PDMS mold was used, produced in two stages using the "replica molding" technique.
Inizialmente, à ̈ stato prodotto uno stampo inverso con strutture in rilievo, aventi la forma delle cavità di stampo da realizzare, quali ad esempio forme prismatiche con base a croce, triangolare, a rettangolo, o con forma cilindrica a disco.Initially, an inverse mold was produced with relief structures, having the shape of the mold cavities to be made, such as for example prismatic shapes with a cross, triangular, rectangle or cylindrical disk base.
Lo stampo inverso à ̈ stato prodotto utilizzando un substrato di silicio con microstrutture in SU8 ottenute utilizzando un'apparecchiatura Laser 2d. Le strutture in rilievo presentavano un volume pari a circa 4,2x10<6>µm<3>, corrispondente al volume delle microparticelle che si intendevano produrre.The reverse mold was produced using a silicon substrate with SU8 microstructures obtained using a 2d Laser equipment. The relief structures had a volume of approximately 4.2x10 <6> µm <3>, corresponding to the volume of the microparticles that were intended to be produced.
Per la produzione dello stampo, PDMS allo stato liquido (Sylgard 184<®>) preventivamente miscelato in rapporto in peso 1:10 con un agente reticolante à ̈ stato versato sul substrato di silicio/SU8 e fatto reticolare in forno a 80°C per 2 ore. Lo stampo di PDMS indurito fu quindi facilmente separato dallo stampo inverso di PMMA.For the production of the mold, PDMS in the liquid state (Sylgard 184 <®>) previously mixed in a weight ratio of 1:10 with a crosslinking agent was poured onto the silicon substrate / SU8 and made crosslinked in an oven at 80 ° C for 2 hours. The cured PDMS mold was then easily separated from the reverse PMMA mold.
Allo scopo di fornire un processo automatizzato, l'apparecchiatura utilizzata comprende inoltre un dispositivo micromanipolatore 6 atto a raccogliere simultaneamente una pluralità di microsfere ed a permetterne la deposizione nelle cavità di stampo 4.In order to provide an automated process, the apparatus used further comprises a micromanipulator device 6 capable of simultaneously collecting a plurality of microspheres and allowing them to be deposited in the mold cavities 4.
A titolo esemplificativo, il dispositivo micromanipolatore comprende un corpo definente al suo interno una camera di aspirazione ed avente una parete inferiore provvista di una pluralità di fori, comunicanti con detta camera di aspirazione e disposti a matrice secondo un passo corrispondente al passo delle cavità di stampo 4 realizzate nello stampo.By way of example, the micromanipulator device comprises a body defining inside it a suction chamber and having a lower wall provided with a plurality of holes, communicating with said suction chamber and arranged in a matrix according to a pitch corresponding to the pitch of the mold cavities. 4 made in the mold.
A ciascun foro à ̈ collegato un tubicino rigido o un ago di aspirazione 8, il cui lume presenta un diametro inferiore al diametro delle microsfere da raccogliere e depositare. La parete superiore del corpo del micromanipolatore presenta un singolo foro a cui à ̈ collegato a tenuta un collettore 10, costituito da un tubicino o ago collegabile a sua volta ad una pompa a vuoto.A rigid tube or a suction needle 8 is connected to each hole, the lumen of which has a diameter smaller than the diameter of the microspheres to be collected and deposited. The upper wall of the body of the micromanipulator has a single hole to which a manifold 10 is sealed, consisting of a tube or needle which can in turn be connected to a vacuum pump.
Il micromanipolatore permette, a seguito dell'azionamento della pompa a vuoto, di raccogliere una pluralità di microsfere e permette la loro deposizione nelle cavità di stampo, a seguito della disattivazione della pompa a vuoto.The micromanipulator allows, following the activation of the vacuum pump, to collect a plurality of microspheres and allows their deposition in the mold cavities, following the deactivation of the vacuum pump.
Per evitare fenomeni di aggregazione delle microparticelle causate da interazioni elettrostatiche che possono verificarsi in funzione del materiale plastico costituente le particelle ed assicurare la ritenzione di una singola microsfera in corrispondenza di ciascun foro di aspirazione, Ã ̈ possibile applicare un leggero flusso d'aria oppure un'operazione di spazzolatura prima della disattivazione della pompa a vuoto.To avoid aggregation phenomena of the microparticles caused by electrostatic interactions that can occur depending on the plastic material constituting the particles and to ensure the retention of a single microsphere in correspondence with each suction hole, it is possible to apply a light flow of air or a brushing operation before deactivating the vacuum pump.
Lo stesso dispositivo micromanipolatore può essere utilizzato per erogare vapori della miscela solvente e plastificante, eventualmente in un gas di trasporto, quale azoto, in modo localizzato sulle microsfere o in vicinanza delle microsfere posizionate in ciascuna cavità di stampo.The same micromanipulator device can be used to deliver vapors of the solvent and plasticizer mixture, possibly in a carrier gas, such as nitrogen, locally on the microspheres or near the microspheres positioned in each mold cavity.
Per generare un flusso di vapore di solvente, si può utilizzare una convenzionale apparecchiatura di vaporizzazione a gorgogliamento 12, provvista di una camicia riscaldante 18, del tipo illustrato schematicamente in fig. 2. In tale apparecchiatura 12, un veicolo di trasporto, ad esempio azoto, à ̈ alimentato ad un setto poroso 14 immerso nella soluzione liquida di solvente 16. Il vapore solvente generato, come indicato, può essere alimentato al micromanipolatore.To generate a flow of solvent vapor, a conventional bubbling vaporization apparatus 12, provided with a heating jacket 18, of the type illustrated schematically in fig. 2. In this apparatus 12, a transport vehicle, for example nitrogen, is fed to a porous septum 14 immersed in the liquid solution of solvent 16. The solvent vapor generated, as indicated, can be fed to the micromanipulator.
Esempio 1 - Microsfere di acido D,L-lattico-co-glicolico (PLGA) rammollite con una miscela allo stato a vapore di dimetilcarbonato (DMC) ed etanoloExample 1 - D, L-lactic-co-glycolic acid (PLGA) microspheres softened with a vapor state mixture of dimethylcarbonate (DMC) and ethanol
E' noto che PLGA Ã ̈ un polimero rapidamente disciolto in DMC. Al contrario, l'etanolo non discioglie PLGA.PLGA is known to be a rapidly dissolved polymer in DMC. Conversely, ethanol does not dissolve PLGA.
Microsfere di PLGA (Resomer 504H<®>) aventi un volume di 4,2x10<6>µm<3>sono state precedentemente prodotte mediante un opportuno sistema a membrana con porosità di dimensione comparabile a quella delle micro particelle sferiche da realizzare (Sistema Micropore®).PLGA microspheres (Resomer 504H <®>) having a volume of 4.2x10 <6> µm <3> were previously produced by means of a suitable membrane system with porosity of a size comparable to that of the spherical micro particles to be made (Micropore System ®).
Ciascuna microsfera à ̈ stata disposta in una rispettiva cavità di stampo in PDMS (cioà ̈ una microsfera in una singola cavità ) con l'impiego del mi cromanipolatore 6, come illustrato in fig. 1. Lo stampo à ̈ stato quindi posizionato su un supporto piano con la sua parete inferiore piana affacciata alla superficie piana del supporto.Each microsphere was placed in a respective mold cavity in PDMS (ie a microsphere in a single cavity) with the use of the micromomanipulator 6, as illustrated in fig. 1. The mold was then placed on a flat support with its flat bottom wall facing the flat surface of the support.
Una soluzione liquida di DMC ed etanolo (DMC:EtOH, 2:1, v:v) à ̈ stata quindi vaporizzata mediante un'apparecchiatura di vaporizzazione come precedentemente descritta sulle microsfere disposte nelle cavità . Dopo 2 minuti di flusso di vapore, un vetrino à ̈ stato posto in contatto con le microsfere plasticizzate per migliorare la formatura e così pure per rimuovere le microsfere sagomate dallo stampo.A liquid solution of DMC and ethanol (DMC: EtOH, 2: 1, v: v) was then vaporized by means of a vaporization apparatus as previously described on the microspheres placed in the cavities. After 2 minutes of steam flow, a slide was placed in contact with the plasticized microspheres to improve the shaping as well as to remove the shaped microspheres from the mold.
Il procedimento à ̈ stato condotto a temperatura ambiente (circa 25°C) e pressione ambiente.The procedure was carried out at room temperature (about 25 ° C) and ambient pressure.
Le figg. 3a e 3b illustrano alcune delle microparticelle ottenute, utilizzando stampi con cavità di diversa conformazione.Figs. 3a and 3b illustrate some of the microparticles obtained, using molds with cavities of different conformation.
Il procedimento sopra descritto à ̈ stato ripetuto con l'impiego di microsfere aventi una struttura interna porosa.The procedure described above was repeated with the use of microspheres having a porous internal structure.
Le figg. 4a e 4b sono immagini al microscopio confocale che illustrano il mantenimento della porosità a seguito della formatura, con l'impiego di microparticelle porose caricate con un cromoforo.Figs. 4a and 4b are confocal microscope images illustrating the maintenance of porosity following shaping, with the use of porous microparticles loaded with a chromophore.
Esempio 2 - Microsfere di gelatina polimerica plastificate con acqua allo stato liquidoExample 2 - Polymer gelatin microspheres plasticized with liquid water
Microsfere di polimero di gelatina aventi un volume di 65,5x10<6>µm<3>, solubili in acqua, sono state preparate con il metodo noto di singola emulsione.Gelatin polymer microspheres having a volume of 65.5x10 <6> µm <3>, soluble in water, were prepared with the known single emulsion method.
La procedura descritta nell'esempio 1 à ̈ stata ripetuta, effettuando tuttavia il rammollimento delle microsfere utilizzando acqua come solvente allo stato liquido. L'acqua a temperatura inferiore di 50°C à ̈ stata versata tramite una siringa e lasciata parzialmente ad evaporare. Dopo 15 minuti in questa condizione, un vetrino à ̈ stato posto in contatto con tutte le microsfere plastificata per migliorare la sagomatura ed altresì per rimuovere le microsfere dallo stampo.The procedure described in example 1 was repeated, however softening the microspheres using water as a liquid solvent. The water at a temperature below 50 ° C was poured through a syringe and allowed to partially evaporate. After 15 minutes in this condition, a slide was placed in contact with all the plasticized microspheres to improve the shaping and also to remove the microspheres from the mold.
La fig. 5 illustra microsfere sagomate, ottenute con questo esempio in diverse geometrie. Si nota l'elevata fedeltà della geometria delle microparticelle sagomate con la geometria delle cavità di stampo. Inoltre, le microparticelle sagomate sono separate l'una dall'altra, ovvero non sono interconnesse.Fig. 5 illustrates shaped microspheres, obtained with this example in different geometries. We note the high fidelity of the geometry of the shaped microparticles with the geometry of the mold cavities. In addition, the shaped microparticles are separated from each other, that is, they are not interconnected.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| IT000284AITTO20130284A1 (en) | 2013-04-09 | 2013-04-09 | PROCEDURE FOR THE PRODUCTION OF SHAPED POLYMERIC MICROPARTELS |
| US14/782,459US10384372B2 (en) | 2013-04-09 | 2014-04-08 | Method for producing shaped polymeric microparticles |
| EP14722357.2AEP2983880B1 (en) | 2013-04-09 | 2014-04-08 | Method for producing shaped polymeric microparticles |
| PCT/IB2014/060530WO2014167495A1 (en) | 2013-04-09 | 2014-04-08 | Method for producing shaped polymeric microparticles |
| BR112015025694ABR112015025694B8 (en) | 2013-04-09 | 2014-04-08 | method for the production of polymeric microparticles molded with non-spherical shape |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| IT000284AITTO20130284A1 (en) | 2013-04-09 | 2013-04-09 | PROCEDURE FOR THE PRODUCTION OF SHAPED POLYMERIC MICROPARTELS |
| Publication Number | Publication Date |
|---|---|
| ITTO20130284A1true ITTO20130284A1 (en) | 2014-10-10 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| IT000284AITTO20130284A1 (en) | 2013-04-09 | 2013-04-09 | PROCEDURE FOR THE PRODUCTION OF SHAPED POLYMERIC MICROPARTELS |
| Country | Link |
|---|---|
| US (1) | US10384372B2 (en) |
| EP (1) | EP2983880B1 (en) |
| BR (1) | BR112015025694B8 (en) |
| IT (1) | ITTO20130284A1 (en) |
| WO (1) | WO2014167495A1 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10300136B2 (en) | 2013-12-16 | 2019-05-28 | Massachusetts Institute Of Technology | Micromolded or 3-D printed pulsatile release vaccine formulations |
| CN107275439B (en)* | 2017-06-01 | 2018-10-30 | 西南交通大学 | A kind of manufacturing method of " I " type structure PDMS matrixes based on reverse |
| CN107221578B (en)* | 2017-06-01 | 2018-08-21 | 西南交通大学 | A kind of manufacturing method of " I " type structure PDMS matrixes |
| MX2022014191A (en) | 2020-05-13 | 2022-12-07 | Massachusetts Inst Technology | Compositions of polymeric microdevices and their use in cancer immunotherapy. |
| US12280139B2 (en) | 2021-05-07 | 2025-04-22 | Grand Advance Technologies Pte Ltd | Microparticles/microcrown |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US3057831A (en)* | 1957-11-29 | 1962-10-09 | Escambia Chem Corp | Suspension polymerization of vinyl chloride and product thereof |
| US3562042A (en)* | 1967-04-28 | 1971-02-09 | Basf Ag | Joining moldings of expanded olefin polymers |
| US3773919A (en)* | 1969-10-23 | 1973-11-20 | Du Pont | Polylactide-drug mixtures |
| US3945926A (en)* | 1971-10-18 | 1976-03-23 | Chemical Systems, Inc. | Integral microporous high void volume polycarbonate membranes and a dry process for forming same |
| US4247498A (en)* | 1976-08-30 | 1981-01-27 | Akzona Incorporated | Methods for making microporous products |
| US4671909A (en)* | 1978-09-21 | 1987-06-09 | Torobin Leonard B | Method for making hollow porous microspheres |
| US4257997A (en)* | 1979-06-01 | 1981-03-24 | Celanese Corporation | Solvent stretch process for preparing a microporous film |
| US4865789A (en)* | 1983-11-14 | 1989-09-12 | Akzo Nv | Method for making porous structures |
| JPS6187734A (en)* | 1984-10-03 | 1986-05-06 | Japan Synthetic Rubber Co Ltd | Production of hollow polymer particle |
| US5411737A (en)* | 1991-10-15 | 1995-05-02 | Merck & Co., Inc. | Slow release syneresing polymeric drug delivery device |
| US5686091A (en)* | 1994-03-28 | 1997-11-11 | The Johns Hopkins University School Of Medicine | Biodegradable foams for cell transplantation |
| US5372766A (en)* | 1994-03-31 | 1994-12-13 | The Procter & Gamble Company | Flexible, porous, absorbent, polymeric macrostructures and methods of making the same |
| JP3355593B2 (en)* | 1994-08-19 | 2002-12-09 | 信越化学工業株式会社 | Method for producing solid enteric preparation |
| US5520923A (en)* | 1994-09-19 | 1996-05-28 | Genetics Institute, Inc. | Formulations for delivery of osteogenic proteins |
| EP0991705B1 (en)* | 1997-03-31 | 2003-09-10 | The Regents Of The University Of Michigan | Open pore biodegradable matrices |
| US6342250B1 (en)* | 1997-09-25 | 2002-01-29 | Gel-Del Technologies, Inc. | Drug delivery devices comprising biodegradable protein for the controlled release of pharmacologically active agents and method of making the drug delivery devices |
| US6187329B1 (en)* | 1997-12-23 | 2001-02-13 | Board Of Regents Of The University Of Texas System | Variable permeability bone implants, methods for their preparation and use |
| US6312612B1 (en)* | 1999-06-09 | 2001-11-06 | The Procter & Gamble Company | Apparatus and method for manufacturing an intracutaneous microneedle array |
| BR0108379A (en)* | 2000-02-08 | 2002-11-05 | Euro Celtique Sa | Controlled release compositions containing opioid agonist and antagonist, method for preparing a controlled release opioid analgesic formulation with increased analgesic potency and delivery system through the dermis for an opioid analgesic |
| US9302903B2 (en)* | 2000-12-14 | 2016-04-05 | Georgia Tech Research Corporation | Microneedle devices and production thereof |
| GB0104503D0 (en)* | 2001-02-23 | 2001-04-11 | Shipley Co Llc | Solvent swell for texturing resinous material and desmearing and removing resinous material |
| TW574273B (en)* | 2001-12-21 | 2004-02-01 | Ind Tech Res Inst | Process for producing porous polymer materials |
| GB0205867D0 (en)* | 2002-03-13 | 2002-04-24 | Univ Nottingham | Polymer composite loaded with functioning matter |
| GB0205868D0 (en)* | 2002-03-13 | 2002-04-24 | Univ Nottingham | Polymer composite with internally distributed deposition matter |
| CA2488771C (en)* | 2002-06-11 | 2010-08-17 | Celltrix Ab | Porous gelatin material, gelatin structures, methods for preparation of the same and uses thereof |
| US7083748B2 (en)* | 2003-02-07 | 2006-08-01 | Ferro Corporation | Method and apparatus for continuous particle production using supercritical fluid |
| US9040090B2 (en)* | 2003-12-19 | 2015-05-26 | The University Of North Carolina At Chapel Hill | Isolated and fixed micro and nano structures and methods thereof |
| EP3242318A1 (en)* | 2003-12-19 | 2017-11-08 | The University of North Carolina at Chapel Hill | Monodisperse micro-structure or nano-structure product |
| US8119154B2 (en)* | 2004-04-30 | 2012-02-21 | Allergan, Inc. | Sustained release intraocular implants and related methods |
| US8545866B2 (en)* | 2004-10-29 | 2013-10-01 | Smith & Nephew, Inc. | Bioabsorbable polymers |
| ES2528720T3 (en)* | 2004-11-10 | 2015-02-12 | Tolmar Therapeutics, Inc. | Stabilized polymer supply system |
| AU2006282042B2 (en)* | 2005-06-17 | 2011-12-22 | The University Of North Carolina At Chapel Hill | Nanoparticle fabrication methods, systems, and materials |
| US20070009564A1 (en)* | 2005-06-22 | 2007-01-11 | Mcclain James B | Drug/polymer composite materials and methods of making the same |
| GB0517157D0 (en)* | 2005-08-20 | 2005-09-28 | Smart Tech Ltd | Water-swellable materials |
| WO2008011051A1 (en)* | 2006-07-17 | 2008-01-24 | Liquidia Technologies, Inc. | Nanoparticle fabrication methods, systems, and materials |
| DE102007032746A1 (en)* | 2006-08-14 | 2008-02-21 | Sumitomo Electric Fine Polymer, Inc. | Shaping material, molding and process for their preparation |
| EP2061434A2 (en) | 2006-09-08 | 2009-05-27 | The Regent of the University of California | Engineering shape of polymeric micro-and nanoparticles |
| US20100311638A1 (en)* | 2006-10-27 | 2010-12-09 | Paul Tiege | Method for Altering the Shape of Polymer Particles |
| EP2101735A2 (en)* | 2006-11-28 | 2009-09-23 | Marinus Pharmaceuticals, Inc. | Nanoparticulate formulations and methods for the making and use thereof |
| US8709464B2 (en)* | 2007-01-10 | 2014-04-29 | The Regents Of The University Of Michigan | Porous objects having immobilized encapsulated biomolecules |
| US20130177598A1 (en)* | 2007-02-27 | 2013-07-11 | The University Of North Carolina At Chapel Hill | Discrete size and shape specific pharmaceutical organic nanoparticles |
| GB0711952D0 (en)* | 2007-06-20 | 2007-08-01 | King S College London | Microspheres |
| US9775882B2 (en)* | 2007-09-20 | 2017-10-03 | Medtronic, Inc. | Medical devices and methods including polymers having biologically active agents therein |
| EP2198302B1 (en)* | 2007-09-27 | 2017-09-27 | Samyang Biopharmaceuticals Corporation | Sol-gel phase-reversible hydrogel templates and uses thereof |
| US8277832B2 (en)* | 2007-10-10 | 2012-10-02 | The University Of Kansas | Microsphere-based materials with predefined 3D spatial and temporal control of biomaterials, porosity and/or bioactive signals |
| DE102007049058A1 (en)* | 2007-10-11 | 2009-04-16 | Voxeljet Technology Gmbh | Material system and method for modifying properties of a plastic component |
| EP2237770A4 (en)* | 2007-12-26 | 2011-11-09 | Gel Del Technologies Inc | Biocompatible protein particles, particle devices and methods thereof |
| ITMI20080562A1 (en)* | 2008-04-01 | 2009-10-02 | St Microelectronics Srl | MOLD WITH NANOMETRIC CHARACTERISTICS, METHOD OF REALIZATION OF SUCH MOLD AND RELATED USE IN A METHOD OF REALIZING A CARBON NANOTUBI ARRAY |
| US8557273B2 (en)* | 2008-04-18 | 2013-10-15 | Medtronic, Inc. | Medical devices and methods including polymers having biologically active agents therein |
| GB0812742D0 (en)* | 2008-07-11 | 2008-08-20 | Critical Pharmaceuticals Ltd | Process |
| US8663524B2 (en)* | 2009-05-12 | 2014-03-04 | Miller Waste Mills | Controlled geometry composite micro pellets for use in compression molding |
| KR101105292B1 (en)* | 2009-06-05 | 2012-01-17 | 주식회사 리젠 바이오텍 | Biodegradable polymer microparticles and preparation method thereof |
| WO2011119262A1 (en)* | 2010-03-26 | 2011-09-29 | Cerulean Pharma Inc. | Methods and systems for generating nanoparticles |
| WO2012027398A2 (en)* | 2010-08-23 | 2012-03-01 | Massachusetts Institute Of Technology | Compositions, methods, and systems relating to controlled crystallization and/or nucleation of molecular species |
| US20120071575A1 (en)* | 2010-08-27 | 2012-03-22 | Derosa Michael Edward | Microporous Thermoplastic Article |
| US20120052581A1 (en)* | 2010-08-27 | 2012-03-01 | Derosa Michael Edward | Microporous Cell Culture Substrates |
| EP2463327A3 (en)* | 2010-12-10 | 2015-06-03 | Basf Se | Method for producing granulates containing at least one water-soluble component |
| US8956577B2 (en)* | 2011-06-17 | 2015-02-17 | The Board Of Trustees Of The University Of Illinois | Microfluidic device comprising a biodegradable material and method of making such a microfluidic device |
| KR20140050591A (en)* | 2011-07-26 | 2014-04-29 | 고쿠리츠다이가쿠호진 니이가타 다이가쿠 | Method for pruducing fine particles |
| US20140242180A1 (en)* | 2011-10-13 | 2014-08-28 | Case Western Reserve University | Nanoparticles for controlling bleeding and drug delivery |
| US10188772B2 (en)* | 2011-10-18 | 2019-01-29 | Micell Technologies, Inc. | Drug delivery medical device |
| US9102081B2 (en)* | 2011-11-21 | 2015-08-11 | Dr. Hielscher Gmbh | Method and apparatus for generating particles |
| WO2013155404A1 (en)* | 2012-04-13 | 2013-10-17 | Trustees Of Tufts College | Methods and compositions for preparing a silk microsphere |
| WO2013192310A1 (en)* | 2012-06-19 | 2013-12-27 | Massachusetts Institute Of Technology | Mass production and size control of nanoparticles through controlled microvortices |
| Title |
|---|
| GHANASHYAM ACHARYA ET AL: "The hydrogel template method for fabrication of homogeneous nano/microparticles", JOURNAL OF CONTROLLED RELEASE, vol. 141, 2010, pages 314 - 319, XP002716775* |
| JULIE A. CHAMPION ET AL: "Particle shape: A new design parameter for micro- and nanoscale drug delivery carriers", JOURNAL OF CONTROLLED RELEASE, vol. 121, 2007, pages 3 - 9, XP002716774* |
| YADONG YIN ET AL: "Self-Assembly of Monodispersed Spherical Colloids into Complex Aggregates with Well-Defined Sizes, Shapes and Structures", ADVANCED MATERIALS, vol. 13, no. 4, February 2001 (2001-02-01), pages 267 - 271, XP002716773* |
| Publication number | Publication date |
|---|---|
| US10384372B2 (en) | 2019-08-20 |
| US20160039117A1 (en) | 2016-02-11 |
| EP2983880B1 (en) | 2017-04-26 |
| BR112015025694B1 (en) | 2020-12-15 |
| BR112015025694A2 (en) | 2017-07-18 |
| BR112015025694B8 (en) | 2021-04-13 |
| EP2983880A1 (en) | 2016-02-17 |
| WO2014167495A1 (en) | 2014-10-16 |
| Publication | Publication Date | Title |
|---|---|---|
| Wang et al. | Functional polymeric microparticles engineered from controllable microfluidic emulsions | |
| Hwang et al. | Production of uniform-sized polymer core− shell microcapsules by coaxial electrospraying | |
| Camović et al. | Coated 3d printed PLA microneedles as transdermal drug delivery systems | |
| Lee et al. | Rapid and repeatable fabrication of high A/R silk fibroin microneedles using thermally-drawn micromolds | |
| CN105498082B (en) | Micropin chip and preparation method thereof | |
| Yoon et al. | Multifunctional polymer particles with distinct compartments | |
| Shim et al. | Elaborate design strategies toward novel microcarriers for controlled encapsulation and release | |
| ITTO20130284A1 (en) | PROCEDURE FOR THE PRODUCTION OF SHAPED POLYMERIC MICROPARTELS | |
| CN103568160B (en) | Method for manufacturing polymer material micro-needle array patch | |
| Pal et al. | High-throughput microgel biofabrication via air-assisted co-axial jetting for cell encapsulation, 3D bioprinting, and scaffolding applications | |
| CA2698632A1 (en) | Microneedle array using porous substrate and production method thereof | |
| Lin et al. | Rapid fabrication method of a microneedle mold with controllable needle height and width | |
| ITMI20110995A1 (en) | METHOD FOR THE PRODUCTION OF MONOLITHIC THREE-DIMENSIONAL MICROFLUID DEVICES | |
| Ren et al. | Shape-anisotropic diblock copolymer particles with varied internal structures | |
| Sadeqi et al. | Cost-effective fabrication of chitosan microneedles for transdermal drug delivery | |
| CN104288122A (en) | Biodegradable PLGA/PCL composite microcapsule and preparation method thereof | |
| Choi et al. | Controlled fabrication of microparticles with complex 3D geometries by tunable interfacial deformation of confined polymeric fluids in 2D micromolds | |
| Sadeghi et al. | Micromolding of Thermoplastic Polymers for Direct Fabrication of Discrete, Multilayered Microparticles | |
| CN111344131B (en) | Apparatus and process for the continuous manufacture of microneedles | |
| Ge et al. | Development of multi-dimensional cell co-culture via a novel microfluidic chip fabricated by DMD-based optical projection lithography | |
| Salerno et al. | Computer-aided patterning of PCL microspheres to build modular scaffolds featuring improved strength and neovascularized tissue integration | |
| Tan et al. | Shape-controlled anisotropic block copolymer particles via interfacial engineering of multiple-phase emulsions | |
| Ham et al. | Macroporous polymer thin film prepared from temporarily stabilized water-in-oil emulsion | |
| WO2017007156A1 (en) | Continuous production process of needle patch using centrifugal force | |
| Shillingford et al. | Top-down heterogeneous colloidal engineering using capillary assembly of liquid particles |