“Architettura circuitale su base organica e relativo metodo di realizzazione”
DESCRIZIONE
Campo di applicazione
La presente invenzione si riferisce nel suo aspetto più generale al settore del elettronica e più in particolare si riferisce ad una architettura circuitale di natura organica detta anche su base organica e ad un relativo metodo di realizzazione.
Arte nota
Come è noto, architetture circuitali in dispositivi elettronici sono generalmente realizzate attraverso tecniche fotolitografiche.
In particolare, la tecnica fotolitografica o fotolitografia è un processo di natura fotografica che è impiegato per tracciare microgeometrie su un wafer di silicio, ed in microelettronica è utilizzata per trasferire su tale wafer il disegno di una fotomaschera.
La fotolitografia comprende essenzialmente tre operazioni principali le quali ancorché note, al fine di una migliore comprensione della presente invenzione, sono qui di seguito brevemente descritte.
Una prima operazione consiste nel disegnare la configurazione geometrica (disegno), da trasferire poi su scala microscopica, su un foglio in scala molto maggiore di quella microscopica finale in modo che il disegno di partenza possa essere eseguito con metodi e precisioni convenzionali.
Il disegno viene quindi fotografato e ridotto alla scala microscopica di reale interesse su una lastra di vetro o alti materiali, la cosiddetta fotomaschera.
La seconda operazione consiste nel trasferire il disegno della fotomaschera sullo strato superficiale del wafer di silicio (substrato), su cui si applica dapprima uno strato di emulsione fotosensibile, generalmente un polimero, detto fotoresist.
In tale operazione, il trasferimento del disegno è ottenuto proiettando con un fascio di luce ultravioletta il disegno della fotomaschera sullo strato di fotoresist e sviluppando poi con attacco chimico, secondo il normale metodo fotografico.
Quindi o vengono rimosse le porzioni del fotoresist non colpite dalla luce che risulteranno pertanto solubili nel bagno di sviluppo (litografia negativa), oppure vengono rimosse le porzioni di fotoresist impressionate e rese pertanto solubili nel bagno di sviluppo (litografia positiva).
Pertanto sul wafer risulterà riprodotta la geometria inizialmente disegnata sulla fotomaschera grazie alla foto incisione realizzata sul fotoresist attraverso la radiazione ultravioletta.
La terza operazione consiste nel sottoporre il substrato così trattato ad un processo chimico-fisico quale, ad esempio, diffusione di materiale drogante, oppure deposizione sottovuoto di nuovo materiale, oppure impiantazione ionica, attraverso il quale in corrispondenza delle porzioni non più coperte dal fotoresist, il substrato viene modificato in modo da crearvi prefissate caratteristiche desiderate per la conduzione elettronica.
Quindi anche le porzioni residue del fotoresist vengono rimosse chimicamente.
Le suddette operazioni vengono ripetute sullo stesso wafer tante volte, con differenti fotomaschere, quante sono le modifiche necessarie da apportare al materiale del substrato per realizzare strutture complesse che danno origine poi ai dispositivi elettronici.
Per quanto riguarda i suddetti fotoresist, vi è da dire che essi sono generalmente dei polimeri con pesi molecolari normalmente compresi tra 100,000 e 200,000 dalton le cui proprietà, tra le quali la viscosità, la temperatura di rammollimento, la temperatura di degradazione, sono ottimizzate a seconda del caso specifico, proprio agendo sul peso molecolare.
Una miscela di fotoresist convenzionale è tipicamente costituita da: una resina base, o binder, che garantisce proprietà meccaniche della miscela (adesione, la resistenza chimica etc.); un solvente che controlla alcune delle proprietà meccaniche (ad esempio la viscosità della miscela); e un materiale foto-attivo (photoactive compound PAC) che nello specifico è il fotoresist che a sua volta può essere ti tipo negativo o positivo, come meglio apparirà nel seguito.
Un fotoresist negativo viene utilizzato in processi di litografia negativa in cui, dopo esposizione a radiazione UV, un trattamento di etching chimico (attacco chimico) elimina la porzione di fotoresist non esposta alla luce.
In questo caso, la miscela di fotoresist, contenente i monomeri o gli oligomeri precursori per esposizione alla radiazione UV incidente subisce reazione di foto-polimerizzazione e/o di foto-reticolazione (crosslinking) .
La reticolazione del fotoresist determina un aumento del suo peso molecolare che induce una diminuzione della solubilità del fotoresist in taluni solventi.
Esempi di fotoresist negativi sono di seguito riportati, e comprendono:
- Miscele di alcheni e azidi o bisazidi.
Le azidi per azione dell'UV si foto-decompongono in specie altamente reattive e di natura radicalica, quali i nitreni.
Questi ultimi, reagendo con i siti reattivi insaturi degli alcheni portano alla formazione dei rispettivi polimeri, attraverso tre differenti possibili tipi di reazioni non selettive, corrispondenti a reazione di cicloaddizione a doppi legami, reazione di inserimento di legami C-H, e reazione di eliminazione di atomi di idrogeno.
Il poli(p-idrostirene) con bisazidi o azidi monofunzionali rappresenta una la tipica miscela di fotoresit.
- Poliammidi.
In questo caso i gruppi acidi del precursore del poliimmide, poli(acido amico) sono funzionalizzati con gruppi metacrilati e depositati in presenza di opportuni iniziatori fotoattivati non radicalici.
Le porzioni di fotoresist esposte subiscono quindi reazioni di reticolazione, mentre attraverso il trattamento con un opportuno solvente vengono rimosse le porzioni non esposte.
L’immagine risultante viene quindi sottoposta ad un trattamento termico (annealing) in modo da degradare le unità metacrilate.
Mediante ciclizzazione del poli(acido amico) si forma la più stabile poliammide.
- Polimeri che hanno in catena laterale gruppi maleimmidici capaci di dare reazioni di fotodimerizzazione.
- Copolimeri del tetratiofulvalene (TTF) e poli (clorometil stirene) (PSTFF).
In presenza di specie elettron-accettori (ad esempio alogenuri) e dopo esposizione a radiazione X, i comonomeri polimerizzano per reazioni a trasferimento di carica.
Un fotoresist positivo viene invece utilizzato in un procedimento di litografia positiva in cui, dopo esposizione a radiazione UV (profondo UV, estremo UV o radiazione a fascio elettronico [Electron beam radiation} un trattamento di etching chimico elimina la porzione di fotoresist esposta alla luce.
In questo caso, la miscela del fotoresist contenente il polimero subisce reazione di foto-degradazione a causa dell’esposizione alla radiazione UV incidente.
In tale reazione di degradazione, alcuni dei legami covalenti della catena polimerica si rompono ed il peso molecolare del polimero diminuisce.
I frammenti monomerici o oligomerici essendo maggiormente volatili e/o solubili nei solventi di etching vengono quindi successivamente eliminati.
Esempi noti di fotoresist positivi sono di seguito riportati e comprendono:
- Polimeri acrilati, metacrilati, loro rispettivi derivati fluorati e ossimici, e loro copolimeri, tra cui il polimetilmetacrilato (PMMA).
Un polimero ampiamente utilizzato nella fotolitografia a fascio elettronica [e-beam] poiché dotato di eccellenti proprietà di adattamento alla strato sottostante ad esso (rivestimento o coating] e di sviluppo è il poli(2 ,2,2- trifluoroetilmetacrilato .
- DQN, dove DQ rappresenta il composto foto-attivo diazochinone e N rappresenta il composto conosciuto con il nome di Novolac, una resina fenolica.
Dopo esposizione alla radiazione UV il legame C-N2fotoattivo del DQ, che rende il polimero insolubile nella miscela di deposizione, viene rotto, con liberazione di N2e formazione di un gruppo carbossilico che rende il fotoresit solubile.
- Polibutenesulfone (PBS) e copolimeri alchene-sulfonici quali, ad esempio, il PBS con il 5-esene-2-one, che ha mostrato in questa classe di polimeri ottime proprietà di coating, adesione e di immagine.
Dopo esposizione a radiazione UV lo scheletro polimerico viene rotto e i frammenti ottenuti convertono in solfuro diossido (SO2) e alcheni.
- Fotoresist positivi possono anche essere costituiti da miscele che dopo esposizione alla radiazione UV subiscono reazioni di degradazione foto-catalizzata.
In questi casi alla miscela viene aggiunto un sensibilizzatore, ovvero un additivo contenente gruppi fotolabili, spesso acid-generator fotoindotto, che catalizza la degradazione del polimero e la conseguente diminuzione del suo peso molecolare.
Esempio di questo tipo di fotoresist sono miscele di poli(acetaldeide) o poli{formaldeide) con il poli(vinilcloruro) e piccole quantità’ di molecole elettron-attrattori.
Da quanto sopra esposto, appare chiaro che nei procedimenti di foto litografia convenzionale come sopra descritti, un fotoresist costituisce un materiale sacrificale nel senso che, in tali procedimenti, uno strato di fotoresist viene depositato per poi essere rimosso, essendo il suo impiego finalizzato al trasferimento di una configurazione geometrica (disegno) da una fotomaschera ad uno strato di un diverso materiale sul quale è stato depositato.
In particolare vi è da notare che, in una struttura circuitale ottenuta mediante fotolitografia come sopra descritta, il fotoresist impiegato viene interamente rimosso nel corso del procedimento e pertanto la struttura circuitale finale non comprenderà alcuno strato di fotoresit.
Il fotoresist infatti viene interamente rimosso attraverso due distinte fasi, una prima fase di etching essendo effettuata dopo esposizione alla radiazione UV al fine di trasferire sul wafer il disegno desiderato, una seconda fase di etching essendo effettuata dopo che il wafer è stato sottoposto ad uno dei suddetti processi di natura chimicofisica, al fine di conferire alle porzioni di substrato non coperte dal fotoresist prefissate caratteristiche per la conduzione elettronica.
Pertanto, benché rispondenti allo scopo, vi è da notare che nel complesso i procedimenti noti per realizzare architetture circuitali attraverso l’impiego della fotolitografia e di fotoresit come sopra descritti, non sono esenti da inconvenienti tra i quali il principale consiste nel dovere effettuare un numero elevato di fasi come conseguenza dell’impiego di strati di fotoresist quale materiale sacrificale.
Vi è da considerare inoltre che, nel settore dell’elettronica ibrida ovvero in caso di strutture o architetture circuitali su base organica, sono previste ulteriori fasi di realizzazione e/o integrazione dei componenti organici nella particolare architettura circuitale da realizzare.
Scopo della presente invenzione è mettere a disposizione un metodo di realizzazione di architetture circuitali, ed in particolare architetture circuitali su base organica, che preveda un numero inferiore di fasi rispetto ai metodi ed ai procedimenti noti e che risulti economicamente conveniente potendo essere effettuato con tecniche consolidate e ampiamente utilizzate nell’arte di riferimento.
Sommario dell'invenzione
In breve, la presente invenzione mette a disposizione una architettura circuitale su base organica che comprende, quale elemento strutturale e componente attivo, almeno uno strato o porzione di materiale attivo fotosensibile, del tipo di polimeri fotosensibili (polimeri fotoresist), ed un relativo metodo dì realizzazione impiegante fotolitografia convenzionale, nel quale polimeri fotoresist non costituiscono materiale sacrificale nel senso sopra considerato.
Con componete attivo è qui inteso uno strato di materiale attivo del tipo suddetto, ovvero fotosensibile e di natura polimerica nel senso che il materiale subisce reazioni di polimerizzazione o di degradazione quando esposto a radiazione ultravioletta di prefissata lunghezza d’onda, il quale è inoltre attivo nel senso che è in grado di dare risposte elettriche opportune di tipo bistabile (materiale elettrobistabile), e/o in grado di realizzare sistemi o complessi organici a trasferimento di carica o che agisce come semiconduttore organico di tipo p o n, in particolare anche dopo essere stato depositato, aver subito irraggiamento UV e trattamento di etching secondo tecniche fotolitografiche convenzionali.
In pratica, il metodo di realizzazione di un’architettura circuitale su base organica secondo la presente invenzione comprende le fasi di:
mettere a disposizione uno strato di un prefissato materiale costituente un elettrodo di fondo;
depositare su detto elettrodo di fondo un film di un materiale attivo comprendente almeno una prima porzione strutturale avente un picco di assorbimento ad una prefissata lunghezza d’onda UV in cui tale prima porzione strutturale è fotoattivabile a detta prefissata lunghezza d’onda e la quale è costituita da monomeri o oligomeri che irradiati a detta prefissata lunghezza d’onda subiscono reazione di fotopolimerizzazione e/o foto-reticolazione o che, in alternativa, è costituita da un polimero che a detta prefissata lunghezza d’onda subisce reazione di foto-degradazione, ed almeno una seconda porzione strutturale elettricamente attiva o attivabile sostanzialmente trasparente a detta prefissata lunghezza d’onda UV;
esporre almeno una porzione di detto film di materiale attivo, attraverso una fotomaschera di prefissata geometria, ad una radiazione UV avente detta lunghezza d’onda UV, con foto-attivazione di detta porzione esposta di detto film;
trattare detto film di materiale attivo con un prefissato agente rimuovendo selettivamente una tra le due porzioni, rispettivamente esposta foto-attivata e non esposta, di detto film, con esposizione di una rispettiva porzione di detto elettrodo di fondo;
depositare un secondo strato di un prefissato materiale ottenendo un elettrodo di testa.
Una architettura così ottenuta costituisce una cosiddetta cella di memoria elementare.
Nel caso di architetture circuitali maggiormente complesse quali le architetture crossbar o quelle comprendenti una pluralità di tali celle di memoria, come ad esempio le architetture multistrato, il presente metodo prevede l’isolamento delle singole celle di memoria attraverso l’interposizione tra di esse di un materiale dielettrico.
In questo caso, tale materiale dielettrico è depositato “a monte” dell’elettrodo di testa sul quale a sua volta è depositato, in caso di architettura multistrato, un ulteriore film di materiale attivo con reiterazione delle fasi sopra descritte.
In particolare, per realizzare il suddetto isolamento il metodo secondo l’invenzione prevede la realizzazione del suddetto elettrodo di fondo su di un substrato e l’ulteriore fase di:
depositare sulla porzione non rimossa di detto film di materiale attivo e sulla porzione esposta di substrato un materiale dielettrico;
trattare detto materiale dielettrico con un prefissato agente con sua rimozione parziale ed esposizione selettiva di detta porzione di film di materiale attivo non rimossa;
quindi è realizzato l’elettrodo di testa.
Pertanto, l’architettura circuitale così ottenuta nelle sua diverse configurazioni comprende quale elemento strutturale e componente attivo una porzione del suddetto film di materiale attivo, il quale materiale attivo, in accordo con l’invenzione e come sopra anticipato, è qui da intendere sia come il materiale impiegato nel presente metodo secondo la suddetta fase in cui è depositato il film di materiale attivo (cioè non foto-attivato), sia il materiale ottenuto in seguito alla suddetta fase in cui esso è parzialmente esposto attraverso una fotomaschera alla radiazione UV di prefissata lunghezza d’onda (materiale foto-attivato o componente attivo).
I materiali attivi che possono essere utilizzati secondo l’invenzione comprendono polimeri (inclusi i rispettivi monomeri e oligoleri), miscele di polimeri, copolimeri e loro miscele intrinsecamente attivi o che fungono da matrice per molecole attive disperse in essa -cioè materiali compositi a matrice polimerica tra cui i nanocompositi; polimeri funzionalizzati mediante legami chimici o interazioni di non legame con molecole attive, miscele di fotoresist convenzionali in cui siano disperse molecole attive, dove per miscele di fotoresit convenzionali sono qui intese miscele di fotoresist commerciali, già esistenti, contenenti almeno un polimero, sia in forma di polimero che di monomeri o oligomeri, ed eventualmente un binder, una resina, un solvente, un iniziatore e simili.
Nei ambìto di certe forme di realizzazione, la presente invenzione prevede quale materiale attivo un polimero o una miscela di polimeri fotosensibili (fotoattivi) intrinsecamente elettrobistabili.
Nei ambito di certe forme di realizzazione, la presente invenzione prevede quale materiale attivo una dispersione di molecole elettro-bistabili (seconda porzione strutturale) in una matrice polimerica fotoattiva chimicamente inerte (prima porzione strutturale) .
Nei ambito di certe forme di realizzazione, la presente invenzione prevede quale materiale attivo una dispersione di molecole atte a realizzare sistemi o complessi a trasferimento di carica (seconda porzione strutturale) in una matrice polimerica fotoattiva chimicamente inerte (prima porzione strutturale).
Nei ambito di altre forme di realizzazione, la presente invenzione prevede quale materiale attivo una dispersione di molecole attive (seconda porzione strutturale) che formano con una matrice polimerica fotoattiva chimicamente inerte (prima porzione strutturale) un complesso a trasferimento di carica.
Nell’ambito di altre forme di realizzazione, la presente invenzione prevede quale materiale attivo un polimero fotoattivo (prima porzione strutturale) avente gruppi funzionali o molecolari elettrobistabili (seconda porzione strutturale) pendenti da, e legati chimicamente a, la sua catena principale.
Nell’ambito di altre forme di realizzazione, la presente invenzione prevede quale materiale attivo un polimero o un copolimero fotoattivo (prima porzione strutturale) avente almeno due differenti gruppi funzionali o molecolari (seconda porzione strutturale) legati chimicamente come gruppi pendenti alla catena principale del polimero fotoattivo, ed atti a realizzare reazioni a trasferimento di carica detti almeno due gruppi avendo indifferentemente uno carattere elettronaccettore, l’altro carattere elettron-donatore.
Nell 'ambito di altre forme di realizzazione, la presente invenzione prevede quale materiale attivo un polimero fotoattivo (prima porzione strutturale) avente chimicamente ad esso legate come gruppi molecolari pendenti molecole (seconda porzione strutturale) atte a realizzare con il polimero - ovvero con la catena polimerica principale -reazioni a trasferimento di carica.
Nell’ambito di altre forme di realizzazione, la presente invenzione prevede quale materiale attivo un polimero fotoattivo (prima porzione strutturale) avente gruppi funzionali o molecolari elettrobistabili (seconda porzione strutturale) inseriti e distribuiti lungo la catena principale del polimero che conferiscono all’intera struttura un carattere di elettro-bistabilità quando è applicato un voltaggio.
In pratica, in accordo con l’invenzione, impiegando la tecnica foto litografica convenzionale su un materiale polimerico attivo come quello sopra considerato, si ha una notevole semplificazione nell’intera procedura di realizzazione di memorie “non convenzionali” come i dispositivi di memoria organica, ed più in generale nella realizzazione di architetture circuitali in dispositivi elettronici su base organica, ad tipo TFT, con geometrie anche complesse.
Ulteriori caratteristiche e vantaggi di questa invenzione risulteranno maggiormente dalla descrizione dettagliata, accompagnata da alcuni esempi di realizzazione di architetture circuitali in dispositivi elettronici su base organica e di uso di un materiale attivo come sopra considerato quale elemento strutturale e componente attivo delle architetture circuitali secondo l’invenzione, fatta qui di seguito con riferimento ai disegni allegati, fomiti a titolo illustrativo e non limitativo.
Breve descrizione dei disegni
In tali disegni:
- La figura 1 mostra schematicamente alcune fasi del metodo per ottenere una architettura circuitale in un dispositivo elettronico su base organica secondo l’invenzione;
- la figura 2 mostra schematicamente alcune fasi del metodo di figura 1 secondo una variante di realizzazione dell’invenzione per realizzare una architettura circuitale in un dispositivo elettronico su base organica del tipo crossbar;
- la figura 3 mostra schematicamente alcune fasi del metodo di figura 1 secondo una ulteriore variante di realizzazione dei invenzione per realizzare una architettura circuitale in un dispositivo elettronico su base organica del tipo multistrato;
- la figura 4 mostra uno schema del materiale attivo impiegato secondo l’invenzione;
- la figura 5 mostra uno schema di una variante di realizzazione del materiale attivo impiegato nei invenzione;
- la figura 6 mostra uno schema di una ulteriore variante di realizzazione del materiale attivo impiegato nell 'invenzione;
- la figura 7 mostra un esempio di sintesi per ottenere la variante di realizzazione del materiale attivo di figura 6;
- la figura 8 mostra uno schema di sintesi per ottenere una ulteriore variante di realizzazione del materiale attivo impiegato nei invenzione;
- la figura 9 mostra un esempio di sintesi per ottenere il materiale attivo schematizzato in figura 8;
- la figura 10 mostra uno schema di sintesi per ottenere una ulteriore variante di realizzazione del materiale attivo impiegato nei invenzione;
- la figura 11 mostra uno schema di una ulteriore variante di realizzazione del materiale attivo impiegato nell’invenzione ed un relativo esempio.
- le figure 12 e 13 riportano in tabella 1 esempi di molecole e di relativi derivati aventi carattere elettron-accettore, utilizzabili in accordo con la presente invenzione.
- le figure da 14 a 22 riportano in tabella 2 esempi di molecole e di relativi derivati aventi carattere elettron-donatore, utilizzabili in accordo con la presente invenzione.
Descrizione dettagliata
Le fasi descritte di seguito non formano un flusso completo di un metodo per ottenere una cella di memoria organica e più in generale una architettura circuitale in un dispositivo elettronico su base organica secondo l’invenzione, e qui di seguito sono descritte solo quelle fasi necessarie ad un tecnico medio del settore per la comprensione dell’invenzione .
É opportuno notare, inoltre, che le figure rappresentano viste schematiche non disegnate in scala di porzioni della suddetta architettura durante alcune fasi del metodo secondo l’invenzione.
La presente invenzione può essere messa in pratica utilizzando le usuali tecniche impiegate nella fabbricazione dei dispositivi elettronici, in particolare la fotolitografia di tipo convenzionale di cui si è precedentemente discusso ed a cui si fa riferimento.
Con riferimento alla figura 1-d) una architettura circuitale del tipo di una cella di memoria su base organica ottenuta secondo il presente metodo è globalmente indicata con 1 .
L’architettura circuitale 1, cosiddetta architettura sandwich, comprende un elettrodo cosiddetto di fondo 2 costituito da uno strato di un primo materiale, ad esempio vetro-ITO, un metallo, un polimero conduttivo e simili materiali, un elettrodo di testa 3 costituito da porzioni discontinue di uno strato di un secondo materiale quale ad esempio silicio, vetro, un polimero conduttivo e simili materiali e un film discontinuo di materiale attivo 4 interposto tra ed a contatto con l’elettrodo di fondo 2 e l’elettrodo di testa 3.
La suddetta architettura circuitale 1 è ottenuta in accordo con il presente metodo attraverso le fasi di seguito descritte.
Innanzitutto viene reso disponibile in modo di per sé noto l’elettrodo di fondo 2 sul quale viene depositato un film di materiale attivo fotosensibile 4a, ad esempio tramite tecnica di spin-coating, o di spin-casting o attraverso altre tecniche convenzionali, come indicato in figura 1-a).
In accordo con l’invenzione il materiale attivo fotosensibile di tale film comprende almeno una prima porzione strutturale avente un picco di assorbimento ad una prefissata lunghezza d’onda UV che è fotosensibile a detta prefissata lunghezza d’onda ed è costituita da monomeri o oligomeri che irradiati a tale prefissata lunghezza d’onda subiscono reazione di foto-polimerizzazione e/o foto-reticolazione, o da un polimero che a tale prefissata lunghezza d’onda subisce reazione di foto-degradazione, ed almeno una seconda porzione strutturale elettricamente attiva o attivabile sostanzialmente trasparente a tale prefissata lunghezza d’onda UV.
Quindi il film di materiale attivo fotosensibile 4a, attraverso una fotomaschera 5 scelta opportunamente a seconda della geometria che si vuole realizzare, viene inciso mediante radiazione UV, come mostrato in figura 1-b).
In pratica, attraverso la fotomaschera 5 si espone almeno una porzione del film di materiale attivo fotosensibile 4a, con foto-attivazione di tale porzione esposta e conseguente fotopolimerizzazione o fotodegradazione del materiale attivo fotosensibile esposto, in dipendenza della sua natura.
Anche la lunghezza d’onda e la potenza dei irraggiamento sono scelte e ottimizzate a seconda del particolare materiale attivo impiegato.
Successivamente, il film di materiale attivo foto-attivato 4a è trattato con un prefissato agente che rimuove selettivamente una tra le porzioni, rispettivamente esposta alla radiazione e foto-attivata (fotolitografia positiva) o non esposta alla radiazione (fotolitografia negativa), con conseguente esposizione di una rispettiva porzione dell’elettrodo di fondo 2.
In particolare, nell’esempio della figura 1-c) sono state rimosse le porzioni esposte alla radiazione e foto-attivate, attraverso un trattamento che è definito etching e che viene eseguito con solventi opportuni.
Le porzioni restanti discontinue, cioè non rimosse, del film di materiale attivo fotosensibile 4 a sottoposto al trattamento di etching sono quelle precedentemente indicate con 4.
Quindi l’architettura circuitale in forma di cella di memoria su base organica secondo l’invenzione è completata mediante deposizione dell’elettrodo di testa 3, effettuata ad esempio tramite tecnica di evaporazione di un metallo, impiegando una opportuna maschera con ottenimento dell 'architettura 1.
In caso di architetture circuitali maggiormente complesse, quali ad esempio quelle cosiddette crossbar, in cui celle di memoria sono integrate in un dispositivo elettronico, il presente metodo prevede l’isolamento degli elementi di memoria di diverse celle, che viene ottenuto depositando tra essi, “a monte” dell’elettrodo di testa, un materiale isolante quale un polimero isolante.
In tal caso, con riferimento alla figura 2, un elettrodo di fondo in forma di una pluralità di spacer tra loro paralleli (array), globalmente indicato con 30, è realizzato (depositato) su di un substrato S, ad esempio di silicio o vetro.
L’elettrodo di fondo 30 è depositato, con l’ausilio di una prima fotomaschera avente finestre (disegno) sostanzialmente a rettangoli che riproducono il contorno degli spacer, mediante tecniche quali evaporazione termica, sputter, microtrasfer molding, microcontact printing o oltre tecniche note atte allo scopo - figura 2-a).
Quindi, in analogia a quanto sopra descritto dapprima è depositato il film di materiale attivo fotosensibile, indicato sempre con 4 a - figura 2-b), poi tale film di materiale attivo fotosensibile è inciso mediante radiazione UV - figura 2-c) ed infine esso è sottoposto a trattamento di etching per eliminare la porzione di film di materiale attivo sacrificale, esposta o non esposta, rispettivamente in un procedimento positivo o negativo - figura 2-d).
Tali operazioni schematizzate in figura 2 con i suddetti passaggi b) , c) e d) , determinano la formazione della porzione discontinua di film di materiale attivo restante indicata con 4 e posizionata sopra gli spacer dell’elettrodo di fondo 30. Il film di materiale attivo è stato inciso utilizzando una seconda maschera avente finestre sostanzialmente quadrate in modo da lasciare esposte prefissate porzioni degli spacer dell’elettrodo di fondo 30, come si può notare con riferimento alla veduta dall’alto (veduta top) della figura 2-d).
Successivamente, è depositato sulla porzione non rimossa del film di materiale attivo 4, sulle porzioni esposte degli spacer dell’elettrodo di fondo 30 e sulla porzione di substrato S esposta cioè non coperta dagli spacer dell’elettro di fondo 30 un film di materiale dielettrico 6 - figura 2-e).
Quale materiale dielettrico può essere depositato, ad esempio, il polietilentereftalato (PET) in m-cresolo, il policarbonato, il polietilnaftalato, il polistirene e simili materiali con proprietà dielettriche attraverso tecniche di casting o spin-casting.
Quindi, per liberare gli elementi di memoria attivi, cioè la porzione discontinua del film di materiale attivo, ovvero quella restante e non rimossa del film 4a precedentemente depositato, si effettua tramite un prefissato agente un trattamento di etching controllato quale ad esempio il trattamento noto e conosciuto come il RIE CF4 (fluoritebased reactìve ion etching) che permette la rimozione controllata (parziale) del film di materiale dielettrico fino alla liberazione, cioè fino all’esposizione, della suddetta porzione (singole porzioni discontinue) di film di materiale attivo non rimossa, come illustrato in figura 2-f) nella quale è mostrata anche la veduta top.
Infine in analogia a quanto precedentemente descritto viene depositato, superiormente alle porzioni esposte discontinue del film di materiale attivo 4 e del film di materiale dielettrico rimanente indicato con 6a, l’elettrodo di testa anche qui indicato con 3, il quale anch’esso è costituito da una pluralità di spacer.
Come indicato nella figura 2-g) tali spacer dell’elettrodo di testa 3 sono diretti ortogonalmente agli spacer dell’elettodo di fondo 30 e sono ottenuti attraverso la suddetta prima maschera ruotata di 90 gradi.
In tal modo è ottenuta una architettura circuitale 10 su base organica del tipo cosiddetto crossbar, mostrata in figura 2-g) anche nella veduta top.
Per archi te tture ancora più complesse il presente metodo prevede la reiterazione di alcune delle suddette fasi procedurali che possono essere ripetute n volte (n≥1) per realizzare architetture cosiddette crossbar multistrato (multilayer).
In tal caso, come illustrato nella figura 3, si parte daH’architettura crossbar 10 precedentemente descritta (figura 3-a)) sulla quale vengono ripetute, in particolare a partire dall'elettrodo di testa 3, le fasi sopra descritte e consistenti nella fase di depositare un film di materiale attivo 4a - figura 3-b), di esporre almeno una porzione del film di materiale attivo ad una radiazione UV - figura 3-c), di trattare il film di materiale attivo con un prefissato agente con sua parziale e selettiva rimozione e ottenimento del film discontinuo (porzioni discontinue) di materiale attivo 4 - figura 3-d), ed ancora nella fase di depositare sulla porzione non rimossa di tale film e sulla porzione esposta dei elettrodo di fondo un film di materiale dielettrico 6 - figura 3-e), il quale è poi trattato con un prefissato agente (etching controllato) con sua rimozione parziale che comporta l’esposizione selettiva della porzione discontinua di film di materiale attivo 4 non rimosso - figura 3-f)·
Quindi, sempre in analogia a quanto sopra descritto, si effettua la deposizione di un ulteriore elettrodo di testa 40 utilizzando la suddetta prima maschera ri-ruotata di 90, e cioè con il medesimo orientamento con cui sono stati ottenuti gli spacer dell’elettrodo di fondo 30, ottenendo i rispettivi spacer di tale ulteriore elettrodo di testa 40.
Tali fasi sono schematizzate nella figura 3, in cui nel rispettivo passaggio g) è mostrata una architettura multistrato 100 (bistrato) comprendente anche isolamento, tramite materiale dielettrico, degli spacer di tale ulteriore elettrodo di testa 40.
Generalizzando la struttura bistrato sopra descritta, si ha che una struttura multilayer ottenuta secondo l’invenzione comprende almeno due film discontinui di materiale attivo, in cui film discontinui di materiale attivo consecutivi sono separati da, ed hanno ciascuno una faccia a contatto con, un elettrodo di testa di ordine m - nella figura 3-g) corrispondente al elettrodo di testa 3 - le restanti relative facce essendo a contatto rispettivamente una con un elettrodo di ordine m-1 - nella stessa figura 3-g) corrispondente all’elettrodo di fondo 30 - e l’altra con un elettrodo di ordine m+1 - nella figura 3-g) corrispondente ai ulteriore elettrodo di testa 40 - in cui tra elettrodi di ordine consecutivo è compreso uno strato di materiale dielettrico.
Per quanto riguarda il suddetto materiale attivo fotosensibile, di seguito sono riportati alcuni esempi relativi alla sua struttura, alla sua costituzione ed al suo ottenimento.
È utile ricordare in principio e come precedentemente descritto che tale materiale attivo fotosensibile vantaggiosamente è costituito da materiale polimerico fotosensibile (inclusi i rispettivi monomeri e oligomeri) che comprende polimeri, miscele di polimeri, copolimeri e loro miscele intrinsecamente attivi o che fungono da matrice per molecole attive disperse in essa - cioè materiali compositi a matrice polimerica tra cui i nanocompositi; polimeri funzionalizzati mediante legami chimici o interazioni di non legame con molecole attive, miscele di fotoresist convenzionali in cui siano disperse molecole attive, dove per miscele di fotoresit convenzionali sono qui intese miscele di fotoresist commerciali, già esistenti, contenenti almeno un polimero, sia in forma di polimero che di monomeri o oligomeri, ed eventualmente un binder, una resina, un solvente, un iniziatore e simili.
- Secondo un primo esempio, tale materiale attivo è costituito da polimeri fotoattivi intrinsecamente elettrobistabili.
In tal caso possono essere utilizzati polimeri fotoattivi, commerciali o sintetizzati chimicamente, che siano intrinsecamente elettrobistabili .
Esempio di tali polimeri sono i derivati del PMMA, tra cui il polimetilmetacrilato - co-9-antracenilmetilmetacrilato, commerciale. - Secondo un ulteriore esempio il materiale attivo fotosensibile è costituito da una dispersione di molecole elettro-bistabili in un matrice polimerica fotoattiva.
In particolare, il polimero fotoattivo funge da matrice strutturale inerte nella quale vengono disperse le molecole elettrobistabili (molecole attive).
Esempi di molecole bistabili che possono essere utilizzate sono la fluoresceina e i suoi derivati, il DDQ (2,3-dicloro-5,6 diciano-pbenzochinone), il DDME {1,1-diciano-2,2-(4-dimetil amminofenil) etilene), Ni-Pc (nickel (II) ftalocianina tetrasulfonico acido tetrasodio), AIDCN (2-ammino-4, 5 imidazole dicarbonitrile), DMNDPA (N, N-dimetil-N- (3 -nitro benzildene)-p-fenilenediammina) .
Esempi di polimeri che posso essere utilizzati sono: per processi di litografia positiva il PMMA e rispettivi derivati fluorati e ossimminici;
per processi di litografia negativa polimeri o oligomeri fotoreticolabili possono essere: sistemi che contengono in catena laterale gruppi maleimmidici capaci di dare reazioni di fotodimerizzazione, sistemi contenenti gruppi azidoarilici in catena laterale che sfuriano la reazione di accoppiamento tra gruppi nitrenici a loro volta formatesi per irraggiamento dei derivati azidici; sistemi su base acrilica e metacrilica o vinil eterea conteneti in catena laterale gruppi calconici variamente sostituiti che sfruttano la reazione di fotociclizzazione dei doppi legami di tali raggruppamenti.
In alternativa si possono utilizzare anche fotoresist commerciali.
La figura 4 mostra uno schema di un tale materiale attivo in cui in una matrice polimerica del fotoresist sono disperse molecole elettro-bistabili.
- Secondo un ulteriore esempio il materiale attivo fotosensibile è costituito da una dispersione di molecole capaci di dare vita a una sistema a trasferimento di carica in una matrice polimerica fotoattiva.
In pratica, è impiegato un polimero fotoattivo che funge da matrice strutturale chimicamente inerte nel quale sono disperse almeno due differenti specie molecolari in grado di generare sistemi o complessi a trasferimento di carica, tali due differenti specie molecolari avendo indifferentemente una carattere elettron-donatore, l’altra carattere elettron-accettore .
Esempi di specie molecolari aventi le suddette proprietà sono riportate nella tabella 1 mostrata nelle figure 12 e 13 (specie e relativi derivati elettron-accettori) ed in tabella 2 mostrata nelle figure 14-22 (specie e relativi derivati elettron-donatori).
Una opportuna combinazione tra due o più specie indicate nelle suddette tabelle genera pertanto un sistema molecolare a trasferimento di carica.
Esempi di tale combinazione sono: tetracene / DDQ (2,3-dicloro-5,6 diciano-p-benzochinone), perilene/ C14Q (p-cloranile), tetracene /InC13 (Indio Tricloruro), Cu/TCNQ, MC/TCNQ, Fullerene-C60/ Metallo- Ftalocianine, Fullerene-C6Q/TTF.
Esempi di polimeri che posso essere utilizzati sono:
per processi di litografia positiva il PMMA e i sui derivati fluorati o ossimminici;
per processi di litografia negativa polimeri o oligomeri fotoreticolabili possono essere: sistemi che contengono in catena laterale gruppi maleimmidici capaci di dare reazioni di fotodimerizzazione; sistemi contenenti gruppi azidoarilici in catena laterale che sfuriano la reazione di accoppiamento tra gruppi nitrenici a loro volta formatesi per irraggiamento dei derivati azidici; sistemi su base acrilica e metacrilica o vinil eterea conteneti in catena laterale gruppi calconìci variamente sostituiti che sfruttano la reazione di fotociclizzazione dei doppi legami di tali raggruppamenti.
In alternativa si possono utilizzare anche fotoresist commerciali.
- Secondo un ulteriore esempio il materiale attivo fotosensibile è costituito da una dispersione di molecole attive che formano con una matrice polimerica un complesso a trasferimento di carica.
In pratica è utilizzato un polimero fotoresist che funge da matrice strutturale nella quale vengono disperse molecole in cui il polimero e le molecole sono scelti in modo tale che la miscela ottenuta, cioè il materiale composito risultante, dia luogo a processi a trasferimento di carica.
In tal caso il polimero e la specie molecolare attiva utilizzati hanno indifferentemente uno carattere elettron-accettore, l "altro carattere elettron-donatore, per cui opportune combinazioni di polimeri fotoattivi elettron-donatori (alcuni dei quali esistenti in commercio) con una o più molecole con carattere elettron-accettore (per esempio selezionate dalla Tabella 1 di cui sopra) o combinazioni di polimeri fotoattivi elettron-accettori con una o più molecole con carattere elettron-donatore (per esempio selezionate dalla Tabella 2 di cui sopra) danno vita a sistemi molecolari a trasferimento di carica.
Esempi di un sistema a trasferimento di carica di questo tipo comprendono: Fullerene-C60 disperso in un copolimero di tetratiofulvalene (TTF) e poli(clorometilstirene (PSTFF), polimetilmetacrilato - co-9-antracenilmetilmetacrilato (commerciale) in cui sono disperse una o piu' molecole selezionate dalla Tabella 1.
La figura 5 mostra uno schema di un materiale attivo realizzato secondo il presente esempio, in cui la matrice polimerica fotoattiva ha carattere elettron-donatore e nella quale sono disperse molecole di Fullerene-C60 elettron-accettore. È possibile notare all’interno del materiale composito così realizzato zone di microinterfaccia tra gli elementi elettron-donaroti e gli elementi elettronaccettori che sono atti, in seguito all’applicazione di un opportuno voltaggio, a dare luogo a reazioni a trasferimento di carica.
In alternativa si possono utilizzare anche fotoresist commerciali.
- Secondo un ulteriore esempio il materiale attivo fotosensibile è costituito da polimeri fotoattivi con molecole elettro-bistabili pendenti.
In pratica, i questo caso è previsto l’utilizzo di un polimero fotoattivo che reca gruppi funzionali o molecolari pendenti elettrobistabili.
Un tale materiale attivo può essere ottenuto:
mediante sintesi chimica, quindi per polimerizzazione di comonomeri funzionalizzati con gruppi funzionali o molecolari elettrobistabili;
per grafting (innesto) dei gruppi molecolari elettro-bistabili successivo alla sintesi della catena polimerica.
La figura 6 mostra uno schema di un materiale attivo secondo il presente esempio in cui un polimero fotoresist è funzionalizzato con gruppi funzionali o molecolari elettro-bistabili pendenti.
Esempi di polimeri funzionalizzati con molecole elettrobistabili comprendono: polimeri acrilati e/o metacrilati funzionalizzati con la fluoresceina e suoi derivati ad esempio la Rosa Bengala.
In commercio esistono molti polimeri e copolimeri funzionalizzati con gruppi cromoforici, fluorescenti e/o elettro-bistabili che possono essere utilizzati in accordo con invenzione, quali ad esempio: il poli(fluoresceina-O-acrilato) e il poli(metilmetacrilato - co-(fluoresceina O-acrilato)], il poli [metilmetacrilato-co- (fluoresceina O-metacrilato)], acquistabili presso la Sigma- Aldrich.
Alternativamente il polimero funzionalizzato può essere ottenuto mediante sintesi chimica, la cui strategia è schematizzata in figura 7 e può essere riassunta come segue:
la molecola elettro-bistabile (ad esempio un derivato delle fluoresceina elettrobistabile, Fl-X) è funzionalizzata con un gruppo funzionale reattivo, ad esempio il gruppo metilmetacrilico. La fluoresceina così modificata viene fatta reagire con una soluzione contenente il monomero precursore (ad esempio il metilmetacrilato); in tal modo si ottiene il polimero con la molecola elettro- bistabile legata covalentemente e pendente.
- Secondo un ulteriore esempio il materiale attivo fotosensibile è costituito da polimeri fotoattivi con molecole elettron-accetori e elettron-donatori pendenti atte a dare reazioni a trasferimento di carica.
In pratica è utilizzato un copolimero fotosensibele che reca gruppi funzionali pendenti capaci di dar luogo a reazioni a trasferimento di carica, in cui cioè le differenti unità polimeriche del copolimero recano gruppi funzionali con carattere rispettivamente elettronaccettore (A) ed elettron-donore (D).
Questo può essere ottenuto come più sotto riportato, e come è anche illustrato in figura 8 in cui è schematizzata la sintesi per ottenere il materiale attivo secondo il presente esempio, in cui un polimero fotoresist reca gruppi elettron-donatori ed elettron-accettori legati covalentemente allo scheletro polimerico:
mediante sintesi chimica, quindi per polimerizzazione di comonomeri funzionalizzati con gruppi elettron-attrattori e elettrondonatori - fìg. 8-a). I copolimeri che si ottengono, possono essere alternati (AD AD AD AD), irregolari (DAAADDAD) o a blocchi (AAAADDDD);
per auto-assemblaggio [self-assembly] tra lo scheletro polimerico e i gruppi stessi - fìg. 8- b);
per innesto successivo alla sintesi dello scheletro polimerico fig. 8-c).
I gruppi pendenti legati alla catena polimerica devono essere scelti in modo tale che diano, dopo voltaggio applicato, reazioni e trasferimento di carica intra-catena.
Un esempio di polimero funzionalizzato DA è il copolimero PMMA funzionalizzato con PCBM (A) e con carbazolo (D).
Un materiale attivo secondo il presente esempio può anche essere ottenuto con la strategia sintetica mostrata schematicamente in figura 9 in cui PCBM e carbazolo funzionalizzati “ad-hoc” rispettivamente con acrilato e metacrilato sono fatti reagire con una soluzione contenente il metilmetacrilato. Dalla polimerizzazione dei comonomeri si ottiene il sistema desiderato, ovvero il questo caso il poli(carbazolo-Ometacrilato)-co-(PCBM-acrilato).
Polimeri funzionlizzati DA secondo la figura 8-a) possono essere anche ottenuti con una miscela di polimeri / oligomeri reticolabili che contengono in catena laterale gruppi maleimmidici e specie A e D funzionalizzati con anidride maleica, succinica o maleimmidica. Questa miscela, per esposizione UV, subisce fotoreticolazione.
Gruppi elettron-attratori e gruppi elettron-donori funzionalizzati con anidride maleica o succinica, ad esempio l’N-1pirenilmaleimmide come specie elettron-donore e derivati succinici di trinitrifluorenone come specie elettron-accettori), possono reagire mediante reazione di grafting molecolare con polimeri fotosensibili che recano gruppi nucleofili tipo gruppi -NH2 (esempio di figura 8-c)).
- Secondo un ulteriore esempio il materiale attivo fotosensibile è costituito da polimeri fotoattivi con molecole pendenti che nel complesso sono in grado di dare luogo a reazioni a trasferimento di carica.
In pratica, in tal caso è utilizzo un polimero fotosensibile avente gruppi funzionali pendenti i quali, con il polimero stesso, danno luogo a reazioni a trasferimento di carica.
Polimeri funzionalizati in tal modo possono essere ottenuti come più sotto riportato, e come illustro in figura 10 in cui è schematizzata la sintesi per ottenere il materiale attivo secondo il presente esempio, in cui un polimero fotoresist reca gruppi elettrone donatori (o accettori) legati in modo covalente allo scheletro polimerico avente carattere elettron-accettore (o donatore) :
mediante sintesi chimica, quindi per polimerizzazione di monomeri funzionalizzati con le molecole selezionate - figura 10-a);
per auto-assemblaggio tra lo scheletro polimerico e la molecola stessa - figura 10-b);
per innesto successivo alla sintesi della catena polimerica -figura 10-c).
I gruppi molecolari legati alla catena polimerica devono essere scelti in modo da dare vita a fenomeni di trasferimento di carica tra la molecola e la catena polimerica sotto fazione di un potenziale elettrico.
- Secondo un ulteriore esempio il materiale attivo fotosensibile è costituito da polimeri fotoattivi con molecole elettro-bistabili lungo la catena.
In pratica, in tal caso è utilizzato un polimero fotosensibile con gruppi funzionali o molecolari lungo la catena polimerica (cioè compresi tra, e legati in modo covalente a, porzioni di catena) che conferiscono al polimero carattere di elettro-bistabilità quando e’ applicato un voltaggio.
La figura 11 -a) mostra uno schema di un materiale attivo secondo il presente esempio in cui un polimero fotoresist reca lungo la catena gruppi funzionali o molecolari elettro-bistabili.
Esempi di polimeri con gruppi elettro-bistabili intra-catena comprendo: derivati del PMMA copolimerizzati a fluoresceine o derivati dimetacrilati o acrilati, come mostrato in figura 11-b).
In definitiva, è utile rimarcare che il materiale attivo fotosensibile impiegato in accordo con l’invenzione comprende una specie polimerica (relativi monomeri o oligomeri inclusi), almeno una porzione della quale è fotosensibile ed è stata qui definita, come precedentemente riportato, prima porzione strutturale, ed una seconda porzione strutturale elettricamente attiva o attivabile nel senso sopra considerato, che secondo i casi è costituita da una diversa porzione della specie polimerica, o da gruppi funzionali o molecolari legati covalentemente alla specie polimerica, o da molecole disperse nella matrice polimerica formata da tale specie polimerica.
Importante è che nella realizzazione del materiale attivo come qui considerato, la seconda porzione strutturale (porzione elettricamente attiva o attivabile), il più delle volte costituita da gruppi funzionali, molecolari, o molecole attive, non assorba alla lunghezza d’onda della radiazione UV capace di attivare i processi di foto polimerizzazione o fotodegradazione della prima porzione strutturale, che invece è sempre di natura polimerica.
Infine, vi è da aggiungere che il materiale attivo fotosensibile impiegato in accordo con la presente invenzione preferibilmente deve possedere anche una buona resistenza chimica rispetto ai solventi di etching impiegati; questo in particolare deve valere per la componente ad alto peso molecolare e cioè la componente foto reticolata in litografia negativa o la miscela polimerica di base in litografia positiva.
Inoltre, il materiale attivo fotosensibile deve possedere buone proprietà di adesione al particolare substrato su cui viene depositato, di film-forming ovvero si deve adattare bene alla topografia ad esso sottostante e una viscosità, da ottimizzare sperimentalmente, che ne faciliti la deposizione della sua miscela e che garantisca una buona dispersione delle molecole eventualmente disciolte in essa.
In sostanza, la presente invenzione consente la realizzazione di dispositivi elettronici di natura organica (polimerica) utilizzando la convenzionale tecnica della fotolitografia., senza apportare alcuna modificazione alle fasi previste nell’impiego di tale tecnica ma riducendone il numero, ovvero la necessità di realizzare alcuni step intermedi.
La foto litografia convenzionale consente di ottenere, con miscele polimeriche opportune, i fotoresit, strutture patternate (cioè disegnate e modellate secondo una prefissata geometria) altamente precise e riproducibili, la cui risoluzione è legata alla natura della sorgente utilizzata.
I fotoresisit sono elementi sacrificali che servono per costruire, mediante tecniche di crescita tipo epitassia, le geometrie (disegni) desiderate. In altre parole i foto resist pattemati costituiscono un mezzo, ottenuto mediante fotolitografia convenzionale, che a sua volta è utilizzato per realizzare le desiderate architetture ma che ad architettura ottenuta non è compreso in essa in quanto è un elemento sacrificale.
Nella presente invenzione, invece, le strutture pattemate realizzate utilizzando il materiale attivo fotosensibile come qui considerato in luogo del comune fotoresist, diventano esse stesse gli elementi attivi di dispositivi organici (tipo memorie, o TFT) a geometria definita.
Pertanto il principale vantaggio conseguito dalla presente invenzione è rappresentato dalla possibilità di realizzare architetture circuitali su base organica, con particolare riferimento alle memorie non convenzionali e comunque architetture circuitali con strutture a qualsiasi tipo di complessità utilizzando la tradizionale fotolitografia ma riducendone il numero di fasi, e pertanto riducendone costi e tempo di realizzazione.
Ad oggi le tecniche per ottenere film polimerici organici pattemati (disegnati secondo la desiderata geometria) sono la stampa tipo inkjet e la soft-lithography.
La presente invenzione consente invece di creare film polimerici elettricamente attivi e pattemati sfruttando tecniche fotolitografiche convenzionali.
Vantaggiosamente vi è poi da notare che molti dei polimeri e dei monomeri indicati nella presente invenzione sono commerciali, quindi facilmente reperibili e a costo basso.