Movatterモバイル変換


[0]ホーム

URL:


HK1167004A - Gene expression markers for colorectal cancer prognosis - Google Patents

Gene expression markers for colorectal cancer prognosis
Download PDF

Info

Publication number
HK1167004A
HK1167004AHK12107417.6AHK12107417AHK1167004AHK 1167004 AHK1167004 AHK 1167004AHK 12107417 AHK12107417 AHK 12107417AHK 1167004 AHK1167004 AHK 1167004A
Authority
HK
Hong Kong
Prior art keywords
seq
probe
forward primer
reverse primer
expression
Prior art date
Application number
HK12107417.6A
Other languages
Chinese (zh)
Inventor
Wayne Cowens
Joffre Baker
James Hackett
Drew Watson
Soonmyung Paik
Kim Clark
Original Assignee
Genomic Health, Inc.
Nsabp Foundation, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Genomic Health, Inc., Nsabp Foundation, Inc.filedCriticalGenomic Health, Inc.
Publication of HK1167004ApublicationCriticalpatent/HK1167004A/en

Links

Description

Cross-Reference to Related Applications
This is a non-provisional application filed under 37 C.F.R. 1.53(b) claiming priority under 35 U.S.C. §119(e) to provisional Application Serial No.60/758,392 filed January 11, 2006and to provisional Application Serial No.60/800,277 filed May 12, 2006 and to provisional Application Serial No.60/810,077 filed May 31, 2006 all of which are incorporated herein by reference in their entirety.
Background of the InventionField of the Invention
The present invention provides genes and gene sets, the expression levels of which are useful for predicting outcome of colorectal cancer.
Description of Related Art
Colorectal cancer is the number two cause of cancer-related death in the United States and the European Union, accounting for 10% of all cancer-related deaths. Although colon cancer and rectal cancer may represent identical or similar disease at the molecular level, surgery for rectal cancer is complicated by anatomical issues. Possibly for this reason, the rate of local recurrence for rectal cancer is significantly higher than for colon cancer, and so the treatment approach is significantly different. Approximately 100,000 colon cancers are newly diagnosed each year in the United States, with about 65% of these being diagnosed as stage II/III colorectal cancer as discussed below.
Refining a diagnosis of colorectal cancer involves evaluating the progression status of the cancer using standard classification criteria. Two classification systems have been widely used in colorectal cancer, the modified Duke's or Astler-Coller staging system (Stages A-D) (Astler VB, Coller FA., Ann Surg 1954;139:846-52), and more recently TNM staging (Stages I-IV) as developed by the American Joint Committee on Cancer (AJCC Cancer Staging Manual, 6th Edition, Springer-Verlag, New York, 2002). Both systems apply measures of the spread of the primary tumor through layers of colon or rectal wall to the adjacent organs, lymph nodes and distant sites to evaluate tumor progression. Estimates of recurrence risk and treatment decisions in colon cancer are currently based primarily on tumor stage.
There are approximately 33,000 newly diagnosed Stage II colorectal cancers each year in the United States. Nearly all of these patients are treated by surgical resection of the tumor and, in addition, about 40% are currently treated with chemotherapy based on 5-fluorouracil (5-FU). The decision whether to administer adjuvant chemotherapy is not straightforward. The five-year survival rate for Stage II colon cancer patients treated with surgery alone is approximately 80%. Standard adjuvant treatment with 5-FU + leucovorin (folinic acid) demonstrates an absolute benefit of only 2-4% in this population and shows significant toxicity, including a rate of toxic death from chemotherapy as high as 1%. Thus, a large number of patients receive toxic therapy from which only a few benefit.
A test capable of prognosis after surgery in Stage II colorectal cancer patients would be of great benefit for guiding treatment decisions for these patients.
The benefit of chemotherapy in Stage III colon cancer is more evident than it is in Stage II. A large proportion of the 31,000 patients annually diagnosed with Stage III colon cancer receive 5-FU-based adjuvant chemotherapy, and the absolute benefit of 5-FU + leucovorin in this setting is around 18-24%, depending on the particular regimen employed. Current standard-of-care chemotherapy treatment for Stage III colon cancer patients (5-FU + leucovorin or 5-FU + leucovorin + oxaliplatin) is moderately effective, achieving an improvement in 5-yr survival rate from about 50% (surgery alone) to about 65% (5-FU + leucovorin) or 70% (5-FU + leucovorin + oxaliplatin). Treatment with 5-FU + leucovorin alone or in combination with oxaliplatin is accompanied by a range of adverse side-effects, including toxic death in approximately 1% of patients treated. Furthermore, the three-year survival rate for Stage III colon cancer patients treated with surgery alone is about 47% and it has not been established whether a subset of Stage III patients exists for which recurrence risk resembles that observed for Stage II patients.
A test that would quantify recurrence risk based on molecular markers rather than tumor stage alone would be useful for identifying a subset of Stage III patients that may not require adjuvant therapy to achieve acceptable outcomes.
Staging of rectal tumors is carried out based on similar criteria as for colon tumor staging, although there are some differences resulting for example from differences in the arrangement of the draining lymph nodes. As a result, Stage II/III rectal tumors bear a reasonable correlation to Stage II/III colon tumors as to their state of progression. As noted above, the rate of local recurrence and other aspects of prognosis differ between rectal cancer and colon cancer, and these differences may arise from difficulties in accomplishing total resection of rectal tumors. Nevertheless, there is no compelling evidence that there is a difference between colon cancer and rectal cancer as to the molecular characteristics of the respective tumors. Prognostic tests for rectal cancer would have utility similar in nature as described for colon cancer prognostic tests and the same prognostic markers might well apply to both cancer types.
In addition, there is a clear need for safer and more efficacious drugs for the treatment of colon cancer. Current chemotherapy for colon cancer is based on the relatively crude approach of administering drugs that generally interfere with the proliferation of dividing cells. Recent clinical studies have demonstrated the feasibility of developing improved drugs based on detailed molecular understanding of particular cancer types and subtypes. For example, the HER2 (ERBB2) gene is amplified and the HER2 protein is overexpressed in a subset of breast cancers; HERCEPTIN® (Genentech, Inc.) a drug developed to target HER2, is indicated only for those patients who have an higher than normal copy number of HER2 as demonstrated by fluorescent in situ hybridization (FISH) or a high level of HER2 expression as demonstrated by immunohistochemistry. Genes, whose expression is associated with clinical outcome in human cancer patients, are a valuable resource for selection of targets for drug compound screening and further drug development activities.
Molecularly targeted drugs, such as HERCEPTIN® (Genentech, Inc.) can be developed and commercialized in conjunction with a diagnostic test that can identify patients who are likely to benefit from the drug; one aspect of such a test is the identification of those patients likely to have a positive outcome without any treatment other than surgery. For example, 80% of Stage II colon cancer patients survive five years or more when treated with surgery alone.. Gene markers that identify patients more likely to be among the 20% whose cancer will recur without additional treatment are useful in drug development, for example in screening patients for inclusion in a clinical trial.
Summary of the Invention
In one aspect, the present invention concerns a method for predicting the clinical outcome in a subject diagnosed with colorectal cancer following surgical resection of said cancer, comprising determining the expression level of one or more predictive RNA transcripts listed in Tables 1A-B, 2A-B, 3A-B, 4A-B, 5A-B, 6 and/or 7, or their expression products, in a biological sample comprising cancer cells obtained from said subject wherein: (a) evidence of increased expression of one or more of the genes listed in Table 1A, 2A, 3A, 4A , and/or 5A , or the corresponding expression product, indicates a decreased likelihood of a positive clinical outcome; and (b) evidence of increased expression of one or more of the genes listed in Table 1B, 2B, 3B, 4B and/or 5B, or the corresponding expression product, indicates an increased .likelihood of a positive clinical outcome. It is contemplated that if the likelihood of positive clinical outcome is predicted to be decreased said patient is subjected to further therapy following said surgical removal. It is further contemplated that the therapy is chemotherapy and/or radiation therapy.
The clinical outcome of the method of the invention may be expressed, for example, in terms of Recurrence-Free Interval (RFI), Overall Survival (OS), Disease-Free Survival (DFS), or Distant Recurrence-Free Interval (DRFI).
In one embodiment, the cancer is Dukes B (stage II) or Dukes C (stage III) colorectal cancer.
In another aspect, the invention concerns a method of predicting the duration of Recurrence-Free Interval (RFI) in a subject diagnosed with Dukes B (stage II) or Dukes C (stage III) colorectal cancer following surgical resection of said cancer, comprising determining the expression level of one or more predictive RNA transcripts listed in Tables 1A , 5A, 1B, and/or 5B, or their expression products, in a biological sample comprising cancer cells obtained from said subject, wherein: (a) evidence of increased expression of one or more of the genes listed in Table 1A or 5A, or the corresponding expression product, indicates that said RFI is predicted to be shorter; and (b) evidence of increased expression of one or more of the genes listed in Table 1B, or 5B, or the corresponding expression product, indicates that said RFI is predicted to be longer.
In another aspect, the invention concerns a method of predicting Overall Survival (OS) in a subject diagnosed with Dukes B (stage II) or Dukes C (stage III) colon cancer following surgical resection of said cancer, comprising determining the expression level of one or more predictive RNA transcripts listed in Tables 2A and/or 2B, or their expression products, in a biological sample comprising cancer cells obtained from said subject, wherein: (a) evidence of increased expression of one or more of the genes listed in Table 2A, or the corresponding expression product, indicates that said OS is predicted to be shorter; and (b) evidence of increased expression of one or more of the genes listed in Table 2B, or the corresponding expression product, indicates that said OS is predicted to be longer.
In another aspect, the invention concerns a method of predicting Disease-Free Survival (DFS) in a subject diagnosed with Dukes B (stage II) or Dukes C (stage III) colon cancer following surgical resection of said cancer, comprising determining the expression level of one or more predictive RNA transcripts listed in Tables 3A, and/or 3B, or their expression products, in a biological sample comprising cancer cells obtained from said subject, wherein: (a) evidence of increased expression of one or more of the genes listed in Table 3A, or the corresponding expression product, indicates that said DFS is predicted to be shorter; and (b) evidence of increased expression of one or more of the genes listed in Table 3B, or the corresponding expression product, indicates that said DFS is predicted to be longer.
In another aspect, the invention concerns a method of predicting the duration of Distant Recurrence-Free Interval (DRFI) in a subject diagnosed with Dukes B (stage II) or Dukes C (stage III) colon cancer following surgical resection of said cancer, comprising determining the expression level of one or more predictive RNA transcripts listed in Tables 4A and/or 4B, or their expression products, in a biological sample comprising cancer cells obtained from said subject, wherein: (a) evidence of increased expression of one or more of the genes listed in Table 4A, or the corresponding expression product, indicates that said DRFI is predicted to be shorter; and (b) evidence of increased expression of one or more of the genes listed in Table 4B, or the corresponding expression product, indicates that said DRFI is predicted to be longer.
In another aspect, the invention concerns a method of predicting clinical outcome for a subject diagnosed with colorectal cancer following surgical resection of said cancer, comprising determining evidence of the expression level of one or more predictive RNA transcripts listed in Tables 1.2A-B, 2.2A-B, 3.2A-B, 4.2A-B, 5.2A-B, 6.2 and/or 7.2, or their expression products, in a biological sample comprising cancer cells obtained from said subject, wherein (a) evidence of increased expression of one or more of the genes listed in Table 1.2A, 2.2A, 3.2A, 4.2A and/or 5.2A, or the corresponding expression product, indicates a decreased likelihood of a positive clinical outcome; and (b) evidence of increased expression of one or more of the genes listed in Table 1.2B, 2.2B, 3.2B, 4.2B and/or 5.2B, or the corresponding expression product, indicates an increased likelihood of a positive clinical outcome.
In another aspect, the invention concerns a method of predicting the duration of Recurrence-Free Interval (RFI) in a subject diagnosed with Dukes B (stage II) or Dukes C (stage III) colorectal cancer following surgical resection of said cancer, comprising determining the expression level of one or more predictive RNA transcripts listed in Tables 1.2A, 1.2B, 5.2A and/or 5.2B, or their expression products, in a biological sample comprising cancer cells obtained from said subject, wherein (a) evidence of increased expression of one or more of the genes listed in Table 1.2A or 5.2A, or the corresponding expression product, indicates that said RFI is predicted to be shorter; and (b) evidence of increased expression of one or more of the genes listed in Table 1.2B or 5.2B, or the corresponding expression product, indicates that said RFI is predicted to be longer.
In another aspect, the invention concerns a method of predicting Overall Survival (OS) in a subject diagnosed with Dukes B (stage II) or Dukes C (stage III) colon cancer following surgical resection of said cancer, comprising determining the expression level of one or more predictive RNA transcripts listed in Tables 2.2A and/or 2.2B, or their expression products, in a biological sample comprising cancer cells obtained from said subject, wherein (a) evidence of increased expression of one or more of the genes listed in Table 2.2A, or the corresponding expression product, indicates that said OS is predicted to be shorter; and (b) evidence of increased expression of one or more of the genes listed in Table 2.2B, or the corresponding expression product, indicates that said OS is predicted to be longer.
In another aspect, the invention concerns a method of predicting Disease-Free Survival (DFS) in a subject diagnosed with Dukes B (stage II) or Dukes C (stage III) colon cancer following surgical resection of said cancer, comprising determining the expression level of one or more predictive RNA transcripts listed in Tables 3.2A and/or 3.2B, or their expression products, in a biological sample comprising cancer cells obtained from said subject, wherein (a) evidence of increased expression of one or more of the genes listed in Table 3.2A, or the corresponding expression product, indicates that said DFS is predicted to be shorter; and (b) evidence of increased expression of one or more of the genes listed in Table 3.2B, or the corresponding expression product, indicates that said DFS is predicted to be longer.
In another aspect, the invention concerns a method of predicting the duration of Distant Recurrence-Free Interval (DRFI) in a subject diagnosed with Dukes B (stage II) or Dukes C (stage III) colon cancer following surgical resection of said cancer, comprising determining the expression level of one or more predictive RNA transcripts listed in Tables 4.2A and/or 4.2B, or their expression products, in a biological sample comprising cancer cells obtained from said subject, wherein (a) evidence of increased expression of one or more of the genes listed in Table 4.2A, or the corresponding expression product, indicates that said DRFI is predicted to be shorter; and (b) evidence of increased expression of one or more of the genes listed in Table 4.2B, or the corresponding expression product, indicates that said DRFI is predicted to be longer.
In another aspect, the invention concerns a method of predicting clinical outcome for a subject diagnosed with colorectal cancer following surgical resection of said cancer, comprising determining evidence of the expression level of one or more predictive RNA transcripts listed in Tables 1A-B, 1.2A-B, 2A-B, 2.2A-B, 3A-B, 3.2A-B, 4A-B, 4.2A-B, 5A-B, 5.2A-B, 6, 6.2, 7 and/or 7.2, or their expression products, in a biological sample comprising cancer cells obtained from said subject, wherein (a) evidence of increased expression of one or more of the genes listed in Table 1A,1.2A, 2A, 2.2A, 3A, 3.2A, 4A, 4.2A, 5A and/or 5.2A, or the corresponding expression product, indicates a decreased likelihood of a positive clinical outcome; and (b) evidence of increased expression of one or more of the genes listed in Table 1B,1.2B, 2B, 2.2B, 3B, 3.2B, 4B, 4.2B, 5B and/or 5.2B, or the corresponding expression product, indicates an increased likelihood of a positive clinical outcome.
In another aspect, the invention concerns a method of predicting the duration of Recurrence-Free Interval (RFI) in a subject diagnosed with Dukes B (stage II) or Dukes C (stage III) colorectal cancer following surgical resection of said cancer, comprising determining the expression level of one or more predictive RNA transcripts listed in Tables 1A, 1.2A, 1B, 1.2B, 5A, 5.2A, 5B and/or 5.2B, or their expression products, in a biological sample comprising cancer cells obtained from said subject, wherein (a) evidence of increased expression of one or more of the genes listed in Table 1A, 1.2A, 5A and/or 5.2A, or the corresponding expression product, indicates that said RFI is predicted to be shorter; and (b) evidence of increased expression of one or more of the genes listed in Table 1B, 1.2B, 5B and/or 5.2B, or the corresponding expression product, indicates that said RFI is predicted to be longer.
In another aspect, the invention concerns a method of predicting Overall Survival (OS) in a subject diagnosed with Dukes B (stage II) or Dukes C (stage III) colon cancer following surgical resection of said cancer, comprising determining the expression level of one or more predictive RNA transcripts listed in Tables 2A, 2.2A, 2B and/or 2.2B, or their expression products, in a biological sample comprising cancer cells obtained from said subject, wherein (a) evidence of increased expression of one or more of the genes listed in Table 2A and/or 2.2A, or the corresponding expression product, indicates that said OS is predicted to be shorter; and (b) evidence of increased expression of one or more of the genes listed in Table 2B and/or 2.2B, or the corresponding expression product, indicates that said OS is predicted to be longer.
In another aspect, the invention concerns a method of predicting Disease-Free Survival (DFS) in a subject diagnosed with Dukes B (stage II) or Dukes C (stage III) colon cancer following surgical resection of said cancer, comprising determining the expression level of one or more predictive RNA transcripts listed in Tables 3A, 3.2A, 3B and/or 3.2B, or their expression products, in a biological sample comprising cancer cells obtained from said subject, wherein (a) evidence of increased expression of one or more of the genes listed in Table 3A and/or 3.2A, or the corresponding expression product, indicates that said DFS is predicted to be shorter; and (b) evidence of increased expression of one or more of the genes listed in Table 3B and/or 3.2B, or the corresponding expression product, indicates that said DFS is predicted to be longer.
In another aspect, the invention concerns a method of predicting the duration of Distant Recurrence-Free Interval (DRFI) in a subject diagnosed with Dukes B (stage II) or Dukes C (stage III) colon cancer following surgical resection of said cancer, comprising determining the expression level of one or more predictive RNA transcripts listed in Tables 4A, 4.2A, 4B and/or 4.2B, or their expression products, in a biological sample comprising cancer cells obtained from said subject, wherein (a) evidence of increased expression of one or more of the genes listed in Table 4A and/or 4.2A, or the corresponding expression product, indicates that said DRFI is predicted to be shorter; and (b) evidence of increased expression of one or more of the genes listed in Table 4B and/or 4.2B, or the corresponding expression product, indicates that said DRFI is predicted to be longer.
In another aspect, the invention concerns a method of predicting clinical outcome in a subject diagnosed with Dukes B (stage II) colorectal cancer following surgical resection of said cancer, comprising determining the expression level of one or more predictive RNA transcripts selected from the group consisting of ALCAM, CD24, CDH11, CENPE, CLTC, CYR61, EMR3, ICAM2, LOX, MADH2, MGAT5, MT3, NUFIP1, PRDX6, SIR2, SOS1, STAT5B, TFF3, TMSB4X, TP53BP1, WIF, CAPG, CD28, CDC20, CKS1B, DKK1, HSD17B2, and MMP7, or their expression products, in a biological sample comprising cancer cells obtained from said subject, wherein: (a) evidence of increased expression of one or more of the genes selected from the group consisting of ALCAM, CD24, CDH11, CENPE, CLTC, CYR61, EMR3, ICAM2, LOX, MADH2, MGAT5, MT3, NUFIP1, PRDX6, SIR2, SOS1, STAT5B, TFF3, TMSB4X, TP53BP1, and WIF, or the corresponding expression product, indicates a decreased likelihood of positive clinical outcome; and (b) evidence of increased expression of one or more of the genes selected from the group consisting of CAPG, CD28, CDC20, CKS1B, DKK1, HSD17B2, and MMP7, or the corresponding expression product, indicates an increased likelihood of positive clinical outcome.
In another aspect, the invention concerns a method of predicting clinical outcome in a subject diagnosed with Dukes C (stage III) colorectal cancer following surgical resection of said cancer, comprising determining the expression level of one or more predictive RNA transcripts selected from the group consisting of CAPG, CD28, CKS1B, CYR61, DKK1, HSD17B2, LOX, MMP7, SIR2, ALCAM, CD24, CDC20, CDH11, CENPE, CLTC, EMR3, ICAM2, MADH2, MGAT5, MT3, NUFIP1, PRDX6, SOS1, STAT5B, TFF3, TMSB4X, TP53BP1, and WIF, or their expression products, in a biological sample comprising cancer cells obtained from said subject, wherein: (a) evidence of increased expression of one or more of the genes selected from the group consisting of CAPG, CD28, CKS1B, CYR61, DKK1, HSD17B2, LOX, MMP7, and SIR2, or the corresponding expression product, indicates a decreased likelihood of positive clinical outcome; and (b) evidence of increased expression of one or more of the genes selected from the group consisting of ALCAM, CD24, CDC20, CDH11, CENPE, CLTC, EMR3, ICAM2, MADH2, MGAT5, MT3, NUFIP1, PRDX6, SOS1, STAT5B, TFF3, TMSB4X, TP53BP1, and WIF, or the corresponding expression product, indicates an increased likelihood of positive clinical outcome.
For all aspects of the method of the invention, determining the expression level of one or more genes may be obtained, for example, by a method of gene expression profiling. The method of gene expression profiling may be, for example, a PCR-based method.
For all aspects of the invention, the expression levels of the genes may be normalized relative to the expression levels of one or more reference genes, or their expression products.
For all aspects of the invention, the subject preferably is a human patient.
For all aspects of the invention, the method may further comprise determining evidence of the expression levels of at least two of said genes, or their expression products. It is further contemplated that the method of the invention may further comprise determining evidence of the expression levels of at least three of said genes, or their expression products. It is also contemplated that the method of the invention may further comprise determining evidence of the expression levels of at least four of said genes, or their expression products. It is also contemplated that the method of the invention may further comprise determining evidence of the expression levels of at least five of said genes, or their expression products.
For all aspects of the invention, the method may further comprise the step of creating a report summarizing said prediction.
For all aspects of the invention, it is contemplated that for every increment of an increase in the level of one or more predictive RNA transcripts or their expression products, the patient is identified to show an incremental increase in clinical outcome.
For all aspects of the invention, the determination of expression levels may occur more than one time. For all aspects of the invention, the determination of expression levels may occur before the patient is subjected to any therapy following surgical resection.
In a different aspect the invention is directed to a report comprising the predicted clinical outcome in a subject diagnosed with colorectal cancer following surgical resection of said cancer, comprising a prediction of clinical outcome based on information comprising the expression level of one or more predictive RNA transcripts listed in Tables 1A-B, 2A-B, 3A-B, 4A-B, 5A-B, 6 and/or 7, or their expression products, in a biological sample comprising cancer cells obtained from said subject wherein: (a) evidence of increased expression of one or more of the genes listed in Table 1A, 2A, 3A, 4A , and/or 5A , or the corresponding expression product, indicates a decreased likelihood of a positive clinical outcome; and (b) evidence of increased expression of one or more of the genes listed in Table 1B, 2B, 3B, 4B and/or 5B, or the corresponding expression product, indicates an increased likelihood of a positive clinical outcome. The clinical outcome of the report of the invention may be expressed, for example, in terms of Recurrence-Free Interval (RFI), Overall Survival (OS), Disease-Free Survival (DFS), or Distant Recurrence-Free Interval (DRFI). In one embodiment that cancer is Dukes B (stage II) or Dukes C (stage III) colorectal cancer. The prediction of clinical outcome may comprise an estimate of the likelihood of a particular clinical outcome for a subject or may comprise the classification of a subject into a risk group based on said estimate.
In another aspect the invention is directed to a report predicting clinical outcome for a subject diagnosed with colorectal cancer following surgical resection of said cancer, comprising a prediction of clinical outcome based on information comprising the expression level of one or more predictive RNA transcripts listed in Tables 1.2A-B, 2.2A-B, 3.2A-B, 4.2A-B, 5.2A-B, 6.2 and/or 7.2, or their expression products, in a biological sample comprising cancer cells obtained from said subject, wherein (a) evidence of increased expression of one or more of the genes listed in Table 1.2A, 2.2A, 3.2A, 4.2A and/or 5.2A, or the corresponding expression product, indicates a decreased likelihood of a positive clinical outcome; and (b) evidence of increased expression of one or more of the genes listed in Table 1.2B, 2.2B, 3.2B, 4.2B and/or 5.2B, or the corresponding expression product, indicates an increased likelihood of a positive clinical outcome. The clinical outcome of the report of the invention may be expressed, for example, in terms of Recurrence-Free Interval (RFI), Overall Survival (OS), Disease-Free Survival (DFS), or Distant Recurrence-Free Interval (DRFI). In one embodiment that cancer is Dukes B (stage II) or Dukes C (stage III) colorectal cancer. The prediction of clinical outcome may comprise an estimate of the likelihood of a particular clinical outcome for a subject or may comprise the classification of a subject into a risk group based on said estimate.
In another aspect, the invention concerns a report predicting clinical outcome for a subject diagnosed with colorectal cancer following surgical resection of said cancer, comprising a prediction of clinical outcome based on information comprising the expression level of one or more predictive RNA transcripts listed in Tables 1A-B, 1.2A-B, 2A-B, 2.2A-B, 3A-B, 3.2A-B, 4A-B, 4.2A-B, 5A-B, 5.2A-B, 6, 6.2, 7 and/or 7.2, or their expression products, in a biological sample comprising cancer cells obtained from said subject, wherein (a) evidence of increased expression of one or more of the genes listed in Table 1A,1.2A, 2A, 2.2A, 3A, 3.2A, 4A, 4.2A, 5A and/or 5.2A, or the corresponding expression product, indicates a decreased likelihood of a positive clinical outcome; and (b) evidence of increased expression of one or more of the genes listed in Table 1B,1.2B, 2B, 2.2B, 3B, 3.2B, 4B, 4.2B, 5B and/or 5.2B, or the corresponding expression product, indicates an increased likelihood of a positive clinical outcome. The prediction of clinical outcome may comprise an estimate of the likelihood of a particular clinical outcome for a subject or may comprise the classification of a subject into a risk group based on said estimate.
In another aspect the invention is directed to a report predicting clinical outcome in a subject diagnosed with Dukes B (stage II) colorectal cancer following surgical resection of said cancer, comprising a prediction of clinical outcome based on information comprising the expression level of one or more predictive RNA transcripts selected from the group consisting of ALCAM, CD24, CDH11, CENPE, CLTC, CYR61, EMR3, ICAM2, LOX, MADH2, MGAT5, MT3, NUFIP1, PRDX6, SIR2, SOS1, STAT5B, TFF3, TMSB4X, TP53BP1, WIF, CAPG, CD28, CDC20, CKS1B, DKK1, HSD17B2, and MMP7, or their expression products, in a biological sample comprising cancer cells obtained from said subject, wherein: (a) evidence of increased expression of one or more of the genes selected from the group consisting of ALCAM, CD24, CDH11, CENPE, CLTC, CYR61, EMR3, ICAM2, LOX, MADH2, MGAT5, MT3, NUFIP1, PRDX6, SIR2, SOS1, STAT5B, TFF3, TMSB4X, TP53BP1, and WIF, or the corresponding expression product, indicates a decreased likelihood of positive clinical outcome; and (b) evidence of increased expression of one or more of the genes selected from the group consisting of CAPG, CD28, CDC20, CKS1B, DKK1, HSD17B2, and MMP7, or the corresponding expression product, indicates an increased likelihood of positive clinical outcome. The prediction of clinical outcome may comprise an estimate of the likelihood of a particular clinical outcome for a subject or may comprise the classification of a subject into a risk group based on said estimate.
In another aspect the invention is directed to a report predicting clinical outcome in a subject diagnosed with Dukes C (stage III) colorectal cancer following surgical resection of said cancer, comprising a prediction of clinical outcome based on information comprising the expression level of one or more predictive RNA transcripts selected from the group consisting of CAPG, CD28, CKS1B, CYR61, DKK1, HSD17B2, LOX, MMP7, SIR2, ALCAM, CD24, CDC20, CDH11, CENPE, CLTC, EMR3, ICAM2, MADH2, MGAT5, MT3, NUFIP1, PRDX6, SOS1, STAT5B, TFF3, TMSB4X, TP53BP1, and WIF, or their expression products, in a biological sample comprising cancer cells obtained from said subject, wherein: (a) evidence of increased expression of one or more of the genes selected from the group consisting of CAPG, CD28, CKS1B, CYR61, DKK1, HSD17B2, LOX, MMP7, and SIR2, or the corresponding expression product, indicates a decreased likelihood of positive clinical outcome; and (b) evidence of increased expression of one or more of the genes selected from the group consisting of ALCAM, CD24, CDC20, CDH11, CENPE, CLTC, EMR3, ICAM2, MADH2, MGAT5, MT3, NUFIP1, PRDX6, SOS1, STAT5B, TFF3, TMSB4X, TP53BP1, and WIF, or the corresponding expression product, indicates an increased likelihood of positive clinical outcome. The prediction of clinical outcome may comprise an estimate of the likelihood of a particular clinical outcome for a subject or may comprise the classification of a subject into a risk group based on said estimate.
In a different aspect the invention concerns a kit comprising one or more of (1) extraction buffer/reagents and protocol; (2) reverse transcription buffer/reagents and protocol; and (3) qPCR buffer/reagents and protocol suitable for performing the methods of this invention. The kit may comprise data retrieval and analysis software.
Brief Description of Drawings
Figure 1 shows a dendrogram representing the expression clustering of 142 genes that were statistically significantly related to recurrence-free interval (Tables 1.2A and 1.2B) in the univariate Cox proportional hazards analysis. The cluster analysis used the unweighted pair-group average amalgamation method and 1-Pearson r as the distance measure. The identities of particular genes in clusters of interest are indicated along the x-axis.
Detailed Description of the Preferred EmbodimentA.Definitions
Unless defined otherwise, technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs.Singleton et al., Dictionary of Microbiology and Molecular Biology 2nd ed., J. Wiley & Sons (New York, NY 1994), andMarch, Advanced Organic Chemistry Reactions, Mechanisms and Structure 4th ed., John Wiley & Sons (New York, NY 1992), provide one skilled in the art with a general guide to many of the terms used in the present application.
One skilled in the art will recognize many methods and materials similar or equivalent to those described herein, which could be used in the practice of the present invention. Indeed, the present invention is in no way limited to the methods and materials described. For purposes of the present invention, the following terms are defined below.
The term "tumor," as used herein, refers to all neoplastic cell growth and proliferation, whether malignant or benign, and all pre-cancerous and cancerous cells and tissues.
The terms "cancer" and "cancerous" refer to or describe the physiological condition in mammals that is typically characterized by unregulated cell growth. Examples of cancer include, but are not limited to, breast cancer, ovarian cancer, colon cancer, lung cancer, prostate cancer, hepatocellular cancer, gastric cancer, pancreatic cancer, cervical cancer, liver cancer, bladder cancer, cancer of the urinary tract, thyroid cancer, renal cancer, carcinoma, melanoma, and brain cancer.
The "pathology" of cancer includes all phenomena that compromise the well-being of the patient. This includes, without limitation, abnormal or uncontrollable cell growth, metastasis, interference with the normal functioning of neighboring cells, release of cytokines or other secretory products at abnormal levels, suppression or aggravation of inflammatory or immunological response, neoplasia, premalignancy, malignancy, invasion of surrounding or distant tissues or organs, such as lymph nodes, etc.
The term "colorectal cancer" is used in the broadest sense and refers to (1) all stages and all forms of cancer arising from epithelial cells of the large intestine and/or rectum and/or (2) all stages and all forms of cancer affecting the lining of the large intestine and/or rectum. In the staging systems used for classification of colorectal cancer, the colon and rectum are treated as one organ.
According to the tumor, node, metastatis (TNM) staging system of the American Joint Committee on Cancer (AJCC) (Greene et al. (eds.), AJCC Cancer Staging Manual. 6th Ed. New York, NY: Springer; 2002), the various stages of colorectal cancer are defined as follows:
Tumor: T1: tumor invades submucosa; T2: tumor invades muscularis propria; T3: tumor invades through the muscularis propria into the subserose, or into the pericolic or perirectal tissues; T4: tumor directly invades other organs or structures, and/or perforates.
Node: N0: no regional lymph node metastasis; N1: metastasis in 1 to 3 regional lymph nodes; N2: metastasis in 4 or more regional lymph nodes.
Metastasis:M0: mp distant metastasis; M1: distant metastasis present.
Stage groupings: Stage I: T1 N0 M0; T2 N0 M0; Stage II: T3 N0 M0; T4 N0 M0; Stage III: any T, N1-2; M0; Stage IV: any T, any N, M1.
According to the Modified Duke Staging System, the various stages of colorectal cancer are defined as follows:
Stage A: the tumor penetrates into the mucosa of the bowel wall but not further. Stage B: tumor penetrates into and through the muscularis propria of the bowel wall; Stage C: tumor penetrates into but not through muscularis propria of the bowel wall, there is pathologic evidence of colorectal cancer in the lymph nodes; or tumor penetrates into and through the muscularis propria of the bowel wall, there is pathologic evidence of cancer in the lymph nodes; Stage D: tumor has spread beyond the confines of the lymph nodes, into other organs, such as the liver, lung or bone.
Prognostic factors are those variables related to the natural history of colorectal cancer, which influence the recurrence rates and outcome of patients once they have developed colorectal cancer. Clinical parameters that have been associated with a worse prognosis include, for example, lymph node involvement, , and high grade tumors. Prognostic factors are frequently used to categorize patients into subgroups with different baseline relapse risks.
The term "prognosis" is used herein to refer to the prediction of the likelihood of cancer-attributable death or progression, including recurrence, metastatic spread, and drug resistance, of a neoplastic disease, such as colon cancer.
The term "prediction" is used herein to refer to the likelihood that a patient will have a particular clinical outcome, whether positive or negative, following surgical removal of the primary tumor. The predictive methods of the present invention can be used clinically to make treatment decisions by choosing the most appropriate treatment modalities for any particular patient. The predictive methods of the present invention are valuable tools in predicting if a patient is likely to respond favorably to a treatment regimen, such as surgical intervention. The prediction may include prognostic factors.
The term "positive clinical outcome" means an improvement in any measure of patient status, including those measures ordinarily used in the art, such as an increase in the duration of Recurrence-Free interval (RFI), an increase in the time of Overall Survival (OS), an increase in the time of Disease-Free Survival (DFS), an increase in the duration of Distant Recurrence-Free Interval (DRFI), and the like. An increase in the likelihood of positive clinical outcome corresponds to a decrease in the likelihood of cancer recurrence.
The term "risk classification" means the level of risk or the prediction that a subject will experience a particular clinical outcome. A subject may be classified into a risk group or classified at a level of risk based on the predictive methods of the present invention. A "risk group" is a group of subjects or individuals with a similar level of risk for a particular clinical outcome.
The term "long-term" survival is used herein to refer to survival for at least 3 years, more preferably for at least 5 years.
The term "Recurrence-Free Interval (RFI)" is used herein to refer to time in years to first colon cancer recurrence censoring for second primary cancer as a first event or death without evidence of recurrence.
The term "Overall Survival (OS)" is used herein to refer to time in years from surgery to death from any cause.
The term "Disease-Free Survival (DFS)" is used herein to refer to time in years to colon cancer recurrence or death from any cause.
The term "Distant Recurrence-Free Interval (DRFI)" is used herein to refer to the time (in years) from surgery to the first anatomically distant cancer recurrence.
The calculation of the measures listed above in practice may vary from study to study depending on the definition of events to be either censored or not considered.
The term "microarray" refers to an ordered arrangement of hybridizable array elements, preferably polynucleotide probes, on a substrate.
The term "polynucleotide," when used in singular or plural, generally refers to any polyribonucleotide or polydeoxribonucleotide, which may be unmodified RNA or DNA or modified RNA or DNA. Thus, for instance, polynucleotides as defined herein include, without limitation, single- and double-stranded DNA, DNA including single- and double-stranded regions, single- and double-stranded RNA, and RNA including single- and double-stranded regions, hybrid molecules comprising DNA and RNA that may be single-stranded or, more typically, double-stranded or include single- and double-stranded regions. In addition, the term "polynucleotide" as used herein refers to triple-stranded regions comprising RNA or DNA or both RNA and DNA. The strands in such regions may be from the same molecule or from different molecules. The regions may include all of one or more of the molecules, but more typically involve only a region of some of the molecules. One of the molecules of a triple-helical region often is an oligonucleotide. The term "polynucleotide" specifically includes cDNAs. The term includes DNAs (including cDNAs) and RNAs that contain one or more modified bases. Thus, DNAs or RNAs with backbones modified for stability or for other reasons are "polynucleotides" as that term is intended herein. Moreover, DNAs or RNAs comprising unusual bases, such as inosine, or modified bases, such as tritiated bases, are included within the term "polynucleotides" as defined herein. In general, the term "polynucleotide" embraces all chemically, enzymatically and/or metabolically modified forms of unmodified polynucleotides, as well as the chemical forms of DNA and RNA characteristic of viruses and cells, including simple and complex cells.
The term "oligonucleotide" refers to a relatively short polynucleotide, including, without limitation, single-stranded deoxyribonucleotides, single- or double-stranded ribonucleotides, RNA:DNA hybrids and double-stranded DNAs. Oligonucleotides, such as single-stranded DNA probe oligonucleotides, are often synthesized by chemical methods, for example using automated oligonucleotide synthesizers that are commercially available. However, oligonucleotides can be made by a variety of other methods, includingin vitro recombinant DNA-mediated techniques and by expression of DNAs in cells and organisms.
The terms "differentially expressed gene," "differential gene expression" and their synonyms, which are used interchangeably, refer to a gene whose expression is activated to a higher or lower level in a subject suffering from a disease, specifically cancer, such as colon cancer, relative to its expression in a normal or control subject. The terms also include genes whose expression is activated to a higher or lower level at different stages of the same disease. It is also understood that a differentially expressed gene may be either activated or inhibited at the nucleic acid level or protein level, or may be subject to alternative splicing to result in a different polypeptide product. Such differences may be evidenced by a change in mRNA levels, surface expression, secretion or other partitioning of a polypeptide, for example. Differential gene expression may include a comparison of expression between two or more genes or their gene products, or a comparison of the ratios of the expression between two or more genes or their gene products, or even a comparison of two differently processed products of the same gene, which differ between normal subjects and subjects suffering from a disease, specifically cancer, or between various stages of the same disease. Differential expression includes both quantitative, as well as qualitative, differences in the temporal or cellular expression pattern in a gene or its expression products among, for example, normal and diseased cells, or among cells which have undergone different disease events or disease stages. For the purpose of this invention, "differential gene expression" is considered to be present when there is at least an about two-fold, preferably at least about four-fold; more preferably at least about six-fold, most preferably at least about ten-fold difference between the expression of a given gene in normal and diseased subjects, or in various stages of disease development in a diseased subject.
The term "over-expression" with regard to an RNA transcript is used to refer to the level of the transcript determined by normalization to the level of reference mRNAs, which might be all measured transcripts in the specimen or a particular reference set of mRNAs.
The phrase "gene amplification" refers to a process by which multiple copies of a gene or gene fragment are formed in a particular cell or cell line. The duplicated region (a stretch of amplified DNA) is often referred to as "amplicon." Usually, the amount of the messenger RNA (mRNA) produced,i.e., the level of gene expression, also increases in the proportion of the number of copies made of the particular gene expressed.
"Stringency" of hybridization reactions is readily determinable by one of ordinary skill in the art, and generally is an empirical calculation dependent upon probe length, washing temperatures, and salt concentration. In general, longer probes require higher temperatures for proper annealing, while shorter probes need lower temperatures. Hybridization generally depends on the ability of denatured DNA to reanneal when complementary strands are present in an environment below their melting temperature. The higher the degree of desired homology between the probe and hybridizable sequence, the higher the relative temperature which can be used. As a result, it follows that higher relative temperatures would tend to make the reaction conditions more stringent, while lower temperatures less so. For additional details and explanation of stringency of hybridization reactions, see Ausubel et al., Current Protocols in Molecular Biology, Wiley Interscience Publishers, (1995).
"Stringent conditions" or "high stringency conditions", as defined herein, typically: (1) employ low ionic strength and high temperature for washing, for example 0.015 M sodium chloride/0.0015 M sodium citrate/0.1% sodium dodecyl sulfate at 50°C; (2) employ during hybridization a denaturing agent, such as formamide, for example, 50% (v/v) formamide with 0.1% bovine serum albumin/0.1% Ficoll/0.1% polyvinylpyrrolidone/50mM sodium phosphate buffer at pH 6.5 with 750 mM sodium chloride, 75 mM sodium citrate at 42°C; or (3) employ 50% formamide, 5 x SSC (0.75 M NaCl, 0.075 M sodium citrate), 50 mM sodium phosphate (pH 6.8), 0.1% sodium pyrophosphate, 5 x Denhardt's solution, sonicated salmon sperm DNA (50 µg/ml), 0.1% SDS, and 10% dextran sulfate at 42°C, with washes at 42°C in 0.2 x SSC (sodium chloride/sodium citrate) and 50% formamide, followed by a high-stringency wash consisting of 0.1 x SSC containing EDTA at 55°C.
"Moderately stringent conditions" may be identified as described bySambrook et al., Molecular Cloning: A Laboratory Manual, New York: Cold Spring Harbor Press, 1989, and include the use of washing solution and hybridization conditions. (e.g., temperature, ionic strength and %SDS) less stringent that those described above. An example of moderately stringent conditions is overnight incubation at 37°C in a solution comprising: 20% formamide, 5 x SSC (150 mM NaCl, 15 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5 x Denhardt's solution, 10% dextran sulfate, and 20 mg/ml denatured sheared salmon sperm DNA, followed by washing the filters in 1 x SSC at about 37-50°C. The skilled artisan will recognize how to adjust the temperature, ionic strength, etc. as necessary to accommodate factors such as probe length and the like.
In the context of the present invention, reference to "at least one," "at least two," "at least five," etc. of the genes listed in any particular gene set means any one or any and all combinations of the genes listed.
The term "node negative" cancer, such as "node negative" colon cancer, is used herein to refer to cancer that has not spread to the lymph nodes.
The terms "splicing" and "RNA splicing" are used interchangeably and refer to RNA processing that removes introns and joins exons to produce mature mRNA with continuous coding sequence that moves into the cytoplasm of an eukaryotic cell.
In theory, the term "exon" refers to any segment of an interrupted gene that is represented in the mature RNA product (B. Lewin. Genes IV Cell Press, Cambridge Mass. 1990). In theory the term "intron" refers to any segment of DNA that is transcribed but removed from within the transcript by splicing together the exons on either side of it. Operationally, exon sequences occur in the mRNA sequence of a gene as defined by Ref. SEQ ID numbers. Operationally, intron sequences are the intervening sequences within the genomic DNA of a gene, bracketed by exon sequences and having GT and AG splice consensus sequences at their 5' and 3' boundaries.
The term "expression cluster" is used herein to refer to a group of genes which demonstrate similar expression patterns when studied within samples from a defined set of patients. As used herein, the genes within an expression cluster show similar expression patterns when studied within samples from patients with Stage II and/or Stage III cancers of the colon and/or rectum.
B.1General Description of the Invention
The practice of the present invention will employ, unless otherwise indicated, conventional techniques of molecular biology (including recombinant techniques), microbiology, cell biology, and biochemistry, which are within the skill of the art. Such techniques are explained fully in the literature, such as, "Molecular Cloning: A Laboratory Manual", 2nd edition (Sambrook et al., 1989); "Oligonucleotide Synthesis" (M.J. Gait, ed., 1984); "Animal Cell Culture" (R.I. Freshney, ed., 1987); "Methods in Enzymology" (Academic Press, Inc.); "Handbook of Experimental Immunology", 4th edition (D.M. Weir & C.C. Blackwell, eds., Blackwell Science Inc., 1987); "Gene Transfer Vectors for Mammalian Cells" (J.M. Miller & M.P. Calos, eds., 1987); "Current Protocols in Molecular Biology" (F.M. Ausubel et al., eds., 1987); and "PCR: The Polymerase Chain Reaction", (Mullis et al., eds., 1994).
Based on evidence of differential expression of RNA transcripts in normal and cancer cells, the present invention provides prognostic gene markers for colorectal cancer. Thus, in a particular aspect, the invention provides prognostic gene markers of Stage II and/or Stage III colorectal cancer, including markers that are specifically prognostic to the outcome of either Stage II or Stage III disease and those that have prognostic value at both stages, reflecting underlying differences in tumor cells in the two stages and/or in the extent of tumor progression. The prognostic markers and associated information provided by the present invention allow physicians to make more intelligent treatment decisions, and to customize the treatment of colorectal cancer to the needs of individual patients, thereby maximizing the benefit of treatment and minimizing the exposure of patients to unnecessary treatments, which do not provide any significant benefits and often carry serious risks due to toxic side-effects.
Disruptions in the normal functioning of various physiological processes, including proliferation, apoptosis, angiogenesis and invasion, have been implicated in the pathology in cancer. The relative contribution of dysfunctions in particular physiological processes to the pathology of particular cancer types is not well characterized. Any physiological process integrates the contributions of numerous gene products expressed by the various cells involved in the process. For example, tumor cell invasion of adjacent normal tissue and intravasation of the tumor cell into the circulatory system are effected by an array of proteins that mediate various cellular characteristics, including cohesion among tumor cells, adhesion of tumor cells to normal cells and connective tissue, ability of the tumor cell first to alter its morphology and then to migrate through surrounding tissues, and ability of the tumor cell to degrade surrounding connective tissue structures.
Multi-analyte gene expression tests can measure the expression level of one or more genes involved in each of several relevant physiologic processes or component cellular characteristics. In some instances the predictive power of the test, and therefore its utility, can be improved by using the expression values obtained for individual genes to calculate a score which is more highly correlated with outcome than is the expression value of the individual genes. For example, the calculation of a quantitative score (recurrence score) that predicts the likelihood of recurrence in estrogen receptor-positive, node-negative breast cancer is describe in a co-pending U.S. Patent application (Publication Number20050048542). The equation used to calculate such a recurrence score may group genes in order to maximize the predictive value of the recurrence score. The grouping of genes may be performed at least in part based on knowledge of their contribution to physiologic functions or component cellular characteristics such as discussed above. The formation of groups, in addition, can facilitate the mathematical weighting of the contribution of various expression values to the recurrence score. The weighting of a gene group representing a physiological process or component cellular characteristic can reflect the contribution of that process or characteristic to the pathology of the cancer and clinical outcome. Accordingly, in an important aspect, the present invention also provides specific groups of the prognostic genes identified herein, that together are more reliable and powerful predictors of outcome than the individual genes or random combinations of the genes identified.
In addition, based on the determination of a recurrence score, one can choose to partition patients into subgroups at any particular value(s) of the recurrence score, where all patients with values in a given range can be classified as belonging to a particular risk group. Thus, the values chosen will define subgroups of patients with respectively greater or lesser risk.
The utility of a gene marker in predicting colon cancer outcome may not be unique to that marker. An alternative marker having a expression pattern that is closely similar to a particular test marker may be substituted for or used in addition to a test marker and have little impact on the overall predictive utility of the test. The closely similar expression patterns of two genes may result from involvement of both genes in a particular process and/or being under common regulatory control in colon tumor cells. The present invention specifically includes and contemplates the use of such substitute genes or gene sets in the methods of the present invention.
The prognostic markers and associated information provided by the present invention predicting the clinical outcome in Stage II and/or Stage III cancers of the colon and/or rectum has utility in the development of drugs to treat Stage II and/or Stage III cancers of the colon and/or rectum.
The prognostic markers and associated information provided by the present invention predicting the clinical outcome in Stage II and/or Stage III cancers of the colon and/or rectum also have utility in screening patients for inclusion in clinical trials that test the efficacy of drug compounds for the treatment of patients with Stage II and/or Stage III cancers of the colon and/or rectum. In particular the prognostic markers may be used on samples collected from patients in a clinical trial and the results of the test used in conjunction with patient outcomes in order to determine whether subgroups of patients are more or less likely to show a response to the drug than the whole group or other subgroups.
The prognostic markers and associated information provided by the present invention predicting the clinical outcome in Stage II and/or Stage III cancers of the colon and/or rectum are useful as inclusion criterion for a clinical trial. For example, a patient is more likely to be included in a clinical trial if the results of the test indicate a higher likelihood that the patient will have a poor clinical outcome if treated with surgery alone and a patient is less likely to be included in a clinical trial if the results of the test indicate a lower likelihood that the patient will have a poor clinical outcome if treated with surgery alone.
In a particular embodiment, prognostic markers and associated information are used to design or produce a reagent that modulates the level or activity of the gene's transcript or its expression product. Said reagents may include but are not limited to an antisense RNA, a small inhibitory RNA, a ribozyme, a monoclonal or polyclonal antibody.
In a further embodiment, said gene or its transcript, or more particularly, an expression product of said transcript is used in an (screening) assay to identify a drug compound, wherein said drug compounds is used in the development of a drug to treat Stage II and/or Stage III cancers of the colon and/or rectum.
In various embodiments of the inventions, various technological approaches are available for determination of expression levels of the disclosed genes, including, without limitation, RT-PCR, microarrays, serial analysis of gene expression (SAGE) and Gene Expression Analysis by Massively Parallel Signature Sequencing (MPSS), which will be discussed in detail below. In particular embodiments, the expression level of each gene may be determined in relation to various features of the expression products of the gene including exons, introns, protein epitopes and protein activity. In other embodiments, the expression level of a gene may be inferred from analysis of the structure of the gene, for example from the analysis of the methylation pattern of gene's promoter(s).
B.2Gene Expression Profiling
Methods of gene expression profiling include methods based on hybridization analysis of polynucleotides, methods based on sequencing of polynucleotides, and proteomics-based methods. The most commonly used methods known in the art for the quantification of mRNA expression in a sample include northern blotting and in situ hybridization (Parker & Barnes, Methods in Molecular Biology 106:247-283 (1999)); RNAse protection assays (Hod, Biotechniques 13:852-854 (1992)); and PCR-based methods, such as reverse transcription polymerase chain reaction (RT-PCR) (Weis et al., Trends in Genetics 8:263-264 (1992)). Alternatively, antibodies may be employed that can recognize sequence-specific duplexes, including DNA duplexes, RNA duplexes, and DNA-RNA hybrid duplexes or DNA-protein duplexes. Representative methods for sequencing-based gene expression analysis include Serial Analysis of Gene Expression (SAGE), and gene expression analysis by massively parallel signature sequencing (MPSS).
a.Reverse Transcriptase PCR (RT-PCR)
Of the techniques listed above, the most sensitive and most flexible quantitative method is RT-PCR, which can be used to determine mRNA levels in various samples. The results can be used to compare gene expression patterns between sample sets, for example in normal and tumor tissues and in patients with or without drug treatment.
The first step is the isolation of mRNA from a target sample. The starting material is typically total RNA isolated from human tumors or tumor cell lines, and corresponding normal tissues or cell lines, respectively. Thus RNA can be isolated from a variety of primary tumors, including breast, lung, colon, prostate, brain, liver, kidney, pancreas, spleen, thymus, testis, ovary, uterus, etc., tumor, or tumor cell lines, with pooled DNA from healthy donors. If the source of mRNA is a primary tumor, mRNA can be extracted, for example, from frozen or archived paraffin-embedded and fixed (e.g. formalin-fixed) tissue samples.
General methods for mRNA extraction are well known in the art and are disclosed in standard textbooks of molecular biology, includingAusubel et al., Current Protocols of Molecular Biology, John Wiley and Sons (1997). Methods for RNA extraction from paraffin embedded tissues are disclosed, for example, in Rupp and Locker, Lab Invest. 56:A67 (1987), andDe Andrés et al., BioTechniques 18:42044 (1995). In particular, RNA isolation can be performed using purification kit, buffer set and protease from commercial manufacturers, such as Qiagen, according to the manufacturer's instructions. For example, total RNA from cells in culture can be isolated using Qiagen RNeasy mini-columns. Other commercially available RNA isolation kits include MasterPure™ Complete DNA and RNA Purification Kit (EPICENTRE®, Madison, WI), and Paraffin Block RNA Isolation Kit (Ambion, Inc.). Total RNA from tissue samples can be isolated using RNA Stat-60 (Tel-Test). RNA prepared from tumor can be isolated, for example, by cesium chloride density gradient centrifugation.
As RNA cannot serve as a template for PCR, the first step in gene expression profiling by RT-PCR is the reverse transcription of the RNA template into cDNA, followed by its exponential amplification in a PCR reaction. The two most commonly used reverse transcriptases are avilo myeloblastosis virus reverse transcriptase (AMV-RT) and Moloney murine leukemia virus reverse transcriptase (MMLV-RT). The reverse transcription step is typically primed using specific primers, random hexamers, or oligo-dT primers, depending on the circumstances and the goal of expression profiling. For example, extracted RNA can be reverse-transcribed using a GeneAmp RNA PCR kit (Perkin Elmer, CA, USA), following the manufacturer's instructions. The derived cDNA can then be used as a template in the subsequent PCR reaction.
Although the PCR step can use a variety of thermostable DNA-dependent DNA polymerases, it typically employs the Taq DNA polymerase, which has a 5'-3' nuclease activity but lacks a 3'-5' proofreading endonuclease activity. Thus, TaqMan® PCR typically utilizes the 5'-nuclease activity of Taq or Tth polymerase to hydrolyze a hybridization probe bound to its target amplicon, but any enzyme with equivalent 5' nuclease activity can be used. Two oligonucleotide primers are used to generate an amplicon typical of a PCR reaction. A third oligonucleotide, or probe, is designed to detect nucleotide sequence located between the two PCR primers. The probe is non-extendible by Taq DNA polymerase enzyme, and is labeled with a reporter fluorescent dye and a quencher fluorescent dye. Any laser-induced emission from the reporter dye is quenched by the quenching dye when the two dyes are located close together as they are on the probe. During the amplification reaction, the Taq DNA polymerase enzyme cleaves the probe in a template-dependent manner. The resultant probe fragments disassociate in solution, and signal from the released reporter dye is free from the quenching effect of the second fluorophore. One molecule of reporter dye is liberated for each new molecule synthesized, and detection of the unquenched reporter dye provides the basis for quantitative interpretation of the data.
TaqMan® RT-PCR can be performed using commercially available equipment, such as, for example, ABI PRISM 7700 Sequence Detection System (Perkin-Elmer-Applied Biosystems, Foster City, CA, USA), or Lightcycler (Roche Molecular Biochemicals, Mannheim, Germany). In a preferred embodiment, the 5' nuclease procedure is run on a real-time quantitative PCR device such as the ABI PRISM 7700 Sequence Detection System. The system consists of a thermocycler, laser, charge-coupled device (CCD), camera and computer. The system amplifies samples in a 96-well format on a thermocycler. During amplification, laser-induced fluorescent signal is collected in real-time through fiber optics cables for all 96 wells, and detected at the CCD. The system includes software for running the instrument and for analyzing the data.
5'-Nuclease assay data are initially expressed as Ct, or the threshold cycle. As discussed above, fluorescence values are recorded during every cycle and represent the amount of product amplified to that point in the amplification reaction. The point when the fluorescent signal is first recorded as statistically significant is the threshold cycle (Ct).
To minimize errors and the effect of sample-to-sample variation, RT-PCR is usually performed using an internal standard. The ideal internal standard is expressed at a constant level among different tissues, and is unaffected by the experimental treatment. RNAs most frequently used to normalize patterns of gene expression are mRNAs for the housekeeping genes glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) and β-action.
A more recent variation of the RT-PCR technique is the real time quantitative PCR, which measures PCR product accumulation through a dual-labeled fluorigenic probe (i.e., TaqMan® probe). Real time PCR is compatible both with quantitative competitive PCR, where internal competitor for each target sequence is used for normalization, and with quantitative comparative PCR using a normalization gene contained within the sample, or a housekeeping gene for RT-PCR. For further details see, e.g. Held et al., Genome Research 6:986-994 (1996).
The steps of a representative protocol for profiling gene expression using fixed, paraffin-embedded tissues as the RNA source, including mRNA isolation, purification, primer extension and amplification are given in various published journal articles (for example:T.E. Godfrey et al. J. Molec. Diagnostics 2: 84-91 (2000); K. Specht et al., Am. J. Pathol. 158: 419-29 (2001)). Briefly, a representative process starts with cutting about 10 µm thick sections of paraffin-embedded tumor tissue samples. The RNA is then extracted, and protein and DNA are removed. After analysis of the RNA concentration, RNA repair and/or amplification steps may be included, if necessary, and RNA is reverse transcribed using gene specific promoters followed by RT-PCR.
b.MassARRAY System
In the MassARRAY-based gene expression profiling method, developed by Sequenom, Inc. (San Diego, CA) following the isolation of RNA and reverse transcription, the obtained cDNA is spiked with a synthetic DNA molecule (competitor), which matches the targeted cDNA region in all positions, except a single base, and serves as an internal standard. The cDNA/competitor mixture is PCR amplified and is subjected to a post-PCR shrimp alkaline phosphatase (SAP) enzyme treatment, which results in the dephosphorylation of the remaining nucleotides. After inactivation of the alkaline phosphatase, the PCR products from the competitor and cDNA are subjected to primer extension, which generates distinct mass signals for the competitor- and cDNA-derives PCR products. After purification, these products are dispensed on a chip array, which is pre-loaded with components needed for analysis with matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) analysis. The cDNA present in the reaction is then quantified by analyzing the ratios of the peak areas in the mass spectrum generated. For further details see, e.g.Ding and Cantor, Proc. Natl. Acad. Sci. USA 100:3059-3064 (2003).
c.Other PCR-based Methods
Further PCR-based techniques include, for example, differential display (Liang and Pardee, Science 257:967-971 (1992)); amplified fragment length polymorphism (iAFLP) (Kawamoto et al., Genome Res. 12:1305-1312 (1999)); BeadArray™ technology (Illumina, San Diego, CA; Oliphant et al., Discovery of Markers for Disease (Supplement to Biotechniques), June 2002; Ferguson et al., Analytical Chemistry 72:5618 (2000)); BeadsArray for Detection of Gene Expression (BADGE), using the commercially available Luminex100 LabMAP system and multiple color-coded microspheres (Luminex Corp., Austin, TX) in a rapid assay for gene expression (Yang et al., Genome Res. 11:1888-1898 (2001)); and high coverage expression profiling (HiCEP) analysis (Fukumura et al., Nucl. Acids. Res. 31(16) e94 (2003)).
d.Microarrays
Differential gene expression can also be identified, or confirmed using the microarray technique. Thus, the expression profile of colon cancer-associated genes can be measured in either fresh or paraffin-embedded tumor tissue, using microarray technology. In this method, polynucleotide sequences of interest (including cDNAs and oligonucleotides) are plated, or arrayed, on a microchip substrate. The arrayed sequences are then hybridized with specific DNA probes from cells or tissues of interest. Just as in the RT-PCR method, the source of mRNA typically is total RNA isolated from human tumors or tumor cell lines, and corresponding normal tissues or cell lines. Thus RNA can be isolated from a variety of primary tumors or tumor cell lines. If the source of mRNA is a primary tumor, mRNA can be extracted, for example, from frozen or archived paraffin-embedded and fixed (e.g. formalin-fixed) tissue samples, which are routinely prepared and preserved in everyday clinical practice.
In a specific embodiment of the microarray technique, PCR amplified inserts of cDNA clones are applied to a substrate in a dense array. Preferably at least 10,000 nucleotide sequences are applied to the substrate. The microarrayed genes, immobilized on the microchip at 10,000 elements each, are suitable for hybridization under stringent conditions. Fluorescently labeled cDNA probes may be generated through incorporation of fluorescent nucleotides by reverse transcription of RNA extracted from tissues of interest. Labeled cDNA probes applied to the chip hybridize with specificity to each spot of DNA on the array. After stringent washing to remove non-specifically bound probes, the chip is scanned by confocal laser microscopy or by another detection method, such as a CCD camera. Quantitation of hybridization of each arrayed element allows for assessment of corresponding mRNA abundance. With dual color fluorescence, separately labeled cDNA probes generated from two sources of RNA are hybridized pair wise to the array. The relative abundance of the transcripts from the two sources corresponding to each specified gene is thus determined simultaneously. The miniaturized scale of the hybridization affords a convenient and rapid evaluation of the expression pattern for large numbers of genes. Such methods have been shown to have the sensitivity required to detect rare transcripts, which are expressed at a few copies per cell, and to reproducibly detect at least approximately two-fold differences in the expression levels (Schena et al., Proc. Natl. Acad. Sci. USA 93(2):106-149 (1996)). Microarray analysis can be performed by commercially available equipment, following manufacturer's protocols, such as by using the Affymetrix GenChip technology, or Incyte's microarray technology.
The development of microarray methods for large-scale analysis of gene expression makes it possible to search systematically for molecular markers of cancer classification and outcome prediction in a variety of tumor types.
e.Serial Analysis of Gene Expression (SAGE)
Serial analysis of gene expression (SAGE) is a method that allows the simultaneous and quantitative analysis of a large number of gene transcripts, without the need of providing an individual hybridization probe for each transcript. First, a short sequence tag (about 10-14 bp) is generated that contains sufficient information to uniquely identify a transcript, provided that the tag is obtained from a unique position within each transcript. Then, many transcripts are linked together to form long serial molecules, that can be sequenced, revealing the identity of the multiple tags simultaneously. The expression pattern of any population of transcripts can be quantitatively evaluated by determining the abundance of individual tags, and identifying the gene corresponding to each tag. For more details see, e.g.Velculescu et al., Science 270:484-487 (1995); andVelculescu et al., Cell 88:243-51 (1997).
f.Gene Expression Analysis by Massively Parallel Signature Sequencing (MPSS)
This method, described byBrenner et al., Nature Biotechnology 18:630-634 (2000), is a sequencing approach that combines non-gel-based signature sequencing within vitro cloning of millions of templates on separate 5 µm diameter microbeads. First, a microbead library of DNA templates is constructed byin vitro cloning. This is followed by the assembly of a planar array of the template-containing microbeads in a flow cell at a high density (typically greater than 3 x 106 microbeads/cm2). The free ends of the cloned templates on each microbead are analyzed simultaneously, using a fluorescence-based signature sequencing method that does not require DNA fragment separation. This method has been shown to simultaneously and accurately provide, in a single operation, hundreds of thousands of gene signature sequences from a yeast cDNA library.
g.Immunohistochemistry
Immunohistochemistry methods are also suitable for detecting the expression levels of the prognostic markers of the present invention. Thus, antibodies or antisera, preferably polyclonal antisera, and most preferably monoclonal antibodies specific for each marker are used to detect expression. The antibodies can be detected by direct labeling of the antibodies themselves, for example, with radioactive labels, fluorescent labels, hapten labels such as, biotin, or an enzyme such as horse radish peroxidase or alkaline phosphatase. Alternatively, unlabeled primary antibody is used in conjunction with a labeled secondary antibody, comprising antisera, polyclonal antisera or a monoclonal antibody specific for the primary antibody. Immunohistochemistry protocols and kits are well known in the art and are commercially available.
h.Proteomics
The term "proteome" is defined as the totality of the proteins present in a sample (e.g. tissue, organism, or cell culture) at a certain point of time. Proteomics includes, among other things, study of the global changes of protein expression in a sample (also referred to as "expression proteomics"). Proteomics typically includes the following steps: (1) separation of individual proteins in a sample by 2-D gel electrophoresis (2-D PAGE); (2) identification of the individual proteins recovered from the gel, e.g. my mass spectrometry or N-terminal sequencing, and (3) analysis of the data using bioinformatics. Proteomics methods are valuable supplements to other methods of gene expression profiling, and can be used, alone or in combination with other methods, to detect the products of the prognostic markers of the present invention.
i.Promoter Methylation Analysis
A number of methods for quantization of RNA transcripts (gene expression analysis) or their protein translation products are discussed herein. The expression level of genes may also be inferred from information regarding chromatin structure, such as for example the methylation status of gene promoters and other regulatory elements and the acetylation status of histones.
In particular, the methylation status of a promoter influences the level of expression of the gene regulated by that .promoter. Aberrant methylation of particular gene promoters has been implicated in expression regulation, such as for example silencing of tumor suppressor genes. Thus, examination of the methylation status of a gene's promoter can be utilized as a surrogate for direct quantization of RNA levels.
Several approaches for measuring the methylation status of particular DNA elements have been devised, including methylation-specific PCR (Herman J.G. et al. (1996) Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc. Natl Acad. Sci. USA. 93, 9821-9826.) and bisulfite DNA sequencing (Frommer M. et al. (1992) A genomic sequencing protocol that yields a positive display of 5-methylcytosine residues in individual DNA strands. Proc. Natl Acad. Sci. USA. 89, 1827-1831.). More recently, microarray-based technologies have been used to characterize promoter methylation status (Chen C.M. (2003) Methylation target array for rapid analysis of CpG island hypermethylation in multiple tissue genomes. Am. J. Pathol. 163, 37-45.).
j.Coexpression of Genes
A further aspect of the invention is the identification of gene expression clusters. Gene expression clusters can be identified by analysis of expression data using statistical analyses known in the art, including pairwise analysis of correlation based on Pearson correlation coefficients (Pearson K. and Lee A. (1902) Biometrika 2, 357).
In one embodiment, an expression cluster identified herein includes BGN, CALD1, COL1A1, COL1A2; SPARC, VIM and other genes which are known to be synthesized predominantly by stromal cells and to be involved in remodeling extracellular matrix. This expression cluster is referred to herein as the Extracellular Matrix Remodeling/Stromal cluster.
In another embodiment, an expression cluster identified herein includes ANXA2, KLK6, KLK10, LAMA3, LAMC2, MASPIN, SLPI, and other genes encoding epithelial cell secreted products, most of which are secreted predominantly by epithelial cells but which may be secreted by other cell types. This expression cluster is referred to herein as the Epithelial/Secreted cluster.
In still another embodiment, an expression cluster identified herein includes DUSP1, EGR1, EGR3, FOS, NR4A1, RHOB, and other genes whose transcription is upregulated early after exposure of cells to certain stimuli. A variety of stimuli trigger transcription of early response genes, e.g. exposure to growth factor s, which enables cells to quickly increase their motility and their ability to transport nutrients such as glucose. This expression cluster is referred to herein as the Early Response cluster.
In yet another embodiment, an expression cluster identified herein includes MCP1, CD68, CTSB, OPN, and other genes encoding proteins usually associated with cells of the immune system. This expression cluster is referred to herein as the Immune cluster.
In a further embodiment, an expression cluster identified herein includes CCNE2, CDC20, SKP2, CHK1, BRCA1, CSEL1 and other genes implicated in cell proliferation and regulation of the cell cycle. This expression cluster is referred to herein as the Proliferation/Cell Cycle cluster.
k.General Description of the mRNA Isolation, Purification and Amplification
The steps of a representative protocol for profiling gene expression using fixed, paraffin-embedded tissues as the RNA source, including mRNA isolation, purification, primer extension and amplification are provided in various published journal articles (for example:T.E. Godfrey et al,. J. Molec. Diagnostics 2: 84-91 (2000);K. Specht et al., Am. J. Pathol. 158: 419-29 (2001)). Briefly, a representative process starts with cutting about 10 µm thick sections of paraffin-embedded tumor tissue samples. The RNA is then extracted, and protein and DNA are removed. After analysis of the RNA concentration, RNA repair and/or amplification steps may be included, if necessary, and RNA is reverse transcribed using gene specific promoters followed by RT-PCR. Finally, the data are analyzed to identify the best treatment option(s) available to the patient on the basis of the characteristic gene expression pattern identified in the tumor sample examined, dependent on the predicted likelihood of cancer recurrence.
1.Colon Cancer Gene Set. Assayed Gene Subsequences, and Clinical Application of Gene Expression Data
An important aspect of the present invention is to use the measured expression of certain genes by colon cancer tissue to provide prognostic information. For this purpose it is necessary to correct for (normalize away) both differences in the amount of RNA assayed and variability in the quality of the RNA used. Therefore, the assay typically measures and incorporates the expression of certain normalizing genes, including well known housekeeping genes, such as GAPDH and Cyp1. Alternatively, normalization can be based on the mean or median signal (Ct) of all of the assayed genes or a large subset thereof (global normalization approach). On a gene-by-gene basis, measured normalized amount of a patient tumor mRNA is compared to the amount found in a colon cancer tissue reference set. The number (N) of colon cancer tissues in this reference set should be sufficiently high to ensure that different reference sets (as a whole) behave essentially the same way. If this condition is met, the identity of the individual colon cancer tissues present in a particular set will have no significant impact on the relative amounts of the genes assayed. Usually, the colon cancer tissue reference set consists of at least about 30, preferably at least about 40 different FPE colon cancer tissue specimens. Unless noted otherwise, normalized expression levels for each mRNA/tested tumor/patient will be expressed as a percentage of the expression level measured in the reference set. More specifically, the reference set of a sufficiently high number (e.g. 40) of tumors yields a distribution of normalized levels of each mRNA species. The level measured in a particular tumor sample to be analyzed falls at some percentile within this range, which can be determined by methods well known in the art. Below, unless noted otherwise, reference to expression levels of a gene assume normalized expression relative to the reference set although this is not always explicitly stated.
m.Design of Intron-Based PCR Primers and Probes
According to one aspect of the present invention, PCR primers and probes are designed based upon intron sequences present in the gene to be amplified. Accordingly, the first step in the primer/probe design is the delineation of intron sequences within the genes. This can be done by publicly available software, such as the DNA BLAT software developed byKent, W.J., Genome Res. 12(4):656-64 (2002), or by the BLAST software including its variations. Subsequent steps follow well established methods of PCR primer and probe design.
In order to avoid non-specific signals, it is important to mask repetitive sequences within the introns when designing the primers and probes. This can be easily accomplished by using the Repeat Masker program available on-line through the Baylor College of Medicine, which screens DNA sequences against a library of repetitive elements and returns a query sequence in which the repetitive elements are masked. The masked intron sequences can then be used to design primer and probe sequences using any commercially or otherwise publicly available primer/probe design packages, such as Primer Express (Applied Biosystems); MGB assay-by-design (Applied Biosystems); Primer3 (Steve Rozen and Helen J. Skaletsky (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics Methods and Protocols: Methods in Molecular Biology. Humana Press, Totowa, NJ, pp 365-386).
The most important factors considered in PCR primer design include primer length, melting temperature (Tm), and G/C content, specificity, complementary primer sequences, and 3'-end sequence. In general, optimal PCR primers are generally 17-30 bases in length, and contain about 20-80%, such as, for example, about 50-60% G+C bases. Tm's between 50 and 80 °C, e.g. about 50 to 70 °C are typically preferred.
For further guidelines for PCR primer and probe design see, e.g.Dieffenbach, C.W. et al., "General Concepts for PCR Primer Design" in: PCR Primer, A Laboratory Manual, Cold Spring Harbor Laboratory Press, New York, 1995, pp. 133-155;Innis and Gelfand, "Optimization of PCRs" in: PCR Protocols, A Guide to Methods and Applications, CRC Press, London, 1994, pp. 5-11; andPlasterer, T.N. Primerselect: Primer and probe design. Methods Mol. Biol. 70:520-527 (1997), the entire disclosures of which are hereby expressly incorporated by reference.
n.Kits of the Invention
The materials for use in the methods of the present invention are suited for preparation of kits produced in accordance with well known procedures. The invention thus provides kits comprising agents, which may include gene-specific or gene-selective probes and/or primers, for quantitating the expression of the disclosed genes for predicting prognostic outcome or response to treatment. Such kits may optionally contain reagents for the extraction of RNA from tumor samples, in particular fixed paraffin-embedded tissue samples and/or reagents for RNA amplification. In addition, the kits may optionally comprise the reagent(s) with an identifying description or label or instructions relating to their use in the methods of the present invention. The kits may comprise containers (including microtiter plates suitable for use in an automated implementation of the method), each with one or more of the various reagents (typically in concentrated form) utilized in the methods, including, for example, pre-fabricated microarrays, buffers, the appropriate nucleotide triphosphates (e.g., dATP, dCTP, dGTP and dTTP; or rATP, rCTP, rGTP and UTP), reverse transcriptase, DNA polymerase, RNA polymerase, and one or more probes and primers of the present invention (e.g., appropriate length poly(T) or random primers linked to a promoter reactive with the RNA polymerase). Mathematical algorithms used to estimate or quantify prognostic or predictive information are also properly potential components of kits.
o.Reports of the Invention
The methods of this invention, when practiced for commercial diagnostic purposes generally produce a report or summary of the normalized expression levels of one or more of the selected genes. The methods of this invention will produce a report comprising a prediction of the clinical outcome of a subject diagnosed with colorectal cancer following surgical resection of said cancer. The methods and reports of this invention can further include storing the report in a database. Alternatively, the method can further create a record in a database for the subject and populate the record with data. In one embodiment the report is a paper report, in another embodiment the report is an auditory report, in another embodiment the report is an electronic record. It is contemplated that the report is provided to a physician and/or the patient. The receiving of the report can further include establishing a network connection to a server computer that includes the data and report and requesting the data and report from the server computer.
The methods provided by the present invention may also be automated in whole or in part.
All aspects of the present invention may also be practiced such that a limited number of additional genes that are co-expressed with the disclosed genes, for example as evidenced by high Pearson correlation coefficients, are included in a prognostic or predictive test in addition to and/or in place of disclosed genes.
Having described the invention, the same will be more readily understood through reference to the following Example, which is provided by way of illustration, and is not intended to limit the invention in any way.
ExamplesA Study to Explore Relationships Between Genomic Tumor Expression Profiles and the Likelihood of Recurrence in Dukes' B and Duke's C Patients Treated With Resection of the Colon
The primary objective of this study was to determine whether there is a significant relationship between the expression of each of 757 amplicons identified in Table B and clinical outcome in stage II and stage III colon cancer patients who receive colon resection (surgery) without chemotherapy.
Study Design
This was an exploratory study using tissue and outcome data from National Surgical Adjuvant Breast and Bowel Project (NSABP) Studies C-01 and C-02 in up to 400 Dukes B (stage II) and Dukes C (stage III) patients who received colon resection (surgery) only or surgery and postoperative Bacillus Calmette-Guerin (BCG).
Inclusion Criteria
Patients enrolled in either NSABP Study C-O1: "A Clinical Trial To Evaluate Postoperative Immunotherapy And Postoperative Systemic Chemotherapy In The Management Of Resectable Colon Cancer" or NSABP Study C-02: "A Protocol To Evaluate The Postoperative Portal Vein Infusion Of 5-Flourouracil And Heparin In Adenocarcinoma Of The Colon" Details of C-01 and C-02 can be found on the NSABP Website at the following URL:
  • http://www.nsabp.pitt.edu/NSABP_Protocols.htm#treatment%20closed
Tissue samples from the surgery only and surgery + postoperative BCG arms of NSABP C01 and from the surgery only arm of NSABP CO2 surgery were combined into one sample set.
Exclusion Criteria
Patients enrolled in NSABP Study C-01 or NSABP Study C-02 were excluded from the present study if one or more of the following applied:
  • No tumor block available from initial diagnosis in the NSABP archive.■ Insufficient tumor in block as assessed by examination of hematoxylin and eosin (H&E) slide■ Insufficient RNA (<700 ng) recovered from tissue sections for RT-PCR analysis.
Of 1943 patients enrolled in NSABP Study C-01 or NSABP Study C-02, 270 patient samples were available after application of exclusion criteria and used in the gene expression study disclosed herein. The overall demographic and clinical characteristics of the 270 included samples were similar to the original NSABP combined cohorts.
Gene Panel
Seven hundred sixty-one genes, including seven reference genes, were chosen for expression analysis. These genes are listed in Table A together with the sequences of primers and probes used in qRT-PCR to determine expression level.
Experimental Materials and Methods
The expression of 750 cancer-related genes and 7 genes designated for use as reference genes was quantitatively assessed for each patient using TaqMan® RT-PCR, which was performed in singlet with RNA input at 1 nanogram per reaction.
Data Analysis MethodsReference Normalization
For normalization of extraneous effects, cycle threshold (CT) measurements obtained by RT-PCR were normalized relative to the mean expression of a set of six reference genes. The resulting reference-normalized expression measurements typically range from 0 to 15, where a one unit increase generally reflects a 2-fold increase in RNA quantity.
Comparison of Study Cohort to Original NSABP Study Populations
We compared the distribution of clinical and demographic variables for the current study cohort of evaluable tissue blocks versus the original NSABP C-01 and C-02 study populations. There were no clinically meaningful differences in the distributions.
Univariate Analysis
For each of the 757 amplicons under study, we used the Cox proportional hazard model to examine the relationship between gene expression and recurrence free interval (RFI). The likelihood ratio was used as the test of statistical significance. The method of Benjamini and Hochberg (Benjamini, Y. and Hochberg, Y. (1995). Controlling the false discovery rate: a practical and powerful approach to multiple testing. J.R. Statist. Soc. B 57, 289-300.), as well as resampling and permutation based methods (Tusher VG, Tibshirani R, Chu G (2001) Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci USA, 98:5116-5121.;Storey JD, Tibshirani R (2001) Estimating false discovery rates under dependence, with applications to DNA microarrays. Stanford: Stanford University, Department of Statistics; Report No.: Technical Report 2001-28.;Korn EL, Troendle J, McShane L, Simon R (2001) Controlling the number of false discoveries: Application to high-dimensional genomic data. Technical Report 003. 2001. National Cancer Institute.) were applied to the resulting set of p-values to estimate false discovery rates. All analyses were repeated for each of the alternative endpoints: distant recurrence free interval (DRFI), overall survival (OS), and disease free survival (DFS).
Multivariate Analysis
For each of the 757 amplicons under study, we used the Cox proportional hazard model to examine the relationship between gene expression and RFI, while controlling for the effects of other standard clinical covariates (including tumor location, surgery type, tumor grade, number of lymph nodes examined, and number of positive lymph nodes. The difference in the log likelihoods of the (reduced) model including only the standard clinical covariates and the (full) model including the standard clinical covariates plus gene expression was used as the test of statistical significance.
Non-Linear Analysis
For each of the 757 amplicons under study, we explored alternative functional relationships between gene expression and recurrence using several different methods. For each amplicon, we fit a Cox proportional hazards model of RFI as a function of gene expression using a 2 degree-of-freedom (DF) natural spline (Stone C, Koo C. (1985) In Proceedings of the Statistical Computing Section ASA. Washington, DC, 45-48). Statistical significance was assessed by the 2 DF likelihood ratio test for the model. Functional relationships were also explored by examining the pattern of (smoothed) Martingale residuals derived from univariate Cox proportional hazards models of RFI as a strictly linear function of gene expression (Gray RJ (1992) Flexible methods for analyzing survival data using splines, with applications to breast cancer prognosis. Journal of the American Statistical Asssociation, 87:942-951.;Gray RJ (1994) Spline-based tests in survival analysis. Biometrics, 50:640-652.; Gray RJ (1990) Some diagnostic methods for Cox regression models through hazard smoothing. Biometrics, 46:93-102.). Additionally, cumulative sums of Martingale residuals from each the same Cox proportional hazards models were used to detect departures from linearity (Lin D, Wei L, Ying Z. (1993) Checking the Cox Model with Cumulative Sums of Martingale-Based Residuals. Vol. 80, No. 3, 557-572).
Interaction with Stage
We determined whether there is a significantly different relationship between gene expression and RFI in stage II and stage III patients. For each of the 757 amplicons, we tested the hypothesis that there is a significant difference between the (reduced) proportional hazards model for gene expression and tumor stage versus the (full) proportional hazards model based on gene expression, tumor stage, and their interaction. The difference in the log likelihoods of the reduced and full models was used as the test of statistical significance.
Table A shows qRT-PCR probe and primer sequences for all genes included in the study described in the Example.
Table B shows target amplicons for all genes included in the study described in the Example.
First Analysis Study Results
Reference Gene set for the first analysis was CLTC, FZD6, NEDD8, RPLPO, RPS 13, UBB, UBC.
Table 1A shows associations for those genes whose increased expression is predictive of shorter Recurrence-Free Interval (RFI) based on univariate proportional hazards analysis.
Table 1B shows associations for those genes whose increased expression is predictive of longer Recurrence-Free Interval (RFI) based on univariate proportional hazards analysis.
Table 2A shows associations for those genes whose increased expression is predictive of decreased rate of Overall Survival (OS) based on univariate proportional hazards analysis.
Table 2B shows associations for those genes whose increased expression is predictive of increased rate of Overall Survival (OS) based on univariate proportional hazards analysis.
Table 3A shows associations for those genes whose increased expression is predictive of decreased rate of Disease Free Survival (DFS) based on univariate proportional hazards analysis.
Table 3B shows associations for those genes whose increased expression is predictive of increased rate of Disease Free Survival (DFS) based on univariate proportional hazards analysis.
Table 4A shows associations for those genes whose increased expression is predictive of shorter Distant Recurrence-Free Interval (DRFI) based on univariate proportional hazards analysis.
Table 4B shows associations for those genes whose increased expression is predictive of longer Distant Recurrence-Free Interval (DRFI) based on univariate proportional hazards analysis.
Table 5A shows associations between gene expression and RFI for those genes whose increased expression is predictive of shorter Recurrence-Free Interval (RFI), based on a multivariate analysis controlling for particular demographic and clinical characteristics of patients included in the analysis.
Table 5B shows associations between gene expression and RFI for those genes whose increased expression is predictive of longer Recurrence-Free Interval (RFI), based on a multivariate analysis controlling for particular demographic and clinical characteristics of patients included in the analysis.
Table 6 shows genes for which an association between gene expression and clinical outcome was identified based on a nonlinear proportional hazards analysis, using a 2 degree-of freedom natural spline.
Table 7 shows all genes exhibiting an interaction (p-value < 0.05) with tumor stage.
Table 1A shows associations between clinical outcome and gene expression for those genes which demonstrated a Hazard Ratio>1.0 and for which p<0.1. Univariate Cox Proportional Hazards Regression analysis was applied in combined Stage II (Duke's B) and Stage III (Duke's C) patients using RFI as the metric for clinical outcome.
RARB2.130.0252RARBNM_016152
ITGB11.940.0002ITGB1NM_002211
ALDOA1.920.0853ALDOANM_000034
ANXA21.90<.0001ANXA2NM_004039
CYP3A41.810.0038CYP3A4NM_017460
KRAS21.640.0043KRASNM_004985
COX21.620.0521PTGS2NM_000963
RhoC1.610.0034RHOCNM_175744
TJP11.600.0554TJP1NM_003257
RhoB1.570.0001RHOBNM_004040
KIAA01251.560.0940KIAA0125NM_014792
TIMP11.52<.0001TIMP1NM_003254
UBC1.490.0031UBCNM_021009
ANXA51.490.0084ANXA5NM_001154
NTN11.490.0386NTN1NM_004822
AKT31.47<.0001AKT3NM_005465
CALD11.460.0007CALD1NM_004342
IGFBP71.460.0019IGFBP7NM_001553
VEGFC1.450.0092VEGFCNM_005429
BGN1.440.0002BGNNM_001711
CYP1B11.440.0180CYP1B1NM_000104
DLC11.430.0012DLC1NM_006094
SI1.430.0063SINM_001041
CCNE2 variant 11.430.0506CCNE2NM_057749
LAMC21.420.0003LAMC2NM_005562
TIMP21.420.0018TIMP2NM_003255
CDC42BPA1.420.0029CDC42BPANM_003607
p211.410.0062CDKN1ANM_000389
HB-EGF1.400.0105HBEGFNM_001945
TLN11.400.0260TLN1NM_006289
DUSP11.39<.0001DUSP1NM_004417
ROCK11.390.0121ROCK1NM_005406
CTSB1.390.0307CTSBNM_001908
ITGAV1.380.0020ITGAVNM_002210
HSPG21.380.0215HSPG2NM_005529
GADD45B1.370.0002GADD45BNM_015675
VCL1.370.0201VCLNM_003373
SBA21.370.0250WSB2NM_018639
Maspin1.36<.0001SERPINB5NM_002639
CGB1.360.0018CGBNM_000737
TIMP31.360.0024TIMP3NM_000362
VIM1.360.0073VIMNM_003380
S100A11.360.0247S100A1NM_006271.
INHBA1.350.0008INHBANM_002192
SIR21.350.0039SIRT1NM_012238
TMSB101.350.0469TMSB10NM_021103
CD681.340.0036 ,CD68NM_001251
RBX11.340.0469RBX1NM_014248
INHBB1.340.0514INHBBNM_002193
PKR21.340.0628PKM2NM_002654
FOS1.330.0006FOSNM_005252
FYN1.330.0036FYNNM_002037
LOXL21.330.0064LOXL2NM_002318
STC11.330.0101STC1NM_003155
DKK11.330.0208DKK1NM_012242
IGFBP51.320.0064IGFBP5NM_000599
EPAS11.320.0270EPAS1NM_001430
UNC5C1.320.0641UNC5CNM_003728
FAP1.310.0017FAPNM_004460
IGFBP31.310.0041IGFBP3NM_000598
SNA121.310.0055SNAI2NM_003068
PRKCA1.310.0065PRKCANM_002737
FST1.310.0399FSTNM_006350
KCNH2 iso a/b1.310.0950KCNH2NM_000238
CTHRC11.300.0017CTHRC1NM_138455
PDGFC1.300.0034PDGFCNM_016205
EGR11.300.0048EGR1NM_001964
TAGLN1.300.0058TAGLNNM_003186
SPARC1.300.0104SPARCNM_003118
KLF61.300.0514KLF6NM_001300
GRIK11.300.0753GRIK1NM_000830
CYR611.290.0018CYR61NM_001554
SLPI1.290.0026SLPINM_003064
COL1A21.290.0076COL1A2NM_000089
MAPK141.290.0916MAPK14NM_139012
LAMA31.280.0020LAMA3NM_000227
THBS11.280.0053THBS1NM_003246
NRP21.280.0120NRP2NM_003872
LOX1.270.0028LOXNM_002317
S100A41.270.0067S100A4NM_002961
CXCR41.270.0083CXCR4NM_003467
CEBPB1.270.0943CEBPBNM_005194
AKAP121.260.0044AKAPI2NM_005100
ADAMTS121.260.0100ADAMTS12NM_030955
CRYAB1.250.0038CRYABNM_001885
Grb101.250.0108GRB10NM_005311
MCP11.250.0118CCL2NM_002982
COL1A11.250.0167COL1A1NM_000088
EFNB21.250.0241EFNB2NM_004093
ANXA11.250.0292ANXA1NM_000700
ANGPT21.250.0485ANGPT2NM_001147
EphB61.250.0825EPHB6NM_004445
HSPA1A1.240.0018HSPA1ANM_005345
TGFB31.240.0081TGFB3NM_003239
PTGER31.240.0306PTGER3NM_000957
FXYD51.240.0367FXYD5NM_014164
CAPG1.240.0604CAPGNM_001747
PDGFB1.230.0157PDGFBNM_002608
ANTXR11.230.0164ANTXR1NM_032208
TGFBI1.230.0191TGFBINM_000358
CTGF1.230.0233CTGFNM_001901
PDGFA1.230.0274NM_002607
P14ARF1.230.0362S78535
KLK101.220.0005KLK10NM_002776
ITGA51.220.0178ITGA5NM_002205
GBP21.220.0201GBP2NM_004120
SIAT4A1.220.0231ST3GAL1NM_003033
GJB21.220.0271GJB2NM_004004
LAT1.220.0306LATNM_014387
CTSL1.220.0331CTSLNM_001912
DAPK11.220.0384DAPK1NM_004938
SKP1A1.220.0542SKP1ANM_006930
NDRG11.220.0712NDRG1NM_006096
ITGB51.220.0991ITGB5NM_002213
KLK61.210.0034KLK6NM_002774
SFRP21.210.0037SFRP2NM_003013
TMEPAI1.210.0173TMEPAINM_020182
ID41.210.0530ID4NM_001546
SFRP41.200.0077SFRP4NM_003014
HOXB71.200.0274HOXB7NM_004502
GJA11.200.0311GJA1NM_000165
CDHI11.200.0662CDH11NM_001797
PAI11.190.0060SERPINE1NM_000602
S100P1.190.0119S100PNM_005980
EGR31.190.0164EGR3NM_004430
EMP11.190.0460EMP1NM_001423
ABCC51.190.0536ABCC5NM_005688
FZD11.190.0701FZD1NM_003505
MAD1.190.0811MXD1NM_002357
EFNA11.190.0920EFNA1NM_004428
OPN_ osteopontin1.180.0028SPP1NM_000582
ALDH1A11.180.0246ALDH1A1NM_000689
NR4A11.180.0277NR4A1NM_002135
SIAT7B1.180.0301ST6GALNAC2NM_006456
p16-INK41.180.0439L27211
TUBB1.180.0761TUBB2NM_001069
IL61.180.0939IL6NM_000600
RAB321.180.0948RAB32NM_006834
TULP31.180.0953TULP3NM_003324
F31.170.0561F3NM_001993
PLK31.160.0792PLK3NM_004073
EPHA21.160.0962EPHA2NM_004431
SLC2A11.150.0745SLC2A1NM_006516
CXCL121.140.0911CXCL12NM_000609
S100A21.130.0287S100A2NM_005978
FABP41.130.0340FABP4NM_001442
STMY31.130.0517MMP11NM_005940
BCAS1.1.130.0939BCAS1NM_003657
REG41.110.0026REG4NM_032044
pS21.090.0605TFF1NM_003225
MUC21.060.0626MUC2NM_002457
Table 1B shows associations between clinical outcome and gene expression for those genes which demonstrated a Hazard Ratio<1.0 and for which p<0.1. Univariate Cox Proportional Hazards Regression analysis was applied in combined Stage II (Duke's B) and Stage III (Duke's C) patients using RFI as the metric for clinical outcome.
ORC1L0.420.0728ORC1LNM_004153
HSPA80.620.0430HSPA8NM_006597
E2F10.640.0009E2F1NM_005225
RAD54L0.650.0026RAD54LNM_003579
RPLPO0.670.0150RPLPONM_001002
BRCA10.680.0001BRCA1NM_007295
DHFR0.690.0096DHFRNM_000791
SLC25A30.690.0110SLC25A3NM_213611
PPM1D0.710.0033PPM1DNM_003620
SKP20.710.0098SKP2NM_005983
FASN0.720.0071FASNNM_004104
HNRPD0.720.0686HNRPDNM_031370
ENO10.730.0418ENO1NM_001428
RPS130.750.0786RPS13NM_001017
DDB10.750.0804DDB1NM_001923
C20 orf10.760.0122TPX2NM_012112
KIF220.760.0137KIF22NM_007317
Chk10.760.0174CHEK1NM_001274
TCF-10.770.0021TCF1NM_000545
ST140.770.0446ST14NM_021978
RRM10.770.0740RRM1NM_001033
BRCA20.770.0800BRCA2NM_000059
LMNB10.780.0513LMNB1NM_005573
CMYC0.790.0086MYCNM_002467
CDC200.790.0290CDC20NM_001255
CSEL10.790.0344CSE1LNM_001316
Bax0.790.0662BAXNM_004324
NME10.790.0742NME1NM_000269
c-myb (MYB official)0.800.0077MYBNM_005375
CDCA7 v20.800.0159CDCA7NM_145810
EFP0.800.0405TRIM25NM_005082
UBE2M0.800.0437UBE2MNM_003969
RRM20.810.0168RRM2NM_001034
ABCC60.810.0373ABCC6NM_001171
SURV0.810.0584BIRC5NM_001168
CKS20.810.0753CKS2NM_001827
RAF10.810.0899RAF1NM_002880
EPHB20.820.0190EPHB2NM_004442
NOTCH10.820.0232NOTCH1NM_017617
UMPS0.820.0456UMPSNM_000373
CCNE20.820.0544CCNE2NM_057749
PI3KC2A0.820.0916PIK3C2ANM_002645
CD800.820.0954CD80NM_005191
AREG0.830.0014AREGNM_001657
EREG0.830.0062EREGNM_001432
MYBL20.830.0259MYBL2NM_002466
ABCB10.830.0322ABCB1NM_000927
HRAS0.830.0760HRASNM_005343
SLC7A50.840.0585SLC7A5NM_003486
MAD2L10.840.0590MAD2L1NM_002358
Ki-670.850.0620MKI67NM_002417
MCM20.850.0700MCM2NM_004526
FNG50.850.0947FNG5NM_032329
Cdx20.880.0476CDX2NM_001265
PTPRO0.890.0642PTPRONM_030667
cripto (TDGF1 official)0.900.0803TDGF1NM_003212
Table 2A shows associations between clinical outcome and gene expression for those genes which demonstrated a Hazard Ratio>1.0 and for which p<0.1. Univariate Cox Proportional Hazards Regression analysis was applied in combined Stage II (Duke's B) and Stage III (Duke's C) patients using OS as the metric for clinical outcome.
RARB1.750.0820RARBNM_016152
RhoC1.700.0001RHOCNM_175744
ANXA21.640.0002ANXA2NM_004039
CYP3A41.580.0064CYP3A4NM_017460
p211.54<.0001CDKN1ANM_000389
ITGB11.540.0058ITGB1NM_002211
UBC1.500.0003UBCNM_021009
TNF1.460.0859TNFNM_000594
VEGFC1.440.0049VEGFCNM_005429
HMLH1.440.0435MLH1NM_000249
RhoB1.370.0015RHOBNM_004040
TGFBR11.370.0127TGFBR1NM_004612
SPINT21.370.0235SPINT2NM_021102
PFN11.370.0842PFN1NM_005022
HSPG21.360.0115HSPG2NM_005529
TIMP11.350.0008TIMP1NM_003254
INHBB1.350.0190INHBBNM_002193
VCL1.340.0099VCLNM_003373
KCNH2 iso a/b1.330.0362KCNH2NM_000238
LAMC21.320.0005LAMC2NM_005562
FXYD51.310.0021FXYD5NM_014164
HLA-G1.310.0458HLA-GNM_002127
GADD45B1.300.0002GADD45BNM_015675
CDC42 .1.300.0120CDC42NM_001791
LAMB31.300.0163LAMB3NM_000228
DKK11.300.0209DKK1NM_012242
UNC5C1.300.0452UNC5CNM_003728
UBL11.290.0171SUMO1NM_003352
HB-EGF1.290.0262HBEGFNM_001945
KRAS21.290.0726KRASNM_004985
ID31.280.0023ID3NM_002167
LOXL21.280.0039LOXL2NM_002318
EphB61.280.0322EPHB6NM_004445
DUSP11.270.0003DUSP1NM_004417
BGN1.270.0040BGNNM_001711
CALD11.270.0119CALD1NM_004342
CDC42BPA1.270.0151CDC42BPANM_003607
SBA21.270.0373WSB2NM_018639
INHBA1.260.0018INHBANM_002192
NRP11.260.0113NRP1NM_003873
TIMP21.260.0123TIMP2NM_003255
KLF61.260.0444KLF6NM_001300
KLK101.25<.0001KLK10NM_002776
TIMP31.250.0083TIMP3NM_000362
CAPG1.250.0170CAPGNM_001747
IGFBP71.250.0249IGFBP7NM_001553
S100A11.250.0529S100A1NM_006271
SHC11.250.0605SHC1NM_003029
CTSB1.250.0766CTSBNM_001908
ANXA51.250.0787ANXA5NM_001154
PKR21.250.0800PKM2NM_002654
HSPA1A1.240.0003HSPA1ANM_005345
CGB1.240.0148CGBNM_000737
DLC11.240.0231DLC1NM_006094
TMSB101.240.0890TMSB10NM_021103
LAMA31.230.0017LAMA3NM_000227
FOS1.230.0028FOSNM_005252
SNAI21.230.0123SNAI2NM_003068
SPARC1.230.0134SPARCNM_003118
SIR21.230.0173SIRTINM_012238
KRT191.230.0217KRT19NM_002276
CTSD1.230.0395CTSDNM_001909
EPAS11.230.0409EPAS1NM_001430
GAGE41.230.0468GAGE4NM_001474
BMP41.220.0024BMP4NM_001202
PLK31.220.0056PLK3NM_004073
Grb101.220.0059GRB10NM_005311
FYN1.220.0120FYNNM_002037
STC11.220.0409STC1NM_003155
G-Catenin1.220.0661JUPNM_002230
HK11.220.0872HK1NM_000188
MADH41.220.0956SMAD4NM_005359
KLK61.210.0011KLK6NM_002774
CTHRC11.210.0065CTHRC1NM_138455
LAT1.210.0146LATNM_014387
IGFBP31.210.0149IGFBP3NM_000598
AKT31.210.0212AKT3NM_005465
HSPA1B1.210.0262HSPA1BNM_005346
THY11.210.0278THY1NM_006288
ANXA11.210.0322ANXA1NM_000700
LOX1.200.0067LOXNM_002317
CD681.200.0223CD68NM_001251
EFNB21.200.0268EFNB2NM_004093
DYRK1B1.200.0473DYRK1BNM_004714
PTK21.200.0889PTK2NM_005607
THBS11.190.0203THBS1NM_003246
TAGLN1.190.0263TAGLNNM_003186
TULP31.190.0334TULP3NM_003324
SR-A11.190.0387SR-A1NM_021228
APC1.190.0433APCNM_000038
ERK11.190.0488Z11696
VIM1.190.0661VIMNM_003380
CREBBP1.190.0802CREBBPNM_004380
ANGPT21.190.0860ANGPT2NM_001147
Maspin1.180.0029SERPINB5NM_002639
PDGFB1.180.0252PDGFBNM_002608
S100A41.180.0270S100A4NM_002961
EGR11.180.0334EGR1NM_001964
IGFBP51.180.0526IGFBP5NM_000599
NOTCH21.180.0527NOTCH2NM_024408
PAI11.170.0036SERPINE1NM_000602
NR4A11.170.0110NR4A1NM_002135
BCAS11.170.0137BCAS1NM_003657
BRK1.170.0137PTK6NM_005975
AKAP121.170.0195AKAP12NM_005100
EMP11.170.0291EMP1NM_001423
SIAT4A1.170.0304ST3GAL1NM_003033
MRP31.170.0334ABCC3NM_003786
COL1A11.170.0399COL1A1NM_000088
Upa1.170.0588PLAUNM_002658
UNC5B1.170.0986UNC5BNM_170744
PDGFC1.160.0355PDGFCNM_016205
MCP11.160.0449CCL2NM_002982
CTGF1.160.0576CTGFNM_001901
COL1A21.160.0612COL1A2NM_000089
RAB321.160.0645RAB32NM_006834
SIN3A1.160.0787SIN3ANM_015477
SKP1A1.160.0837SKP1ANM_006930
EFNA11.160.0957EFNA1NM_004428
S100A21.150.0040S100A2NM_005978
MMP71.150.0374MMP7NM_002423
HOXB71.150.0405HOXB7NM_004502
FAP1.150.0455FAPNM_004460
ANTXR11.150.0482ANTXR1NM_032208
TGFBI1.150.0553TGFBINM_000358
TMEPAI1.140.0435TMEPAINM_020182
CYR611.140.0490CYR61NM_001554
SLPI1.140.0724SLPINM_003064
TP53131.140.0831TP5313NM_004881
PDGFA1.140.0845NM_002607
SFRP21.130.0255SFRP2NM_003013
S100A81.130.0693S100A8NM_002964
F31.130.0708F3NM_001993
Bcl21.130.0962BCL2NM_000633
OPN_osteopontin1.120.0097SPP1NM_000582
FZD61.120.0692FZD6NM_003506
OSM1.110.0744OSMNM_020530
EGLN31.110.0884EGLN3NM_022073
SIAT7B1.110.0938ST6GALNAC2NM_006456
FABP41.100.0454FABP4NM_001442
EFNA31.100.0958EFNA3NM_004952
MMP21.100.0969MMP2NM_004530
GSTT11.090.0737GSTT1NM_00853
REG41.070.0286REG4NM_032044
Table 2B shows associations between clinical outcome and gene expression for those genes which demonstrated a Hazard Ratio<1.0 and for which p<0.1. Univariate Cox Proportional Hazards Regression analysis was applied in combined Stage II (Duke's B) and Stage III (Duke's C) patients using OS as the metric for clinical outcome.
HSPA80.620.0145HSPA8NM_006597
SKP20.700.0010SKP2NM_005983
DHFR0.740.0085DHFRNM_000791
PRDX40.740.0197PRDX4NM_006406
RRM10.750.0162RRM1NM_001033
SLC25A30.750.0342SLC25A3NM_213611
RPLPO0.750.0416RPLP0NM_001002
E2F10.780.0190E2F1NM_005225
SURV0.790.0086BIRC5NM_001168
c-myb (MYB official)0.800.0020MYBNM_005375
BRCA10.800.0077BRCA1NM_007295
Chkl0.800.0186CHEK1NM_001274
ST140.800.0407ST14NM_021978
TCF-10.810.0045TCF1NM_000545
CCNE20.810.0112CCNE2NM_057749
PPM1D0.810.0194PPM1DNM_003620
CDC200.810.0213CDC20NM_001255
E1240.810.0585EI24NM_004879
C20 orf10.820.0348TPX2NM_012112
DUT0.830.0396DUTNM_001948
CD44E0.830.0439X55150
KIF220.830.0506KIF22NM_007317
PPID0.830.0615PPIDNM_005038
UBE2M0.830.0805UBE2MNM_003969
LMNB10.830.0868LMNB1NM_005573
MCM20.840.0207MCM2NM_004526
CDC60.840.0218CDC6NM_001254
MRPL400.840.0769MRPL40NM_003776
EPHB20.850.0253EPHB2NM_004442
CMYC0.850.0371MYCNM_002467
AURKB0.850.0375AURKBNM_004217
CDCA7 v20.850.0421CDCA7NM_145810
ABCB10.860.0390ABCB1NM_000927
SMARCA30.860.0601SMARCA3NM_003071
Cdx20.880.0166CDX2NM_001265
PPARG0.880.0645PPARGNM_005037
MYBL20.880.0647MYBL2NM_002466
EREG0.890.0411EREGNM_001432
AREG0.900.0235AREGNM_001657
Table 3A shows associations between clinical outcome and gene expression for those genes which demonstrated a Hazard Ratio> 1.0 and for which p<0.1. Univariate Cox Proportional Hazards Regression analysis was applied in combined Stage II (Duke's B) and Stage III (Duke's C) patients using DFS as the metric for clinical outcome.
ANXA21.74<.0001ANXA2NM_004039
CYP3A41.690.0020CYP3A4NM_017460
RhoC1.530.0009RHOCNM_175744
TJP11.450.0787TJP1NM_003257
UBC1.430.0007UBCNM_021009
p211.420.0004CDKN1ANM_000389
HB-EGF1.390.0032HBEGFNM_001945
SPINT21.370.0154SPINT2NM_021102
HMLH1.360.0711MLH1NM_000249
VEGFC1.350.0157VEGFCNM_005429
PKR21.340.0187PKM2NM_002654
LAMC21.330.0002LAMC2NM_005562
ITGB11.330.0499ITGB1NM_002211
TIMP11.320.0007TIMP1NM_003254
VCL1.310.0114VCLNM_003373
INHBB1.310.0302INHBBNM_002193
GADD45B1.30<.0001GADD45BNM_015675
RhoB1.300.0053RHOBNM_004040
DUSP11.28<.0001DUSP1NM_004417
HK11.280.0297HK1NM_000188
GRIK11.280.0364GRIK1NM_000830
FOS1.270.0002FOSNM_005252
CGB1.270.0126CGBNM_000737
KLF61.270.0288KLF6NM_001300
ANXA51.270.0504ANXA5NM_001154
KRAS21.270.0724KRASNM_004985
INHBA1.260.0009INHBANM_002192
DLC11.260.0096DLC1NM_006094
IGFBP71.260.0116IGFBP7NM_001553
BGN1.250.0039BGNNM_001711
LOXL21.250.0076LOXL2NM_002318
STC11.250.0135STC1NM_003155
CTSD1.250.0208CTSDNM_001909
HSPG21.250.0485HSPG2NM_005529
KCNH2 iso a/b1.250.0832KCNH2NM_000238
TIMP31.240.0057TIMP3NM_000362
FXYD51.240.0070FXYD5NM_014164
A-Catenin1.240.0447CTNNA1NM_001903
LOX1.230.0013LOXNM_002317
EGR11.230.0037EGR1NM_001964
CAPG1.230.0191CAPGNM_001747
LAMB31.230.0377LAMB3NM_000228
GAGE41.230.0402GAGE4NM_001474
SHC11.230.0640SHC1NM_003029
MVP1.230.0726MVPNM_017458
VEGF1.220.0250VEGFNM_003376
UNC5B1.220.0256UNC5BNM_170744
CDC42BPA1.220.0297CDC42BPANM_003607
SBA21.220.0614WSB2NM_018639
DKK11.220.0689DKK1NM_012242
EphB61.220.0763EPHB6NM_004445
IGFBP31.210.0078IGFBP3NM_000598
HSPA1B1.210.0167HSPA1BNM_005346
CALD11.210.0277CALD1NM_004342
TIMP21.210.0309TIMP2NM_003255
NR4A11.200.0023NR4A1NM_002135
LAMA31.200.0028LAMA3NM_000227
SIAT4A1.200.0082ST3GAL1NM_003033
PDGFB1.200.0084PDGFBNM_002608
EMP11.200.0107BMP1NM_001423
THBS11.200.0126THBS1NM_003246
CD681.200.0143CD68NM_001251
FYN1.200.0151FYNNM_002037
TULP31.200.0213TULP3NM_003324
EFNA11.200.0254EFNA1NM_004428
SIR21.200.0255SIRT1NM_012238
G-Catenin1.200.0689JUPNM_002230
S100A11.200.0998S100A1NM_006271
Maspin1.190.0013SERPINB5NM_002639
HSPA1A1.190.0013HSPA1ANM_005345
SPARC1.190.0359SPARCNM_003118
PTHR11.190.0801PTHR1NM_000316
SNA121.180.0353SNA12NM_003068
KRT191.180.0419KRT19NM_1002276
ERK11.180.0459Z11696
KLK101.170.0007KLK10NM_002776
BMP41.170.0121BMP4NM_001202
CYR611.170.0127CYR61NM_001554
Grb101.170.0216GRB10NM_005311
PLK31.170.0242PLK3NM_004073
EFNB21.170.0403EFNB2NM_004093
P14ARF1.170.0439S78535
ID31.170.0446ID3NM_002167
IGFBP51.170.0503IGFBP5NM_000599
THY11.170.0574THY1NM_006288
VIM1.170.0858VIMNM_003380
EPAS11.170.0897EPAS1NM_001430
PAI11.160.0039SERPINE1NM_000602
F31.160.0172F3NM_001993
CTHRC11.160.0181CTHRC1NM_138455
ANTXR11.160.0237ANTXR1NM_032208
FAP1.160.0289FAPNM_004460
ADAMTS121.160.0350ADAMTS12NM_030955
CTGF1.160.0424CTGFNM_001901
PTGER31.160.0569PTGER3NM_000957
ANXA11.160.0699ANXA1NM_000700
NRP11.160.0797NRP1NM_003873
NDRG11.160.0856NDRG1NM_006096
KLK61.150.0092KLK6NM_002774
EGR31.150.0153EGR3NM_004430
HOXB71.150.0345HOXB7NM_004502
PDGFC1.150.0363PDGFCNM_016205
Herstatin1.150.0403AF177761
MCP11.150.0409CCL2NM_002982
TGFBI1.150.0437TGFBINM_000358
TP53131.150.0438TP53I3NM_004881
SLPI1.150.0457SLPINM_003064
PLAUR1.150.0471PLAURNM_002659
GJB21.150.0610GJB2NM_004004
COL1A11.150.0647COL1A1NM_000088
IL61.150.0790IL6NM_000600
APC1.150.0821APCNM_000038
S100A21.140.0048S100A2NM_005978
TMEPAI1.140.0300TMEPAINM_020182
PDGFA1.140.0644NM_002607
S100A41.140.0680S100A4NM_002961
TAGLN1.140.0820TAGLNNM_003186
Upa1.140.0823PLAUNM_002658
COL1A21.140.0856COL1A2NM_000089
OSM1.130.0299OSMNM_020530
BRK1.130.0479PTK6NM_005975
SEMA3B1.130.0525SEMA3BNM_004636
OPN_osteopontin1.120.0084SPP1NM_000582
S100P1.120.0283S100PNM_005980
SFRP21.120.0291SFRP2NM_003013
EGLN31.120.0465EGLN3NM_022073
SIAT7B1.120.0570ST6GALNAC2NM_006456
MMP71.120.0743MMP7NM_002423
FABP41.110.0195FABP4NM_001442
AKAP121.110.0899AKAP12NM_005100
EFNA31.100.0684EFNA3NM_004952
SFRP41.100.0684SFRP4NM_003014
CRYAB1.100.0987CRYABNM_001885
GSTT11.090.0457GSTT1NM_000853
REG41.080.0074REG4NM_032044
pS21.080.0302TFF1NM_003225
MUC5B1.080.0401MUC5BXM_039877
IGFBP21.080.0873IGFBP2NM_000597
Table 3B shows associations between clinical outcome and gene expression for those genes which demonstrated a Hazard Ratio<1.0 and for which p<0.1. Univariate Cox Proportional Hazards Regression analysis was applied in combined Stage II (Duke's B) and Stage III (Duke's C) patients using DFS as the metric for clinical outcome.
HSPA80.700.0487HSPA8NM_006597
SLC25A30.710.0084SLC25A3NM_213611
E2F10.730.0019E2F1NM_005225
SKP20.730.0038SKP2NM_005983
PPM1D0.750.0008PPM1DNM_003620
RRM10.760.0161RRM1NM_001033
RPLPO0.760.0388RPLP0NM_001002
NPM10.780.0223NPM1NM_002520
DDB10.780.0673DDB1NM_001923
PRDX40.790.0526PRDX4NM_006406
BRCA10.800.0051BRCA1NM_007295
Chk10.800.0114CHEK1NM_001274
SURV0.810.0155BIRC5NM_001168
C20 orfl0.810.0195TPX2NM_012112
EI240.810.0382EI24NM_004879
RAD54L0.810.0501RAD54LNM_003579
DHFR0.810.0530DHFRNM_000791
c-myb (MYB official)0.820.0029MYBNM_005375
CCNE20.820.0109CCNE2NM_057749
KIF220.820.0235KIF22NM_007317
HMGB10.820.0849HMGB1NM_002128
LMNB10.830.0665LMNB1NM_005573
CDCA7 v20.840.0224CDCA7NM_145810
CDC200.840.0461CDC20NM_001255
FASN0.840.0797FASNNM_004104
ABCB10.850.0157ABCB1NM_000927
MCM20.850.0183MCM2NM_004526
DUT0.850.0469DUTNM_001948
KIF2C0.850.0786KIF2CNM_006845
MCM60.850.0791MCM6NM_005915
EIF4E0.850.0863EIF4ENM_001968
EPHB20.860.0271EPHB2NM_004442
RCC10.860.0444RCC1NM_001269
EFP0.860.0760TRIM25NM_005082
AREG0.870.0029AREGNM_001657
CMYC0.870.0483MYCNM_002467
GCLC0.870.0824GCLCNM_001498
TCF-10.880.0520TCF1NM_000545
MYBL20.880.0527MYBL2NM_002466
EREG0.890.0237EREGNM_001432
Cdx20.900.0353CDX2NM_001265
PTPRO0.920.0896PTPRONM_030667
cripto (TDGF1 official)0.920.0913TDGF1NM_003212
HLA-DRB10.930.0536HLA-DRB1NM_002124
Table 4A shows associations between clinical outcome and gene expression for those genes which demonstrated a Hazard Ratio> 1.0 and for which p<0.1. Univariate Cox Proportional Hazards Regression analysis was applied in combined Stage II (Duke's B) and Stage III (Duke's C) patients using DRFI as the metric for clinical outcome.
ALDOA3.370.0106ALDOANM_000034
DCK2.740.0130DCKNM_000788
ITGB12.50<.0001ITGB1NM_002211
COX22.150.0128PTGS2NM_000963
TJP12.120.0072TJP1NM_003257
STAT31.980.0062STAT3NM_003150
HMLH1.930.0087MLH1NM_000249
CYP3A41.900.0092CYP3A4NM_017460
RhoC1.890.0033RHOCNM_175744
ANXA21.870.0025ANXA2NM_004039
TIMP11.83<.0001TIMP1NM_003254
WWOX1.810.0288WWOXNM_016373
ANXA51.800.0029ANXA5NM_001154
FUS1.790.0179FUSNM_004960
PADI41.780.0168PADI4NM_012387
RBX11.710.0082RBX1NM_014248
CRIP21.710.0343CRIP2NM_001312
HB-EGF1.690.0013HBEGFNM_001945
KCNH2 iso a/b1.690.0070KCNH2NM_000238
SBA21.680.0066WSB2NM_018639
RhoB1.670.0010RHOBNM_004040
VIM1.660.0010VIMNM_003380
LILRB31.660.0227LILRB3NM_006864
UBC1.640.0051UBCNM_021009
p211.630.0032CDKN1ANM_000389
CCNE2 variant 11.620.0363CCNE2NM_057749
RAB6C1.610.0107RAB6CNM_032144
MSH31.610.0213MSH3NM_002439
AKT31.590.0003AKT3NM_005465
P13K1.580.0552PIK3C2BNM_002646
RAP1GDS11.570.0154RAP1GDS1NM_021159
CTSB1.570.0250CTSBNM_001908
PRDX61.570.0770PRDX6NM_004905
NRP21.560.0005NRP2NM_003872
DLC11.560.0026DLC1NM_006094
BGN1.550.0006BGNNM_001711
SIR21.550.0016SIRT1NM_012238
CALD11.530.0046CALD1NM_004342
YWHAH1.530.0429YWHAHNM_003405
CDC421.520.0207CDC42NM_001791
ITGA51.510.0004ITGA5NM_002205
KLF61.510.0197KLF6NM_001300
TLN11.510.0414TLN1NM_006289
LAMC21.490.0017LAMC2NM_005562
STC11.490.0040STC1NM_003155
CDC42BPA1.490.0109CDC42BPANM_003607
RBM51.490.0184RBM5NM_005778
INHBB1.490.0310INHBBNM_002193
TGFBR11.490.0502TGFBR1NM_004612
ADAM101.490.0819ADAM10NM_001110
CEBPB1.480.0399CEBPBNM_005194
AKT11.480.0846AKT1NM_005163
FYN1.470.0036FYNNM_002037
ARG1.470.0067ABL2NM_005158
HIF1A1.470.0221HIF1ANM_001530
S100A11.470.0293S100A1NM_006271
KRAS21.470.0958KRASNM_004985
CTHRC11.460.0008CTHRC1NM_138455
IGFBP71.460.0173IGFBP7NM_001553
ROCK11.460.0326ROCK1NM_005406
VEGFC1.460.0516VEGFCNM_005429
EPAS11.450.0316EPAS1NM_001430
DUSP11.440.0008DUSP1NM_004417
FST1.440.0340FSTNM_006350
GADD45B1.430.0013GADD45BNM_015675
FLT41.430.0663FLT4NM_002020
PTEN1.430.0760PTENNM_000314
FAP1.420.0017FAPNM_004460
PDGFC1.420.0033PDGFCNM_016205
LOXL21.420.0115LOXL2NM_002318
Pak11.420.0846PAK1NM_002576
Grb101.410.0020GRB10NM_005311
INHBA1.410.0036INHBANM_002192
GJA11.410.0039GJA1NM_000165
CTGF1.410.0053CTGFNM_001901
COL1A21.410.0057COL1A2NM_00089
PTK21.400.0496PTK2NM_005607
THBS11.390.0059THBS1NM_003246
RANBP91.390.0333RANBP9NM_005493
RANBP21.390.0988RANBP2NM_006267
ITGAV1.380.0210ITGAVNM_002210
TIMP21.380.0285TIMP2NM_003255
PTHR11.380.0297PTHR1NM_000316
GADD451.380.0340GADD45ANM_001924
c-abl1.380.0526ABL1NM_005157
EGR11.370.0097EGR1NM_001964
NCAM11.370.0657NCAM1NM_000615
VCL1.370.0845VCLNM_003373
LOX1.360.0026LOXNM_002317
SNAI21.360.0178SNAI2NM_003068
SPARC1.360.0198SPARCNM_003118
CDH111.360.0233CDH11NM_001797
NFKBp501.360.0767NFKB1NM_003998
CYR611.350.0065CYR61NM_001554
S100A41.350.0104S100A4NM_002961
TAGLN1.350.0168TAGLNNM_003186
PCAF1.340.0327PCAFNM_003884
NOTCH21.340.0390NOTCH2NM_024408
LRP51.340.0722LISP5NM_002335
SI1.340.0787SINM_001041
GBP21.330.0139GBP2NM_004120
Bcl21.330.0143BCL2NM_000633
MCP11.330.0159CCL2NM_002982
EPHA21.330.0184EPHA2NM_004431
PRKCA1.330.0329PRKCANM_002737
TIMP31.330.0337TIMP3NM_000362
ANGPT21.330.0476ANGPT2NM_001147
CTSD1.330.0766CTSDNM_001909
SEMA3F1.330.0931SEMA3FNM_004186
BCAS11.320.0044BCAS1NM_003657
ANXA11.320.0458ANXA1NM_000700
KRT191.320.0535KRT19NM_002276
PTPRJ1.320.0618PTPRJNM_002843
CAPG1.320.0641CAPGNM_001747
FOS1.310.0129FOSNM_005252
COL1A11.310.0236COL1A1NM_000088
CXCR41.310.0251CXCR4NM_003467
TUBB1.310.0354TUBB2NM_001069
PIM11.310.0373PIM1NM_002648
IGFBP51.310.0477IGFBP5NM_000599
AP-1 (JUN official)1.310.0519JUNNM_002228
GCNT11.310.0534GCNT1NM_001490
MAX1.310.0650MAXNM_002382
PAI11.300.0017SERPINE1NM_000602
SLP11.300.0176SLPINM_003064
IGFBP31.300.0320IGFBP3NM_000598
DAPK11.300.0402DAPK1NM_004938
ID31.300.0442ID3NM_002167
EFNA11.300.0623EFNA1NM_004428
AKAP121.290.0162AKAP12NM_005100
PDGFB1.290.0242PDGFBNM_002608
CD681.290.0524CD68NM_001251
FGFR11.290.0709FGFR1NM_023109
GSK3B1.290.0765GSK3BNM_002093
CXCL121.280.0129CXCL12NM_000609
DPYD1.280.0186DPYDNM_000110
LAMA31.280.0193LAMA3NM_000227
MRP31.280.0384ABCC3NM_003786
ABCC51.280.0402ABCC5NM_005688
PDGFA1.280.0482NM_002607
XPA1.280.0740XPANM_000380
NDRG11.280.0786NDRG1NM_006096
FES1.270.0458FESNM_002005
CTSL1.270.0485CTSLNM_001912
IL61.270.0606IL6NM_000600
SFRP21.260.0085SFRP2NM_003013
Maspin1.260.0096SERPINB5NM_002639
TGFBI1.260.0470TGFBINM_000358
NOS31.260.0978NOS3NM_000603
HSPA1A1.250.0161HSPA1ANM_005345
S100A81.250.0180S100A8NM_002964
HOXB71.250.0396HOXB7NM_004502
P14ARF1.250.0697S78535
WISP11.250.0712WISP1NM_003882
ID41.250.0883ID4NM_001546
SFRP41.240.0200SFRP4NM_003014
FZD61.240.0220FZD6NM_003506
EGR31.240.0237EGR3NM_004430
ALDHIA11.240.0258ALDH1A1NM_000689
CRYAB1.230.0394CRYABNM_001885
TGFB31.230.0541TGFB3NM_003239
ANTXR11.230.0661ANTXR1NM_032208
KLK61.220.0211KLK6NM_002774
ILT-21.220.0676LILRB1NM_006669
EMP11.220.0871EMP1NM_001423
PLAUR1.220.0943PLAURNM_002659
S100A21.200.0100S100A2NM_05978
MMP71.190.0810MMP7NM_002423
OPN_osteopontin1.170.0231SPP1NM_000582
FABP41.170.0325FABP4NM_001442
KLK101.170.0452KLK10NM_002776
PS21.160.0140TFF1NM_003225
STMY31.150.0850MMP11NM_005940
REG41.140.0042REG4NM_032044
MUC21.090.0370MUC2NM_002457
Table 4B shows associations between clinical outcome and gene expression for those genes which demonstrated a Hazard Ratio<1.0 and for which p<0.1. Univariate Cox Proportional Hazards Regression analysis was applied in combined Stage II (Duke's B) and Stage III (Duke's C) patients using DRFI as the metric for clinical outcome.
HSPA80.510.0261HSPA8NM_006597
RPS130.580.0089RPS13NM_001017
RPLPO0.630.0324RPLP0NM_001002
NDUFS30.660.0142NDUFS3NM_004551
LMNB10.670.0202LMNB1NM_005573
ST140.670.0206ST14NM_021978
BRCA10.680.0032BRCA1NM_007295
TMSB4X0.680.0075TMSB4XNM_021109
DHFR0.680.0356DHFRNM_000791
SKP20.690.0248SKP2NM_005983
TCF-10.700.0015TCF1NM_000545
CDC200.700.0067CDC20NM_001255
SLC25A30.700.0418SLC25A3NM_213611
NME10.720.0503NME1NM_000269
RRM10.720.0850RRM 1NM_001033
MCM20.760.0168MCM2NM_004526
ABCC60.760.0445ABCC6NM_001171
CKS20.760.0869CKS2NM_001827
EPHB20.770.0174EPHB2NM_004442
C20 orf10.770.0716TPX2NM_012112
CSEL10.770.0725CSEILNM_001316
NFKBp650.780.0957RELANM_021975
AURKB0.790.0742AURKBNM_004217
CMYC0.820.0901MYCNM_002467
Cdx20.850.0510CDX2NM_001265
EREG0.850.0730EREGNM_001432
AREG0.860.0365AREGNM_001657
Table 5A shows associations between gene expression and RFI, controlling for particular demographic and clinical characteristics of patients included in the analysis. All genes are listed whose expression correlates with RFI (p<0.1) and which demonstrated a Hazard Ratio >1 in a multivariate analysis including the following variables: tumor location, surgery, tumor grade, nodes examined, and number of positive nodes.
RARB2.067804.2326510.03965
CYP3A41.853877.9946210.00469
ANXA21.8001210.8416610.00099
COX21.790514.5230710.03344
RhoC1.739869.9713310.00159
MAPK141.683828.0425310.00457
UBC1.6732311.6944410.00063
RhoB1.6661215.9249710.00007
ITGB11.657968.1863810.00422
KRAS21.638736.80447I0.00909
NTN11.618335.4346910.01974
ATPSE1.609904.9366010.02629
G-Catenin1.584829.2442210.00236
STC11.5816311.1075710.00086
SPINT21.526536.1727610.01297
Claudin 41.5029012.2994310.00045
IGFBP71.487899.6256910.00192
NCAM11.482945.1142810.02373
TIMP11.460459.9849210.00158
CEBPB1.460255.2365910.02212
KCNH2 iso a/b1.446163.9730410.04623
TMSB101.431074.6546310.03097
VEGFC1.418604.6690410.03071
HB-EGF1.417577.0039910.00813
FST1.410615.5967410.01799
LAMC21.4086011.3399710.00076
GADD45B1.4067112.2632310.00046
AKT31.4016110.1302810.00146
EFNA11.400488.8664510.00290
p211.399395.4298110.01980
INHBA1.3820411.0390910.00089
CALD11.380096.9340610.00846
DUSP11.3646413.0437910.00030
HSPG21.363874.1174910.04244
GJB21.363588.4220410.00371
EPAS11.363234.7431810.02941
BGN1.358217.6694710.00562
TIMP21.355715.7879110.01614
A-Catenin1.355664.3562310.03687
LOXL21.354707.2366310.00714
DKK11.351263.8850410.04872
ITGAV1.348998.0355410.00459
CGB1.348407.0622110.00787
EGR11.334248.4185510.00371
TIMP31.331976.2855010.01217
VIM1.331964.9219810.02652
TGFB11.325118.3027810.00396
FXYD51.325006.2275110.01258
VEGF1.322914.9382510.02627
ADAMTS121.317947.4674910.00628
SLPI1.315658.3832410.00379
DLC11.308625.5163810.01884
HOXB71.308228.0407610.00457
TM EPAI1.303958.4373610.00368
IGFBP51.302605.4402210.01968
CDC42BPA1.301674.2077110.04024
PDGFA1.297605.5496410.01848
GSTp1.295943.9626810.04652
FOS1.294278.4284710.00369
PDGFC1.288136.8173710.00903
IGFBP31.287016.3362510.01183
LOX1.284338.1559810.00429
SPARC1.282604.7587610.02915
EFNB21.277204.71247I0.02994
Maspin1.2764510.5765710.00115
THBS11.276196.6108710.01014
TAGLN1.269045.1512310.02323
VEGF_altsplicel1.267345.2928210.02141
S100P1.265869.8871310.00166
HSPAIA1.262098.5970410.00337
MAD1.261123.9616310.04655
ANGPT21.257013.9114810.04796
PRKCA1.248534.6945210.03026
F31.248485.0678810.02437
FAP1.246575.1958910.02264
BRK1.245075.4404810.01968
CD681.239434.0253010.04482
NR4A11.237727.0954810.00773
CTHRC11.234655.2110010.02244
SLC2A11.229675.2236410.02228
Grb101.222094.1281110.04218
p16-INK41.213254.4429610.03505
MDK1.211165.2502510.02194
CYR611.199954.1445210.04177
LAMA31.197944.3307310.03743
FOX03A1.195574.2007910.04041
EFNA31.194395.5172810.01883
CRYAB1.175143.9043510.04816
CEACAM61.168043.9648610.04646
OPN_osteopontin1.161125.5089110.01892
KLK101.158515.6562510.01739
SFRP21.157734.0289310.04473
KLK61.151634.6595310.03088
S100A21.141853.9428410.04707
REG41.090374.1699510.04115
Table 5B shows associations between gene expression and RFI, controlling for particular demographic and clinical characteristics of patients included in the analysis. All genes are listed whose expression correlates with RFI (p<0.1) and which demonstrated a Hazard Ratio <1 in a multivariate analysis including the following variables: tumor location, surgery, tumor grade, nodes examined, and number of positive nodes.
BFGF0.466746.9523310.00837
Fas10.473244.0871410.04321
KLRK10.6333110.2882010.00134
DHFR0.649477.6443410.00570
BRCA10.6524715.2156610.00010
SLC25A30.674805.7297710.01668
RAD54L0.682155.3868410.02029
PPM1D0.6877710.0287910.00154
CD800.693478.7008710.00318
ATP5A10.704674.0671810.04372
PRKCB10.731525.2195010.02234
KIF220.739455.1320210.02349
Chk10.758654.3813910.03633
TRAIL0.764304.1253310.04225
CDC200.770715.0455710.02469
DUT0.781964.1338110.04203
ABCB10.794345.3378310.02087
UMPS0.80014.6542510.03098
ING50.802304.0408510.04441
CMYC0.807574.2670910.03886
GBP10.830153.9830210.04596
AREG0.860914.9423910.02621
Table 6 shows associations between gene expression and clinical outcome based on a nonlinear proportional hazards analysis, using a 2 degree-of-freedom natural spline. All genes are listed which demonstrated a departure from a strictly linear relationship (p<0.05) with RFI in combined Stage II (Duke's B) and Stage III (Duke's C) patients. The relationship between gene expression and RFI was not constant throughout the observed range of expression values in the study, e.g. increases in gene expression may have been related to increases in duration of RFI in one portion of the observed range and with decreases in duration of RFI in a different portion of the range.
PTHLH0.001PTHLHNM_002820
CDCA7 v20.002CDCA7NM_145810
CREBBP0.002CREBBPNM_004380
KLF50.002KLF5NM_001730
LAMB30.004LAMB3NM_000228
TGFBR10.005TGFBR1NM_004612
NR4A10.005NR4A1NM_002135
Upa0.005PLAUNM_002658
Cad170.007CDH17NM_004063
S100A40.008S100A4NM_002961
A-Catenin0.008CTNNA1NM_001903
EPHB20.009EPHB2NM_004442
Axin 20.011AXIN2NM_004655
PTPRJ0.011PTPRJNM_002843
CAPN10.012CAPN1NM_005186
CEGP10.013SCUBE2NM_020974
APOC10.013APOC1NM_001645
GBP10.015GBP1NM_002053
SKP20.016SKP2NM_005983
ATP5E0.016ATP5ENM_006886
GRIK10.017GRIK1NM_000830
PRKR0.018EIF2AK2NM_002759
FUT60.020FUT6NM_000150
PFN20.020PFN2NM_053024
ITGB40.021ITGB4NM_000213
MADH70.021SMAD7NM_005904
RALBP10.021RALBP1NM_006788
AKT10.022AKT1NM_005163
KLK60.022KLK6NM_002774
PLK0.023PLK1NM_005030
CYP2C80.025CYP2C8NM_000770
BTF30.026BTF3NM_001207
CCNE2 variant 10.026CCNE2NM_057749
STMY30.030MMP11NM_005940
NRP10.030NRP1NM_003873
SIAT4A0.031ST3GAL1NM_003033
SEMA3B0.033SEMA3BNM_004636
TRAG30.033CSAG2NM_004909
HSPE10.035HSPE1NM_002157
SBA20.036WSB2NM_018639
TK10.036TK1NM_003258
CCNB20.037CCNB2NM_004701
TMEPAI0.037TMEPAINM_020182
SPRY20.037SPRY2NM_005842
AGXT0.038AGXTNM_ 000030
ALCAM0.038ALCAMNM_001627
HSPCA0.038HSPCANM_005348
TIMP30.038TIMP3NM_000362
DET10.039DET1NM_017996
tusc40.040TUSC4NM_006545
SNAI20.040SNAI2NM_003068
CD280.040CD28NM_006139
RNF110.041RNF11NM_014372
PAI10.042SERPINE1NM_000602
XRCC10.042XRCC1NM_006297
EGLN10.044EGLN1NM_022051
EGFR0.044EGFRNM_005228
HES60.044HES6NM_018645
KCNK40.045KCNK4NM_016611
CXCR40.047CXCR4NM_003467
PTP4A30.048PTP4A3NM_007079
p270.048CDKN1BNM_004064
MADH40.049SMAD4NM_005359
ICAM10.049ICAM1NM_000201
Table 7 shows all genes exhibiting an interaction (p-value < 0.05) with tumor stage. The data were modeled using a proportional hazards model of RFI with gene expression, tumor stage, and their interaction as predictors.
ICAM21.490.680.0019
CD241.260.840.0054
PRDX62.290.730.0058
HSD17B20.621.290.0072
ALCAM1.610.940.0088
SIR22.021.090.0089
NUFIP11.320.790.0093
EMR32.140.570.0127
CDC200.560.980.0130
MT31.370.790.0134
CLTC1.800.710.0144
CYR611.731.100.0145
WIF1.340.780.0195
TFF31.230.900.0209
SOS11.460.790.0287
TMSB4X1.340.740.0293
CENPE3.050.850.0330
CDH111.490.960.0339
CAPG0.901.500.0348
TP53BP11.540.930.0357
MGAT51.250.730.0362
MADH21.360.700.0393
LOX1.581.110.0396
DKK10.871.550.0415
CKS1B0.311.750.0467
MMP70.921.280.0471
STAT5B1.280.860.0471
CD280.691.250.0472
Second Analysis Study Results
Reference Gene Set for the second analysis was ATP5E, CLTC, GPX1, NEDD8, PGK1, UBB.
Table 1.2A shows associations for those genes whose increased expression is predictive of shorter Recurrence-Free Interval (RFI) based on univariate proportional hazards analysis.
Table 1.2B shows associations for those genes whose increased expression is predictive of longer Recurrence-Free Interval (RFI) based on univariate proportional hazards analysis.
Table 2.2A shows associations for those genes whose increased expression is predictive of decreased rate of Overall Survival (OS) based on univariate proportional hazards analysis.
Table 2.2B shows associations for those genes whose increased expression is predictive of increased rate of Overall Survival (OS) based on univariate proportional hazards analysis.
Table 3.2A shows associations for those genes whose increased expression is predictive of decreased rate of Disease Free Survival (DFS) based on univariate proportional hazards analysis.
Table 3.2B shows associations for those genes whose increased expression is predictive of increased rate of Disease Free Survival (DFS) based on univariate proportional hazards analysis.
Table 4.2A shows associations for those genes whose increased expression is predictive of shorter Distant Recurrence-Free Interval (DRFI) based on univariate proportional hazards analysis.
Table 4.2B shows associations for those genes whose increased expression is predictive of longer Distant Recurrence-Free Interval (DRFI) based on univariate proportional hazards analysis.
Table 5.2A shows associations between gene expression and RFI for those genes whose increased expression is predictive of shorter Recurrence-Free Interval (RFI), based on a multivariate analysis controlling for particular demographic and clinical characteristics of patients included in the analysis.
Table 5.2B shows associations between gene expression and RFI for those genes whose increased expression is predictive of longer Recurrence-Free Interval (RFI), based on a multivariate analysis controlling for particular demographic and clinical characteristics of patients included in the analysis.
Table 6.2 shows genes for which an association between gene expression and clinical outcome was identified based on a nonlinear proportional hazards analysis, using a 2 degree-of-freedom natural spline.
Table 7.2 shows all genes exhibiting an interaction (p-value < 0.05) with tumor stage.
Table 1.2A shows associations between clinical outcome and gene expression for those genes which demonstrated a Hazard Ratio>1.0 and for which p<0.1. Univariate Cox Proportional Hazards Regression analysis was applied in combined Stage II (Duke's B) and Stage III (Duke's C) patients using RFI as the metric for clinical outcome.
RARB2.220.0294RARBNM_016152
ITGB12.040.0002ITGB1NM_002211
ANXA21.780.0003ANXA2NM_004039
CYP3A41.680.0075CYP3A4NM_017460
COX21.640.0604PTGS2NM_000963
KRAS21.620.0064KRASNM_004985
TJP11.580.0751TJP1NM_003257
KIAA01251.580.0889KIAA0125NM_014792
RhoB1.570.0002RHOBNM_004040
RhoC1.560.0059RHOCNM_175744
NTN11.540.0336NTN1NM_004822
ANXA51.520.0086ANXA5NM_001154
TIMP11.52<.0001TIMP1NM_003254
AKT31.50<.0001AKT3NM_005465
CALD11.480.0007CALD1NM_004342
IGFBP71.460.0023IGFBP7NM_001553
CYP1B11.450.0222CYP1B1NM_000104
BGN1.440.0002BGNNM_001711
VEGFC1.440.0151VEGFCNM_005429
DLC11.440.0014DLC1NM_006094
SI1.420.0086SINM_001041
TIMP21.420.0022TIMP2NM_003255
CDC42BPA1.410.0038CDC42BPANM_003607
LAMC21.400.0004LAMC2NM_005562
ITGAV1.400.0019ITGAVNM_002210
CTSB1.400.0357CTSBNM_001908
DUSP11.39<.0001DUSP1NM_004417
TLN11.390.0335TLN1NM_006289
CCNE2 variant 11.390.0708CCNE2NM_057749
TIMP31.380.0023TIMP3NM_000362
GHI BRAF mut41.380.0537GHI_BRAF_mut4
HB-EGF1.380.0109HBEGFNM_001945
HSPG21.380.0258HSPG2NM_005529
VIM1.370.0077VIMNM_003380
ROCK11.370.0168ROCK1NM_005406
S100A11.360.0233S100A1NM_006271
p211.360.0113CDKN1ANM_000389
CGB1.360.0023CGBNM_000737
UBC1.360.0137UBCNMB_021009
GADD45B1.360.0003GADD45BNM_015675
INHBA1.350.0010INHBANM_002192
VCL1.340.0286VCLNM_003373
SIR21.340.0049SIRT1NM_012238
CD681.340.0042CD68NM_001251
Maspin1.34<.0001SERPINB5NM_002639
FST1.330.0326FSTNM_006350
EPAS11.330.0306EPAS1NM_001430
LOXL21.330.0076LOXL2NM_002318
STC11.330.0119STC1NM_003155
UNC5C1.320.0642UNC5CNM_003728
IGFBP51.320.0080IGFBP5NM_000599
INHBB1.320.0643INHBBNM_002193
FAP1.320.0017FAPNM_004460
DKK11.310.0298DKK1NM_012242
FYN1.310.0053FYNNM_002037
CTHRC11.310.0017CTHRC1NM_138455
FOS1.310.0010FOSNM_005252
RBX11.310.0633RBX1NM_014248
TAGLN1.310.0058TAGLNNM_003186
SBA21.310.0439WSB2NM_018639
CYR611.300.0018CYR61NM_001554
SPARC1.300.0117SPARCNM_003118
SNAI21.300.0076SNAI2NM_003068
TMSB101.300.0757TMSB10NM_021103
IGFBP31.300.0056IGFBP3NM_000598
PDGFC1.290.0040PDGFCNM_016205
SLPI1.290.0026SLPINM_003064
COL1A21.290.0087COL1A2NM_000089
NRP21.290.0112NRP2NM_003872
PRKCA1.290.0093PRKCANM_002737
KLF61.290.0661KLF6NM_001300
THBS11.280.0062THBS1NM_003246
EGR11.280.0067EGR1NM_001964
S100A41.280.0070S100A4NM_002961
CXCR41.280.0089CXCR4NM_003467
LAMA31.270.0024LAMA3NM_000227
LOX1.260.0036LOXNM_002317
AKAP121.260.0046AKAP12NM_005100
ADAMTS121.260.0109ADAMTS12NM_030955
MCP11.250.0122CCL2NM_002982
Grb101.250.0107GRB10NM_005311
PTGER31.250.0240PTGER3NM_000957
CRYAB1.250.0035CRYABNM_001885
ANGPT21.250.0566ANGPT2NM_001147
ANXA11.250.0353ANXA1NM_000700
EphB61.240.0960EPHB6NM_004445
PDGFB1.240.0139PDGFBNM_002608
COL1A11.240.0198COL1A1NM_000088
TGFB31.230.0094TGFB3NM_003239
CTGF1.230.0265CTGFNM_001901
PDGFA1.230.0312NM_002607
HSPA1A1.230.0027HSPA1ANM_005345
EFNB21.230.0331EFNB2NM_004093
CAPG1.230.0724CAPGNM_001747
TGFBI1.220.0231TGFBINM_000358
SIAT4A1.220.0253ST3GAL1NM_003033
LAT1.220.0307LATNM_014387
ITGA51.220.0224ITGA5NM_002205
GBP21.220.0225GBP2NM_004120
ANTXR11.220.0204ANTXR1NM_032208
ID41.220.0512ID4NM_001546
SFRP21.220.0039SFRP2NM_003013
TMEPAI1.210.0170TMEPAINM_020182
CTSL1.210.0388CTSLNM_001912
KLK101.210.0007KLK10NM_002776
FXYD51.210.0547FXYD5NM_014164
GJB21.210.0356GJB2NM_004004
P14ARF1.210.0451S78535
DAPK11.210.0525DAPK1NM_004938
SKP1A1.210.0663SKP1ANM_006930
SFRP41.210.0078SFRP4NM_003014
KLK61.200.0048KLK6NM_002774
GJA11.200.0345GJA1NM_000165
HOXB71.200.0278HOXB7NM_004502
NDRG11.200.0948NDRG1NM_006096
PAI11.190.0061SERPINE1NM_000602
CDH111.190.0762CDH11NM_001797
EGR31.190.0149EGR3NM_004430
EMP11.190.0533EMP1NM_001423
FZD11.190.0671FZD1NM_003505
ABCC51.190.0631ABCC5NM_005688
S100P1.180.0160S100PNM_005980
OPN, osteopontin1.180.0030SPP1NM_000582
p16-INK41.170.0503L27211
NR4A11.170.0332NR4A1NM_002135
TUBB1.170.0950TUBB2NM_001069
SIAT7B1.170.0352ST6GALNAC2NM_006456
ALDH1A11.170.0299ALDH1A1NM_000689
F31.160.0654F3NM_001993
SLC2A11.150.0806SLC2A1NM_006516
CXCL121.130.0986CXCL12NM_000609
STMY31.130.0518MMP11NM_005940
S100A21.130.0303S100A2NM_005978
FABP41.130.0363FABP4NM_001442
REG41.110.0034REG4NM_032044
pS21.090.0690TFF1NM_003225
MUC21.060.0674MUC2NM_002457
Table 1.2B shows associations between clinical outcome and gene expression for those genes which demonstrated a Hazard Ratio<1.0 and for which p<0.1. Univariate Cox Proportional Hazards Regression analysis was applied in combined Stage II (Duke's B) and Stage III (Duke's C) patients using RFI as the metric for clinical outcome.
ORC1L0.410.0623ORC1LNM_004153
E2F10.630.0006E2F1NM_005225
HSPA80.630.0346HSPA8NM_006597
RAD54L0.650.0026RAD54LNM_003579
BRCA10.680.0001BRCA1NM_007295
SLC25A30.700.0100SLC25A3NM_213611
PPM1D0.710.0025PPM1DNM_003620
DHFR0.710.0106DHFRNM_000791
SKP20.720.0087SKP2NM_005983
FASN0.730.0070FASNNM_004104
HNRPD0.730.0611HNRPDNM_031370
ENO10.740.0432ENO1NM_001428
C20 orf10.740.0086TPX2NM_012112
BRCA20.750.0515BRCA2NM_000059
DDB10.750.0639DDB1NM_001923
KIF220.760.0127KIF22NM_007317
RPLPO0.760.0330RPLPONM_001002
Chk10.760.0164CHEK1NM_001274
ST140.770.0392ST14NM_021978
Bax0.770.0502BAXNM_004324
TCF-10.780.0023TCF1NM_000545
LMNB10.780.0458LMNB1NM_005573
RRM10.780.0693RRM1NM_001033
CSEL10.790.0261CSE1LNM_001316
CDC200.790.0274CDC20NM_001255
PRDX20.790.0930PRDX2NM_005809
RPS130.790.0906RPS13NM_001017
RAF10.800.0717RAF1NM_002880
CMYC0.800.0095MYCNM_002467
UBE2M0.800.0390UBE2MNM_003969
CKS20.800.0596CKS2NM_001827
NME10.800.0694NME1NM_000269
c-myb (MYB official)0.800.0082MYBNM_005375
CD800.800.0688CD80NM_005191
CDCA7 v20.810.0164CDCA7NM_145810
EFP0.810.0387TRIM25NM_005082
CCNE20.810.0405CCNE2NM_057749
SURV0.810.0573BIRC5NM_001168
RRM20.820.0181RRM2NM_001034
ABCC60.820.0464ABCC6NM_001171
UMPS0.820.0371UMPSNM_000373
PI3KC2A0.820.0855PIK3C2ANM_002645
NOTCH10.820.0222NOTCH1NM_017617
EIF4E0.820.0928EIF4ENM_001968
EPHB20.820.0183EPHB2NM_004442
AREG0.830.0012AREGNM_001657
EREG0.830.0059EREGNM_001432
MYBL20.830.0234MYBL2NM_002466
ABCB10.830.0342ABCB1NM_000927
HRAS0.830.0708HRASNM_005343
SLC7A50.840.0547SLC7A5NM_003486
MAD2L10.840.0653MAD2L1NM_002358
ING50.850.0920ING5NM_032329
Ki-670.850.0562MKI67NM_002417
MCM20.850.0671MCM2NM_004526
Cdx20.880.0430CDX2NM_001265
HES60.890.0966HES6NM_018645
PTPRO0.890.0664PTPRONM_030667
cripto (TDGF1 official)0.900.0781TDGF1NM_003212
Table 2.2A shows associations between clinical outcome and gene expression for those genes which demonstrated a Hazard Ratio>1.0 and for which p<0.1. Univariate Cox Proportional Hazards Regression analysis was applied in combined Stage II (Duke's B) and Stage III (Duke's C) patients using OS as the metric for clinical outcome.
RhoC1.660.0002RHOCNM_175744
ITGB11.590.0049ITGB1NM_002211
ANXA21.580.0004ANXA2NM_004039
CYP3A41.490.0114CYP3A4NM_017460
p211.49<.0001CDKN1ANM_000389
HMLH1.420.0555MLH1NM_000249
VEGFC1.410.0095VEGFCNM_005429
TGFBR11.400.0113TGFBR1NM_004612
UBC1.380.0013UBCNM_021009
RhoB1.370.0016RHOBNM_004040
HSPG21.370.0111HSPG2NM_005529
PFN11.350.0987PFN1NM_005022
TIMP11.350.0008TIMP1NM_003254
VCL1.330.0116VCLNM_003373
INHBB1.320.0265INHBBNM_002193
SPINT21.320.0358SPINT2NM_021102
GHI BRAF mut41.310.0822GHI_BRAF_mut4
LAMC21.310.0007LAMC2NM_005562
KCNH2 iso a/b1.310.0474KCNH2NM_000238
UNC5C1.300.0417UNC5CNM_003728
CDC421.300.0122CDC42NM_001791
UBL11.290.0169SUMO1NM_003352
GADD45B1.290.0003GADD45BNM_015675
KRAS21.290.0774KRASNM_004985
HB-EGF1.290.0219HBEGFNM_001945
DKK11.280.0304DKK1NMB_012242
FXYD51.280.0035FXYD5NM_014164
CALD11.280.0107CALD1NM_004342
ANXA51.270.0723ANXA5NMB_001154
HLA-G1.270.0732HLA-GNM_002127
DUSP11.270.0004DUSP1NM_004417
LOXL21.270.0050LOXL2NM_002318
CDC42BPA1.270.0155CDC42BPANM_003607
BGN1.270.0039BGNNM_001711
LAMB31.270.0221LAMB3NM_000228
EphB61.270.0373EPHB6NM_004445
SHC11.270.0582SHC1NM_003029
TIMP21.260.0126TIMP2NM_003255
CTSB1.260.0748CTSBNM_001908
TIMP31.260.0072TIMP3NM_000362
ID31.260.0033ID3NM_002167
CAPG1.260.0162CAPGNM_001747
NRP11.260.0135NRP1NM_003873
INHBA1.260.0021INHBANM_002192
KLF61.250.0477KLF6NM_001300
IGFBP71.250.0251IGFBP7NM_001553
S100A11.250.0528S100A1NM_006271
EPAS11.240.0382EPAS1NM_001430
DLC11.240.0228DLC1NM_006094
KLK101.24<.0001KLK10NM_002776
SBA21.240.0493WSB2NM_018639
SPARC1.240.0133SPARCNM_003118
GAGE41.230.0475GAGE4NM_001474
HSPA1A1.230.0004HSPA1ANM_005345
SIR21.230.0179SIRT1NM_012238
CGB1.230.0202CGBNM_000737
Grb101.220.0059GRB10NM_005311
SNAI21.220.0145SNAI2NM_003068
LAMA31.220.0019LAMA3NM_000227
AKT31.220.0169AKT3NM_005465
FYN1.220.0138FYNNM_002037
FOS1.220.0035FOSNM_005252
CTHRC11.210.0056CTHRC1NM_138455
CTSD1.210.0506CTSDNM_001909
THY11.210.0290THY1NM_006288
ANXA11.210.0339ANXA1NM_000700
CD681.210.0227CD68NM_001251
G-Catenin1.200.0789JUPNMB_002230
PLK31.200.0081PLK3NM_004073
STC11.200.0577STC1NM_003155
TAGLN1.200.0238TAGLNNM_003186
VIM1.200.0632VIMNM_003380
HSPA1B1.200.0302HSPA1BNMB_005346
LAT1.200.0184LATNM_014387
KRT191.200.0309KRT19NM_002276
IGFBP31.200.0167IGFBP3NM_000598
BMP41.200.0035BMP4NM_001202
KLK61.200.0014KLK6NM_002774
THBS11.200.0206THBS1NM_003246
TULP31.190.0344TULP3NM_003324
ERK11.190.0522Z11696
CREBBP1.190.0866CREBBPNM_004380
S100A41.190.0259S100A4NM_002961
PDGFB1.190.0205PDGFBNM_002608
EFNB21.190.0299EFNB2NM_004093
LOX1.190.0104LOXNM_002317
PTK21.180.0983PTK2NM_005607
IGFBP51.180.0544IGFBP5NM_000599
APC1.180.0461APCNM_000038
DYRK1B1.180.0681DYRK1BNM_004714
NOTCH21.180.0533NOTCH2NM_024408
Maspin1.180.0033SERPINB5NM_002639
AKAP121.180.0195AKAP12NM_005100
COL1A11.170.0417COL1A1NM_000088
EMP11.170.0295EMP1NM_001423
SIAT4A1.170.0311ST3GAL1NM_003033
PAI11.170.0036SERPINE1NM_000602
NR4A11.170.0117NR4A1NM_002135
EGR11.170.0379EGR1NM_001964
BRK1.170.0156PTK6NM_005975
UNC5B1.170.0956UNC5BNM_170744
SR-A11.170.0512SR-A1NM_021228
MRP31.160.0353ABCC3NM_003786
hCRA a1.160.0878U78556
Upa1.160.0630PLAUNM_002658
BCAS11.160.0147BCAS1NM_003657
PDGFC1.160.0375PDGFCNM_016205
COL1A21.160.0620COL1A2NM_000089
CTGF1.160.0580CTGFNM_001901
MCP11.160.0463CCL2NM_002982
RAB321.160.0686RAB32NM_006834
SKP1A1.160.0842SKP1ANM_006930
FAP1.160.0443FAPNM_004460
EFNA11.160.0990EFNA1NM_004428
HOXB71.150.0378HOXB7NMB_004502
CYR611.150.0452CYR61NM_001554
TGFBI1.150.0591TGFBINM_000358
TMEPAI1.150.0419TMEPAINM_020182
SIN3A1.150.0853SIN3ANM_015477
S100A21.150.0038S100A2NM_005978
PDGFA1.150.0840NM_002607
MMP71.150.0469MMP7NM_002423
ANTXR11.150.0520ANTXR1NM_032208
SLPI1.140.0755SLPINM_003064
SFRP21.130.0253SFRP2NM_003013
S100A81.130.0795S100A8NM_002964
TP53131.130.0973TP53I3NMB_004881
F31.130.0735F3NM_001993
OPN, osteopontin1.120.0100SPP1NM_000582
EGLN31.110.0883EGLN3NM_022073
FZD61.110.0791FZD6NM_003506
OSM1.100.0913OSMNM_020530
FABP41.100.0521FABP4NM_001442
GSTT11.090.0837GSTT1NM_000853
REG41.070.0300REG4NM_032044
Table 2.2B shows associations between clinical outcome and gene expression for those genes which demonstrated a Hazard Ratio<1.0 and for which p<0.1. Univariate Cox Proportional Hazards Regression analysis was applied in combined Stage II (Duke's B) and Stage III (Duke's C) patients using OS as the metric for clinical outcome.
ORC1L0.520.0895ORC1LNM_004153
HSPA80.640.0164HSPA8NM_006597
SKP20.710.0012SKP2NM_005983
PRDX40.740.0202PRDX4NM_006406
DHFR0.760.0111DHFRNM_000791
FGF180.760.0915FGF18NM_003862
SLC25A30.760.0391SLC25A3NM_213611
RRM10.770.0218RRM1NM_001033
E2F10.780.0180E2F1NM_005225
SURV0.790.0098BIRC5NM_001168
PPM1D0.800.0154PPM1DNM_003620
CCNE20.800.0090CCNE2NM_057749
BRCA10.800.0093BRCA1NM_007295
ST140.800.0436ST14NM_021978
c-myb (MYB official)0.810.0027MYBNM_005375
Chk10.810.0220CHEK1NM_001274
C20 orf10.810.0305TPX2NM_012112
EI240.810.0574EI24NM_004879
CDC200.820.0234CDC20NM_001255
TCF-10.820.0061TCF1NM_000545
PPID0.830.0584PPIDNM_005038
KIF220.830.0466KIF22NM_007317
UBE2M0.830.0850UBE2MNM_003969
MRPL400.830.0716MRPL40NM_003776
RPLPO0.840.0987RPLP0NM_001002
LMNB10.840.0910LMNB1NM_005573
DUT0.840.0401DUTNM_001948
CD44E0.840.0483X55150
MCM20.850.0214MCM2NM_004526
CDC60.850.0235CDC6NM_001254
AURKB0.85 .0.0373AURKBNM_004217
SMARCA30.860.0562SMARCA3NM_003071
CDCA7 v20.860.0435CDCA7NM_145810
EPHB20.860.0281EPHB2NM_004442
CMYC0.860.0441MYCNM_002467
ABCB10.860.0352ABCB1NM_000927
Cdx20.870.0156CDX2NM_001265
PPARG0.880.0655PPARGNM_005037
MYBL20.880.0667MYBL2NM_002466
EREG0.890.0352EREGNM_001432
AREG0.900.0221AREGNM_001657
Table 3.2A shows associations between clinical outcome and gene expression for those genes which demonstrated a Hazard Ratio>1.0 and for which p<0.1. Univariate Cox Proportional Hazards Regression analysis was applied in combined Stage II (Duke's B) and Stage III (Duke's C) patients using DFS as the metric for clinical outcome.
ANXA21.67<.0001ANXA2NM_004039
CYP3A41.590.0035CYP3A4NM_017460
RhoC1.520.0010RHOCNM_175744
TJP11.440.0951TJP1NM_003257
HB-EGF1.390.0023HBEGFNM_001945
p211.390.0006CDKN1ANM_000389
HMLH1.370.0678MLH1NM_000249
ITGB11.370.0419ITGB1NM_002211
UBC1.340.0024UBCNMB_021009
VEGFC1.330.0246VEGFCNM_005429
TIMP11.330.0007TIMP1NM_003254
CCNE2 variant 11.320.0745CCNE2NMB_057749
SPINT21.320.0224SPINT2NM_021102
LAMC21.320.0002LAMC2NM_005562
VCL1.310.0119VCLNM_003373
RhoB1.310.0049RHOBNM_004040
PKR21.300.0258PKM2NM_002654
ANXA51.300.0406ANXA5NM_001154
GADD45B1.300.0001GADD45BNM_015675
INHBB1.290.0368INHBBNM_002193
DUSP11.29<.0001DUSP1NM_004417
KRAS21.280.0686KRASNM_004985
KLF61.280.0284KLF6NM_001300
IGFBP71.270.0103IGFBP7NM_001553
GRIK11.270.0421GRIK1NM_000830
DLC11.270.0084DLC1NM_006094
FOS1.260.0003FOSNM_005252
HSPG21.260.0443HSPG2NM_005529
INHBA1.260.0009INHBANM_002192
TIMP31.260.0045TIMP3NM_000362
BGN1.260.0035BGNNM_001711
CGB1.260.0172CGBNM_000737
HK11.260.0352HK1NM_000188
SHC11.250.0562SHC1NM_003029
STC11.250.0161STC1NM_003155
LOXL21.240.0078LOXL2NMB_002318
CAPG1.240.0161CAPGNM_001747
UNC5B1.230.0204UNC5BNM_170744
MVP1.230.0729MVPNM_017458
CTSD1.230.0256CTSDNM_001909
EGR11.230.0041EGR1NM_001964
LOX1.230.0017LOXNM_002317
CDC42BPA1.230.0278CDC42BPANM_003607
GAGE41.230.0425GAGE4NM_001474
CALD11.220.0239CALD1NM_004342
FXYD51.220.0096FXYD5NM_014164
EphB61.220.0825EPHB6NM_004445
LAMB31.220.0444LAMB3NM_000228
VEGF1.210.0267VEGFNM_003376
PDGFB1.210.0062PDGFBNM_002608
TIMP21.210.0292TIMP2NM_003255
A-Catenin1.210.0598CTNNA1NM_001903
IGFBP31.210.0081IGFBP3NM_000598
CD681.210.0138CD68NM_001251
S100A11.210.0886S100A1NM_006271
SIAT4A1.210.0076ST3GAL1NM_003033
HSPA1B1.210.0182HSPA1BNM_005346
DKK11.200.0900DKK1NM_012242
SBA21.200.0733WSB2NM_018639
SIR21.200.0250SIRT1NM_012238
THBS11.200.0119THBS1NM_003246
FYN1.200.0156FYNNM_002037
TULP31.200.0205TULP3NM_003324
LAMA31.200.0026LAMA3NM_000227
NR4A11.200.0022NR4A1NM_002135
EFNA11.200.0258EFNA1NM_004428
EMP11.200.0102EMP1NM_001423
SPARC1.190.0333SPARCNM_003118
G-Catenin1.190.0761JUPNM_002230
CYR611.190.0103CYR61NM_001554
Maspin1.190.0015SERPINB5NM_002639
HSPA1A1.180.0018HSPA1ANM_005345
PTHR11.180.0856PTHR1NM_000316
EPAS11.180.0789EPAS1NM_001430
Grb101.180.0173GRB10NM_005311
ERK11.180.0464Z11696
VIM1.180.0772VIMNM_003380
SNAI21.180.0379SNAI2NM_003068
IGFBP51.170.0492IGFBP5NM_000599
CTHRC11.170.0155CTHRC1NM_138455
THY11.170.0562THY1NM_006288
NRP11.170.0747NRP1NM_003873
PTGER31.170.0493PTGER3NM_000957
ID31.170.0437ID3NM_002167
F31.170.0157F3NM_001993
CTGF1.170.0394CTGFNM_001901
KRT191.170.0517KRT19NM_002276
PAI11.170.0033SERPINE1NM_000602
FAP1.170.0260FAPNM_004460
ANXA11.160.0688ANXA1NM_000700
KLK101.160.0009KLK10NM_002776
EFNB21.160.0447EFNB2NM_004093
P14ARF1.160.0573S78535
MCP11.160.0359CCL2NM_002982
PLK31.160.0296PLK3NM_004073
ANTXR11.160.0243ANTXR1NM_032208
ADAMTS121.160.0346ADAMTS12NM_030955
EGR31.160.0109EGR3NM_004430
APC1.160.0733APCNM_000038
PDGFC1.160.0326PDGFCNM_016205
BMP41.160.0151BMP4NM_001202
HOXB71.150.0281HOXB7NM_004502
NDRG11.150.0912NDRG1NM_006096
Herstatin1.150.0380AF177761
TMEPAI1.150.0268TMEPAINM_020182
IL61.150.0914IL6NM_000600
PDGFA1.150.0599NM_002607
TGFBI1.150.0439TGFBINM_000358
Upa1.150.0740PLAUNM_002658
S100A41.150.0621S100A4NM_002961
SLPI1.150.0447SLPINM_003064
KLK61.150.0112KLK6NM_002774
COL1A11.150.0637COL1A1NM_000088
GJB21.150.0604GJB2NM_004004
PKD11.150.0939PKD1NM_000296
TP53I31.150.0450TP5313NM_004881
PLAUR1.140.0477PLAURNM_002659
TAGLN1.140.0739TAGLNNM_003186
COL1A21.140.0818COL1A2NM_000089
S100A21.140.0045S100A2NM_005978
AKT31.140.0949AKT3NM_005465
SEMA3B1.130.0467SEMA3BNM_004636
BRK1.130.0476PTK6NM_005975
OSM1.130.0344OSMNM_020530
SFRP21.120.0279SFRP2NM_003013
MRP31.120.0946ABCC3NM_003786
EGLN31.120.0452EGLN3NM_022073
SIAT7B1.120.0603ST6GALNAC2NM_006456
OPN, osteopontin1.120.0082SPP1NM_000582
S100P1.120.0313S100PNM_005980
AKAP121.120.0865AKAP12NM_005100
MMP71.110.0909MMP7NM_002423
FABP41.110.0214FABP4NM_001442
CRYAB1.110.0960CRYABNM_001885
SFRP41.100.0625SFRP4NM_003014
EFNA31.100.0707EFNA3NM_004952
GSTT11.090.0516GSTT1NM_000853
pS21.080.0313TFF1NM_003225
REG41.080.0080REG4NM_032044
IGFBP21.080.0846IGFBP2NM_000597
MUC5B1.080.0387MUC5BXM_039877
Table 3.2B shows associations between clinical outcome and gene expression for those genes which demonstrated a Hazard Ratio<1.0 and for which p<0.1. Univariate Cox Proportional. Hazards Regression analysis was applied in combined Stage II (Duke's B) and Stage III (Duke's C) patients using DFS as the metric for clinical outcome.
HSPA80.720.0604HSPA8NM_006597
SLC25A30.730.0126SLC25A3NM_213611
E2F10.730.0019E2F1NM_005225
IFIT10.740.0820IFIT1NM_001548
PPM1D0.740.0007PPM1DNM_003620
SKP20.750.0049SKP2NM_005983
RRM10.780.0224RRM1NM_001033
DDB10.790.0720DDB1NM_001923
NPM10.790.0255NPM1NM_002520
PRDX40.800.0570PRDX4NM_006406
BRCA10.800.0064BRCA1NM_007295
C20 orf 10.810.0180TPX2NM_012112
Chk10.810.0148CHEK1NM_001274
EI240.810.0417EI24NM_004879
CCNE20.810.0094CCNE2NM_057749
HMGB10.820.0852HMGB1NM_002128
SURV0.820.0185BIRC5NM_001168
KIF220.820.0264KIF22NM_007317
RAD54L0.820.0674RAD54LNM_003579
c-myb (MYB official)0.820.0038MYBNM_005375
DHFR0.820.0669DHFRNM_000791
TNFRSF50.830.0855CD40NM_001250
LMNB10.830.0741LMNB1NM_005573
CDC200.850.0538CDC20NM_001255
CDCA7 v20.850.0277CDCA7NM_145810
FASN0.850.0919FASNNM_004104
MCM20.850.0194MCM2NM_004526
ABCB10.850.0169ABCB1NM_000927
EIF4E0.850.0902EIF4ENM_001968
DUT0.860.0535DUTNM_001948
C200RF1260.860.0932PDRG1NM_030815
MCM60.860.0970MCM6NM_005915
EFP0.870.0850TRIM25NM_005082
EPHB20.870.0314EPHB2NM_004442
GCLC0.870.0862GCLCNM_001498
RCC10.870.0540RCC1NM_001269
AREG0.870.0028AREGNM_001657
CMYC0.880.0584MYCNM_002467
MYBL20.880.0567MYBL2NM_002466
TCF-10.880.0644TCF1NM_000545
EREG0.890.0232EREGNM_001432
Cdx20.900.0354CDX2NM_001265
PTPRO0.920.0935PTPRONM_030667
cripto (TDGF1 official)0.920.0950TDGF1NM_003212
HLA-DRB10.930.0521HLA-DRB1NM_002124
Table 4.2A shows associations between clinical outcome and gene expression for those genes which demonstrated a Hazard Ratio>1.0 and for which p<0.1. Univariate Cox Proportional Hazards Regression analysis was applied in combined Stage II (Duke's B) and Stage III (Duke's C) patients using DRFI as the metric for clinical outcome.
ALDOA3.210.0189ALDOANM_000034
DCK2.600.0248DCKNM_000788
ITGB12.580.0002ITGB1NM_002211
COX22.160.0198PTGS2NM_000963
TJP12.100.0122TJP1NM_003257
STAT31.870.0148STAT3NM_003150
ANXA51.830.0043ANXA5NM_001154
GHI BRAF mut41.820.0024GHI_BRAF_mut4
TIMP11.80<.0001TIMP1NM_003254
hMLH1.800.0242MLH1NM_000249
PADI41.740.0288PADI4NM_012387
rhoC1.740.0093RHOCNM_175744
CYP3A41.730.0219CYP3A4NM_017460
wwox1.720.0467wwoxNM_016373
ANXA21.700.0081ANXA2NM_004039
LILRB31.700.0295LILRB3NM_006864
VIM1.660.0015VIMNM_003380
FUS1.650.0432FUSNM_004960
KCNH2 iso a/b1.640.0111KCNH2NM_000238
RhoB1.630.0019RHOBNM_004040
CRIP21.620.0455CRIP2NM_001312
AKT31.600.0004AKT3NM_005465
RBX11.600.0195RBX1NM_014248
HB-EGF1.590.0032HBEGFNM_001945
NRP21.550.0007NRP2NM_003872
MSH31.550.0353MSH3NM_002439
PI3K1.540.0651PIK3C2BNM_002646
BGN1.540.0009BGNNM_001711
RAB6C1.540.0210RAB6CNM_032144
CTSB1.530.0415CTSBNM_001908
DLC11.530.0047DLC1NM_006094
p211.530.0085CDKN1ANM_000389
CCNE2 variant 11.520.0647CCNE2NM_057749
CALD11.510.0069CALD1NM_004342
SBA21.510.0202WSB2NM_018639
SIR21.510.0028SIRT1NM_012238
ITGA51.500.0006ITGA5NM_002205
RAP1GDS11.500.0317RAP1GDS1NM_021159
CTHRC11.460.0010CTHRC1NM_138455
STC11.460.0083STC1NM_003155
KLF61.460.0362KLF6NM_001300
CDC42BPA1.450.0187CDC42BPANM_003607
CEBPB1.450.0605CEBPBNM_005194
LAMC21.450.0031LAMC2NM_005562
TGFBR11.450.0824TGFBR1NM_004612
TLN11.450.0730TLN1NM_006289
CDC421.440.0387CDC42NM_001791
FYN1.430.0070FYNNM_002037
IGFBP71.430.0283IGFBP7NM_001553
ARG1.430.0119ABL2NM_005158
HIF1A1.420.0397HIF1ANM_001530
FST1.420.0460FSTNM_006350
S100A11.420.0473S100A1NM_006271
FAP1.420.0023FAPNM_004460
DUSP11.420.0014DUSP1NM_004417
EPAS11.410.0494EPAS1NM_001430
Grb101.410.0027GRB10NM_005311
VEGFC1.410.0894VEGFCNM_005429
INHBB1.410.0710INHBBNM_002193
GADD45B1.400.0023GADD45BNM_015675
UBC1.400.0368UBCNM_021009
GJA11.400.0053GJA1NM_000165
COL1A21.400.0086COL1A2NM_000089
RBM51.400.0423RBM5NM_005778
ROCK11.390.0604ROCK1NM_005406
CTGF1.390.0081CTGFNM_001901
FLT41.390.0978FLT4NM_002020
PDGFC1.390.0052PDGFCNM_016205
INHBA1.390.0058INHBANM_002192
LOXL21.380.0209LOXL2NM_002318
THBS11.370.0090THBS1NM_003246
ITGAV1.370.0298ITGAVNM_002210
NCAM11.360.0714NCAM1NM_000615
PTHR11.350.0410PTHR1NM_000316
TIMP21.350.0446TIMP2NM_003255
LOX1.350.0041LOXNM_002317
SPARC1.350.0292SPARCNM_003118
TAGLN1.340.0222TAGLNNM_003186
CYR611.340.0086CYR61NM_001554
RANBP91.340.0553RANBP9NM_005493
GADD451.340.0604GADD45ANM_001924
S100A41.340.0141S100A4NM_002961
SNAI21.330.0263SNAI2NM_003068
EGR11.330.0174EGR1NM_001964
CDH111.330.0355CDH11NM_001797
SI1.330.0967SINM_001041
PTK21.330.0911PTK2NM_005607
MCP11.320.0215CCL2NM_002982
PCAF1.320.0463PCAFNM_003884
c-abl1.320.0868ABL1NM_005157
TIMP31.320.0455TIMP3NM_000362
ANGPT21.310.0711ANGPT2NM_001147
NOTCH21.300.0645NOTCH2NM_024408
GBP21.300.0218GBP2NM_004120
PAI11.300.0022SERPINE1NM_000602
CXCR41.300.0341CXCR4NM_003467
BCAS11.300.0060BCAS1NM_003657
COL1A11.290.0349COL1A1NM_000088
PIM11.290.0507PIM1NM_002648
PDGFB1.290.0288PDGFBNM_002608
Bcl21.290.0270BCL2NM_000633
SLPI1.290.0222SLPINM_003064
IGFBP51.290.0676IGFBP5NM_000599
ANXA11.290.0690ANXA1NM_000700
FGFR11.280.0790FGFR1NM_023109
CAPG1.280.0987CAPGNM_001747
PRKCA1.280.0548PRKCANM_002737
EPHA21.280.0339EPHA2NM_004431
AKAP121.280.0215AKAP12NM_005100
FOS1.280.0219FOSNM_005252
CXCL121.270.0169CXCL12NM_000609
GCNT11.270.0875GCNT1NM_001490
IGFBP31.270.0499IGFBP3NM_000598
DPYD1.270.0259DPYDNM_000110
CD681.270.0752CD68NM_001251
EFNA11.270.0890EFNA1NM_004428
ABCC51.260.0536ABCC5NM_005688
TUBB1.260.0635TUBB2NM_001069
PDGFA1.260.0676NM_002607
DAPK11.260.0701DAPK1NM_004938
SFRP21.250.0109SFRP2NM_003013
ID31.250.0744ID3NM_002167
CTSL1.250.0679CTSLNM_001912
LAMA31.250.0299LAMA3NM_000227
KRT191.250.0982KRT19NM_002276
S100A81.250.0228S100A8NM_002964
IL61.250.0933IL6NM_000600
MRP31.250.0538ABCC3NM_003786
FES1.250.0694FESNM_002005
AP-1 (JUN official)1.250.0974JUNNM_002228
WISP11.240.0897WISP1NM_003882
SFRP41.240.0250SFRP4NM_003014
TGFBI1.240.0692TGFBINM_000358
Maspin1.240.0152SEROINB5NM_002639
HOXB71.230.0541HOXB7NM_004502
P14ARF1.230.0944S78535
HSPA1A1.230.0259HSPA1ANM_005345
EGR31.220.0312EGR3NM_004430
CRYAB1.220.0483CRYABNM_001885
ALDH1A11.220.0372ALDH1A1NM_000689
TGFB31.220.0673TGFB3NM_003239
KLK61.210.0288KLK6NM-002774
ANTXR11.210.0942ANTXR1NM_032208
FZD61.200.0479FZD6NM_003506
ILT-21.200.0930LILRB1NM_006669
S100A21.200.0116S100A2NM_005978
MMP71.180.0987MMP7NM_002423
FABP41.170.0371FABP4NM_001442
OPN, osteopontin1.170.0301SPP1NM_000582
KLK101.160.0581KLK10NM_002776
pS21.150.0186TFF1NM_003225
REG41.140.0053REG4NM_032044
MUC21.090.0429MUC2NM_002457
Table 4.2B shows associations between clinical outcome and gene expression for those genes which demonstrated a Hazard Ratio<1.0 and for which p<0.1. Univariate Cox Proportional Hazards Regression analysis was applied in combined Stage II (Duke's B) and Stage III (Duke's C) patients using DRFI as the metric for clinical outcome.
HSPA80.480.0114HSPA8NM_006597
RPS130.640.0082RPS13NM_001017
NDUFS30.660.0096NDUFS3NM_004551
ST140.660.0132ST14NM_021978
LMNB10.660.0135LMNB1NM_005573
TMSB4X0.670.0039TMSB4XNM_021109
DHFR0.680.0260DHFRNM_000791
BRCA10.680.0029BRCA1NM_007295
SKP20.680.0151SKP2NM_005983
SLC25A30.690.0265SLC25A3NM_213611
CDC200.690.0048CDC20NM_001255
RPLPO0.700.0320RPLPONM_001002
TCF-10.700.0013TCF1NM_000545
RRM10.710.0598RRM1NM_001033
ATP5A10.710.0827ATP5A1NM_004046
NME10.730.0378NME1NM_000269
CKS20.740.0537CKS2NM_001827
EI240.740.0639EI24NM_004879
C20 orf10.740.0435TPX2NM_012112
SDC10.740.0930SDC1NM_002997
CSEL10.750.0443CSE1LNM_001316
ABCC60.760.0416ABCC6NM_001171
MCM20.760.0136MCM2NM_004526
NFKBp650.770.0672RELANM_021975
EPHB20.770.0133EPHB2NM_004442
FASN0.780.0980FASNNM_004104
AURKB0.780.0528AURKBNM_004217
VDR0.790.0832VDRNM_000376
UMPS0.800.0721UMPSNM_000373
UBE2C0.810.0860UBE2CNM_007019
CMYC0.820.0742MYCNM_002467
MYBL20.830.0780MYBL2NM_002466
Cdx20.840.0392CDX2NM_001265
MX10.850.0786MX1NM_002462
EREG0.850.0638EREGNM_001432
AREG0.850.0295AREGNM_001657
Table 5.2A shows associations between gene expression and RFI, controlling for particular demographic and clinical characteristics of patients included in the analysis. All genes are listed whose expression correlates with RFI (p<0.1) and which demonstrated a Hazard Ratio >1 in a multivariate analysis including the following variables: tumor location, year of surgery, tumor grade, treatment protocol (C-01 or C-02), BCG treatment (yes or no), and classification of patients according to lymph node status as follows: 0 positive nodes and <12 nodes examined, 0 positive nodes and ≥12 nodes examined, 1-3 positive nodes, and ≥4 positive nodes.
RARB2.023.4210.0644RARBNM_016152
COX21.693.1310.0768PTGS2NM_000963
RhoC1.608.7110.0032RHOCNM_175744
CYP3A41.575.1510.0233CYP3A4NM_017460
RhoB1.5412.4010.0004RHOBNM_004040
ANXA21.547.0110.0081ANXA2NM_004039
ITGB11.545.5410.0186ITGB1NM_002211
NTN11.533.6310.0568NTN1NM_004822
KRAS21.514.8310.0279KRASNM_004985
IGFBP71.448.5310.0035IGFBP7NM_001553
TIMP11.439.0310.0027TIMP1NM_003254
wwox1.432.7310.0988wwoxNM_016373
CYP1B11.393.6910.0548CYP1B1NM_000104
KCNH2 iso a/b1.383.2310.0723KCNH2NM_000238
STC11.376.5510.0105STC1NM_003155
ITGAV1.379.3710.0022ITGAVNM_002210
VEGFC1.373.6210.0571VEGFCNM_005429
G-Catenin1.364.7810.0287JUPNM_002230
S100A11.344.1210.0423S100A1NM_006271
GADD45B1.349.6310.0019GADD45BNM_015675
NCAM11.333.0010.0832NCAM1NM_000615
CALD11.336.0510.0139CALD1NM_004342
FST1.334.2410.0396FSTNM_006350
INHBA1.339.6810.0019INHBANM_002192
BGN1.337.2710.0070BGNNM_001711
Claudin 41.337.1310.0076CLDN4NM_001305
CEBPB1.332.9610.0851CEBPBNM_005194
LAMC21.328.6210.0033LAMC2NM_005562
SPINT21.323.1410.0762SPINT2NM_021102
AKT31.327.5410.0060AKT3NM_005465
TIMP31.326.3310.0119TIMP3NM_000362
MAPK141.312.7510.0972MAPK14NM_139012
HB-EGF1.314.7410.0294HBEGFNM_001945
DUSP11.3011.3410.0008DUSP1NM_004417
EFNA11.305.8710.0154EFNA1NM_004428
PTK21.293.6010.0576PTK2NM_005607
DLC11.295.1910.0227DLC1NM_006094
EPAS11.283.3010.0693EPAS1NM_001430
THBS11.287.5110.0061THBS1NM_003246
TIMP21.284.2010.0404TIMP2NM_003255
TGFBI1.276.6810.0098TGFBINM_000358
DKK11.273.0510.0806DKK1NM_012242
SPARC1.264.3710.0366SPARCNM_003118
PDGFC1.266.7410.0094PDGFCNM_016205
RAB6C1.263.2710.0704RAB6CNM_032144
LOXL21.264.4810.0343LOXL2NM_002318
CD681.254.6810.0305CD68NM_001251
LOX1.257.1610.0075LOXNM_002317
CDC42BPA1.253.3510.0671CDC42BPANM_003607
TAGLN1.254.8310.0279TAGLNNM_003186
CTHRC11.255.9610.0146CTHRC1NM_138455
PDGFA1.254.6310.0314NM_002607
TMEPAI1.245.6310.0176TMEPAINM_020182
RAB321.244.4810.0343RAB32NM_006834
HSPA1A1.248.1910.0042HSPA1ANM_005345
VIM1.242.9710.0848VIMNM_003380
IGFBP51.233.6910.0549IGFBP5NM_000599
EGR11.235.1210.0236EGR1NM_001964
ANGPT21.232.9610.0852ANGPT2NM_001147
NDRG11.222.9110.0879NDRG1NM_006096
VEGF_altsplice11.224.0810.0433AF486837
SLPI1.224.9410.0262SLPINM_003064
FOS1.225.6710.0172FOSNM_005252
VEGF1.222.8010.0942VEGFNM_003376
ADAMTS121.224.4010.0359ADAMTS12NM_030955
Maspin1.227.6010.0058SERPINB5NM_002639
CGB1.223.2510.0713CGBNM_000737
CYR611.215.2210.0224CYR61NM_001554
GJB21.213.7710.0522GJB2NM_004004
IGFBP31.214.2410.0396IGFBP3NM_000598
PRKCA1.213.8110.0508PRKCANM_002737
S100P1.216.9810.0082S100PNM_005980
NRP21.213.2510.0714NRP2NM_003872
EFNB21.213.0010.0834EFNB2NM_004093
COL1A21.213.5910.0581COL1A2NM_000089
VEGFB1.202.8010.0942VEGFBNM_003377
HOXB71.204.3710.0367HOXB7NM_004502
Grb101.203.9110.0480GRB10NM_005311
FAP1.204.1210.0425FAPNM_004460
GJA11.204.8010.0285GJA1NM_000165
CTGF1.193.3810.0660CTGFNM_001901
NR4A11.185.1310.0235NR4A1NM_002135
C0L1A11.182.7710.0961COL1A1NM_000088
ABCC51.172.8010.0945ABCC5NM_005688
EMP11.173.0610.0804EMP1NM_001423
SFRP21.174.8910.0270SFRP2NM_003013
SLC2A11.173.5210.0606SLC2A1NM_006516
F31.173.1010.0783F3NM_001993
S100A41.172.8710.0900S100A4NM_002961
BRK1.172.8110.0935PTK6NM_005975
CRYAB1.173.7710.0523CRYABNM_001885
MDK1.163.8410.0500MDKNM_002391
OPN, osteopontin1.166.0710.0138SPP1NM_000582
SFRP41.164.0910.0432SFRP4NM_003014
SIAT4A1.162.7610.0969ST3GAL1NM_003033
LAMA31.163.2310.0725LAMA3NM_000227
AKAP121.152.7410.0976AKAP12NMB_005100
KLK101.155.2310.0221KLK10NM_002776
EGR31.143.1610.0755EGR3NM_004430
PAI11.133.3910.0655SERPINE1NM_000602
CEACAM61.132.9810.0845CEACAM6NM_002483
KLK61.133.7410.0532KLK6NM_002774
Nkd-11.113.3410.0674NKD1NM_033119
IGFBP21.113.1510.0758IGFBP2NM_000597
REG41.083.5110.0610REG4NM_032044
Table 5.2B shows associations between gene expression and RFI, controlling for particular demographic and clinical characteristics of patients included in the analysis. All genes are listed whose expression correlates with RFI (p<0.1) and which demonstrated a Hazard Ratio < 1 in a multivariate analysis including the following variables: tumor location, year of surgery, tumor grade, treatment protocol (C-01 or C-02), BCG treatment (yes or no), and classification of patients According to lymph node status as follows: 0 positive nodes and <12 nodes examined, 0 positive nodes and ≥12 nodes examined, 1-3 positive nodes, and ≥4 positive nodes.
FasI0.435.5710.0183FASLGNM_000639
BFGF0.574.6810.0306NUDT6NM_007083
EstR10.573.2210.0726ESR1NMB_000125
IFIT10.604.3010.0381IFIT1NM_001548
KLRK10.6410.8110.0010KLRK1NM_007360
E2F10.657.4910.0062E2F1NM_005225
BRCA10.6616.331<.0001BRCA1NM_007295
RAD54L0.676.3610.0117RAD54LNM_003579
ATP5A10.675.5010.0190ATP5A1NM_004046
MCM30.682.8410.0922MCM3NM_002388
DHFR0.687.4410.0064DHFRNM_000791
HSPA80.682.9610.0855HSPA8NM_006597
APG-10.715.8610.0155HSPA4LNM_014278
BRCA20.714.6910.0304BRCA2NM_000059
TRAIL0.717.2710.0070TNFSF10NM_003810
SLC25A30.715.5610.0184SLC25A3NM_213611
PPM1D0.728.0210.0046PPM1DNM_003620
Chk10.736.6110.0102CHEK1NM_001274
CD800.736.8510.0089CD80NM_005191
MADH20.733.9310.0476SMAD2NM_005901
KIF220.755.7710.0163KIF22NM_007317
TNFRSF50.763.5210.0607CD40NMB_001250
C20 orf10.764.8210.0281TPX2NM_012112
ENO10.762.8810.0894ENO1NM_001428
PRKCB10.774.2510.0393PRKCB1NM_002738
RAF10.774.1710.0412RAF1NM_002880
RRM10.783.0710.0799RRM1NM_001033
UBE2M0.784.4310.0352UBE2MNM_003969
SKP20.793.4210.0644SKP2NM_005983
DUT0.794.3810.0364DUTNM_001948
EI240.802.8510.0912EI24NM_004879
UMPS0.804.9610.0260UMPSNM_000373
EFP0.813.8310.0502TRIM25NMB_005082
HRAS0:813.8010.0513HRASNM_005343
CDC200.813.7810.0519CDC20NM_001255
CSF10.822.8610.0910CSF1NM_000757
CKS20.822.9010.0886CKS2NM_001827
ABCB10.824.0210.0450ABCB1NM_000927
CDC60.834.2310.0397CDC6NM_001254
GBP10.834.3410.0373GBP1NM_002053
SURV0.832.9110.0878BIRC5NM_001168
CCNE20.832.7510.0975CCNE2NM_057749
RRM20.834.1910.0407RRM2NM_001034
CMYC0.843.3410.0677MYCNM_002467
TCF-10.843.9610.0466TCF1NM_000545
c-myb (MYB official)0.843.7210.0538MYBNM_005375
NOTCH10.853.3910.0658NOTCH1NM_017617
MCM20.853.3010.0693MCM2NM_004526
ING50.852.8410.0922ING5NM_032329
AREG0.883.7210.0538AREGNM_001657
HLA-DRB10.903.8410.0500HLA-DRB1NM_002124
Table 6.2 shows associations between gene expression and clinical outcome based on a nonlinear proportional hazards analysis, using a 2 degree-of-freedom natural spline. All genes are listed which demonstrated a departure from a strictly linear relationship (p<0.05) with RFI in combined Stage II (Duke's B) and Stage III (Duke's C) patients. The relationship between gene expression and RFI was not constant throughout the observed range of expression values in the study, e.g. increases in gene expression may have been related to increases in duration of RFI in one portion of the observed range and with decreases in duration of RFI in a different portion of the range.
PTHLH<.0001PTHLHNM_002820
TGFBR10.0011TGFBR1NM_004612
CDCA7 v20.0020CDCA7NM_145810
S100A40.0034S100A4NM_002961
CREBBP0.0040CREBBPNM_004380
Upa0.0040PLAUNM_002658
KLF50.0048KLF5NM_001730
CYP2C80.0070CYP2C8NM_000770
HES60.0090HES6NM_018645
Cad170.0093CDH17NM_004063
CEGP10.0100SCUBE2NM_020974
GHI k-ras mut30.0100GHI_k-ras_mut3
AKT10.0104AKT1NM_005163
LAMB30.0111LAMB3NM_000228
CAPG0.0120CAPGNM_001747
FUT60.0130FUT6NM_000150
A-Catenin0.0141CTNNA1NM_001903
CAPN10.0167CAPN1NM_005186
HSPE10.0180HSPE1NM_002157
MADH40.0180SMAD4NM_005359
STMY30.0190MMP11NM_005940
TRAG30.0200CSAG2NM_004909
GBP10.0200GBP1NM_002053
EFNA10.0210EFNA1NM_004428
SEMA3B0.0210SEMA3BNM_004636
CLTC0.0216CLTCNM_004859
BRK0.0240PTK6NM_005975
Fas0.0240FASNM_000043
CCNE2 variant 10.0243CCNE2NM_057749
TMEPAI0.0246TMEPAINM_020182
PTPRJ0.0260PTPRJNM_002843
SKP20.0261SKP2NM_005983
AGXT0.0273AGXTNM_000030
MAP20.0320MAP2NM_031846
PFN20.0330PFN2NM_053024
ATP5E0.0350ATP5ENM_006886
NRP10.0352NRP1NM_003873
MYH110.0360MYH11NM_002474
cIAP20.0369BIRC3NM_001165
INHBA0.0370INHBANM_002192
EGLN10.0371EGLN1NM_022051
GRIK10.0380GRIK1NM_000830
KDR0.0380KDRNM_002253
KLK60.0388KLK6NM_002774
APOC10.0390APOC1NM_001645
EP3000.0390EP300NM_001429
DET10.0390DET1NM_017996
ITGB40.0394ITGB4NM_000213
CD3z0.0400CD3ZNM_000734
MAX0.0400MAXNMB_002382
PAI10.0407SERPINE1NM_000602
MADH70.0430SMAD7NM_005904
SIR20.0440SIRT1NM_012238
NEDD80:0440NEDD8NM_006156
EPHB20.0445EPHB2NM_004442
BTF30.0460BTF3NM_001207
CD340.0470CD34NM_001773
VEGF_altsplice20.0480AF214570
Wnt-5b0.0480WNT5BNM_032642
RXRA0.0482RXRANM_002957
tusc40.0486TUSC4NM_006545
Table 7.2 shows all genes exhibiting an interaction (p-value < 0.1) with tumor stage. The data were modeled using a proportional hazards model of RFI with gene expression, tumor stage, and their interaction as predictors. Patients who had 0 positive nodes but <12 nodes examined were excluded from these analyses.
SOS13.350.810.0009SOS1NM_005633
ALCAM2.360.940.0020ALCAMNM_001627
pS21.581.040.0040TFF1NM_003225
TGFB21.830.950.0064TGFB2NM_003238
TFF31.570.900.0066TFF3NM_003226
KLF60.351.340.0092KLF6NM_001300
SNRPF0.501.160.0106SNRPFNM_003095
CENPA2.410.940.0106CENPANM_001809
HES61.690.860.0119HES6NM_018645
CLDN10.510.950.0124CLDN1NM_021101
FGF20.190.970.0125FGF2NM_002006
LEF1.940.940.0141LEF1NM_016269
MADH22.700.740.0145SMAD2NM_005901
TP53BP12.310.910.0153TP53BP1NM_005657
CCR71.890.980.0182CCR7NM_001838
MRP32.261.080.0204ABCC3NM_003786
UPP10.161.020.0208UPP1NM_003364
PTEN3.461.000.0216PTENNM_000314
ST141.640.660.0223ST14NM_021978
FYN2.281.100.0241FYNNM_002037
CD241.330.840.0260CD24NM_013230
LMYC1.800.820.0275RLFNM_012421
CDC42BPA2.821.120.0315CDC42BPANM_003607
CAV12.110.950.0364CAV1NM_001753
CHFR1.810.990.0382CHFRNM_018223
MGAT51.590.720.0383MAT5NM_002410
FPGS1.930.710.0402FPGSNM_004957
EMR32.630.570.0488EMR3NM_032571
SIR22.171.070.0538SIRT1NM_012238
PTK2B1.440.930.0542PTK2BNM_004103
Axin 21.380.900.0549AXIN2NM_004655
TRAG30.461.120.0570CSAG2NM_004909
MMP70.781.280.0608MMP7NM_002423
PFN21.330.840.0610PFN2NM_053024
PTPRJ2.051.000.0632PTPRJNMB_002843
CXCR41.961.080.0644CXCR4NM_003467
CCNA21.550.790.0661CCNA2NM_001237
MMP120.741.110.0685MMP12NM_002426
KRT80.641.270.0694KRT8NM_002273
ABCC52.061.140.0704ABCC5NM_005688
PRDX62.090.740.0711PRDX6NM_004905
WIF1.540.770.0738WIF1NM_007191
cdc25A2.480.940.0769CDC25ANM_001789
KLF51.871.030.0772KLF5NM_001730
LRP51.920.980.0783LRP5NM_002335
PTPD10.541.000.0789PTPN21NM_007039
RALBP12.200.910.0791RALBP1NM_006788
TP53BP21.821.050.0819TP53BP2NM_005426
STAT5B1.570.860.0822STAT5BNM_012448
PPARG1.320.790.0844PPARGNM_005037
HB-EGF0.501.380.0845HBEGFNM_001945
RARA1.770.960.0848RARANM_000964
GCNT11.861.070.0883GCNT1NM_001490
Ki-671.530.860.0885MK167NM_002417
EFNB21.761.050.0895EFNB2NM_004093
LGMN0.591.370.0900LGMNNM_001008530
DKK10.681.510.0922DKK1NM_012242
MADH42.040.980.0964SMAD4NM_005359
BIK1.530.940.0966BIKNM_001197
CD44v31.580.970.0996AJ251595v3
A-CateninNM_001903.1Forward PrimerCGTTCCGATCCTCTATACTGCATSEQ ID NO:1
ProbeATGCCTACAGCACCCTGATGTCGCASEQ ID NO:2
Reverse PrimerAGGTCCCTGTTGGCCTTATAGGSEQ ID NO:3
ABCB1NM_000927.2Forward PrimerAAACACCACTGGAGCATTGASEQ ID NO:4
ProbeCTCGCCAATGATGCTGCTCAAGTTSEQ ID NO:5
Reverse PrimerCAAGCCTGGAACCTATAGCCSEQ ID NO:6
ABCC5NM_005688.1Forward PrimerTGCAGACTGTACCATGCTGASEQ ID NO:7.
ProbeCTGCACACGGTTCTAGGCTCCGSEQ ID NO:8
Reverse PrimerGGCCAGCACCATAATCCTATSEQ ID NO:9
ABCC6NM_001171.2Forward PrimerGGATGAACCTCGACCTGCSEQ ID NO:10
ProbeCCAGATAGCCTCGTCCGAGTGCTCSEQ ID NO:11
Reverse PrimerGAGCTGCACCGTCTCCAGSEQ ID NO:12
ACP1NM_004300.2Forward PrimerGCTACCAAGTCCGTGCTGTSEQ ID NO:13
ProbeTGATCGACAAATGTTACCCAGACACACASEQ ID NO:14
Reverse PrimerGAAAACTGCTTCTGCAATGGSEQ ID NO:15
ADAM10NM_001110.1Forward PrimerCCCATCAACTTGTGCCAGTASEQ ID NO:16
ProbeTGCCTACTCCACTGCACAGACCCTSEQ ID NO:17
Reverse PrimerGGTGATGGTTCGACCACTGSEQ ID NO:18
ADAM17NM_003183.3Forward PrimerGAAGTGCCAGGAGGCGATTASEQ ID NO:19
ProbeTGCTACTTGCAAAGGCGTGTCCTACTGCSEQ ID NO:20
Reverse PrimerCGGGCACTCACTGCTATTACCSEQ ID NO:21
ADAMTS12NM_030955.2Forward PrimerGGAGAAGGGTGGAGTGCAGSEQ ID NO:22
ProbeCGCACAGTCAGAATCCATCTGGGTSEQ ID NO:23
Reverse PrimerCAGGGTCAGGTCTCTGGATGSEQ ID NO:24
ADPRTNM_001618.2Forward PrimerTTGACAACCTGCTGGACATCSEQ ID NO:25
ProbeCCCTGAGCAGACTGTAGGCCACCTSEQ ID NO:26
Reverse PrimerATGGGATCCTTGCTGCTATCSEQ ID NO:27
AGXTNMB_000030.1Forward PrimerCTTTTCCCTCCAGTGGCASEQ ID NO:28
ProbeCTCCTGGAAACAGTCCACTTGGGCSEQ ID NO:29
Reverse PrimerATTTGGAAGGCACTGGGTTTSEQ ID NO:30
AKAP12NM_005100.2Forward PrimerTAGAGAGCCCCTGACAATCCSEQ ID NO:31
ProbeTGGCTCTAGCTCCTGATGAAGCCTCSEQ ID NO:32
Reverse PrimerGGTTGGTCTTGGAAAGAGGASEQ ID NO:33
AKT1NM_005163.1Forward PrimerCGCTTCTATGGCGCTGAGATSEQ ID NO:34
ProbeCAGCCCTGGACTACCTGCACTCGGSEQ ID NO:35
Reverse PrimerTCCCGGTACACCACGTTCTTSEQ ID NO:36
AKT2NM_001626.2Forward PrimerTCCTGCCACCCTTCAAACCSEQ ID NO:37
ProbeCAGGTCACGTCCGAGGTCGACACASEQ ID NO:38
Reverse PrimerGGCGGTAAATTCATCATCGAASEQ ID NO:39
AKT3NM_005465.1Forward PrimerTTGTCTCTGCCTTGGACTATCTACASEQ ID NO:40
ProbeTCACGGTACACAATCTTTCCGGASEQ ID NO:41
Reverse PrimerCCAGCATTAGATTCTCCAACTTGASEQ ID NO:42
AL137428AL137428.1Forward PrimerCAAGAAGAGGCTCTACCCTGGSEQ ID NO:43
ProbeACTGGGAATTTCCAAGGCCACCTTSEQ ID NO:44
Reverse PrimerAAATGAGCTCTGCGATCCTCSEQ ID NO:45
ALCAMNM_001627.1Forward PrimerGAGGAATATGGAATCCAAGGGSEQ ID NO:46
ProbeCCAGTTCCTGCCGTCTGCTCTTCTSEQ ID NO:47
Reverse PrimerGTGGCGGAGATCAAGAGGSEQ ID NO:48
ALDH1A1NM_000689.1Forward PrimerGAAGGAGATAAGGAGGATGTTGACASEQ ID NO:49
ProbeAGTGAAGGCCGCAAGACAGGCTTTTCSEQ ID NO:50
Reverse PrimerCGCCACGGAGATCCAATCSEQ ID NO:51
ALDOANM_000034.2Forward PrimerGCCTGTACGTGCCAGCTCSEQ ID NO:52
ProbeTGCCAGAGCCTCAACTGTCTCTGCSEQ ID NO:53
Reverse PrimerTCATCGGAGCTTGATCTCGSEQ ID NO:54
AMFRNMB_001144.2Forward PrimerGATGGTTCAGCTCTGCAAGGASEQ ID NO:55
ProbeCGATTTGAATATCTTTCCTTCTCGCCCACCSEQ ID NO:56
Reverse PrimerTCGACCGTGGCTGCTCATSEQ ID NO:57
ANGPT2NM_001147.1Forward PrimerCCGTGAAAGCTGCTCTGTAASEQ ID NO:58
ProbeAAGCTGACACAGCCCTCCCAAGTGSEQ ID NO:59
Reverse PrimerTTGCAGTGGGAAGAACAGTCSEQ ID NO:60
ANTXR1NM_032208.1Forward PrimerCTCCAGGTGTACCTCCAACCSEQ ID NO:61
ProbeAGCCTTCTCCCACAGCTGCCTACASEQ ID NO:62
Reverse PrimerGAGAAGGCTGGGAGACTCTGSEQ ID NO:63
ANXA1NM_000700.1Forward PrimerGCCCCTATCCTACCTTCAATCCSEQ ID NO:64
ProbeTCCTCGGATGTCGCTGCCTSEQ ID NO:65
Reverse PrimerCCTTTAACCATTATGGCCTTATGCSEO ID NO:66
ANXA2NM_004039.1Forward PrimerCAAGACACTAAGGGCGACTACCASEQ ID NO:67
ProbeCCACCACACAGGTACAGCAGCGCTSEQ ID NO:68
Reverse PrimerCGTGTCGGGCTTCAGTCATSEQ ID NO:69
ANXA5NMB_001154.2Forward PrimerGCTCAAGCCTGGAAGATGACSEQ ID NO:70
ProbeAGTACCCTGAAGTGTCCCCCACCASEQ ID NO:71
Reverse PrimerAGAACCACCAACATCCGCTSEQ ID NO:72
AP-1 (JUN official)NMB_002228.2Forward PrimerGACTGCAAAGATGGAAACGASEQ ID NO:73
ProbeCTATGACGATGCCCTCAACGCCTCSEQ ID NO:74
Reverse PrimerTAGCCATAAGGTCCGCTCTCSEQ ID NO:75
APCNM_000038.1Forward PrimerGGACAGCAGGAATGTGTTTCSEQ ID NO:76
ProbeCATTGGCTCCCCGTGACCTGTASEQ ID NO:77
Reverse PrimerACCCACTCGATTTGTTTCTGSEQ ID NO:78
APEX-1NM_001641.2Forward PrimerGATGAAGCCTTTCGCAAGTTSEQ ID NO:79
ProbeCTTTCGGGAAGCCAGGCCCTTSEQ ID NO:80
Reverse PrimerAGGTCTCCACACAGCACAAGSEQ ID NO:81
APG-1NM_014278.2Forward PrimerACCCCGGCCTGTATATCATSEQ ID NO:82
ProbeCCAATGGCTCGAGTTCTTGATCCCSEQ ID NO:83
Reverse PrimerCTATCTGGCTCTTTGCTGCATSEQ ID NO:84
APN (ANPEP official)NM_001150.1Forward PrimerCCACCTTGGACCAAAGTAAAGCSEO ID NO:85
ProbeCTCCCCAACACGCTGAAACCCGSEQ ID NO:86
Reverse PrimerTCTCAGCGTCACCTGGTAGGASEO ID NO:87
APOC1NM_001645.3Forward PrimerGGAAACACACTGGAGGACAAGSEQ ID NO:88
ProbeTCATCAGCCGCATCAAACAGAGTGSEQ ID NO:89
Reverse PrimerCGCATCTTGGCAGAAAGTTSEQ ID NO:90
AREGNMB_001657.1Forward PrimerTGTGAGTGAAATGCCTTCTAGTAGTGASEQ ID NO:91
ProbeCCGTCCTCGGGAGCCGACTATGASEQ ID NO:92
Reverse PrimerTTGTGGTTCGTTATCATACTCTTCTGASEQ ID NO:93
ARGNM_005158.2Forward PrimerCGCAGTGCAGCTGAGTATCTGSEQ ID NO:94
ProbeTCGCACCAGGAAGCTGCCATTGASEQ ID NO:95
Reverse PrimerTGCCCAGGGCTACTCTCACTTSEQ ID NO:96
ARHFNMB_019034.2Forward PrimerACTGGCCCACTTAGTCCTCASEQ ID NO:97
ProbeCTCCCAACCTGCTGTCCCTCAAGSEQ ID NO:98
Reverse PrimerCTGAACTCCACAGGCTGGTASEQ ID NO:99
ATOH1NM_005172.1Forward PrimerGCAGCCACCTGCAACTTTSEQ ID NO:100
ProbeCAGGCGAGAGAGCATCCCGTCTACSEQ ID NO:101
Reverse PrimerTCCAGGAGGGACAGCTCASEQ ID NO:102
ATP5A1NM_004046.3Forward PrimerGATGCTGCCACTCAACAACTSEQ ID NO:103
ProbeAGTTAGACGCACGCCACGACTCAASEQ ID NO:104
Reverse PrimerTGTCCTTGCTTCAGCAACTCSEQ ID NO:105
ATP5ENM_006886.2Forward PrimerCCGCTTTCGCTACAGCATSEQ ID NO:106
ProbeTCCAGCCTGTCTCCAGTAGGCCACSEQ ID NO:107
Reverse PrimerTGGGAGTATCGGATGTAGCTGSEQ ID NO:108
AURKBNM_004217.1Forward PrimerAGCTGCAGAAGAGCTGCACATSEQ ID NO:109
ProbeTGACGAGCAGCGAACAGCCACGSEQ ID NO:110
Reverse PrimerGCATCTGCCAACTCCTCCATSEQ ID NO:111
Axin 2NM_004655.2Forward PrimerGGCTATGTCTTTGCACCAGCSEQ ID NO:112
ProbeACCAGCGCCAACGACAGTGAGATASEO ID NO:113
Reverse PrimerATCCGTCAGCGCATCACTSEQ ID NO:114
axin1NM_003502.2Forward PrimerCCGTGTGACAGCATCGTTSEQ ID NO:115
ProbeCGTACTACTTCTGCGGGGAACCCASEQ ID NO:116
Reverse PrimerCTCACCAGGGTGCGGTAGSEQ ID NO:117
B-CateninNM_001904.1Forward PrimerGGCTCTTGTGCGTACTGTCCTTSEQ ID NO:118
ProbeAGGCTCAGTGATGTCTTCCCTGTCACCAGSEQ ID NO:119
Reverse PrimerTCAGATGACGAAGAGCACAGATGSEQ ID NO:120
BADNM_032989.1Forward PrimerGGGTCAGGTGCCTCGAGATSEO ID NO:121
ProbeTGGGCCCAGAGCATGTTCCAGATCSEQ ID NO:122
Reverse PrimerCTGCTCACTCGGCTCAAACTCSEQ ID NO:123
BAG1NM_004323.2Forward PrimerCGTTGTCAGCACTTGGAATACAASEQ ID NO:124
ProbeCCCAATTAACATGACCCGGCAACCATSEQ ID NO:125
Reverse PrimerGTTCAACCTCTTCCTGTGGACTGTSEQ ID NO:126
BAG2NM_004282.2Forward PrimerCTAGGGGCAAAAAGCATGASEQ ID NO:127
ProbeTTCCATGCCAGACAGGAAAAAGCASEQ ID NO:128
Reverse PrimerCTAAATGCCCAAGGTGACTGSEQ ID NO:129
BAG3NM_004281.2Forward PrimerGAAAGTAAGCCAGGCCCAGTTSEQ ID NO:130
ProbeCAGAACTCCCTCCTGGACACATCCCAASEQ ID NO:131
Reverse PrimerACCTCTTTGCGGATCACTTGASEQ ID NO:132
BakNMB_001188.1Forward PrimerCCATTCCCACCATTCTACCTSEO ID NO:133
ProbeACACCCCAGACGTCCTGGCCTSEQ ID NO:134
Reverse PrimerGGGAACATAGACCCACCAATSEa 10 NO:135
BaxNM_004324.1Forward PrimerCCGCCGTGGACACAGACTSEQ ID NO:136
ProbeTGCCACTCGGAAAAAGACCTCTCGGSEQ ID NO:137
Reverse PrimerTTGCCGTCAGAAAACATGTCASEQ ID NO:138
BBC3NM_014417.1Forward PrimerCCTGGAGGGTCCTGTACAATSEQ ID NO: 139
ProbeCATCATGGGACTCCTGCCCTTACCSEQ ID NO:140
Reverse PrimerCTAATTGGGCTCCATCTCGSEQ ID NO:141
BCAS1NM_003657.1Forward PrimerCCCCGAGACAACGGAGATAASEQ ID NO:142
ProbeCTTTCCGTTGGCATCCGCAACAGSEQ ID NO:143
Reverse PrimerCTCGGGTTTGGCCTCTTTCSEQ ID NO:144
Bcl2NMB_000633.1Forward PrimerCAGATGGACCTAGTACCCACTGAGASEO ID NO:145
ProbeTTCCACGCCGAAGGACAGCGATSEQ ID NO:146
Reverse PrimerCCTATGATTTAAGGGCATTTTTCCSEQ ID NO:147
BCL2L10NM_020396.2Forward PrimerGCTGGGATGGCTTTTGTCASEQ ID NO:148
ProbeTCTTCAGGACCCCCTTTCCACTGGCSEQ ID NO:149
Reverse PrimerGCCTGGACCAGCTGTTTTCTCSEO ID NO:150
BCL2L11NM_138621.1Forward PrimerAATTACCAAGCAGCCGAAGASEQ ID NO:151
ProbeCCACCCACGAATGGTTATCTTACGACTGSEQ ID NO:152
Reverse PrimerCAGGCGGACAATGTAACGTASEQ ID NO:153
BCL2L12NM_138639.1Forward PrimerAACCCACCCCTGTCTTGGSEQ ID NO:154
ProbeTCCGGGTAGCTCTCAAACTCGAGGSEQ ID NO:155
Reverse PrimerCTCAGCTGACGGGAAAGGSEQ ID NO:156
BclxNMB_001191.1Forward PrimerCTTTTGTGGAACTCTATGGGAACASEQ ID NO:157
ProbeTTCGGCTCTCGGCTGCTGCASEQ ID NO:158
Reverse PrimerCAGCGGTTGAAGCGTTCCTSEO ID NO:159
BCRPNM_004827.1Forward PrimerTGTACTGGCGAAGAATATTTGGTAAASEQ ID NO:160
ProbeCAGGGCATCGATCTCTCACCCTGGSEQ ID NO:161
Reverse PrimerGCCACGTGATTCTTCCACAASEQ ID NO:162
BFGFNM_007083.1Forward PrimerCCAGGAAGAATGCTTAAGATGTGASEQ ID NO:163
ProbeTTCGCCAGGTCATTGAGATCCATCCASEQ ID NO:164
Reverse PrimerTGGTGATGGGAGTTGTATTTTCAGSEQ ID NO:165
BGNNM_001711.3Forward PrimerGAGCTCCGCAAGGATGACSEQ ID NO:166
ProbeCAAGGGTCTCCAGCACCTCTACGCSEQ ID NO:167
Reverse PrimerCTTGTTGTTCACCAGGACGASEQ ID NO:168
BIDNM_001196.2Forward PrimerGGACTGTGAGGTCAACAACGSEQ ID NO:169
ProbeTGTGATGCACTCATCCCTGAGGCTSEQ ID NO:170
Reverse PrimerGGAAGCCAAACACCAGTAGGSEQ lD NO:171
BIKNMB_001197.3Forward PrimerATTCCTATGGCTCTGCAATTGTCSEQ ID NO:172
ProbeCCGGTTAACTGTGGCCTGTGCCCSEQ ID NO:173
Reverse PrimerGGCAGGAGTGAATGGCTCTTCSEQ ID NO:174
BIN1NM_004305.1Forward PrimerCCTGCAAAAGGGAACAAGAGSEQ ID NO:175
ProbeCTTCGCCTCCAGATGGCTCCCSEQ ID NO:176
Reverse PrimerCGTGGTTGACTCTGATCTCGSEQ ID NO:177
BLMHNM_000386.2Forward PrimerGGTTGCTGCCTCCATCAAAGSEQ ID NO:178
ProbeACATCACAGCCAAACCACACAGCCTCTSEQ ID NO:179
Reverse PrimerCCAGCTTGCTATTGAAGTGTTTTCSEQ ID NO:180
BMP2NM_001200.1Forward PrimerATGTGGACGCTCTTTCAATGSEQ ID NO:181
ProbeACCGCAGTCCGTCTAAGAAGCACGSEQ ID NO:182
Reverse PrimerACCATGGTCGACCTTTAGGASEQ ID NO:183
BMP4NM_001202.2Forward PrimerGGGCTAGCCATTGAGGTGSEQ ID NO:184
ProbeCTCACCTCCATCAGACTCGGACCCSEQ ID NO:185
Reverse PrimerGCTAATCCTGACATGCTGGCSEQ ID NO:186
BMP7NM_001719.1Forward PrimerTCGTGGAACATGACAAGGAATTSEQ ID NO:187
ProbeTTCCACCCACGCTACCACCATCGSEQ ID NO:188
Reverse PrimerTGGAAAGATCAAACCGGAACTCSEQ ID NO:189
BMPR1ANM_004329.2Forward PrimerTTGGTTCAGCGAACTATTGCSEQ ID NO:190
ProbeCAAACAGATTCAGATGGTCCGGCASEO ID NO:191
Reverse PrimerTCTCCATATCGGCCTTTACCSEQ ID NO:192
BRAF-NM_004333.1Forward PrimerCCTTCCGACCAGCAGATGAASEQ ID NO:193
ProbeCAATTTGGGCAACGAGACCGATCCTSEQ ID NO:194
Reverse PrimerTTTATATGCACATTGGGAGCTGATSEa ID NO:195
BRCA1NM_007295.1Forward PrimerTCAGGGGGCTAGAAATCTGTSEQ ID NO:196
ProbeCTATGGGCCCTTCACCAACATGCSEQ ID NO:197
Reverse PrimerCCATTCCAGTTGATCTGTGGSEQ ID NO:198
BRCA2NM_000059.1Forward PrimerAGTTCGTGCTTTGCAAGATGSEQ ID NO:199
ProbeCATTCTTCACTGCTTCATAAAGCTCTGCASEQ ID NO:200
Reverse PrimerAAGGTAAGCTGGGTCTGCTGSEQ ID NO:201
BRKNM_005975.1Forward PrimerGTGCAGGAAAGGTTCACAAASEQ ID NO:202
ProbeAGTGTCTGCGTCCAATACACGCGTSEQ ID NO:203
Reverse PrimerGCACACACGATGGAGTAAGGSEQ ID NO:204
BTF3NM_001207.2Forward PrimerCAGTGATCCACTTTAACAACCCTAAAGSEQ ID NO:205
ProbeTCAGGCATCTCTGGCAGCGAACACSEQ ID NO:206
Reverse PrimerAGCATGGCCTGTAATGGTGAASEQ ID NO:207
BTRCNM_033637.2Forward PrimerGTTGGGACACAGTTGGTCTGSEQ ID NO:208
ProbeCAGTCGGCCCAGGACGGTCTACTSEQ ID NO:209
Reverse PrimerTGAAGCAGTCAGTTGTGCTGSEQ ID NO:210
BUB1NMB_004336.1Forward PrimerCCGAGGTTAATCCAGCACGTASEQ ID NO:211
ProbeTGCTGGGAGCCTACACTTGGCCCSEQ ID NO:212
Reverse PrimerAAGACATGGCGCTCTCAGTTCSEQ ID NO:213
BUB1BNM_001211.3Forward PrimerTCAACAGAAGGCTGAACCACTAGASEQ ID NO:214
ProbeTACAGTCCCAGCACCGACAATTCCSEQ ID NO:215
Reverse PrimerCAACAGAGTTTGCCGAGACACTSEQ ID NO:216
BUB3NM_004725.1Forward PrimerCTGAAGCAGATGGTTCATCATTSEQ ID NO:217
ProbeCCTCGCTTTGTTTAACAGCCCAGGSEQ ID NO:218
Reverse PrimerGCTGATTCCCAAGAGTCTAACCSEQ ID NO:219
c-ablNM_005157.2Forward PrimerCCATCTCGCTGAGATACGAASEQ ID NO:220
ProbeGGGAGGGTGTACCATTACAGGATCAACASEQ ID NO:221
Reverse PrimerAGACGTAGAGCTTGCCATCASEQ ID NO:222
c-kitNM_000222.1,Forward PrimerGAGGCAACTGCTTATGGCTTAATTASEQ ID NO:223
ProbeTTACAGCGACAGTCATGGCCGCATSEQ ID NO:224
Reverse PrimerGGCACTCGGCTTGAGCATSEQ ID NO:225
c-myb (MYB official)NM_005375.1Forward PrimerAACTCAGACTTGGAAATGCCTTCTSEO ID NO:226
ProbeAACTTCCACCCCCCTCATTGGTCACASEQ ID NO:227
Reverse PrimerCTGGTCTCTATGAAATGGTGTTGTAACSEQ ID NO:228
c-SrcNM_005417.3Forward PrimerTGAGGAGTGGTATTTTGGCAAGASEQ ID NO:229
ProbeAACCGCTCTGACTCCCGTCTGGTGSEQ ID NO:230
Reverse PrimerCTCTCGGGTTCTCTGCATTGASEQ ID NO:231
C20 orf1NM_012112.2Forward PrimerTCAGCTGTGAGCTGCGGATASEQ ID NO:232
ProbeCAGGTCCCATTGCCGGGCGSEQ ID NO:233
Reverse PrimerACGGTCCTAGGTTTGAGGTTAAGASEQ ID NO:234
C200RF126NM_030815.2Forward PrimerCCAGCACTGCTCGTTACTGTSEQ ID NO:235
ProbeTGGGACCTCAGACCACTGAAGGCSEX ID NO:236
Reverse PrimerTTGACTTCACGGCAGTTCATASEQ ID NO:237
C8orf4NMB_020130.2Forward PrimerCTACGAGTCAGCCCATCCATSEQ ID NO:238
ProbeCATGGCTACCACTTCGACACAGCCSEQ ID NO:239
Reverse PrimerTGCCCACGGCTTTCTTACSEQ ID NO:240
CA9NM_001216.1Forward PrimerATCCTAGCCCTGGTTTTTGGSEQ ID NO:241
ProbeTTTGCTGTCACCAGCGTCGCSEQ ID NO:242
Reverse PrimerCTGCCTTCTCATCTGCACAASEQ ID NO:243
Cad17NM_004063.2Forward PrimerGAAGGCCAAGAACCGAGTCASEQ ID NO:244
ProbeTTATATTCCAGTTTAAGGCCAATCCTCSEQ ID NO:245
Reverse PrimerTCCCCAGTTAGTTCAAAAGTCACASEa 10 NO:246
CALD1NM_004342.4Forward PrimerCACTAAGGTTTGAGACAGTTCCAGAASEQ ID NO:247
ProbeAACCCAAGCTCAAGACGCAGGACGAGSEQ ID NO:248
Reverse PrimerGCGAATTAGCCCTCTACAACTGASEQ ID NO:249
CAPGNM_001747.1Forward PrimerGATTGTCACTGATGGGGAGGSEQ ID NO:250
ProbeAGGACCTGGATCATCTCAGCAGGCSEQ ID NO:251
Reverse PrimerCCTTCAGAGCAGGCTTGGSEQ ID NO:252
CAPN1NM_005186.2Forward PrimerCAAGAAGCTGTACGAGCTCATCASEQ ID NO:253
ProbeCCGCTACTCGGAGCCCGACCTGSEQ ID NO:254
Reverse PrimerGCAGCAAACGAAATTGTCAAAGSEQ ID NO:255
CASP8NM_033357.1Forward PrimerCCTCGGGGATACTGTCTGATSEQ ID NO:256
ProbeCAACAATCACAATTTTGCAAAAGCACGSEQ ID NO:257
Reverse PrimerGAAGTTTGGGCACTTTCTCCSEQ ID NO:258
CASP9NM_001229.2Forward PrimerTGAATGCCGTGGATTGCASEQ ID NO:259
ProbeCACTAGCCCTGGACCAGCCACTGCTSEQ ID NO:260
Reverse PrimerACAGGGATCATGGGACACAAGSEQ ID NO:261
CATNM_001752.1Forward PrimerATCCATTCGATCTCACCAAGGTSEQ ID NO:262
ProbeTGGCCTCACAAGGACTACCCTCTCATCCSEQ ID NO:263
Reverse PrimerTCCGGTTTAAGACCAGTTTACCASEQ ID NO:264
CAV1NM_001753.3Forward PrimerGTGGCTCAACATTGTGTTCCSEQ ID NO:265
ProbeATTTCAGCTGATCAGTGGGCCTCCSEQ ID NO:266
Reverse PrimerCAATGGCCTCCATTTTACAGSEQ ID NO:267
CBLNM_005188.1Forward PrimerTCATTCACAAACCTGGCAGTSEQ ID NO:268
ProbeTTCCGGCTGAGCTGTACTCGTCTGSEQ ID NO:269
Reverse PrimerCATACCCAATAGCCCACTGASEQ ID NO:270
CCL20NM_004591.1Forward PrimerCCATGTGCTGTACCAAGAGTTTGSEQ ID NO:271
ProbeCAGCACTGACATCAAAGCAGCCAGGASEQ ID NO:272
Reverse PrimerCGCCGCAGAGGTGGAGTASEQ ID NO:273
CCL3NM_002983.1Forward PrimerAGCAGACAGTGGTCAGTCCTTSEQ ID NO:274
ProbeCTCTGCTGACACTCGAGCCCACATSEQ ID NO:275
Reverse PrimerCTGCATGATTCTGAGCAGGTSEQ ID NO:276
CCNA2NM_001237.2Forward PrimerCCATACCTCAAGTATTTGCCATCAGSEQ ID NO:277
ProbeATTGCTGGAGCTGCCTTTCATTTAGCACTSEQ ID NO:278
Reverse PrimerAGCTTTGTCCCGTGACTGTGTASEQ ID NO:279
CCNB1NM_031966.1Forward PrimerTTCAGGTTGTTGCAGGAGACSEa ID NO:280
ProbeTGTCTCCATTATTGATCGGTTCATGCASEQ ID NO:281
Reverse PrimerCATCTTCTTGGGCACACAATSEQ ID NO:282
CCNB2NM_004701.2Forward PrimerAGGCTTCTGCAGGAGACTCTGTSEQ ID NO:283
ProbeTCGATCCATAATGCCAACGCACATGSEQ ID NO:284
Reverse PrimerGGGAAACTGGCTGAACCTGTAASEQ ID NO:285
CCND1NM_001758.1Forward PrimerGCATGTTCGTGGCCTCTAAGASEQ ID NO:286
ProbeAAGGAGACCATCCCCCTGACGGCSEQ ID NO:287
Reverse PrimerCGGTGTAGATGCACAGCTTCTCSEQ ID NO:288
CCND3NM_001760.2Forward PrimerCCTCTGTGCTACAGATTATACCTTTGCSEQ ID NO:289
ProbeTACCCGCCATCCATGATCGCCASEQ ID NO:290
Reverse PrimerCACTGCAGCCCCAATGCTSEQ ID NO:291
CCNE1NM_001238.1Forward PrimerAAAGAAGATGATGACCGGGTTTACSEQ ID NO:292
ProbeCAAACTCAACGTGCAAGCCTCGGASEQ ID NO:293
Reverse PrimerGAGCCTCTGGATGGTGCAATSEQ ID NO:294
CCNE2NM_057749.1Forward PrimerGGTCACCAAGAAACATCAGTATGAASEQ ID NO:295
ProbeCCCAGATAATACAGGTGGCCAACAATTCCTSEQ ID NO:296
Reverse PrimerTTCAATGATAATGCAAGGACTGATCSEQ ID NO:297
CCNE2 variant 1NM_057749var1Forward PrimerATGCTGTGGCTCCTTCCTAACTSEQ ID NO:298
ProbeTACCAAGCAACCTACATGTCAAGAAAGCCCSEQ ID NO:299
Reverse PrimerACCCAAATTGTGATATACAAAAAGGTTSEQ ID NO:300
CCR7NM_001838.2Forward PrimerGGATGACATGCACTCAGCTCSEQ ID NO:301
ProbeCTCCCATCCCAGTGGAGCCAASEQ ID NO:302
Reverse PrimerCCTGACATTTCCCTTGTCCTSEQ ID NO:303
CD105NM_000118.1Forward PrimerGCAGGTGTCAGCAAGTATGATCAGSEQ ID NO:304
ProbeCGACAGGATATTGACCACCGCCTCATTSEQ ID NO:305
Reverse PrimerTTTTTCCGCTGTGGTGATGASEQ ID NO:306
CD134 (TNFRSF4 official)NM_003327.1Forward PrimerGCCCAGTGCGGAGAACAGSEQ ID NO:307
ProbeCCAGCTTGATTCTCGTCTCTGCACTTAAGCSEQ ID NO:308
Reverse PrimerAATCACACGCACCTGGAGAACSEQ ID NO:309
CD18NM_000211.1Forward PrimerCGTCAGGACCCACCATGTCTSEQ ID NO:310
ProbeCGCGGCCGAGACATGGCTTGSEQ ID NO:311
Reverse PrimerGGTTAATTGGTGACATCCTCAAGASEQ ID NO:312
CD24NM_013230.1Forward PrimerTCCAACTAATGCCACCACCAASEQ ID NO:313
ProbeCTGTTGACTGCAGGGCACCACCASEQ ID NO:314
Reverse PrimerGAGAGAGTGAGACCACGAAGAGACTSEQ ID NO:315
CD28NM_006139.1Forward PrimerTGTGAAAGGGAAACACCTTTGSEQ ID NO:316
ProbeCCAAGTCCCCTATTTCCCGGACCTSEQ ID NO:317
Reverse PrimerAGCACCCAAAAGGGCTTAGSEQ ID NO:318
CD31NM_000442.1Forward PrimerTGTATTTCAAGACCTCTGTGCACTTSEQ ID NO:319
ProbeTTTATGAACCTGCCCTGCTCCCACASEQ ID NO:320
Reverse PrimerTTAGCCTGAGGAATTGCTGTGTTSEQ ID NO:321
CD34NM_001773.1Forward PrimerCCACTGCACACACCTCAGASEQ ID NO:322
ProbeCTGTTCTTGGGGCCCTACACCTTGSEQ ID NO:323
Reverse PrimerCAGGAGTTTACCTGCCCCTSEQ ID NO:324
CD3zNM_000734.1Forward PrimerAGATGAAGTGGAAGGCGCTTSEQ ID NO:325
ProbeCACCGCGGCCATCCTGCASEQ ID NO:326
Reverse PrimerTGCCTCTGTAATCGGCAACTGSEQ ID NO:327
CD44EX55150Forward PrimerATCACCGACAGCACAGACASEQ ID NO:328
ProbeCCCTGCTACCAATATGGACTCCAGTCASEQ ID NO:329
Reverse PrimerACCTGTGTTTGGATTTGCAGSEQ ID NO:330
CD44sM59040.1Forward PrimerGACGAAGACAGTCCCTGGATSEQ ID NO:331
ProbeCACCGACAGCACAGACAGAATCCCSEQ ID NO:332
Reverse PrimerACTGGGGTGGAATGTGTCTTSEQ ID NO:333
CD44v3AJ251595v3Forward PrimerCACACAAAACAGAACCAGGACTSEQ ID NO:334
ProbeACCCAGTGGAACCCAAGCCATTCSEQ ID NO:335
Reverse PrimerCTGAAGTAGCACTTCCGGATTSEQ ID NO:336
CD44v6AJ251595v6Forward PrimerCTCATACCAGCCATCCAATGSEQ ID NO:337
ProbeCACCAAGCCCAGAGGACAGTTCCTSEQ ID NO:338
Reverse PrimerTTGGGTTGAAGAAATCAGTCCSEQ ID NO:339
CD68NM_001251.1Forward PrimerTGGTTCCCAGCCCTGTGTSEQ ID NO:340
ProbeCTCCAAGCCCAGATTCAGATTCGAGTCASEQ ID NO:341
Reverse PrimerCTCCTCCACCCTGGGTTGTSEQ ID NO:342
CD80NM_005191.2Forward PrimerTTCAGTTGCTTTGCAGGAAGSEQ ID NO:343
ProbeTTCTGTGCCCACCATATTCCTCTAGACASEQ ID NO:344
Reverse PrimerTTGATCAAGGTCACCAGAGCSEQ ID NO:345
CD82NM_002231.2Forward PrimerGTGCAGGCTCAGGTGAAGTGSEQ ID NO:346
ProbeTCAGCTTCTACAACTGGACAGACAACGCTGSEQ ID NO:347
Reverse PrimerGACCTCAGGGCGATTCATGASEQ ID NO:348
CD8ANM_171827.1Forward PrimerAGGGTGAGGTGCTTGAGTCTSEQ ID NO:349
ProbeCCAACGGCAAGGGAACAAGTACTTCTSEQ ID NO:350
Reverse PrimerGGGCACAGTATCCCAGGTASEQ ID NO:351
CD9NM_001769.1Forward PrimerGGGCGTGGAACAGTTTATCTSEQ ID NO:352
ProbeAGACATCTGCCCCAAGAAGGACGTSEQ ID NO:353
Reverse PrimerCACGGTGAAGGTTTCGAGTSEQ ID NO:354
CDC2NMB_001786.2Forward PrimerGAGAGCGACGCGGTTGTTSEQ ID NO:355
ProbeTAGCTGCCGCTGCGGCCGSEQ ID NO:356
Reverse PrimerGTATGGTAGATCCCGGCTTATTATTCSEQ ID NO:357
CDC20NM_001255.1Forward PrimerTGGATTGGAGTTCTGGGAATGSEQ ID NO:358
ProbeACTGGCCGTGGCACTGGACAACASEQ ID NO:359
Reverse PrimerGCTTGCACTCCACAGGTACACASEQ ID NO:360
cdc25ANM_001789.1Forward PrimerTCTTGCTGGCTACGCCTCTTSEQ ID NO:361
ProbeTGTCCCTGTTAGACGTCCTCCGTCCATASEQ ID NO:362
Reverse PrimerCTGCATTGTGGCACAGTTCTGSEQ ID NO:363
CDC25BNM_021874.1Forward PrimerAAACGAGCAGTTTGCCATCAGSEQ ID NO:364
ProbeCCTCACCGGCATAGACTGGAAGCGSEQ ID NO:365
Reverse PrimerGTTGGTGATGTTCCGAAGCASEQ ID NO:366
CDC25CNMB_001790.2Forward PrimerGGTGAGCAGAAGTGGCCTATSEQ ID NO:367
ProbeCTCCCCGTCGATGCCAGAGAACTSEQ ID NO:368
Reverse PrimerCTTCAGTCTTGGCCTGTTCASEQ ID NO:369
CDC4NM_018315.2Forward PrimerGCAGTCCGCTGTGTTCAASEQ ID NO:370
ProbeTGCTCCACTAACAACCCTCCTGCCSEQ ID NO:371
Reverse PrimerGGATCCCACACCTTTACCATAASEQ ID NO:372
CDC42NM_001791.2Forward PrimerTCCAGAGACTGCTGAAAASEQ ID NO:373
ProbeCCCGTGACCTGAAGGCTGTCAAGSEQ ID NO:374
Reverse PrimerTGTGTAAGTGCAGAACACSEQ ID NO:375
CDC42BPANMB_003607.2Forward PrimerGAGCTGAAAGACGCACACTGSEQ ID NO:376
ProbeAATTCCTGCATGGCCAGTTTCCTCSEQ ID NO:377
Reverse PrimerGCCGCTCATTGATCTCCASEQ ID NO:378
CDC6NM_001254.2Forward PrimerGCAACACTCCCCATTTACCTCSEQ ID NO:379
ProbeTTGTTCTCCACCAAAGCAAGGCAASEQ ID NO:380
Reverse PrimerTGAGGGGGACCATTCTCTTTSEQ ID NO:381
CDCA7 v2NM_145810.1Forward PrimerAAGACCGTGGATGGCTACATSEQ ID NO:382
ProbeATGAAGATGACCTGCCCAGAAGCCSEQ ID NO:383
Reverse PrimerAGGGTCACGGATGATCTGGSEQ ID NO:384
CDH1NM_004360.2Forward PrimerTGAGTGTCCCCCGGTATCTTCSEQ ID NO:385
ProbeTGCCAATCCCGATGAAATTGGAAATTTSEQ ID NO:386
Reverse PrimerCAGCCGCTTTCAGATTTTCATSEQ ID NO:387
CDH11NMB_001797.2Forward PrimerGTCGGCAGAAGCAGGACTSEQ ID NO:388
ProbeCCTTCTGCCCATAGTGATCAGCGASEQ ID NO:389
Reverse PrimerCTACTCATGGGCGGGATGSEQ ID NO:390
CDH3NM_001793.3Forward PrimerACCCATGTACCGTCCTCGSEQ ID NO:391
ProbeCCAACCCAGATGAAATCGGCAACTSEQ ID NO:392
Reverse PrimerCCGCCTTCAGGTTCTCAATSEQ ID NO:393
CDK2NM_001798.2Forward PrimerAATGCTGCACTACGACCCTASEQ ID NO:394
ProbeCCTTGGCCGAAATCCGCTTGTSEQ ID NO:395
Reverse PrimerTTGGTCACATCCTGGAAGAASEQ ID NO:396
CDX1NM_001804.1Forward PrimerAGCAACACCAGCCTCCTGSEQ ID NO:397
ProbeCACCTCCTCTCCAATGCCTGTGAASEQ ID NO:398
Reverse PrimerGGGCTATGGCAGAAACTCCTSEQ ID NO:399
Cdx2NM_001265.2Forward PrimerGGGCAGGCAAGGTTTACASEQ ID NO:400
ProbeATCTTAGCTGCCTTTGGCTTCCGCSEQ ID NO:401
Reverse PrimerGTCTTTGGTCAGTCCAGCTTTCSEQ ID NO:402
CEACAM1NM_001712.2Forward PrimerACTTGCCTGTTCAGAGCACTCASEQ ID NO:403
ProbeTCCTTCCCACCCCCAGTCCTGTCSEQ ID NO:404
Reverse PrimerTGGCAAATCCGAATTAGAGTGASEQ ID NO:405
CEACAM6NM_002483.2Forward PrimerCACAGCCTCACTTCTAACCTTCTGSEQ ID NO:406
ProbeACCCACCCACCACTGCCAAGCTCSEQ ID NO:407
Reverse PrimerTTGAATGGCGTGGATTCAATAGSEQ ID NO:408
CEBPBNM_005194.2Forward PrimerGCAACCCACGTGTAACTGTCSEQ ID NO:409
ProbeCCGGGCCCTGAGTAATCGCTTAASEQ ID NO:410
Reverse PrimerACAAGCCCGTAGGAACATCTSEQ ID NO:411
CEGP1NM_020974.1Forward PrimerTGACAATCAGCACACCTGCATSEQ ID NO:412
ProbeCAGGCCCTCTTCCGAGCGGTSEQ ID NO:413
Reverse PrimerTGTGACTACAGCCGTGATCCTTASEQ ID NO:414
CENPANMB_001809.2Forward PrimerTAAATTCACTCGTGGTGTGGASEQ ID NO:415
ProbeCTTCAATTGGCAAGCCCAGGCSEQ ID NO:416
Reverse PrimerGCCTCTTGTAGGGCCAATAGSEQ ID NO:417
CENPENM_001813.1Forward PrimerGGATGCTGGTGACCTCTTCTSEQ ID NO:418
ProbeTCCCTCACGTTGCAACAGGAATTAASEQ ID NO:419
Reverse PrimerGCCAAGGCACCAAGTAACTCSEQ ID NO:420
CENPFNMB_016343.2Forward PrimerCTCCCGTCAACAGCGTTCSEQ ID NO:421
ProbeACACTGGACCAGGAGTGCATCCAGSEQ ID NO:422
Reverse PrimerGGGTGAGTCTGGCCTTCASEQ ID NO:423
CES2NM_003869.4Forward PrimerACTTTGCGAGAAATGGGAACSEQ ID NO:424
ProbeAGTGTGGCAGACCCTCGCCATTSEQ ID NO:425
Reverse PrimerCAGGTATTGCTCCTCCTGGTSEQ ID NO:426
CGA(CHGA official)NM_001275.2Forward PrimerCTGAAGGAGCTCCAAGACCTSEQ ID NO:427
ProbeTGCTGATGTGCCCTCTCCTTGGSEQ ID NO:428
Reverse PrimerCAAAACCGCTGTGTTTCTTCSEQ ID NO:429
CGBNM_000737.2Forward PrimerCCACCATAGGCAGAGGCASEQ ID NO:430
ProbeACACCCTACTCCCTGTGCCTCCAGSEQ ID NO:431
Reverse PrimerAGTCGTCGAGTGCTAGGGACSEQ ID NO:432
CHAF1BNMB_005441.1Forward PrimerGAGGCCAGTGGTGGAAACAGSEQ ID NO:433
ProbeAGCTGATGAGTCTGCCCTACCGCCTGSEQ ID NO:434
Reverse PrimerTCCGAGGCCACAGCAAACSEQ ID NO:435
CHD2NM_001271.1Forward PrimerCTCTGTGCGAGGCTGTCASEQ ID NO:436
ProbeACCCATCTCGGGATCCCTGATACCSEQ ID NO:437
Reverse PrimerGGTAAGGACTGTGGGCTGGSEQ ID NO:438
CHFRNM_018223.1Forward PrimerAAGGAAGTGGTCCCTCTGTGSEQ ID NO:439
ProbeTGAAGTCTCCAGCTTTGCCTCAGCSEQ ID NO:440
Reverse PrimerGACGCAGTCTTTCTGTCTGGSEQ ID NO:441
Chk1NM_001274.1Forward PrimerGATAAATTGGTACAAGGGATCAGCTTSEQ ID NO:442
ProbeCCAGCCCACATGTCCTGATCATATGCSEQ ID NO:443
Reverse PrimerGGGTGCCAAGTAACTGACTATTCASEQ ID NO:444
Chk2NM_007194.1Forward PrimerATGTGGAACCCCCACCTACTTSEQ ID NO:445
ProbeAGTCCCAACAGAAACAAGAACTTCAGGCGSEQ ID NO:446
Reverse PrimerCAGTCCACAGCACGGTTATACCSEQ ID NO:447
CIAP1NMB_001166.2Forward PrimerTGCCTGTGGTGGGAAGCTSEQ ID NO:448
ProbeTGACATAGCATCATCCTTTGGTTCCCAGTTSEQ ID NO:449
Reverse PrimerGGAAAATGCCTCCGGTGTTSEQ ID NO:450
cIAP2NMB_001165.2Forward PrimerGGATATTTCCGTGGCTCTTATTCASEQ ID NO:451
ProbeTCTCCATCAAATCCTGTAAACTCCAGAGCASEQ ID NO:452
Reverse PrimerCTTCTCATCAAGGCAGAAAAATCTTSEQ ID NO:453
CKS1BNM_001826.1Forward PrimerGGTCCCTAAAACCCATCTGASEQ ID NO:454
ProbeTGAACGCCAAGATTCCTCCATTCASEQ ID NO:455
Reverse PrimerTAATGGACCCATCCCTGACTSEQ ID NO:456
CKS2NM_001827.1Forward PrimerGGCTGGACGTGGTTTTGTCTSEQ ID NO:457
ProbeCTGCGCCCGCTCTTCGCGSEQ ID NO:458
Reverse PrimerCGCTGCAGAAAATGAAACGASEQ ID NO:459
Claudin 4NM_001305.2Forward PrimerGGCTGCTTTGCTGCAACTGSEQ ID NO:460
ProbeCGCACAGACAAGCCTTACTCCGCCSEQ ID NO:461
Reverse PrimerCAGAGCGGGCAGCAGAATASEQ ID NO:462
CLDN1NM_021101.3Forward PrimerTCTGGGAGGTGCCCTACTTSEQ ID NO:463
ProbeTGTTCCTGTCCCCGAAAAACAACCSEQ ID NO:464
Reverse PrimerTGGATAGGGCCTTGGTGTTSEQ ID NO:465
CLDN7NM_001307.3Forward PrimerGGTCTGCCCTAGTCATCCTGSEQ ID NO:466
ProbeTGCACTGCTCTCCTGTTCCTGTCCSEQ ID NO:467
Reverse PrimerGTACCCAGCCTTGCTCTCATSEQ ID NO:468
CLIC1NM_001288.3Forward PrimerCGGTACTTGAGCAATGCCTASEQ ID NO:469
ProbeCGGGAAGAATTCGCTTCCACCTGSEQ ID NO:470
Reverse PrimerTCGATCTCCTCATCATCTGGSEQ ID NO:471
CLTCNM_004859.1Forward PrimerACCGTATGGACAGCCACAGSEQ ID NO:472
ProbeTCTCACATGCTGTACCCAAAGCCASEQ ID NO:473
Reverse PrimerTGACTACAGGATCAGCGCTTCSEQ ID NO:474
CLUNM_001831.1Forward PrimerCCCCAGGATACCTACCACTACCTSEQ ID NO:475
ProbeCCCTTCAGCCTGCCCCACCGSEQ ID NO:476
Reverse PrimerTGCGGGACTTGGGAAAGASEQ ID NO:477
cMetNM_000245.1Forward PrimerGACATTTCCAGTCCTGCAGTCASEQ ID NO:478
ProbeTGCCTCTCTGCCCCACCCTTTGTSEQ ID NO:479
Reverse PrimerCTCCGATCGCACACATTTGTSEQ ID NO:480
cMYCNM_002467.1Forward PrimerTCCCTCCACTCGGAAGGACTASEQ ID NO:481
ProbeTCTGACACTGTCCAACTTGACCCTCTTSEQ ID NO:482
Reverse PrimerCGGTTGTTGCTGATCTGTCTCASEQ ID NO:483
CNNNM_001299.2Forward PrimerTCCACCCTCCTGGCTTTGSEQ ID NO:484
ProbeTCCTTTCGTCTTCGCCATGCTGGSEQ ID NO:485
Reverse PrimerTCACTCCCACGTTCACCTTGTSEQ ID NO:486
COL1A1NM_000088.2Forward PrimerGTGGCCATCCAGCTGACCSEQ ID NO:487
ProbeTCCTGCGCCTGATGTCCACCGSEQ ID NO:488
Reverse PrimerCAGTGGTAGGTGATGTTCTGGGASEQ ID NO:489
COL1A2NM_000089.2Forward PrimerCAGCCAAGAACTGGTATAGGAGCTSEQ ID NO:490
ProbeTCTCCTAGCCAGACGTGTTTCTTGTCCTTGSEQ ID NO:491
Reverse PrimerAAACTGGCTGCCAGCATTGSEQ ID NO:492
COPS3NMB_003653.2Forward PrimerATGCCCAGTGTTCCTGACTTSEQ ID NO:493
ProbeCGAAACGCTATTCTCACAGGTTCAGCSEQ ID NO:494
Reverse PrimerCTCCCCATTACAAGTGCTGASEQ ID NO:495
COX2NMB_000963.1Forward PrimerTCTGCAGAGTTGGAAGCACTCTASEQ ID NO:496
ProbeCAGGATACAGCTCCACAGCATCGATGTCSEQ ID NO:497
Reverse PrimerGCCGAGGCTTTTCTACCAGAASEQ ID NO:498
COX3MITO_COX3Forward PrimerTCGAGTCTCCCTTCACCATTSEQ ID NO:499
ProbeCGACGGCATCTACGGCTCAACATSEQ ID NO:500
Reverse PrimerGACGTGAAGTCCGTGGAAGSEQ ID NO:501
CPNM_000096.1Forward PrimerCGTGAGTACACAGATGCCTCCSEQ ID NO:502
ProbeTCTTCAGGGCCTCTCTCCTTTCGASEQ ID NO:503
Reverse PrimerCCAGGATGCCAAGATGCTSEQ ID NO:504
CRBPNM_002899.2Forward PrimerTGGTCTGCAAGCAAGTATTCAAGSEQ ID NO:505
ProbeTCTGCTTGGGCCTCACTGCACCTSEQ ID NO:506
Reverse PrimerGCTGATTGGTTGGGACAAGGTSEQ ID NO:507
CREBBPNM_004380.1Forward PrimerTGGGAAGCAGCTGTGTACCATSEQ ID NO:508
ProbeCCTCGCGATGCTGCCTACTACAGCTATCSEQ ID NO:509
Reverse PrimerGAAACACTTCTCACAGAAATGATACCTATTSEQ ID NO:510
CRIP2NM_001312.1Forward PrimerGTGCTACGCCACCCTGTTSEQ ID NO:511
ProbeCCGATGTTCACGCCTTTGGGTCSEQ ID NO:512
Reverse PrimerCAGGGGCTTCTCGTAGATGTSEQ ID NO:513
cripto (TDGF1 official)NM_003212.1Forward PrimerGGGTCTGTGCCCCATGACSEQ ID NO:514
ProbeCCTGGCTGCCCAAGAAGTGTTCCCTSEQ ID NO:515
Reverse PrimerTGACCGTGCCAGCATTTACASEQ ID NO:516
CRK(a)NM_016823.2Forward PrimerCTCCCTAACCTCCAGAATGGSEQ ID NO:517
ProbeACTCGCTTCTGGATAACCCTGGCASEQ ID NO:518
Reverse PrimerTGTCTTGTCGTAGGCATTGGSEQ ID NO:519
CRMP1NM_001313.1Forward PrimerAAGGTTTTTGGATTGCAAGGSEQ ID NO:520
ProbeACCGTCATACATGCCCCTGGAAACSEQ ID NO:521
Reverse PrimerGGGTGTAGCTGGTACCTCGTSEQ ID NO:522
CRYABNM_001885.1Forward PrimerGATGTGATTGAGGTGCATGGSEQ ID NO:523
ProbeTGTTCATCCTGGCGCTCTTCATGTSEQ ID NO:524
Reverse PrimerGAACTCCCTGGAGATGAAACCSEQ ID NO:525
CSEL1NM_001316.2Forward PrimerTTACGCAGCTCATGCTCTTGSEQ ID NO:526
ProbeACGGCTCTTTACTATGCGAGGGCCSEQ ID NO:527
Reverse PrimerGCAGCTGTAAAGAGAGTGGCATSEQ ID NO:528
CSF1NM_000757.3Forward PrimerTGCAGCGGCTGATTGACASEQ ID NO:529
ProbeTCAGATGGAGACCTCGTGCCAAATTACASEQ ID NO:530
Reverse PrimerCAACTGTTCCTGGTCTACAAACTCASEQ ID NO:531
CSK (SRC)NMB_004383.1Forward PrimerCCTGAACATGAAGGAGCTGASEQ ID NO:532
ProbeTCCCGATGGTCTGCAGCAGCTSEQ ID NO:533
Reverse PrimerCATCACGTCTCCGAACTCCSEQ ID NO:534
CTAG1BNM_001327.1Forward PrimerGCTCTCCATCAGCTCCTGTCSEQ ID NO:535
ProbeCCACATCAACAGGGAAAGCTGCTGSEQ ID NO:536
Reverse PrimerAACACGGGCAGAAAGCACTSEQ ID NO:537
CTGFNM_001901.1Forward PrimerGAGTTCAAGTGCCCTGACGSEQ ID NO:538
ProbeAACATCATGTTCTTCTTCATGACCTCGCSEQ ID NO:539
Reverse PrimerAGTTGTAATGGCAGGCACAGSEQ ID NO:540
CTHRC1NM_136455.2Forward PrimerGCTCACTTCGGCTAAAATGCSEQ ID NO:541
ProbeACCAACGCTGACAGCATGCATTTCSEQ ID NO:542
Reverse PrimerTCAGCTCCATTGAATGTGAAASEQ ID NO:543
CTLA4NM_005214.2Forward PrimerCACTGAGGTCCGGGTGACASEQ ID NO:544
ProbeCACCTGGCTGTCAGCCTGCCGSEQ ID NO:545
Reverse PrimerGTAGGTTGCCGCACAGACTTCSEQ ID NO:546
CTNNBIP1NMB_020248.2Forward PrimerGTTTTCCAGGTCGGAGACGSEQ ID NO:547
ProbeCTTTGCAGCTACTGCCTCCGGTCTSEQ ID NO:548
Reverse PrimerAGCATCCAGGGTGTTCCASEQ ID NO:549
CTSBNM_001908.1Forward PrimerGGCCGAGATCTACAAAAACGSEQ ID NO:550
ProbeCCCCGTGGAGGGAGCTTTCTCSEQ ID NO:551
Reverse PrimerGCAGGAAGTCCGAATACACASEQ ID NO:552
CTSDNM_001909.1Forward PrimerGTACATGATCCCCTGTGAGAAGGTSEQ ID NO:553
ProbeACCCTGCCCGCGATCACACTGASEQ ID NO:554
Reverse PrimerGGGACAGCTTGTAGCCTTTGCSEQ ID NO:555
CTSHNM_004390.1Forward PrimerGCAAGTTCCAACCTGGAAAGSEQ ID NO:556
ProbeTGGCTACATCCTTGACAAAGCCGASEQ ID NO:557
Reverse PrimerCATCGCTTCCTCGTCATAGASEQ ID NO:558
CTSLNM_001912.1Forward PrimerGGGAGGCTTATCTCACTGAGTGASEQ ID NO:559
ProbeTTGAGGCCCAGAGCAGTCTACCAGATTCTSEQ ID NO:560
Reverse PrimerCCATTGCAGCCTTCATTGCSEQ ID NO:561
CTSL2NM_001333.2Forward PrimerTGTCTCACTGAGCGAGCAGAASEQ ID NO:562
ProbeCTTGAGGACGCGAACAGTCCACCASEQ ID NO:563
Reverse PrimerACCATTGCAGCCCTGATTGSEQ ID NO:564
CUL1NM_003592.2Forward PrimerATGCCCTGGTAATGTCTGCATSEQ ID NO:565
ProbeCAGCCACAAAGCCAGCGTCATTGTSEQ ID NO:566
Reverse PrimerGCGACCACAAGCCTTATCAAGSEQ ID NO:567
CUL4ANM_003589.1Forward PrimerAAGCATCTTCCTGTTCTTGGASEQ ID NO:568
ProbeTATGTGCTGCAGAACTCCACGCTGSEQ ID NO:569
Reverse PrimerAATCCCATATCCCAGATGGASEQ ID NO:570
CXCL12NM_000609.3Forward PrimerGAGCTACAGATGCCCATGCSEQ ID NO:571
ProbeTTCTTCGAAAGCCATGTTGCCAGASEQ ID NO:572
Reverse PrimerTTTGAGATGCTTGACGTTGGSEQ ID NO:573
CXCR4NM_003467.1Forward PrimerTGACCGCTTCTACCCCAATGSEQ ID NO:574
ProbeCTGAAACTGGAACACAACCACCCACAAGSEQ ID NO:575
Reverse PrimerAGGATAAGGCCAACCATGATGTSEQ ID NO:576
CYBANM_000101.1Forward PrimerGGTGCCTACTCCATTGTGGSEQ ID NO:577
ProbeTACTCCAGCAGGCACACAAACACGSEQ ID NO:578
Reverse PrimerGTGGAGCCCTTCTTCCTCTTSEQ ID NO:579
CYP1B1NM_000104.2Forward PrimerCCAGCTTTGTGCCTGTCACTATSEQ ID NO:580
ProbeCTCATGCCACCACTGCCAACACCTCSEQ ID NO:581
Reverse PrimerGGGAATGTGGTAGCCCAAGASEQ ID NO:582
CYP2C8NM_000770.2Forward PrimerCCGTGTTCAAGAGGAAGCTCSEQ ID NO:583
ProbeTTTTCTCAACTCCTCCACAAGGCASEQ ID NO:584
Reverse PrimerAGTGGGATCACAGGGTGAAGSEQ ID NO:585
CYP3A4NM_017460.3Forward PrimerAGAACAAGGACAACATAGATCCTTACATATSEQ ID NO:586
ProbeCACACCCTTTGGAAGTGGACCCAGAASEQ ID NO:587
Reverse PrimerGCAAACCTCATGCCAATGCSEQ ID NO:588
CYR61NM_001554.3Forward PrimerTGCTCATTCTTGAGGAGCATSEQ ID NO:589
ProbeCAGCACCCTTGGCAGTTTCGAAATSEQ ID NO:590
Reverse PrimerGTGGCTGCATTAGTGTCCATSEQ ID NO:591
DAPK1NM_004938.1Forward PrimerCGCTGACATCATGAATGTTCCTSEQ ID NO:592
ProbeTCATATCCAAACTCGCCTCCAGCCGSEQ ID NO:593
Reverse PrimerTCTCTTTCAGCAACGATGTGTCTTSEQ ID NO:594
DCCNM_005215.1Forward PrimerAAATGTCCTCCTCGACTGCTSEQ ID NO:595
ProbeATCACTGGAACTCCTCGGTCGGACSEQ ID NO:596
Reverse PrimerTGAATGCCATCTTTCTTCCASEQ ID NO:597
DCC_exons1 8-23X76132_18-23Forward PrimerGGTCACCGTTGGTGTCATCASEQ ID NO:598
ProbeCAGCCACGATGACCACTACCAGCACTSEQ ID NO:599
Reverse PrimerGAGCGTCGGGTGCAAATCSEQ ID NO:600
DCC_exons6 -7X76132_6-7Forward PrimerATGGAGATGTGGTCATTCCTAGTGSEQ ID NO:601
ProbeTGCTTCCTCCCACTATCTGAAAATAASEQ ID NO:602
Reverse PrimerCACCACCCCAAGTATCCGTAAGSEQ ID NO:603
DCKNM_000788.1Forward PrimerGCCGCCACAAGACTAAGGAATSEQ ID NO:604
ProbeAGCTGCCCGTCTTTCTCAGCCAGCSEQ ID NO:605
Reverse PrimerCGATGTTCCCTTCGATGGAGSEQ ID NO:606
DDB1NM_001923.2Forward PrimerTGCGGATCATCCGGAATGSEQ ID NO:607
ProbeAATTGGAATCCACGAGCATGCCAGCSEQ ID NO:608
Reverse PrimerTCCTTTGATGCCTGGTAAGTCASEQ ID NO:609
DET1NM_017996.2Forward PrimerCTTGTGGAGATCACCCAATCAGSEQ ID NO:610
ProbeCTATGCCCGGGACTCGGGCCTSEQ ID NO:611
Reverse PrimerCCCGCCTGGATCTCAAACTSEQ ID NO:612
DHFRNM_000791.2Forward PrimerTTGCTATAACTAAGTGCTTCTCCAAGASEQ ID NO:613
ProbeCCCAACTGAGTCCCCAGCACCTSEQ ID NO:614
Reverse PrimerGTGGAATGGCAGCTCACTGTAGSEQ ID NO:615
DHPSNM_013407.1Forward PrimerGGGAGAACGGGATCAATAGGATSEQ ID NO:616
ProbeCTCATTGGGCACCAGCAGGTTTCCSEQ ID NO:617
Reverse PrimerGCATCAGCCAGTCCTCAAACTSEQ ID NO:618
DIABLONM_019887.1Forward PrimerCACAATGGCGGCTCTGAAGSEQ ID NO:619
ProbeAAGTTACGCTGCGCGACAGCCAASEQ ID NO:620
Reverse PrimerACACAAACACTGTCTGTACCTGAAGASEQ ID NO:621
DIAPH1NM_005219.2Forward PrimerCAAGCAGTCAAGGAGAACCASEQ ID NO:622
ProbeTTCTTCTGTCTCCCGCCGCTTCSEQ ID NO:623
Reverse PrimerAGTTTTGCTCGCCTCATCTTSEQ ID NO:624
DICER1NM_177438.1Forward PrimerTCCAATTCCAGCATCACTGTSEQ ID NO:625
ProbeAGAAAAGCTGTTTGTCTCCCCAGCASEQ ID NO:626
Reverse PrimerGGCAGTGAAGGCGATAAAGTSEQ ID NO:627
DKK1NM_012242.1Forward PrimerTGACAACTACCAGCCGTACCSEQ ID NO:628
ProbeAGTGCCGCACTCCTCGTCCTCTSEQ ID NO:629
Reverse PrimerGGGACTAGCGCAGTACTCATCSEQ ID NO:630
DLC1NM_006094.3Forward PrimerGATTCAGACGAGGATGAGCCSEQ ID NO:631
ProbeAAAGTCCATTTGCCACTGATGGCASEQ ID NO:632
Reverse PrimerCACCTCTTGCTGTCCCTTTGSEQ ID NO:633
DPYDNM_000110.2Forward PrimerAGGACGCAAGGAGGGTTTGSEQ ID NO:634
ProbeCAGTGCCTACAGTCTCGAGTCTGCCAGTGSEQ ID NO:635
Reverse PrimerGATGTCCGCCGAGTCCTTACTSEQ ID NO:636
DR4NM_003844.1Forward PrimerTGCACAGAGGGTGTGGGTTACSEQ ID NO:637
ProbeCAATGCTTCCAACAATTTGTTTGCTTGCCSEQ ID NO:638
Reverse PrimerTCTTCATCTGATTTACAAGCTGTACATGSEQ ID NO:639
DR5NM_003842.2Forward PrimerCTCTGAGACAGTGCTTCGATGACTSEQ ID NO:640
ProbeCAGACTTGGTGCCCTTTGACTCCSEQ ID NO:641
Reverse PrimerCCATGAGGCCCAACTTCCTSEQ ID NO:642
DRG1NM_004147.3Forward PrimerCCTGGATCTCCCAGGTATCASEQ ID NO:643
ProbeACCTTTCCCATCCTTGGCACCTTCSEQ ID NO:644
Reverse PrimerTGCAATGACTTGACGACCTCSEQ ID NO:645
DSPNM_004415.1Forward PrimerTGGCACTACTGCATGATTGACASEQ ID NO:646
ProbeCAGGGCCATGACAATCGCCAASEQ ID NO:647
Reverse PrimerCCTGCCGCATTGTTTTCAGSEQ ID NO:648
DTYMKNM_012145.1Forward PrimerAAATCGCTGGGAACAAGTGSEQ ID NO:649
ProbeCGCCCTGGCTCAACTTTTCCTTAASEQ ID NO:650
Reverse PrimerAATGCGTATCTGTCCACGACSEQ ID NO:651
DUSP1NM_004417.2Forward PrimerAGACATCAGCTCCTGGTTCASEQ ID NO:652
ProbeCGAGGCCATTGACTTCATAGACTCCASEQ ID NO:653
Reverse PrimerGACAAACACCCTTCCTCCAGSEQ ID NO:654
DUSP2NM_004418.2Forward PrimerTATCCCTGTGGAGGACAACCSEQ ID NO:655
ProbeCCTCCTGGAACCAGGCACTGATCTSEQ ID NO:656
Reverse PrimerCACCCAGTCAATGAAGCCTASEQ ID NO:657
DUTNM_001948.2Forward PrimerACACATGGAGTGCTTCTGGASEQ ID NO:658
ProbeATCAGCCCACTTGACCACCCAGTTSEQ ID NO:659
Reverse PrimerCTCTTGCCTGTGCTTCCACSEQ ID NO:660
DYRK1BNM_004714.1Forward PrimerAGCATGACACGGAGATGAAGSEQ ID NO:661
ProbeCACCTGAAGCGGCACTTCATGTTCSEQ ID NO:662
Reverse PrimerAATACCAGGCACAGGTGGTTSEQ ID NO:663
E2F1NMB_005225.1Forward PrimerACTCCCTCTACCCTTGAGCASEQ ID NO:664
ProbeCAGAAGAACAGCTCAGGGACCCCTSEQ ID NO:665
Reverse PrimerCAGGCCTCAGTTCCTTCAGTSEQ ID NO:666
EDN1 endothelinNM_001955.1Forward PrimerTGCCACCTGGACATCATTTGSEQ ID NO:667
ProbeCACTCCCGAGCACGTTGTTCCGTSEQ ID NO:668
Reverse PrimerTGGACCTAGGGCTTCCAAGTCSEQ ID NO:669
EFNA1NMB_004428.2Forward PrimerTACATCTCCAAACCCATCCASEQ ID NO:670
ProbeCAACCTCAAGCAGCGGTCTTCATGSEQ ID NO:671
Reverse PrimerTTGCCACTGACAGTCACCTTSEQ ID NO:672
EFNA3NM_004952.3Forward PrimerACTACATCTCCACGCCCACTSEQ ID NO:673
ProbeCCTCAGACACTTCCAGTGCAGGTTGSEQ ID NO:674
Reverse PrimerCAGCAGACGAACACCTTCATSEQ ID NO:675
EFNB1NM_004429.3Forward PrimerGGAGCCCGTATCCTGGAGSEQ ID NO:676
ProbeCCCTCAACCCCAAGTTCCTGAGTGSEQ ID NO:677
Reverse PrimerGGATAGATCACCAAGCCCTTCSEQ ID NO:678
EFNB2NM_004093.2Forward PrimerTGACATTATCATCCCGCTAAGGASEQ ID NO:679
ProbeCGGACAGCGTCTTCTGCCCTCACTSEQ ID NO:680
Reverse PrimerGTAGTCCCCGCTGACCTTCTCSEQ ID NO:681
EFPNM_005082.2Forward PrimerTTGAACAGAGCCTGACCAAGSEQ ID NO:682
ProbeTGATGCTTTCTCCAGAAACTCGAACTCASEQ ID NO:683
Reverse PrimerTGTTGAGATTCCTCGCAGTTSEQ ID NO:684
EGFRNM_005228.1Forward PrimerTGTCGATGGACTTCCAGAACSEQ ID NO:685
ProbeCACCTGGGCAGCTGCCAASEQ ID NO:686
Reverse PrimerATTGGGACAGCTTGGATCASEQ ID NO:687
EGLN1NM_022051.1Forward PrimerTCAATGGCCGGACGAAAGSEQ ID NO:688
ProbeCATTGCCCGGATAACAAGCAACCATGSEQ ID NO:689
Reverse PrimerTTTGGATTATCAACATGACGTACATAACSEQ ID NO:690
EGLN3NM_022073.2Forward PrimerGCTGGTCCTCTACTGCGGSEQ ID NO:691
ProbeCCGGCTGGGCAAATACTACGTCAASEQ ID NO:692
Reverse PrimerCCACCATTGCCTTAGACCTCSEQ ID NO:693
EGR1NM_001964.2Forward PrimerGTCCCCGCTGCAGATCTCTSEQ ID NO:694
ProbeCGGATCCTTTCCTCACTCGCCCASEQ ID NO:695
Reverse PrimerCTCCAGCTTAGGGTAGTTGTCCATSEQ ID NO:696
EGR3NM_004430.2Forward PrimerCCATGTGGATGAATGAGGTGSEQ ID NO:697
ProbeACCCAGTCTCACCTTCTCCCCACCSEQ ID NO:698
Reverse PrimerTGCCTGAGAAGAGGTGAGGTSEQ ID NO:699
EI24NM_004879.2Forward PrimerAAAGTGGTGAATGCCATTTGSEQ ID NO:700
ProbeCCTCAAATGCCAGGTCAGCTATATCCTGSEQ ID NO:701
Reverse PrimerGTGAGGCTTCCTCCCTGATASEQ ID NO:702
EIF4ENM_001968.1Forward PrimerGATCTAAGATGGCGACTGTCGAASEQ ID NO:703
ProbeACCACCCCTACTCCTAATCCCCCGACTSEQ ID NO:704
Reverse PrimerTTAGATTCCGTTTTCTCCTCTTCTGSEQ ID NO:705
EIF4EL3NM_004846.1Forward PrimerAAGCCGCGGTTGAATGTGSEQ ID NO:706
ProbeTGACCCTCTCCCTCTCTGGATGGCASEQ ID NO:707
Reverse PrimerTGACGCCAGCTTCAATGATGSEQ ID NO:708
ELAVL1NM_001419.2Forward PrimerGACAGGAGGCCTCTATCCTGSEQ ID NO:709
ProbeCACCCCACCCTCCACCTCAATCSEQ ID NO:710
Reverse PrimerGTGAGGTAGGTCTGGGGAAGSEQ ID NO:711
EMP1NM_001423.1Forward PrimerGCTAGTACTTTGATGCTCCCTTGATSEQ ID NO:712
ProbeCCAGAGAGCCTCCCTGCAGCCASEQ ID NO:713
Reverse PrimerGAACAGCTGGAGGCCAAGTCSEQ ID NO:714
EMR3NM_032571.2Forward PrimerTGGCCTACCTCTTCACCATCSEQ ID NO:715
ProbeTCAACAGCCTCCAAGGCTTCTTCASEQ ID NO:716
Reverse PrimerTGAGGAGGCAGTAGACCAAGASEQ ID NO:717
EMS1NM_005231.2Forward PrimerGGCAGTGTCACTGAGTCCTTGASEQ ID NO:718
ProbeATCCTCCCCTGCCCCGCGSEQ ID NO:719
Reverse PrimerTGCACTGTGCGTCCCAATSEQ ID NO:720
ENO1NM_001428.2Forward PrimerCAAGGCCGTGAACGAGAAGTSEQ ID NO:721
ProbeCTGCAACTGCCTCCTGCTCAAAGTCASEQ ID NO:722
Reverse PrimerCGGTCACGGAGCCAATCTSEQ ID NO:723
EP300NM_001429.1Forward PrimerAGCCCCAGCAACTACAGTCTSEQ ID NO:724
ProbeCACTGACATCATGGCTGGCCTTGSEQ ID NO:725
Reverse PrimerTGTTCAAAGGTTGACCATGCSEQ ID NO:726
EPAS1NM_001430.3Forward PrimerAAGCCTTGGAGGGTTTCATTGSEQ ID NO:727
ProbeTGTCGCCATCTTGGGTCACCACGSEQ ID NO:728
Reverse PrimerTGCTGATGTTTTCTGACAGAAAGATSEQ ID NO:729
EpCAMNM_002354.1Forward PrimerGGGCCCTCCAGAACAATGATSEQ ID NO:730
ProbeCCGCTCTCATCGCAGTCAGGATCATSEQ ID NO:731
Reverse PrimerTGCACTGCTTGGCCTTAAAGASEQ ID NO:732
EPHA2NM_004431.2Forward PrimerCGCCTGTTCACCAAGATTGACSEQ ID NO:733
ProbeTGCGCCCGATGAGATCACCGSEQ ID NO:734
Reverse PrimerGTGGCGTGCCTCGAAGTCSEQ ID NO:735
EPHB2NM_004442.4Forward PrimerCAACCAGGCAGCTCCATCSEQ ID NO:736
ProbeCACCTGATGCATGATGGACACTGCSEQ ID NO:737
Reverse PrimerGTAATGCTGTCCACGGTGCSEQ ID NO:738
EPHB4NM_004444.3Forward PrimerTGAACGGGGTATCCTCCTTASEQ ID NO:739
ProbeCGTCCCATTTGAGCCTGTCAATGTSEQ ID NO:740
Reverse PrimerAGGTACCTCTCGGTCAGTGGSEQ ID NO:741
EphB6NM_004445.1Forward PrimerACTGGTCCTCCATCGGCTSEQ ID NO:742
ProbeCCTTGCACCTCAAACCAAAGCTCCSEQ ID NO:743
Reverse PrimerCCAGTGTAGCATGAGTGCTGASEQ ID NO:744
EPM2ANM_005670.2Forward PrimerACTGTGGCACTTAGGGGAGASEQ ID NO:745
ProbeCTGCCTCTGCCCAAAGCAAATGTCSEQ ID NO:746
Reverse PrimerAGTGGAAATGTGTCCTGGCTSEQ ID NO:747
ErbB3NM_001982.1Forward PrimerCGGTTATGTCATGCCAGATACACSEQ ID NO:748
ProbeCCTCAAAGGTACTCCCTCCTCCCGGSEQ ID NO:749
Reverse PrimerGAACTGAGACCCACTGAAGAAAGGSEQ ID NO:750
ERCC1NM_001983.1Forward PrimerGTCCAGGTGGATGTGAAAGASEQ ID NO:751
ProbeCAGCAGGCCCTCAAGGAGCTGSEQ ID NO:752
Reverse PrimerCGGCCAGGATACACATCTTASEQ ID NO:753
ERCC2NM_000400.2Forward PrimerTGGCCTTCTTCACCAGCTASEQ ID NO:754
ProbeAGGCCACGGTGCTCTCCATGTACTSEQ ID NO:755
Reverse PrimerCAAGGATCCCCTGCTCATACSEQ ID NO:756
EREGNM_001432.1Forward PrimerATAACAAAGTGTAGCTCTGACATGAATGSEQ ID NO:757
ProbeTTGTTTGCATGGACAGTGCATCTATCTGGTSEQ ID NO:758
Reverse PrimerCACACCTGCAGTAGTTTTGACTCASEQ ID NO:759
ERK1Z11696.1Forward PrimerACGGATCACAGTGGAGGAAGSEQ ID NO:760
ProbeCGCTGGCTCACCCCTACCTGSEQ ID NO:761
Reverse PrimerCTCATCCGTCGGGTCATAGTSEQ ID NO:762
ERK2NM_002745.1Forward PrimerAGTTCTTGACCCCTGGTCCTSEQ ID NO:763
ProbeTCTCCAGCCCGTCTTGGCTTSEQ ID NO:764
Reverse PrimerAAACGGCTCAAAGGAGTCAASEQ ID NO:765
ESPL1NM_012291.1Forward PrimerACCCCCAGACCGGATCAGSEQ ID NO:766
ProbeCTGGCCCTCATGTCCCCTTCACGSEQ ID NO:767
Reverse PrimerTGTAGGGCAGACTTCCTCAAACASEQ ID NO:768
EstR1NM_000125.1Forward PrimerCGTGGTGCCCCTCTATGACSEQ ID NO:769
ProbeCTGGAGATGCTGGACGCCCSEQ ID NO:770
Reverse PrimerGGCTAGTGGGCGCATGTAGSEQ ID NO:771
ETV4NM_001986.1Forward PrimerTCCAGTGCCTATGACCCCSEQ ID NO:772
ProbeCAGACAAATCGCCATCAAGTCCCCSEQ ID NO:773
Reverse PrimerACTGTCCAAGGGCACCAGSEQ ID NO:774
F3NM_001993.2Forward PrimerGTGAAGGATGTGAAGCAGACGTASEQ ID NO:775
ProbeTGGCACGGGTCTTCTCCTACCSEQ ID NO:776
Reverse PrimerAACCGGTGCTCTCCACATTCSEQ ID NO:777
FABP4NM_001442.1Forward PrimerGCTTTGCCACCAGGAAAGTSEQ ID NO:778
ProbeCTGGCATGGCCAAACCTAACATGASEQ ID NO:779
Reverse PrimerCATCCCCATTCACACTGATGSEQ ID NO:780
FAPNM_004460.2Forward PrimerCTGACCAGAACCACGGCTSEQ ID NO:781
ProbeCGGCCTGTCCACGAACCACTTATASEQ ID NO:782
Reverse PrimerGGAAGTGGGTCATGTGGGSEQ ID NO:783
fasNM_000043.1Forward PrimerGGATTGCTCAACAACCATGCTSEQ ID NO:784
ProbeTCTGGACCCTCCTACCTCTGGTTCTTACGTSEQ ID NO:785
Reverse PrimerGGCATTAACACTTTTGGACGATAASEQ ID NO:786
faslNM_000639.1Forward PrimerGCACTTTGGGATTCTTTCCATTATSEQ ID NO:787
ProbeACAACATTCTCGGTGCCTGTAACAAAGAASEQ ID NO:788
Reverse PrimerGCATGTAAGAAGACCCTCACTGAASEQ ID NO:789
FASNNM_004104.4Forward PrimerGCCTCTTCCTGTTCGACGSEQ ID NO:790
ProbeTCGCCCACCTACGTACTGGCCTACSEQ ID NO:791
Reverse PrimerGCTTTGCCCGGTAGGTCTSEQ ID NO:792
FBXO5NM_012177.2Forward PrimerGGCTATTCCTCATTTTCTCTACAAAGTGSEQ ID NO:793
ProbeCCTCCAGGAGGCTACCTTCTTCATGTTCACSEQ ID NO:794
Reverse PrimeGGATTGTAGACTGTCACCGAAATTCSEQ ID NO:795
FBXW7NM_033632.1Forward PrimerCCCCAGTTTCAACGAGACTTSEQ ID NO:796
ProbeTCATTGCTCCCTAAAGAGTTGGCACTCSEQ ID NO:797
Reverse PrimerGTTCCAGGAATGAAAGCACASEQ ID NO:798
FDXRNM_004110.2Forward PrimerGAGATGATTCAGTTACCGGGAGSEQ ID NO:799
ProbeAATCCACAGGATCCAAAATGGGCCSEQ ID NO:800
Reverse PrimerATCTTGTCCTGGAGACCCAASEQ ID NO:801
FESNM_002005.2Forward PrimerCTCTGCAGGCCTAGGTGCSEQ ID NO:802
ProbeCTCCTCAGCGGCTCCAGCTCATATSEQ ID NO:803
Reverse PrimerCCAGGACTGTGAAGAGCTGTCSEQ ID NO:804
FGF18NM_003862.1Forward PrimerCGGTAGTCAAGTCCGGATCAASEQ ID NO:805
ProbeCAAGGAGACGGAATTCTACCTGTGCSEQ ID NO:806
Reverse PrimerGCTTGCCTTTGCGGTTCASEQ ID NO:807
FGF2NM_002006.2Forward PrimerAGATGCAGGAGAGAGGAAGCSEQ ID NO:808
ProbeCCTGCAGACTGCTTTTTGCCCAATSEQ ID NO:809
Reverse PrimerGTTTTGCAGCCTTACCCAATSEQ ID NO:810
FGFR1NM_023109.1Forward PrimerCACGGGACATTCACCACATCSEQ ID NO:811
ProbeATAAAAAGACAACCAACGGCCGACTGCSEQ ID NO:812
Reverse PrimerGGGTGCCATCCACTTCACASEQ ID NO:813
FGFR2 isoform 1NM_000141.2Forward PrimerGAGGGACTGTTGGCATGCASEQ ID NO:814
ProbeTCCCAGAGACCAACGTTCAAGCAGTTGSEQ ID NO:815
Reverse PrimerGAGTGAGAATTCGATCCAAGTCTTCSEQ ID NO:816
FHITNM_002012.1Forward PrimerCCAGTGGAGCGCTTCCATSEQ ID NO:817
ProbeTCGGCCACTTCATCAGGACGCAGSEQ ID NO:818
Reverse PrimerCTCTCTGGGTCGTCTGAAACAASEQ ID NO:819
FIGFNM_004469.2Forward PrimerGGTTCCAGCTTTCTGTAGCTGTSEQ ID NO:820
ProbeATTGGTGGCCACACCACCTCCTTASEQ ID NO:821
Reverse PrimerGCCGCAGGTTCTAGTTGCTSEQ ID NO:822
FLJ12455NM_022078.1Forward PrimerCCACCAGCATGAAGTTTCGSEQ ID NO:823
ProbeACCCCTCACAAAGGCCATGTCTGTSEQ ID NO:824
Reverse PrimerGGCTGTCTGAAGCACAACTGSEQ ID NO:825
FLJ20712AK000719.1Forward PrimerGCCACACAAACATGCTCCTSEQ ID NO:826
ProbeATGTCTTTCCCAGCAGCTCTGCCTSEQ ID NO:827
Reverse PrimerGCCACAGGAAACTTCCGASEQ ID NO:828
FLT1NMB_002019.1Forward PrimerGGCTCCCGAATCTATCTTTGSEQ ID NO:829
ProbeCTACAGCACCAAGAGCGACGTGTGSEQ ID NO:830
Reverse PrimerTCCCACAGCAATACTCCGTASEQ ID NO:831
FLT4NM_002020.1Forward PrimerACCAAGAAGCTGAGGACCTGSEQ ID NO:832
ProbeAGCCCGCTGACCATGGAAGATCTSEQ ID NO:833
Reverse PrimerCCTGGAAGCTGTAGCAGACASEQ ID NO:834
FOSNM_005252.2Forward PrimerCGAGCCCTTTGATGACTTCCTSEQ ID NO:835
ProbeTCCCAGCATCATCCAGGCCCAGSEQ ID NO:836
Reverse PrimerGGAGCGGGCTGTCTCAGASEQ ID NO:837
FOXO3ANM_001455.1Forward PrimerTGAAGTCCAGGACGATGATGSEQ ID NO:838
ProbeCTCTACAGCAGCTCAGCCAGCCTGSEQ ID NO:839
Reverse PrimerACGGCTTGCTTACTGAAGGTSEQ ID NO:840
FPGSNM_004957.3Forward PrimerCAGCCCTGCCAGTTTGACSEQ ID NO:841
ProbeATGCCGTCTTCTGCCCTAACCTGASEQ ID NO:842
Reverse PrimerGTTGCCTGTGGATGACACCSEQ ID NO:843
FRP1NM_003012.2Forward PrimerTTGGTACCTGTGGGTTAGCASEQ ID NO:844
ProbeTCCCCAGGGTAGAATTCAATCAGAGCSEQ ID NO:845
Reverse PrimerCACATCCAAATGCAAACTGGSEQ ID NO:846
FSTNM_006350.2Forward PrimerGTAAGTCGGATGAGCCTGTCTGTSEQ ID NO:847
ProbeCCAGTGACAATGCCACTTATGCCAGCSEQ ID NO:848
Reverse PrimerCAGCTTCCTTCATGGCACACTSEQ ID NO:849
FurinNM_002569.1Forward PrimerAAGTCCTCGATACGCACTATAGCASEQ ID NO:850
ProbeCCCGGATGGTCTCCACGTCATSEQ ID NO:851
Reverse PrimerCTGGCATGTGGCACATGAGSEQ ID NO:852
FUSNM_004960.1Forward PrimerGGATAATTCAGACAACAACACCATCTSEQ ID NO:853
ProbeTCAATTGTAACATTCTCACCCAGGCCTTGSEQ ID NO:854
Reverse PrimerTGAAGTAATCAGCCACAGACTCAATSEQ ID NO:855
FUT1NM_000148.1Forward PrimerCCGTGCTCATTGCTAACCASEQ ID NO:856
ProbeTCTGTCCCTGAACTCCCAGAACCASEQ ID NO:857
Reverse PrimerCTGCCCAAAGCCAGATGTASEQ ID NO:858
FUT3NM_000149.1Forward PrimerCAGTTCGGTCCAACAGAGAASEQ ID NO:859
ProbeAGCAGGCAACCACCATGTCATTTGSEQ ID NO:860
Reverse PrimerTGCGAATTATATCCCGATGASEQ ID NO:861
FUT6NM_000150.1Forward PrimerCGTGTGTCTCAAGACGATCCSEQ ID NO:862
ProbeTGTGTACCCTAATGGGTCCCGCTTSEQ ID NO:863
Reverse PrimerGGTCCCTGTGCTGTCTGGSEQ ID NO:864
FXYD5NM_014164.4Forward PrimerAGAGCACCAAAGCAGCTCATSEQ ID NO:865
ProbeCACTGATGACACCACGACGCTCTCSEQ ID NO:866
Reverse PrimerGTGCTTGGGGATGGTCTCTSEQ ID NO:867
FYNNM_002037.3Forward PrimerGAAGCGCAGATCATGAAGAASEQ ID NO:868
ProbeCTGAAGCACGACAAGCTGGTCCAGSEQ ID NO:869
Reverse PrimerCTCCTCAGACACCACTGCATSEQ ID NO:870
FZD1NM_003505.1Forward PrimerGGTGCACCAGTTCTACCCTCSEQ ID NO:871
ProbeACTTGAGCTCAGCGGAACACTGCASEQ ID NO:872
Reverse PrimerGCGTACATGGAGCACAGGASEQ ID NO:873
FZD2NM_001466.2Forward PrimerTGGATCCTCACCTGGTCGSEQ ID NO:874
ProbeTGCGCTTCCACCTTCTTCACTGTCSEQ ID NO:875
Reverse PrimerGCGCTGCATGTCTACCAASEQ ID NO:876
FZD6NM_003506.2Forward PrimerAATGAGAGAGGTGAAAGCGGSEQ ID NO:877
ProbeCGGAGCTAGCACCCCCAGGTTAAGSEQ ID NO:878
Reverse PrimerAGGTTCACCACAGTCCTGTTCSEQ ID NO:879
G-CateninNM_002230.1Forward PrimerTCAGCAGCAAGGGCATCATSEQ ID NO:880
ProbeCGCCCGCAGGCCTCATCCTSEQ ID NO:881
Reverse PrimerGGTGGTTTTCTTGAGCGTGTACTSEQ ID NO:882
G1P2NMB_005101.1Forward PrimerCAACGAATTCCAGGTGTCCSEQ ID NO:883
ProbeCTGAGCAGCTCCATGTCGGTGTCSEQ ID NO:884
Reverse PrimerGATCTGCGCCTTCAGCTCSEQ ID NO:885
GADD45NM_001924.2Forward PrimerGTGCTGGTGACGAATCCASEQ ID NO:886
ProbeTTCATCTCAATGGAAGGATCCTGCCSEQ ID NO:887
Reverse PrimerCCCGGCAAAAACAAATAAGTSEQ ID NO:888
GADD45BNM_015675.1Forward PrimerACCCTCGACAAGACCACACTSEQ ID NO:889
ProbeAACTTCAGCCCCAGCTCCCAAGTCSEQ ID NO:890
Reverse PrimerTGGGAGTTCATGGGTACAGASEQ ID NO:891
GADD45GNM_006705.2Forward PrimerCGCGCTGCAGATCCATTTSEQ ID NO:892
ProbeCGCTGATCCAGGCTTTCTGCTGCSEQ ID NO:893
Reverse PrimerCGCACTATGTCGATGTCGTTCTSEQ ID NO:894
GAGE4NM_001474.1Forward PrimerGGAACAGGGTCACCCACAGASEQ ID NO:895
ProbeTCAGGACCATCTTCACACTCACACCCASEQ ID NO:896
Reverse PrimerGATTTGGCGGGTCCATCTCSEQ ID NO:897
GBP1NM_002053.1Forward PrimerTTGGGAAATATTTGGGCATTSEQ ID NO:898
ProbeTTGGGACATTGTAGACTTGGCCAGACSEQ ID NO:899
Reverse PrimerAGAAGCTAGGGTGGTTGTCCSEQ ID NO:900
GBP2NM_004120.2Forward PrimerGCATGGGAACCATCAACCASEQ ID NO:901
ProbeCCATGGACCAACTTCACTATGTGACAGAGCSEQ ID NO:902
Reverse PrimerTGAGGAGTTTGCCTTGATTCGSEQ ID NO:903
GCLCNM_001498.1Forward PrimerCTGTTGCAGGAAGGCATTGASEQ ID NO:904
ProbeCATCTCCTGGCCCAGCATGTTSEQ ID NO:905
Reverse PrimerGTCAGTGGGTCTCTAATAAAGAGATGAGSEQ ID NO:906
GCLMNM_002061.1Forward PrimerTGTAGAATCAAACTCTTCATCATCAACTAGSEQ ID NO:907
ProbeTGCAGTTGACATGGCCTGTTCAGTCCSEQ ID NO:908
Reverse PrimerCACAGAATCCAGCTGTGCAACTSEQ ID NO:909
GCNT1NM_001490.3Forward PrimerTGGTGCTTGGAGCATAGAAGSEQ ID NO:910
ProbeTGCCCTTCACAAAGGAAATCCCTGSEQ ID NO:911
Reverse PrimerGCAACGTCCTCAGCATTTCSEQ ID NO:912
GDF15NM_004864.1Forward PrimerCGCTCCAGACCTATGATGACTSEQ ID NO:913
ProbeTGTTAGCCAAAGACTGCCACTGCASEQ ID NO:914
Reverse PrimerACAGTGGAAGGACCAGGACTSEQ ID NO:915
GIT1NM_014030.2Forward PrimerGTGTATGACGAGGTGGATCGSEQ ID NO:916
ProbeAGCCAGCCACACTGCATCATTTTCSEQ ID NO:917
Reverse PrimerACCAGAGTGCTGTGGTTTTGSEQ ID NO:918
GJA1NM_000165.2Forward PrimerGTTCACTGGGGGTGTATGGSEQ ID NO:919
ProbeATCCCCTCCCTCTCCACCCATCTASEQ ID NO:920
Reverse PrimerAAATACCAACATGCACCTCTCTTSEQ ID NO:921
GJB2NM_004004.3Forward PrimerTGTCATGTACGACGGCTTCTSEQ ID NO:922
ProbeAGGCGTTGCACTTCACCAGCCSEQ ID NO:923
Reverse PrimerAGTCCACAGTGTTGGGACAASEQ ID NO:924
GPX1NM_000581.2Forward PrimerGCTTATGACCGACCCCAASEQ ID NO:925
ProbeCTCATCACCTGGTCTCCGGTGTGTSEQ ID NO:926
Reverse PrimerAAAGTTCCAGGCAACATCGTSEQ ID NO:927
GPX2NMB_002083.1Forward PrimerCACACAGATCTCCTACTCCATCCASEQ ID NO:928
ProbeCATGCTGCATCCTAAGGCTCCTCAGGSEQ ID NO:929
Reverse PrimerGGTCCAGCAGTGTCTCCTGAASEQ ID NO:930
Grb10NM_005311.2Forward PrimerCTTCGCCTTTGCTGATTGCSEQ ID NO:931
ProbeCTCCAAACGCCTGCCTGACGACTGSEQ ID NO:932
Reverse PrimerCCATAACGCACATGCTCCAASEQ ID NO:933
GRB14NMB_004490.1Forward PrimerTCCCACTGAAGCCCTTTCAGSEQ ID NO:934
ProbeCCTCCAAGCGAGTCCTTCTTCAACCGSEQ ID NO:935
Reverse PrimerAGTGCCCAGGCGTAAACATCSEQ ID NO:936
GRB2NMB_002086.2Forward PrimerGTCCATCAGTGCATGACGTTSEQ ID NO:937
ProbeAGGCCACGTATAGTCCTAGCTGACGCSEQ ID NO:938
Reverse PrimerAGCCCACTTGGTTTCTTGTTSEQ ID NO:939
GRB7NM_005310.1Forward PrimerCCATCTGCATCCATCTTGTTSEQ ID NO:940
ProbeCTCCCCACCCTTGAGAAGTGCCTSEQ ID NO:941
Reverse PrimerGGCCACCAGGGTATTATCTGSEQ ID NO:942
GRIK1NM_000830.2Forward PrimerGTTGGGTGCATCTCTCGGSEQ ID NO:943
ProbeAATTCATGCCGAGATACAGCCGCTSEQ ID NO:944
Reverse PrimerCGTGCTCCATCTTCCTAGCTTSEQ ID NO:945
GRO1NM_001511.1Forward PrimerCGAAAAGATGCTGAACAGTGACASEQ ID NO:946
ProbeCTTCCTCCTCCCTTCTGGTCAGTTGGATSEQ ID NO:947
Reverse PrimerTCAGGAACAGCCACCAGTGASEQ ID NO:948
GRPNMB_002091.1Forward PrimerCTGGGTCTCATAGAAGCAAAGGASEQ ID NO:949
ProbeAGAAACCACCAGCCACCTCAACCCASEQ ID NO:950
Reverse PrimerCCACGAAGGCTGCTGATTGSEQ ID NO:951
GRPRNM_005314.1Forward PrimerATGCTGCTGGCCATTCCASEQ ID NO:952
ProbeCCGTGTTTTCTGACCTCCATCCCTTCCSEQ ID NO:953
Reverse PrimerAGGTCTGGTTGGTGCTTTCCTSEQ ID NO:954
GSK3BNM_002093.2Forward PrimerGACAAGGACGGCAGCAAGSEQ ID NO:955
ProbeCCAGGAGTTGCCACCACTGTTGTCSEQ ID NO:956
Reverse PrimerTTGTGGCCTGTCTGGACCSEQ ID NO:957
GSTA3NM_000847.3Forward PrimerTCTCCAACTTCCCTCTGCTGSEQ ID NO:958
ProbeAGGCCCTGAAAACCAGAATCAGCASEQ ID NO:959
Reverse PrimerACTTCTTCACCGTGGGCASEQ ID NO:960
GSTM1NM_000561.1Forward PrimerAAGCTATGAGGAAAAGAAGTACACGATSEQ ID NO:961
ProbeTCAGCCACTGGCTTCTGTCATAATCAGGAGSEQ ID NO:962
Reverse PrimerGGCCCAGCTTGAATTTTTCASEQ ID NO:963
GSTM3NM_000849.3Forward PrimerCAATGCCATCTTGCGCTACATSEQ ID NO:964
ProbeCTCGCAAGCACAACATGTGTGGTGAGASEQ ID NO:965
Reverse PrimerGTCCACTCGAATCTTTTCTTCTTCASEQ ID NO:966
GSTpNM_000852.2Forward PrimerGAGACCCTGCTGTCCCAGAASEQ ID NO:967
ProbeTCCCACAATGAAGGTCTTGCCTCCCTSEQ ID NO:968
Reverse PrimerGGTTGTAGTCAGCGAAGGAGATCSEQ ID NO:969
GSTT1NM_000853.1Forward PrimerCACCATCCCCACCCTGTCTSEQ ID NO:970
ProbeCACAGCCGCCTGAAAGCCACAATSEQ ID NO:971
Reverse PrimerGGCCTCAGTGTGCATCATTCTSEQ ID NO:972
H2AFZNMB_002106.2Forward PrimerCCGGAAAGGCCAAGACAASEQ ID NO:973
ProbeCCCGCTCGCAGAGAGCCGGSEQ ID NO:974
Reverse PrimerAATACGGCCCACTGGGAACTSEQ ID NO:975
HB-EGFNM_001945.1Forward PrimerGACTCCTTCGTCCCCAGTTGSEQ ID NO:976
ProbeTTGGGCCTCCCATAATTGCTTTGCCSEQ ID NO:977
Reverse PrimerTGGCACTTGAAGGCTCTGGTASEQ ID NO:978
hCRA aU78556.1Forward PrimerTGACACCCTTACCTTCCTGAGAASEQ ID NO:979
ProbeTCTGCTTTCCGCGCTCCCAGGSEQ ID NO:980
Reverse PrimerAAAAACACGAGTCAAAAATAGAAGTCACTSEQ ID NO:981
HDAC1NM_004964.2Forward PrimerCAAGTACCACAGCGATGACTACATTAASEQ ID NO:982
ProbeTTCTTGCGCTCCATCCGTCCAGASEQ ID NO:983
Reverse PrimerGCTTGCTGTACTCCGACATGTTSEQ ID NO:984
HDAC2NM_001527.1Forward PrimerGGTGGCTACACAATCCGTAASEQ ID NO:985
ProbeTGCAGTCTCATATGTCCAACATCGAGCSEQ ID NO:986
Reverse PrimerTGGGAATCTCACAATCAAGGSEQ ID NO:987
HDGFNM_004494.1Forward PrimerTCCTAGGCATTCTGGACCTCSEQ ID NO:988
ProbeCATTCCTACCCCTGATCCCAACCCSEQ ID NO:989
Reverse PrimerGCTGTTGATGCTCCATCCTTSEQ ID NO:990
hENT1NM_004955.1Forward PrimerAGCCGTGACTGTTGAGGTCSEQ ID NO:991
ProbeAAGTCCAGCATCGCAGGCAGCSEQ ID NO:992
Reverse PrimerAAGTAACGTTCCCAGGTGCTSEQ ID NO:993
HepsinNM_002151.1Forward PrimerAGGCTGCTGGAGGTCATCTCSEQ ID NO:994
ProbeCCAGAGGCCGTTTCTTGGCCGSEQ ID NO:995
Reverse PrimerCTTCCTGCGGCCACAGTCTSEQ ID NO:996
HER2NMB_004448.1Forward PrimerCGGTGTGAGAAGTGCAGCAASEQ ID NO:997
ProbeCCAGACCATAGCACACTCGGGCACSEQ ID NO:998
Reverse PrimerCCTCTCGCAAGTGCTCCATSEQ ID NO:999
HerstatinAF177761.2Forward PrimerCACCCTGTCCTATCCTTCCTSEQ ID NO:1000
ProbeCCCTCTTGGGACCTAGTCTCTGCCTSEQ ID NO:1001
Reverse PrimerGGCCAGGGGTAGAGAGTAGASEQ ID NO:1002
HES6NMB_018645.3Forward PrimerTTAGGGACCCTGCAGCTCTSEQ ID NO:1003
ProbeTAGCTCCCTCCCTCCACCCACTCSEQ ID NO:1004
Reverse PrimerCTACAAAATTCTTCCTCCTGCCSEQ ID NO:1005
HGFM29145.1Forward PrimerCCGAAATCCAGATGATGATGSEQ ID NO:1006
ProbeCTCATGGACCCTGGTGCTACACGSEQ ID NO:1007
Reverse PrimerCCCAAGGAATGAGTGGATTTSEQ ID NO:1008
HIF1ANM_001530.1Forward PrimerTGAACATAAAGTCTGCAACATGGASEQ ID NO:1009
ProbeTTGCACTGCACAGGCCACATTCACSEQ ID NO:1010
Reverse PrimerTGAGGTTGGTTACTGTTGGTATCATATASEQ ID NO:1011
HK1NM_000188.1Forward PrimerTACGCACAGAGGCAAGCASEQ ID NO:1012
ProbeTAAGAGTCCGGGATCCCCAGCCTASEQ ID NO:1013
Reverse PrimerGAGAGAAGTGCTGGAGAGGCSEQ ID NO:1014
HLA-DPB1NM_002121.4Forward PrimerTCCATGATGGTTCTGCAGGTTSEQ ID NO:1015
ProbeCCCCGGACAGTGGCTCTGACGSEQ ID NO:1016
Reverse PrimerTGAGCAGCACCATCAGTAACGSEQ ID NO:1017
HLA-DRANM_019111.3Forward PrimerGACGATTTGCCAGCTTTGAGSEQ ID NO:1018
ProbeTCAAGGTGCATTGGCCAACATAGCSEQ ID NO:1019
Reverse PrimerTCCAGGTTGGCTTTGTCCSEQ ID NO:1020
HLA-DRB1NM_002124.1Forward PrimerGCTTTCTCAGGACCTGGTTGSEQ ID NO:1021
ProbeCATTTTCTGCAGTTGCCGAACCAGSEQ ID NO:1022
Reverse PrimerAGGAAGCCACAAGGGAGGSEQ ID NO:1023
HLA-GNM_002127.2Forward PrimerCCTGCGCGGCTACTACAACSEQ ID NO:1024
ProbeCGAGGCCAGTTCTCACACCCTCCAGSEQ ID NO:1025
Reverse PrimerCAGGTCGCAGCCAATCATCSEQ ID NO:1026
HMGB1NM_002128.3Forward PrimerTGGCCTGTCCATTGGTGATSEQ ID NO:1027
ProbeTTCCACATCTCTCCCAGTTTCTTCGCAASEQ ID NO:1028
Reverse PrimerGCTTGTCATCTGCAGCAGTGTTSEQ ID NO:1029
hMLHNM_000249.2Forward PrimerCTACTTCCAGCAACCCCAGASEQ ID NO:1030
ProbeTCCACATCAGAATCTTCCCGSEQ ID NO:1031
Reverse PrimerCTTTCGGGAATCATCTTCCASEQ ID NO:1032
HNRPABNM_004499.2Forward PrimerCAAGGGAGCGACCAACTGASEQ ID NO:1033
ProbeCTCCATATCCAAACAAAGCATGTGTGCGSEQ ID NO:1034
Reverse PrimerGTTTGCCAAGTTAAATTTGGTACATAATSEQ ID NO:1035
HNRPDNM_031370.2Forward PrimerGCCAGTAAGAACGAGGAGGASEQ ID NO:1036
ProbeAAGGCCATTCAAACTCCTCCCCACSEQ ID NO:1037
Reverse PrimerCGTCGCTGCTTCAGAGTGTSEQ ID NO:1038
HoxA1NM_005522.3Forward PrimerAGTGACAGATGGACAATGCAAGASEQ ID NO:1039
ProbeTGAACTCCTTCCTGGAATACCCCASEQ ID NO:1040
Reverse PrimerCCGAGTCGCCACTGCTAAGTSEQ ID NO:1041
HoxA5NM_019102.2Forward PrimerTCCCTTGTGTTCCTTCTGTGAASEQ ID NO:1042
ProbeAGCCCTGTTCTCGTTGCCCTAATTCATCSEQ ID NO:1043
Reverse PrimerGGCAATAAACAGGCTCATGATTAASEQ ID NO:1044
HOXB13NM_006361.2Forward PrimerCGTGCCTTATGGTTACTTTGGSEQ ID NO:1045
ProbeACACTCGGCAGGAGTAGTACCCGCSEQ ID NO:1046
Reverse PrimerCACAGGGTTTCAGCGAGCSEQ ID NO:1047
HOXB7NM_004502.2Forward PrimerCAGCCTCAAGTTCGGTTTTCSEQ ID NO:1048
ProbeACCGGAGCCTTCCCAGAACAAACTSEQ ID NO:1049
Reverse PrimerGTTGGAAGCAAACGCACASEQ ID NO:1050
HRASNM_005343.2Forward PrimerGGACGAATACGACCCCACTSEQ ID NO:1051
ProbeACCACCTGCTTCCGGTAGGAATCCSEQ ID NO:1052
Reverse PrimerGCACGTCTCCCCATCAATSEQ ID NO:1053
HSBP1NM_001537.1Forward PrimerGGAGATGGCCGAGACTGACSEQ ID NO:1054
ProbeCAAGACCGTGCAGGACCTCACCTSEQ ID NO:1055
Reverse PrimerCTGCAGGAGTGTCTGCACCSEQ ID NO:1056
HSD17B1NM_000413.1Forward PrimerCTGGACCGCACGGACATCSEQ ID NO:1057
ProbeACCGCTTCTACCAATACCTCGCCCASEQ ID NO:1058
Reverse PrimerCGCCTCGCGAAAGACTTGSEQ ID NO:1059
HSD17B2NM_002153.1Forward PrimerGCTTTCCAAGTGGGGAATTASEQ ID NO:1060
ProbeAGTTGCTTCCATCCAACCTGGAGGSEQ ID NO:1061
Reverse PrimerTGCCTGCGATATTTGTTAGGSEQ ID NO:1062
HSPA1ANMB_005345.4Forward PrimerCTGCTGCGACAGTCCACTASEQ ID NO:1063
ProbeAGAGTGACTCCCGTTGTCCCAAGGSEQ ID NO:1064
Reverse PrimerCAGGTTCGCTCTGGGAAGSEQ ID NO:1065
HSPA1BNM_005346.3Forward PrimerGGTCCGCTTCGTCTTTCGASEQ ID NO:1066
Probe.TGACTCCCGCGGTCCCAAGGSEQ ID NO:1067
Reverse PrimerGCACAGGTTCGCTCTGGAASEQ ID NO:1068
HSPA4NM_002154.3Forward PrimerTTCAGTGTGTCCAGTGCATCSEQ ID NO:1069
ProbeCATTTTCCTCAGACTTGTGAACCTCCACTSEQ ID NO:1070
Reverse PrimerATCTGTTTCCATTGGCTCCTSEQ ID NO:1071
HSPA5NM_005347.2Forward PrimerGGCTAGTAGAACTGGATCCCAACASEQ ID NO:1072
ProbeTAATTAGACCTAGGCCTCAGCTGCACTGCCSEQ ID NO:1073
Reverse PrimerGGTCTGCCCAAATGCTTTTCSEQ ID NO:1074
HSPA8NM_006597.3Forward PrimerCCTCCCTCTGGTGGTGCTTSEQ ID NO:1075
ProbeCTCAGGGCCCACCATTGAAGAGGTTGSEQ ID NO:1076
Reverse PrimerGCTACATCTACACTTGGTTGGCTTAASEQ ID NO:1077
HSPB1NM_001540.2Forward PrimerCCGACTGGAGGAGCATAAASEQ ID NO:1078
ProbeCGCACTTTTCTGAGCAGACGTCCASEQ ID NO:1079
Reverse PrimerATGCTGGCTGACTCTGCTCSEQ ID NO:1080
HSPCANM_005348.2Forward PrimerCAAAAGGCAGAGGCTGATAASEQ ID NO:1081
ProbeTGACCAGATCCTTCACAGACTTGTCGTSEQ ID NO:1082
Reverse PrimerAGCGCAGTTTCATAAAGCAASEQ ID NO:1083
HSPE1NM_002157.1Forward PrimerGCAAGCAACAGTAGTCGCTGSEQ ID NO:1084
ProbeTCTCCACCCTTTCCTTTAGAACCCGSEQ ID NO:1085
Reverse PrimerCCAACTTTCACGCTAACTGGTSEQ ID NO:1086
HSPG2NM_005529.2Forward PrimerGAGTACGTGTGCCGAGTGTTSEQ ID NO:1087
ProbeCAGCTCCGTGCCTCTAGAGGCCTSEQ ID NO:1088
Reverse PrimerCTCAATGGTGACCAGGACASEQ ID NO:1089
ICAM1NM_000201.1Forward PrimerGCAGACAGTGACCATCTACAGCTTSEQ ID NO:1090
ProbeCCGGCGCCCAACGTGATTCTSEQ ID NO:1091
Reverse PrimerCTTCTGAGACCTCTGGCTTCGTSEQ ID NO:1092
ICAM2NM_000873.2Forward PrimerGGTCATCCTGACACTGCAACSEQ ID NO:1093
ProbeTTGCCCACAGCCACCAAAGTGSEQ ID NO:1094
Reverse PrimerTGCACTCAATGGTGAAGGACSEQ ID NO:1095
ID1NM_002165.1Forward PrimerAGAACCGCAAGGTGAGCAASEQ ID NO:1096
ProbeTGGAGATTCTCCAGCACGTCATCGACSEQ ID NO:1097
Reverse PrimerTCCAACTGAAGGTCCCTGATGSEQ ID NO:1098
ID2NM_002166.1Forward PrimerAACGACTGCTACTCCAAGCTCAASEQ ID NO:1099
ProbeTGCCCAGCATCCCCCAGAACAASEQ ID NO:1100
Reverse PrimerGGATTTCCATCTTGCTCACCTTSEQ ID NO:1101
ID3NM_002167.2Forward PrimerCTTCACCAAATCCCTTCCTGSEQ ID N0:1102
ProbeTCACAGTCCTTCGCTCCTGAGCACSEQ ID NO:1103
Reverse PrimerCTCTGGCTCTTCAGGCTACASEQ ID NO:1104
ID4NM_001546.2Forward PrimerTGGCCTGGCTCTTAATTTGSEQ ID NO:1105
ProbeCTTTTGTTTTGCCCAGTATAGACTCGGAAGSEQ ID NO:1106
Reverse PrimerTGCAATCATGCAAGACCACSEO ID NO:1107
IFIT1NM_001548.1Forward PrimerTGACAACCAAGCAAATGTGASEQ ID NO:1108
ProbeAAGTTGCCCCAGGTCACCAGACTCSEQ ID NO:1109
Reverse PrimerCAGTCTGCCCATGTGGTAATSEQ ID NO:1110
IGF1NM_000618.1Forward PrimerTCCGGAGCTGTGATCTAAGGASEQ ID NO:1111
ProbeTGTATTGCGCACCCCTCAAGCCTGSEQ ID NO:1112
Reverse PrimerCGGACAGAGCGAGCTGACTTSEa ID NO:1113
IGF1RNM_000875.2Forward PrimerGCATGGTAGCCGAAGATTTCASEQ ID NO:1114
ProbeCGCGTCATACCAAAATCTCCGATTTTGASEQ ID NO:1115
Reverse PrimerTTTCCGGTAATAGTCTGTCTCATAGATATCSEQ ID NO:1116
IGF2NM_000612.2Forward PrimerCCGTGCTTCCGGACAACTTSEQ ID NO:1117
ProbeTACCCCGTGGGCAAGTTCTTCCAASEQ ID NO:1118
Reverse PrimerTGGACTGCTTCCAGGTGTCASEQ ID NO:1119
IGFBP2NM_000597.1Forward PrimerGTGGACAGCACCATGAACASEQ ID NO:1120
ProbeCTTCCGGCCAGCACTGCCTCSE4 ID NO:1121
Reverse PrimerCCTTCATACCCGACTTGAGGSEQ ID NO:1122
IGFBP3NM_000598.1Forward PrimerACGCACCGGGTGTCTGASEQ ID NO:1123
ProbeCCCAAGTTCCACCCCCTCCATTCASEQ ID NO:1124
Reverse PrimerTGCCCTTTCTTGATGATGATTATCSEQ ID NO:1125
IGFBP5NMB_000599.1Forward PrimerTGGACAAGTACGGGATGAAGCTSEQ ID NO:1126
ProbeCCCGTCAACGTACTCCATGCCTGGSEa ID NO:1127
Reverse PrimerCGAAGGTGTGGCACTGAAAGTSEQ ID NO:1128
IGFBP6NM_002178.1Forward PrimerTGAACCGCAGAGACCAACAGSEQ ID NO:1129
ProbeATCCAGGCACCTCTACCACGCCCTCSEQ ID NO:1130
Reverse PrimerGTCTTGGACACCCGCAGAATSEQ ID NO:1131
IGFBP7NM_001553Forward PrimerGGGTCACTATGGAGTTCAAAGGASEQ ID NO:1132
ProbeCCCGGTCACCAGGCAGGAGTTCTSEO ID NO:1133
Reverse PrimerGGGTCTGAATGGCCAGGTTSEQ ID NO:1134
IHHNM_002181.1Forward PrimerAAGGACGAGGAGAACACAGGSEQ ID NO:1135
ProbeATGACCCAGCGCTGCAAGGACSEQ ID NO:1136
Reverse PrimerAGATAGCCAGCGAGTTCAGGSEQ ID NO:1137
IL-8NM_000584.2Forward PrimerAAGGAACCATCTCACTGTGTGTAAACSEO ID NO:1138
ProbeTGACTTCCAAGCTGGCCGTGGCSEQ ID NO:1139
Reverse PrimerATCAGGAAGGCTGCCAAGAGSEQ ID NO:1140
IL10NM_000572.1Forward PrimerGGCGCTGTCATCGATTTCTTSEO ID NO:1141
ProbeCTGCTCCACGGCCTTGCTCTTG.SEQ ID NO:1142
Reverse PrimerTGGAGCTTATTAAAGGCATTCTTCASEO ID NO:1143
IL1BNM_000576.2Forward PrimerAGCTGAGGAAGATGCTGGTTSEQ ID NO:1144
ProbeTGCCCACAGACCTTCCAGGAGAATSEQ ID NO:1145
Reverse PrimerGGAAAGAAGGTGCTCAGGTCSEQ ID NO:1146
IL6NM_000600.1Forward PrimerCCTGAACCTTCCAAAGATGGSEQ ID NO:1147
ProbeCCAGATTGGAAGCATCCATCTTTTTCASEQ ID NO:1148
Reverse PrimerACCAGGCAAGTCTCCTCATTSEQ ID NO:1149
IL6STNM_002184.2Forward PrimerGGCCTAATGTTCCAGATCCTSEQ ID NO:1150
ProbeCATATTGCCCAGTGGTCACCTCACASEQ ID NO:1151
Reverse PrimerAAAATTGTGCCTTGGAGGAGSEQ ID NO:1152
ILT-2NMB_006669.1Forward PrimerAGCCATCACTCTCAGTGCAGSEQ ID NO:1153
ProbeCAGGTCCTATCGTGGCCCCTGASEQ ID NO:1154
Reverse PrimerACTGCAGAGTCAGGGTCTCCSEQ ID NO:1155
IMP-1NM_006546.2Forward PrimerGAAAGTGTTTGCGGAGCACSEO ID NO:1156
ProbeCTCCTACAGCGGCCAGTTCTTGGTSEO ID NO:1157
Reverse PrimerGAAGGCGTAGCCGGATTTSEQ ID NO:1158
IMP2NM_006548.3Forward PrimerCAATCTGATCCCAGGGTTGAASEQ ID NO:1159
ProbeCTCAGCGCACTTGGCATCTTTTCAACASEQ ID NO:1160
Reverse PrimerGGCCCTGCTGGTGGAGATASEQ ID NO:1161
ING1LNM_001564.1Forward PrimerTGTTTCCAAGATCCTGCTGASEQ ID NO:1162
ProbeCCATCTTTGCTTTATCTGAGGCTCGTTCSEQ ID NO:1163
Reverse PrimerTCTTTCTGGTTGGCTGGAATSEQ ID NO:1164
ING5NMB_032329.4Forward PrimerCCTACAGCAAGTGCAAGGAASEQ ID NO:1165
ProbeCCAGCTGCACTTTGTCGTCACTGTSEQ ID NO:1166
Reverse PrimerCATCTCGTAGGTCTGCATGGSEQ ID NO:1167
INHANM_002191.2Forward PrimerCCTCCCAGTTTCATCTTCCACTASEQ ID NO:1168
ProbeATGTGCAGCCCACAACCACCATGASEQ ID NO:1169
Reverse PrimerAGGGACTGGAAGGGACAGGTTSEQ ID NO:1170
INHBANM_002192.1Forward PrimerGTGCCCGAGCCATATAGCASEQ ID NO:1171
ProbeACGTCCGGGTCCTCACTGTCCTTCCSEQ ID NO:1172
Reverse PrimerCGGTAGTGGTTGATGACTGTTGASEQ ID NO:1173
INHBBNM_002193.1Forward PrimerAGCCTCCAGGATACCAGCAASEQ ID NO:1174
ProbeAGCTAAGCTGCCATTTGTCACCGSEQ ID NO:1175
Reverse PrimerTCTCCGACTGACAGGCATTTGSEQ ID NO:1176
IRS1NM_005544.1Forward PrimerCCACAGCTCACCTTCTGTCASEQ ID NO:1177
ProbeTCCATCCCAGCTCCAGCCAGSEQ ID NO:1178
Reverse PrimerCCTCAGTGCCAGTCTCTTCCSEQ ID NO:1179
ITGA3NM_002204.1Forward PrimerCCATGATCCTCACTCTGCTGSEO ID NO:1180
ProbeCACTCCAGACCTCGCTTAGCATGGSEO ID NO:1181
Reverse PrimerGAAGCTTTGTAGCCGGTGATSEO ID NO:1182
ITGA4NM_000885.2Forward PrimerCAACGCTTCAGTGATCAATCCSEQ ID NO:1183
ProbeCGATCCTGCATCTGTAAATCGCCCSEQ ID NO:1184
Reverse PrimerGTCTGGCCGGGATTCTTTSEa ID NO:1185
ITGA5NM_002205.1Forward PrimerAGGCCAGCCCTACATTATCASEQ ID NO:1186
ProbeTCTGAGCCTTGTCCTCTATCCGGCSEQ ID NO:1187
Reverse PrimerGTCTTCTCCACAGTCCAGCASEO ID NO:1188
ITGA6NM_000210.1Forward PrimerCAGTGACAAACAGCCCTTCCSEQ ID NO:1189
ProbeTCGCCATCTTTTGTGGGATTCCTTSEQ ID NO:1190
Reverse PrimerGTTTAGCCTCATGGGCGTCSEQ ID NO:1191
ITGA7NMB_002206.1Forward PrimerGATATGATTGGTCGCTGCTTTGSEQ ID NO:1192
ProbeCAGCCAGGACCTGGCCATCCGSEQ ID NO:1193
Reverse PrimerAGAACTTCCATTCCCCACCATSEQ ID NO:1194
ITGAVNM_002210.2Forward PrimerACTCGGACTGCACAAGCTATTSEQ ID NO:1195
ProbeCCGACAGCCACAGAATAACCCAAASEQ ID NO:1196
Reverse PrimerTGCCATCACCATTGAAATCTSEQ ID NO:1197
ITGB1NM_002211.2Forward PrimerTCAGAATTGGATTTGGCTCASEQ ID NO:1198
ProbeTGCTAATGTAAGGCATCACAGTCTTTTCCASEQ ID NO:1199
Reverse PrimerCCTGAGCTTAGCTGGTGTTGSEQ ID NO:1200
ITGB3NM_000212.1Forward PrimerACCGGGAGCCCTACATGACSEQ ID NO:1201
ProbeAAATACCTGCAACCGTTACTGCCGTGACSEQ ID NO:1202
Reverse PrimerCCTTAAGCTCTTTCACTGACTCAATCTSEQ ID NO:1263
ITGB4NM_000213.2Forward PrimerCAAGGTGCCCTCAGTGGASEQ ID NO:1204
ProbeCACCAACCTGTACCCGTATTGCGA -SEQ ID NO:1205
Reverse PrimerGCGCACACCTTCATCTCATSEQ ID NO:1206
ITGB5NM_002213.3Forward PrimerTCGTGAAAGATGACCAGGAGSEQ ID NO:1207
ProbeTGCTATGTTTCTACAAAACCGCCAAGGSEQ ID NO:1208
Reverse PrimerGGTGAACATCATGACGCAGTSEQ ID NO:1209
K-rasNMB_033360.2Forward PrimerGTCAAAATGGGGAGGGACTASEQ ID NO:1210
ProbeTGTATCTTGTTGAGCTATCCAAACTGCCCSEO ID NO:1211
Reverse PrimerCAGGACCACCACAGAGTGAGSEQ ID NO:1212
KCNH2 iso a/bNM_000238.2Forward PrimerGAGCGCAAAGTGGAAATCGSEQ ID NO:1213
ProbeTAGGAAGCAGCTCCCATCTTTCCGGTASEQ ID NO:1214
Reverse PrimerTCTTCACGGGCACCACATCSEQ ID NO:1215
KCNH2 iso a/cNM_172057.1Forward PrimerTCCTGCTGCTGGTCATCTACSEQ ID NO:1216
ProbeTGTCTTCACACCCTACTCGGCTGCSEQ ID NO:1217
Reverse PrimerCCTTCTTCCGTCTCCTTCAGSEQ ID NO:1218
KCNK4NM_016611.2Forward PrimerCCTATCAGCCGCTGGTGTSEQ ID NO:1219
ProbeATCCTGCTCGGCCTGGCTTACTTCSEQ ID NO:1220
Reverse PrimerTGGTGGTGAGCACTGAGGSEQ ID NO:1221
KDRNM_002253.1Forward PrimerGAGGACGAAGGCCTCTACACSEQ ID NO:1222
ProbeCAGGCATGCAGTGTTCTTGGCTGTSEQ ID NO:1223
Reverse PrimerAAAAATGCCTCCACTTTTGCSEQ ID NO:1224
Ki-67NM_002417.1Forward PrimerCGGACTTTGGGTGCGACTTSEQ ID NO:1225
ProbeCCACTTGTCGAACCACCGCTCGTSEQ ID NO:1226
Reverse PrimerTTACAACTCTTCCACTGGGACGATSEQ ID NO:1227
KIAA0125NM_014792.2Forward PrimerGTGTCCTGGTCCATGTGGTSEQ ID NO:1228
ProbeCACGTGTCTCCACCTCCAAGGAGASEQ ID NO:1229
Reverse PrimerGGGAGGTGCACACTGAGGSEQ ID NO:1230
KIF22NM_007317.1Forward PrimerCTAAGGCACTTGCTGGAAGGSEQ ID NO:1231
ProbeTCCATAGGCAAGCACACTGGCATTSEQ ID NO:1232
Reverse PrimerTCTTCCCAGCTCCTGTGGSEQ ID NO:1233
KIF2CNM_006845.2Forward PrimerAATTCCTGCTCCAAAAGAAAGTCTTSEQ ID NO:1234
ProbeAAGCCGCTCCACTCGCATGTCCSEQ ID NO:1235
Reverse PrimerCGTGATGCGAAGCTCTGAGASEQ ID NO:1236
KIFC1XM_371813.1Forward PrimerCCACAGGGTTGAAGAACCAGSEQ ID NO:1237
ProbeAGCCAGTTCCTGCTGTTCCTGTCCSEQ ID NO:1238
Reverse PrimerCACCTGATGTGCCAGACTTCSEQ ID NO:1239
KitlngNM_000899.1Forward PrimerGTCCCCGGGATGGATGTTSEQ ID NO:1240
ProbeCATCTCGCTTATCCAACAATGACTTGGCASEQ ID NO:1241
Reverse PrimerGATCAGTCAAGCTGTCTGACAATTGSEQ ID NO:1242
KLF5NM_001730.3Forward PrimerGTGCAACCGCAGCTTCTCSEQ ID NO:1243
ProbeCTCTGACCACCTGGCCCTGCATATSEQ ID NO:1244
Reverse PrimerCGGGCAGTGCTCAGTTCTSEQ ID NO:1245
KLF6NM_001300.4Forward PrimerCACGAGACCGGCTACTTCTCSEQ ID NO:1246
ProbeAGTACTCCTCCAGAGACGGCAGCGSEQ ID NO:1247
Reverse PrimerGCTCTAGGCAGGTCTGTTGCSEQ ID NO:1248
KLK10NMB_002776.1Forward PrimerGCCCAGAGGCTCCATCGTSEQ ID NO:1249
ProbeCCTCTTCCTCCCCAGTCGGCTGASEQ ID NO:1250
Reverse PrimerCAGAGGTTTGAACAGTGCAGACASEQ ID NO:1251
KLK6NM_002774.2Forward PrimerGACGTGAGGGTCCTGATTCTSEQ ID NO:1252
ProbeTTACCCCAGCTCCATCCTTGCATCSEQ ID NO:1253
Reverse PrimerTCCTCACTCATCACGTCCTCSEQ ID NO:1254
KLRK1NM_007360.1Forward PrimerTGAGAGCCAGGCTTCTTGTASEQ ID NO:1255
ProbeTGTCTCAAAATGCCAGCCTTCTGAASEQ ID NO:1256
Reverse PrimerATCCTGGTCCTCTTTGCTGTSEQ ID NO:1257
KNTC2NM_006101.1Forward PrimerATGTGCCAGTGAGCTTGAGTSEQ ID NO:1258
ProbeCCTTGGAGAAACACAAGCACCTGCSEQ ID NO:1259
Reverse PrimerTGAGCCCCTGGTTAACAGTASEQ ID NO:1260
KRAS2NM_004985.3Forward PrimerGAGACCAAGGTTGCAAGGCSEQ ID NO:1261
ProbeAAGCTCAAAGGTTCACACAGGGCCSEQ ID NO:1262
Reverse PrimerCAGTCCATGCTGTGAAACTCTCSEQ ID NO:1263
KRT19NM_002276.1Forward PrimerTGAGCGGCAGAATCAGGAGTASEQ ID NO:1264
ProbeCTCATGGACATCAAGTCGCGGCTGSEQ ID NO:1265
Reverse PrimerTGCGGTAGGTGGCAATCTCSEQ ID NO:1266
KRT8NM_002273.1Forward PrimerGGATGAAGCTTACATGAACAAGGTAGASEQ ID NO:1267
ProbeCGTCGGTCAGCCCTTCCAGGCSEQ ID NO:1268
Reverse PrimerCATATAGCTGCCTGAGGAAGTTGATSEQ ID NO:1269
LAMA3NM_000227.2Forward PrimerCAGATGAGGCACATGGAGACSEQ ID NO:1270
ProbeCTGATTCCTCAGGTCCTTGGCCTGSEQ ID NO:1271
Reverse PrimerTTGAAATGGCAGAACGGTAGSEQ ID NO:1272
LAMB3NM_000228.1Forward PrimerACTGACCAAGCCTGAGACCTSEQ ID NO:1273
ProbeCCACTCGCCATACTGGGTGCAGTSEQ ID NO:1274
Reverse PrimerGTCACACTTGCAGCATTTCASEQ ID NO:1275
LAMC2NMB_005562.1Forward PrimerACTCAAGCGGAAATTGAAGCASEQ ID NO:1276
ProbeAGGTCTTATCAGCACAGTCTCCGCCTCCSEQ ID NO:1277
Reverse PrimerACTCCCTGAAGCCGAGACACTSEQ ID NO:1278
LATNM_014387.2Forward PrimerGTGAACGTTCCGGAGAGCSEQ ID NO:1279
ProbeATCCAGAGACGCTTCTGCGCTCTCSEQ ID NO:1280
Reverse PrimerACATTCACATACTCCCGGCTSEO ID NO:1281
LCN2NM_005564.2Forward PrimerCGCTGGGCAACATTAAGAGSEQ ID NO:1282
ProbeTCACCACTCGGACGAGGTAACTCGSEQ ID NO:1283
Reverse PrimerAGCATGCTGGTTGTAGTTGGTSEQ ID NO:1284
LDLRAP1NM_015627.1Forward PrimerCAGTGCCTCTCGCCTGTCSEQ ID NO:1285
ProbeACTGGGACAAGCCTGACAGCAGCSEQ ID NO:1286
Reverse PrimerTGAAGAGGTCATCCTGCTCTGSEQ ID NO:1287
LEFNM_016269.2Forward PrimerGATGACGGAAAGCATCCAGSEQ ID NO:1288
ProbeTGGAGGCCTCTACAACAAGGGACCSEQ ID NO:1289
Reverse PrimerCCCGGAATAACTCGAGTAGGASEQ ID NO:1290
LGALS3NM_002306.1Forward PrimerAGCGGAAAATGGCAGACAATSEQ ID NO:1291
ProbeACCCAGATAACGCATCATGGAGCGASEQ ID NO:1292
Reverse PrimerCTTGAGGGTTTGGGTTTCCASEQ ID NO:1293
LGMNNM_001008530. 1Forward PrimerTTGGTGCCGTTCCTATAGATGSEQ ID NO:1294
ProbeCAGTGCTTGCCTCCATCTTCAGGASEQ ID NO:1295
Reverse PrimerGAACCTGCCACGATCACCSEQ ID NO:1296
LILRB3NM_006864.1Forward PrimerCACCTGGTCTGGGAAGATACCSEQ ID NO:1297
ProbeACCGAGACCCCAATCAAAACCTCCSEQ ID NO:1298
Reverse PrimerAAGAGCAGCAGGACGAAGGSEQ ID NO:1299
LMNB1NM_005573.1Forward PrimerTGCAAACGCTGGTGTCACASEQ ID NO:1300
ProbeCAGCCCCCCAACTGACCTCATCSEQ ID NO:1301
Reverse PrimerCCCCACGAGTTCTGGTTCTTCSEQ ID NO:1302
LMYCNM_012421.1Forward PrimerCCCATCCAGAACACTGATTGSEQ ID NO:1303
ProbeTGACCTCCATCCCTTTCACTTGAATGSEQ ID NO:1304
Reverse PrimerCTGCTTTCTATGCACCCTTTCSEQ ID NO:1305
LOXNM_002317.3Forward PrimerCCAATGGGAGAACAACGGSEQ ID NO:1306
ProbeCAGGCTCAGCAAGCTGAACACCTGSEQ ID NO:1307
Reverse PrimerCGCTGAGGCTGGTACTGTGSEQ ID NO:1308
LOXL2NM_002318.1Forward PrimerTCAGCGGGCTCTTAAACAASEQ ID NO:1309
ProbeCAGCTGTCCCCGCAGTAAAGAAGCSEQ ID NO:1310
Reverse PrimerAAGACAGGAGTTGACCACGCSEQ ID NO:1311
LRP5NM_002335.1Forward PrimerCGACTATGACCCACTGGACAISEQ ID NO:1312
ProbeCGCCCATCCACCCAGTAGATGAACSEQ ID NO:1313
Reverse PrimerCTTGGCTCGCTTGATGTTCSEQ ID NO:1314
LRP6NM_002336.1Forward PrimerGGATGTAGCCATCTCTGCCTSEQ ID NO:1315
ProbeATAGACCTCAGGGCCTTCGCTGTGSEQ ID NO:1316
Reverse PrimerAGTTCAAAGCCAATAGGGCASEQ ID NO:1317
LY6DNM_003695.2Forward PrimerAATGCTGATGACTTGGAGCAGSEQ ID NO:1318
ProbeCACAGACCCCACAGAGGATGAAGCSEQ ID NO:1319
Reverse PrimerCTGCATCCTCTGTGGGGTSEQ ID NO:1320
MADNM_002357.1Forward PrimerTGGTTCTGATTAGGTAACGTATTGGASEQ ID NO:1321
ProbeCTGCCCACAACTCCCTTGCACGTAASEQ ID NO:1322
Reverse PrimerGGTCAAGGTGGGACACTGAAGSEQ ID NO:1323
MAD1L1NM_003550.1Forward PrimerAGAAGCTGTCCCTGCAAGAGSEQ ID NO:1324
ProbeCATGTTCTTCACAATCGCTGCATCCSEQ ID NO:1325
Reverse PrimerAGCCGTACCAGCTCAGACTTSEQ ID NO:1326
MAD2L1NM_002358.2Forward PrimerCCGGGAGCAGGGAATCACSEQ ID NO:1327
ProbeCGGCCACGATTTCGGCGCTSEQ ID NO:1328
Reverse PrimerATGCTGTTGATGCCGAATGASEQ ID NO:1329
MADH2NM_005901.2Forward PrimerGCTGCCTTTGGTAAGAACATGTCSEQ ID NO:1330
ProbeTCCATCTTGCCATTCACGCCGCSEQ ID NO:1331
Reverse PrimerATCCCAGCAGTCTCTTCACAACTSEQ ID NO:1332
MADH4NM_005359.3Forward PrimerGGACATTACTGGCCTGTTCACASEQ ID NO:1333
ProbeTGCATTCCAGCCTCCCATTTCCASEQ ID NO:1334
Reverse PrimerACCAATACTCAGGAGCAGGATGASEQ ID NO:1335
MADH7NM_005904.1Forward PrimerTCCATCAAGGCTTTCGACTASEQ ID NO:1336
ProbeCTGCAGGCTGTACGCCTTCTCGSEQ ID NO:1337
Reverse PrimerCTGCTGCATAAACTCGTGGTSEQ ID NO:1338
MAP2NM_031846.1Forward PrimerCGGACCACCAGGTCAGAGSEQ ID NO:1339
ProbeCCACTCTTCCCTGCTCTGCGAATTSEQ ID NO:1340
Reverse PrimerCAGGGGTAGTGGGTGTTGAGSEQ ID NO:1341
MAP2K1NM_002755.2Forward PrimerGCCTTTCTTACCCAGAAGCAGAASEQ ID NO:1342
ProbeTCTCAAAGTCGTCATCCTTCAGTTCTCCCASEQ ID NO:1343
Reverse PrimerCAGCCCCCAGCTCACTGATSEQ ID NO:1344
MAP3K1XM_042066.8Forward PrimerGGTTGGCATCAAAAGGAACTSEQ ID NO:1345
ProbeAATTGTCCCTGAAACTCTCCTGCACCSEQ ID NO:1346
Reverse PrimerTGCCATAAATGCAATTGTCCSEQ ID NO:1347
MAPK14NM_139012.1Forward PrimerTGAGTGGAAAAGCCTGACCTATGSEQ ID NO:1348
ProbeTGAAGTCATCAGCTTTGTGCCACCACCSEQ ID NO:1349
Reverse PrimerGGACTCCATCTCTTCTTGGTCAASEQ ID NO:1350
MaspinNM_002639.1Forward PrimerCAGATGGCCACTTTGAGAACATTSEQ ID NO:1351
ProbeAGCTGACAACAGTGTGAACGACCAGACCSEQ ID NO:1352
Reverse PrimerGGCAGCATTAACCACAAGGATTSEQ ID NO:1353
MAXNM_002382.3Forward PrimerCAAACGGGCTCATCATAATGCSEQ ID NO:1354
ProbeTGATGTGGTCCCTACGTTTTCGTTCCASEQ ID NO:1355
Reverse PrimerTCCCGCAAACTGTGAAAGCTSEQ ID NO:1356
MCM2NM_004526.1Forward PrimerGACTTTTGCCCGCTACCTTTCSEQ ID NO:1357
ProbeACAGCTCATTGTTGTCACGCCGGASEQ ID NO:1358
Reverse PrimerGCCACTAACTGCTTCAGTATGAAGAGSEQ ID NO:1359
MCM3NM_002388.2Forward PrimerGGAGAACAATCCCCTTGAGASEQ ID NO:1360
ProbeTGGCCTTTCTGTCTACAAGGATCACCASEQ ID NO:1361
Reverse PrimerATCTCCTGGATGGTGATGGTSEQ ID NO:1362
MCM6NM_005915.2Forward PrimerTGATGGTCCTATGTGTCACATTCASEQ ID NO:1363
ProbeCAGGTTTCATACCAACACAGGCTTCAGCACSEQ ID NO:1364
Reverse PrimerTGGGACAGGAAACACACCAASEQ ID NO:1365
MCP1NM_002982.1Forward PrimerCGCTCAGCCAGATGCAATCSEQ ID NO:1366
ProbeTGCCCCAGTCACCTGCTGTTASEQ ID NO:1367
Reverse PrimerGCACTGAGATCTTCCTATTGGTGAASEQ ID NO:1368
MDKNM_002391.2Forward PrimerGGAGCCGACTGCAAGTACASEQ ID NO:1369
ProbeATCACACGCACCCCAGTTCTCAAASEQ ID NO:1370
Reverse PrimerGACTTTGGTGCCTGTGCCSEQ ID NO:1371
MDM2NM_002392.1Forward PrimerCTACAGGGACGCCATCGAASEQ ID NO:1372
ProbeCTTACACCAGCATCAAGATCCGGSEQ ID NO:1373
Reverse PrimerATCCAACCAATCACCTGAATGTTSEQ ID NO:1374
MGAT5NM_002410.2Forward PrimerGGAGTCGAAGGTGGACAATCSEQ ID NO:1375
ProbeAATGGCACCGGAACAAACTCAACCSEQ ID NO:1376
Reverse PrimerTGGGAACAGCTGTAGTGGAGTSEQ ID NO:1377
MGMTNM_002412.1Forward PrimerGTGAAATGAAACGCACCACASEQ ID NO:1378
ProbeCAGCCCTTTGGGGAAGCTGGSEQ ID NO:1379
Reverse PrimerGACCCTGCTCACAACCAGACSEQ ID NO:1380
mGST1NM_020300.2Forward PrimerACGGATCTACCACACCATTGCSEQ ID NO:1381
ProbeTTTGACACCCCTTCCCCAGCCASEQ ID NO:1382
Reverse PrimerTCCATATCCAACAAAAAAACTCAAAGSEQ ID NO:1383
MMP1NM_002421.2Forward PrimerGGGAGATCATCGGGACAACTCSEQ ID NO:1384
ProbeAGCAAGATTTCCTCCAGGTCCATCAAAAGGSEQ ID NO:1385
Reverse PrimerGGGCCTGGTTGAAAAGCATSEQ ID NO:1386
MMP12NM_002426.1Forward PrimerCCAACGCTTGCCAAATCCTSEQ ID NO:1387
ProbeAACCAGCTCTCTGTGACCCCAATTSEQ ID NO:1388
Reverse PrimerACGGTAGTGACAGCATCAAAACTCSEQ ID NO:1389
MMP2NM_004530.1Forward PrimerCCATGATGGAGAGGCAGACASEQ ID NO:1390
ProbeCTGGGAGCATGGCGATGGATACCCSEQ ID NO:1391
Reverse PrimerGGAGTCCGTCCTTACCGTCAASEQ ID NO:1392
MMP7NM_002423.2Forward PrimerGGATGGTAGCAGTCTAGGGATTAACTSEQ ID NO:1393
ProbeCCTGTATGCTGCAACTCATGAACTTGGCSEQ ID NO:1394
Reverse PrimerGGAATGTCCCATACCCAAAGAASEO ID NO:1395
MMP9NM_004994.1Forward PrimerGAGAACCAATCTCACCGACASEQ ID NO:1396
ProbeACAGGTATTCCTCTGCCAGCTGCCSEQ ID NO:1397
Reverse PrimerCACCCGAGTGTAACCATAGCSEQ ID NO:1398
MRP1NM_004996.2Forward PrimerTCATGGTGCCCGTCAATGSEQ ID NO:1399
ProbeACCTGATACGTCTTGGTCTTCATCGCCATSEQ ID NO:1400
Reverse PrimerCGATTGTCTTTGCTCTTCATGTGSEQ ID NO:1401
MRP2NM_000392.1Forward PrimerAGGGGATGACTTGGACACATSEQ ID NO:1402
ProbeCTGCCATTCGACATGACTGCAATTTSEQ ID NO:1403
Reverse PrimerAAAACTGCATGGCTTTGTCASEQ ID NO:1404
MRP3NM_003786.2Forward PrimerTCATCCTGGCGATCTACTTCCTSEQ ID NO:1405
ProbeTCTGTCCTGGCTGGAGTCGCTTTCATSEQ ID NO:1406
Reverse PrimerCCGTTGAGTGGAATCAGCAASEQ ID NO:1407
MRP4NM_005845.1Forward PrimerAGCGCCTGGAATCTACAACTSEQ ID NO:1408
ProbeCGGAGTCCAGTGTTTTCCCACTTGSEQ ID NO:1409
Reverse PrimerAGAGCCCCTGGAGAGAAGATSEQ ID NO:1410
MRPL40NM_003776.2Forward PrimerACTTGCAGGCTGCTATCCTTSEQ ID NO:1411
ProbeTTCCTACTCTCAGGGGCAGCATGTTSEQ ID NO:1412
Reverse PrimerAGCAGACTTGAACCCTGGTCSEQ ID NO:1413
MSH2NM_000251.1Forward PrimerGATGCAGAATTGAGGCAGACSEQ ID NO:1414
ProbeCAAGAAGATTTACTTCGTCGATTCCCAGASEQ ID NO:1415
Reverse PrimerTCTTGGCAAGTCGGTTAAGASEQ ID NO:1416
MSH3NM_002439.1Forward PrimerTGATTACCATCATGGCTCAGASEQ ID NO:1417
ProbeTCCCAATTGTCGCTTCTTCTGCAGSEG1 ID NO:1418
Reverse PrimerCTTGTGAAAATGCCATCCACSEQ ID NO:1419
MSH6NM_000179.1Forward PrimerTCTATTGGGGGATTGGTAGGSEQ ID NO:1420
ProbeCCGTTACCAGCTGGAAATTCCTGAGASEQ ID NO:1421
Reverse PrimerCAAATTGCGAGTGGTGAAATSEQ ID NO:1422
MT3NM_005954.1Forward PrimerGTGTGAGAAGTGTGCCAAGGSEQ ID NO:1423
ProbeCTCTCCGCCTTTGCACACACAGTSEQ ID NO:1424
Reverse PrimerCTGCACTTCTCTGCTTCTGCSEQ ID NO:1425
MTA1NM_004689.2Forward PrimerCCGCCCTCACCTGAAGAGASEQ ID NO:1426
ProbeCCCAGTGTCCGCCAAGGAGCGSEQ ID NO:1427
Reverse PrimerGGAATAAGTTAGCCGCGCTTCTSEQ ID NO:1428
MUC1NM_002456.1Forward PrimerGGCCAGGATCTGTGGTGGTASEQ ID NO:1429
ProbeCTCTGGCCTTCCGAGAAGGTACCSEQ ID NO:1430
Reverse PrimerCTCCACGTCGTGGACATTGASEQ ID NO:1431
MUC2NM_002457.1Forward PrimerCTATGAGCCATGTGGGAACCSEQ ID NO:1432
ProbeProbeAGCTTCGAGACCTGCAGGACCATCSEQ ID NO:1433
Reverse PrimerATGTTGGAGTGGATGCCGSEQ ID NO:1434
MUC5BXM_039877.11Forward PrimerTGCCCTTGCACTGTCCTAASEQ ID NO:1435
ProbeTCAGCCATCCTGCACACCTACACCSEQ ID NO:1436
Reverse PrimerCAGCCACACTCATCCACGSEQ ID NO:1437
MUTYHNM_012222.1Forward PrimerGTACGACCAAGAGAAACGGGSEQ ID NO:1438
ProbeTCTGCCCGTCTTCTCCATGGTAGGSEQ ID NO:1439
Reverse PrimerCCTGTCCAGGTCCATCTCASEQ ID NO:1440
MVPNM_017458.1Forward PrimerACGAGAACGAGGGCATCTATGTSEQ ID NO:1441
ProbeCGCACCTTTCCGGTCTTGACATCCTSEQ ID NO:1442
Reverse PrimerGCATGTAGGTGCTTCCAATCACSEQ ID NO:1443
MX1NM_002462.2Forward PrimerGAAGGAATGGGAATCAGTCATGASEQ ID NO:1444
ProbeTCACCCTGGAGATCAGCTCCCGASEQ ID NO:1445
Reverse PrimerGTCTATTAGAGTCAGATCCGGGACATSEQ ID NO:1446
MXD4NM_006454.2Forward PrimerAGAAACTGGAGGAGCAGGACSEQ ID NO:1447
ProbeTGCAGCTGCTCCTTGATGCTCAGTSEQ ID NO:1448
Reverse PrimerCTTCAGGAAACGATGCTCCTSEQ ID NO:1449
MYBL2NM_002466.1Forward PrimerGCCGAGATCGCCAAGATGSEQ ID NO:1450
ProbeCAGCATTGTCTGTCCTCCCTGGCASEQ ID NO:1451
Reverse PrimerCTTTTGATGGTAGAGTTCCAGTGATTCSEQ ID NO:1452
MYH11NM_002474.1Forward PrimerCGGTACTTCTCAGGGCTAATATATACGSEQ ID NO:1453
ProbeCTCTTCTGCGTGGTGGTCAACCCCTASEQ ID NO:1454
Reverse PrimerCCGAGTAGATGGGCAGGTGTTSEQ ID NO:1455
MYLKNM_053025.1Forward PrimerTGACGGAGCGTGAGTGCATSEQ ID NO:1456
ProbeCCCTCCGAGATCTGCCGCATGTACTSEQ ID NO:1457
Reverse PrimerATGCCCTGCTTGTGGATGTACSEQ ID NO:1458
NAT2NM_000015.1Forward PrimerTAACTGACATTCTTGAGCACCAGATSEQ ID NO:1459
ProbeCGGGCTGTTCCCTTTGAGAACCTTAACASEQ ID NO:1460
Reverse PrimerATGGCTTGCCCACAATGCSEQ ID NO:1461
NAV2NM_182964.3Forward PrimerCTCTCCCAGCACAGCTTGASEQ ID NO:1462
ProbeCCTCACTGAGTCAACCAGCCTGGASEQ ID NO:1463
Reverse PrimerCACCAGTGTCATCCAGCAACSEQ ID NO:1464
NCAM1NM_000615.1Forward PrimerTAGTTCCCAGCTGACCATCASEQ ID NO:1465
ProbeCTCAGCCTCGTCGTTCTTATCCACCSEQ ID NO:1466
Reverse PrimerCAGCCTTGTTCTCAGCAATGSEQ ID NO:1467
NDE1NM_017668.1Forward PrimerCTACTGCGGAAAGTCGGGSEQ ID NO:1468
ProbeCTGGAGTCCAAACTCGCTTCCTGCSEQ ID NO:1469
Reverse PrimerGGACTGATCGTACACGAGGTTSEQ ID NO:1470
NDRG1NM_006096.2Forward PrimerAGGGCAACATTCCACAGCSEQ ID NO:1471
ProbeCTGCAAGGACACTCATCACAGCCASEQ ID NO:1472
Reverse PrimerCAGTGCTCCTACTCCGGCSEQ ID NO:1473
NDUFS3NM_004551.1Forward PrimerTATCCATCCTGATGGCGTCSEQ ID NO:1474
ProbeCCCAGTGCTGACTTTCCTCAGGGASEQ ID NO:1475
Reverse PrimerTTGAACTGTGCATTGGTGTGSEQ ID NO:1476
NEDD8NM_006156.1Forward PrimerTGCTGGCTACTGGGTGTTAGTSEQ ID NO:1477
ProbeTGCAGTCCTGTGTGCTTCCCTCTCSEQ ID NO:1478
Reverse PrimerGACAACCAGGGACACAGTCASEQ ID NO:1479
NEK2NM_002497.1Forward PrimerGTGAGGCAGCGCGACTCTSEQ ID NO:1480
ProbeTGCCTTCCCGGGCTGAGGACTSEQ ID NO:1481
Reverse PrimerTGCCAATGGTGTACAACACTTCASEQ ID NO:1482
NF2NM_000268.2Forward PrimerACTCCAGAGCTGACCTCCACSEQ ID NO:1483
ProbeCTACAATGACTTCCCAGGCTGGGCSEQ ID NO:1484
Reverse PrimerTCAGGGCTTCAGTGTCTCACSEQ ID NO:1485
NFKBp50NM_003998.1Forward PrimerCAGACCAAGGAGATGGACCTSEQ ID NO:1486
ProbeAAGCTGTAAACATGAGCCGCACCASEQ ID NO:1487
Reverse PrimerAGCTGCCAGTGCTATCCGSEQ ID NO:1488
NFKBp65NM_021975.1Forward PrimerCTGCCGGGATGGCTTCTATSEQ ID NO:1489
ProbeCTGAGCTCTGCCCGGACCGCTSEQ ID NO:1490
Reverse PrimerCCAGGTTCTGGAAACTGTGGATSEQ ID NO:1491
NISCHNM_007184.1Forward PrimerCCAAGGAATCATGTTCGTTCAGSEQ ID NO:1492
ProbeTGGCCAGCAGCCTCTCGTCCACSEQ ID NO:1493
Reverse PrimerTGGTGCTCGGGAGTCAGACTSEQ ID NO:1494
Nkd-1NM_033119.3Forward PrimerGAGAGAGTGAGCGAACCCTGSEQ ID NO:1495
ProbeCCAGGCTCCAAGAAGCAGCTGAAGSEQ ID NO:1496
Reverse PrimerCGTCGCACTGGAGCTCTTSEQ ID NO:1497
NMBNM_021077.1Forward PrimerGGCTGCTGGTACAAATACTGCSEQ ID NO:1498
ProbeTGTCTGCCCCTATTATTGGTGTCATTTCTSEQ ID NO:1499
Reverse PrimerCAATCTAAGCCACGCTGTTGSEQ ID NO:1500
NMBRNM_002511.1Forward PrimerTGATCCATCTCTAGGCCACASEQ ID NO:1501
ProbeTTGTCACCTTAGTTGCCCGGGTTCSEQ ID NO:1502
Reverse PrimerGAGCAAATGGGTTGACACAASEQ ID NO:1503
NME1NM_000269.1Forward PrimerCCAACCCTGCAGACTCCAASEQ ID NO:1504
ProbeProbeCCTGGGACCATCCGTGGAGACTTCTSEQ ID NO:1505
Reverse PrimerATGTATAATGTTCCTGCCAACTTGTATGSEQ ID NO:1506
NOS3NM_000603.2Forward PrimerATCTCCGCCTCGCTCATGSEQ ID NO:1507
ProbeTTCACTCGCTTCGCCATCACCGSEQ ID NO:1508
Reverse PrimerTCGGAGCCATACAGGATTGTCSEQ ID NO:1509
NOTCH1NM_017617.2Forward PrimerCGGGTCCACCAGTTTGAATGSEQ ID NO:1510
ProbeCCGCTCTGCAGCCGGGACASEQ ID NO:1511
Reverse PrimerGTTGTATTGGTTCGGCACCATSEQ ID NO:1512
NOTCH2NM_024408.2Forward PrimerCACTTCCCTGCTGGGATTATSEQ ID NO:1513
ProbeCCGTGTTGCACAGCTCATCACACTSEQ ID NO:1514
Reverse PrimerAGTTGTCAAACAGGCACTCGSEQ ID NO:1515
NPM1NM_002520.2Forward PrimerAATGTTGTCCAGGTTCTATTGCSEQ ID NO:1516
ProbeAACAGGCATTTTGGACAACACATTCTTGSEQ ID NO:1517
Reverse PrimerCAAGCAAAGGGTGGAGTTCSEQ ID NO:1518
NR4A1NM_002135.2Forward PrimerCACAGCTTGCTTGTCGATGTCSEQ ID NO:1519
ProbeCCTTCGCCTGCCTCTCTGCCCSEQ ID NO:1520
Reverse PrimerATGCCGGTCGGTGATGAGSEQ ID NO:1521
NRG1NM_013957.1Forward PrimerCGAGACTCTCCTCATAGTGAAAGGTATSEQ ID NO:1521
ProbeATGACCACCCCGGCTCGTATGTCASEQ ID NO:1523
Reverse PrimerCTTGGCGTGTGGAAATCTACAGSEQ ID NO:1524
NRP1NM_003873.1Forward PrimerCAGCTCTCTCCACGCGATTCSEQ ID NO:1525
ProbeCAGGATCTACCCCGAGAGAGCCACTCATSEQ ID NO:1526
Reverse PrimerCCCAGCAGCTCCATTCTGASEQ ID NO:1527
NRP2NM_003872.1Forward PrimerCTACAGCCTAAACGGCAAGGSEQ ID NO:1528
ProbeAGGACCCCAGGACCCAGCAGSEQ ID NO:1529
Reverse PrimerGTTCCCTTCGAACAGCTTTGSEQ ID NO:1530
NTN1NM_004822.1Forward PrimerAGAAGGACTATGCCGTCCAGSEQ ID NO:1531
ProbeATCCACATCCTGAAGGCGGACAAGSEQ ID NO:1532
Reverse PrimerCCGTGAACTTCCACCAGTCSEQ ID NO:1533
NUFIP1NM_012345.1Forward PrimerGCTTCCACATCGTGGTATTGSEQ ID NO:1534
ProbeCTTCTGATAGGTTTCCTCGGCATCAGASEQ ID NO:1535
Reverse PrimerAACTGCAGGGTTGAAGGACTSEQ ID NO:1536
ODC1NM_002539.1Forward PrimerAGAGATCACCGGCGTAATCAASEQ ID NO:1537
ProbeCCAGCGTTGGACAAATACTTTCCGTCASEQ ID NO:1538
Reverse PrimerCGGGCTCAGCTATGATTCTCASEQ ID NO:1539
OPN, osteopontinNM_000582.1Forward PrimerCAACCGAAGTTTTCACTCCAGTTSEQ ID NO:1540
ProbeTCCCCACAGTAGACACATATGATGGCCGSEQ ID NO:1541
Reverse PrimerCCTCAGTCCATAAACCACACTATCASEQ ID NO:1542
ORC1LNM_004153.2Forward PrimerTCCTTGACCATACCGGAGGSEQ ID NO:1543
ProbeTGCATGTACATCTCCGGTGTCCCTSEQ ID NO:1544
Reverse PrimerCAGTGGCAGTCTTCCCTGTCSEQ ID NO:1545
OSMNM_020530.3Forward PrimerGTTTCTGAAGGGGAGGTCACSEQ ID NO:1546
ProbeCTGAGCTGGCCTCCTATGCCTCATSEQ ID NO:1547
Reverse PrimerAGGTGTCTGGTTTGGGACASEQ ID NO:1548
OSMRNM_003999.1Forward PrimerGCTCATCATGGTCATGTGCTSEQ ID NO:1549
ProbeCAGGTCTCCTTGATCCACTGACTTTTCASEQ ID NO:1550
Reverse PrimerTGTAAGGGTCAGGGATGTCASEQ ID NO:1551
P14ARFS78535.1Forward PrimerCCCTCGTGCTGATGCTACTSEQ ID NO:1552
ProbeCTGCCCTAGACGCTGGCTCCTCSEQ ID NO:1553
Reverse PrimerCATCATGACCTGGTCTTCTAGGSEQ ID NO:1554
p16-INK4L27211.1Forward PrimerGCGGAAGGTCCCTCAGACASEQ ID NO:1555
ProbeCTCAGAGCCTCTCTGGTTCTTTCAATCGGSEQ ID NO:15561
Reverse PrimerTGATGATCTAAGTTTCCCGAGGTTSEQ ID NO:1557
p21NM_000389.1Forward PrimerTGGAGACTCTCAGGGTCGAAASEQ ID NO:1558
ProbeCGGCGGCAGACCAGCATGACSEQ ID NO:1559
Reverse PrimerGGCGTTTGGAGTGGTAGAAATCSEQ ID NO:1560
p27NM_004064.1Forward PrimerCGGTGGACCACGAAGAGTTAASEQ ID NO:1561
ProbeCCGGGACTTGGAGAAGCACTGCASEQ ID NO:1562
Reverse PrimerGGCTCGCCTCTTCCATGTCSEQ ID NO:1563
P53NM_000546.2Forward PrimerCTTTGAACCCTTGCTTGCAASEQ ID NO:1564
ProbeAAGTCCTGGGTGCTTCTGACGCACASEQ ID NO:1565
Reverse PrimerCCCGGGACAAAGCAAATGSEQ ID NO:1566
p53R2AB036063.1Forward PrimerCCCAGCTAGTGTTCCTCAGASEQ ID NO:1567
ProbeTCGGCCAGCTTTTTCCAATCTTTGSEQ ID NO:1568
Reverse PrimerCCGTAAGCCCTTCCTCTATGSEQ ID NO:1569
PADI4NM_012387.1Forward PrimerAGCAGTGGCTTGCTTTCTTCSEQ ID NO:1570
ProbeCCTGTGATGTCCCAGTTTCCCACTCSEQ ID NO:1571
Reverse PrimerTGCTAGGACCATGTTGGGATSEQ ID NO:1572
PAI1NM_000602.1Forward PrimerCCGCAACGTGGTTTTCTCASEQ ID NO:1573
ProbeCTCGGTGTTGGCCATGCTCCAGSEQ ID NO:1574
Reverse PrimerTGCTGGGTTTCTCCTCCTGTTSEQ ID NO:1575
Pak1NM_002576.3Forward PrimerGAGCTGTGGGTTGTTATGGASEQ ID NO:1576
ProbeACATCTGTCAAGGAGCCTCCAGCCSEQ ID NO:1577
Reverse PrimerCCATGCAAGTTTCTGTCACCSEQ ID NO:1578
PARCNM_015089.1Forward PrimerGGAGCTGACCTGCTTCCTACSEQ ID NO:1579
ProbeTCCTTATGCATCGAGGCCAGGCSEQ ID NO:1580
Reverse PrimerAGCAGAGCACCACAGCATAGSEQ ID NO:1581
PCAFNM_003884.3Forward PrimerAGGTGGCTGTGTTACTGCAASEQ ID NO:1582
ProbeTGCCACAGTTCTGCGACAGTCTACCSEQ ID NO:1583
Reverse PrimerCACCTGTGTGGTTTCGTACCSEQ ID NO: 1584
PCNANM_002592.1Forward PrimerGAAGGTGTTGGAGGCACTCAAGSEQ ID NO:1585
ProbeATCCCAGCAGGCCTCGTTGATGAGSEQ ID NO:1586
Reverse PrimerGGTTTACACCGCTGGAGCTAASEQ ID NO:1587
PDGFANM_002607.2Forward PrimerTTGTTGGTGTGCCCTGGTGSEQ ID NO:1588
ProbeTGGTGGCGGTCACTCCCTCTGCSEQ ID NO:1589
Reverse PrimerTGGGTTCTGTCCAAACACTGGSEQ ID NO:1590
PDGFBNM_002608.1Forward PrimerACTGAAGGAGACCCTTGGAGSEQ ID NO:1591
ProbeTCTCCTGCCGATGCCCCTAGGSEQ ID NO:1592
Reverse PrimerTAAATAACCCTGCCCACACASEQ ID NO:1593
PDGFCNM_016205.1Forward PrimerAGTTACTAAAAAATACCACGAGGTCCTTSEQ ID NO:1594
ProbeCCCTGACACCGGTCTTTGGTCTCAACTSEQ ID NO:1595
Reverse PrimerGTCGGTGAGTGATTTGTGCAASEQ ID NO:1596
PDGFDNM_025208.2Forward PrimerTATCGAGGCAGGTCATACCASEQ ID NO:1597
ProbeTCCAGGTCAACTTTTGACTTCCGGTSEQ ID NO:1598
Reverse PrimerTAACGCTTGGCATCATCATTSEQ ID NO:1599
PDGFRaNM_006206.2Forward PrimerGGGAGTTTCCAAGAGATGGASEQ ID NO:1600
ProbeCCCAAGACCCGACCAAGCACTAGSEQ ID NO:1601
Reverse PrimerCTTCAACCACCTTCCCAAACSEQ ID NO:1602
PDGFRbNM_002609.2Forward PrimerCCAGCTCTCCTTCCAGCTACSEQ ID NO:1603
ProbeATCAATGTCCCTGTCCGAGTGCTGSEQ ID NO:1604
Reverse PrimerGGGTGGCTCTCACTTAGCTCSEQ ID NO:1605
PFN1NM_005022.2Forward PrimerGGAAAACGTTCGTCAACATCSEQ ID NO:1606
ProbeCAACCAGGACACCCACCTCAGCTSEQ ID NO:1607
Reverse PrimerAAAACTTGACCGGTCTTTGCSEQ ID NO:1608
PFN2NM_053024.1Forward PrimerTCTATACGTCGATGGTGACTGCSEQ ID NO:1609
ProbeCTCCCCACCTTGACTCTTTGTCCGSEQ ID NO:1610
Reverse PrimerGCCGACAGCCACATTGTATSEQ ID NO:1611
PGK1NM_000291.1Forward PrimerAGAGCCAGTTGCTGTAGAACTCAASEQ ID NO:1612
ProbeTCTCTGCTGGGCAAGGATGTTCTGTTCSEQ ID NO:1613
Reverse PrimerCTGGGCCTACACAGTCCTTCASEQ ID NO:1614
P13KNM_002646.2Forward PrimerTGCTACCTGGACAGCCCGSEQ ID NO:1615
ProbeTCCTCCTGAAACGAGCTGTGTCTGACTTSEQ ID NO:1616
Reverse PrimerAGGCCGTCCTTCAGTAACCASEQ ID NO:1617
PI3KC2ANM_002645.1Forward PrimerATACCAATCACCGCACAAACCSEQ ID NO:1618
ProbeTGCGCTGTGACTGGACTTAACAAATAGCCTSEQ ID NO:1619
Reverse PrimerCACACTAGCATTTTCTCCGCATASEQ ID NO:1620
PIK3CANM_006218.1Forward PrimerGTGATTGAAGAGCATGCCAASEQ ID NO:1621
ProbeTCCTGCTTCTCGGGATACAGACCASEQ ID NO:1622
Reverse PrimerGTCCTGCGTGGGAATAGCSEQ ID NO:1623
PIM1NM_002648.2Forward PrimerCTGCTCAAGGACACCGTCTA -SEQ ID NO:1624
ProbeTACACTCGGGTCCCATCGAAGTCCSEQ ID NO:1625
Reverse PrimerGGATCCACTCTGGAGGGCSEQ ID NO:1626
Pin1NM_006221.1Forward PrimerGATCAACGGCTACATCCAGASEQ ID NO:1627
ProbeTCAAAGTCCTCCTCTCCCGACTTGASEQ ID NO:1628
Reverse PrimerTGAACTGTGAGGCCAGAGACSEQ ID NO:1629
PKD1NM_000296.2Forward PrimerCAGCACCAGCGATTACGACSEQ ID NO:1630
ProbeAGCCATTGTGAGGACTCTCCCAGCSEQ ID NO:1631
Reverse PrimerCTGAATAGGCCCACGTCCSEQ ID NO:1632
PKR2NM_002654.3Forward PrimerCCGCCTGGACATTGATTCACSEQ ID NO:1633
ProbeACCCATCACAGCCCGGAACACTGSEQ ID NO:1634
Reverse PrimerCTGGGCCAATGGTACAGATGASEQ ID NO:1635
PLA2G2ANM_000300.2Forward PrimerGCATCCCTCACCCATCCTASEQ ID NO:1636
ProbeAGGCCAGGCAGGAGCCCTTCTATASEQ ID NO:1637
Reverse PrimerGCTGGAAATCTGCTGGATGTSEQ ID NO:1638
PLAURNM_002659.1Forward PrimerCCCATGGATGCTCCTCTGAASEQ ID NO:1639
ProbeCATTGACTGCCGAGGCCCCATGSEQ ID NO:1640
Reverse PrimerCCGGTGGCTACCAGACATTGSEQ ID NO:1641
PLKNM_005030.2Forward PrimerAATGAATACAGTATTCCCAAGCACATSEQ ID NO:1642
ProbeAACCCCGTGGCCGCCTCCSEQ ID NO:1643
Reverse PrimerTGTCTGAAGCATCTTCTGGATGASEQ ID NO:1644
PLK3NM_004073.2Forward PrimerTGAAGGAGACGTACCGCTGSEQ ID NO:1645
ProbeCAAGCAGGTTCACTACACGCTGCCSEQ ID NO:1646
Reverse PrimerCAGGCAGTGAGAGGCTGGSEQ ID NO:1647
PLOD2NM_000935.2Forward PrimerCAGGGAGGTGGTTGCAAATSEQ ID NO:1648
ProbeTCCAGCCTTTTCGTGGTGACTCAASEQ ID NO:1649
Reverse PrimerTCTCCCAGGATGCATGAAGSEQ ID NO:1650
PMS1NM_000534.2Forward PrimerCTTACGGTTTTCGTGGAGAAGSEQ ID NO:1651
ProbeCCTCAGCTATACAACAAATTGACCCCAAGSEQ ID NO:1652
Reverse PrimerAGCAGCCGTTCTTGTTGTAASEQ ID NO:1653
PMS2NM_000535.2Forward PrimerGATGTGGACTGCCATTCAAASEQ ID NO:1654
ProbeTCGAAATTTACATCCGGTATCTTCCTGGSEQ ID NO:1655
Reverse PrimerTGCGAGATTAGTTGGCTGAGSEQ ID NO:1656
PPARGNM_005037.3Forward PrimerTGACTTTATGGAGCCCAAGTTSEQ ID NO:1657
ProbeTTCCAGTGCATTGAACTTCACAGCASEQ ID NO:1658
Reverse PrimerGCCAAGTCGCTGTCATCTAASEQ ID NO:1659
PPIDNM_005038.1Forward PrimerTCCTCATTTGGATGGGAAACSEQ ID NO:1660
ProbeTTCCTTTAATTACTTGGCCAAACACCACASEQ ID NO:1661
Reverse PrimerCCAATATCCTTGCCACTCCTASEQ ID NO:1662
PPM1DNM_003620.1Forward PrimerGCCATCCGCAAAGGCTTTSEQ ID NO:1663
ProbeTCGCTTGTCACCTTGCCATGTGGSEQ ID NO:1664
Reverse PrimerGGCCATTCCGCCAGTTTCSEQ ID NO:1665
PPP2R4 .NM_178001.1Forward PrimerGGCTCAGAGCATAAGGCTTCSEQ ID NO:1666
ProbeTTGGTCACTTCTCCCAACTTGGGCSEQ ID NO:1667
Reverse PrimerACGGGAACTCAGAAAACTGGSEQ ID NO:1668
PRNM_000926.2Forward PrimerGCATCAGGCTGTCATTATGGSEQ ID NO:1669
ProbeTGTCCTTACCTGTGGGAGCTGTAAGGTCSEQ ID NO:1670
Reverse PrimerAGTAGTTGTGCTGCCCTTCCSEQ ID NO:1671
PRDX2NM_005809.4Forward PrimerGGTGTCCTTCGCCAGATCACSEQ ID NO:1672
ProbeTTAATGATTTGCCTGTGGGACGCTCCSEQ ID NO:1673
Reverse PrimerCAGCCGCAGAGCCTCATCSEQ ID NO:1674
PRDX3NM_006793.2Forward PrimerTGACCCCAATGGAGTCATCASEQ ID NO:1675
ProbeCATTTGAGCGTCAACGATCTCCCAGTGSEQ ID NO:1676
Reverse PrimerCCAAGCGGAGGGTTTCTTCSEQ ID NO:1677
PRDX4NMB_006406.1Forward PrimerTTACCCATTTGGCCTGGATTAASEQ ID NO:1678
ProbeCCAAGTCCTCCTTGTCTTCGAGGGGTSEQ ID NO:1679
Reverse PrimerCTGAAAGAAGTGGAATCCTTATTGGSEQ ID NO:1680
PRDX6NM_004905.2Forward PrimerCTGTGAGCCAGAGGATGTCASEQ ID NO:1681
ProbeCTGCCAATTGTGTTTTCCTGCAGCSEQ ID NO:1682
Reverse PrimerTGTGATGACACCAGGATGTGSEQ ID NO:1683
PRKCANM_002737.1Forward PrimerCAAGCAATGCGTCATCAATGTSEQ ID NO:1684
ProbeCAGCCTCTGCGGAATGGATCACACTSEQ ID NO:1685
Reverse PrimerGTAAATCCGCCCCCTCTTCTSEQ ID NO:1686
PRKCB1NM_002738.5Forward PrimerGACCCAGCTCCACTCCTGSEQ ID NO:1687
ProbeCCAGACCATGGACCGCCTGTACTTSEQ ID NO:1688
Reverse PrimerCCCATTCACGTACTCCATCASEQ ID NO:1689
PRKCDNM_006254.1Forward PrimerCTGACACTTGCCGCAGAGAASEQ ID NO:1690
ProbeCCCTTTCTCACCCACCTCATCTGCACSEQ ID NO:1691
Reverse PrimerAGGTGGTCCTTGGTCTGGAASEQ ID NO:1692
PRKRNM_002759.1Forward PrimerGCGATACATGAGCCCAGAACASEQ ID NO:1693
ProbeAGGTCCACTTCCTTTCCATAGTCTTGCGASEQ ID NO:1694
Reverse PrimerTCAGCAAGAATTAGCCCCAAAGSEQ ID NO:1695
pS2NM_003225.1Forward PrimerGCCCTCCCAGTGTGCAAATSEQ ID NO:1696
ProbeTGCTGTTTCGACGACACCGTTCGSEQ ID NO:1697
Reverse PrimerCGTCGATGGTATTAGGATAGAAGCASEQ ID NO:1698
PTCHNM_000264.2Forward PrimerCCACGACAAAGCCGACTACSEQ ID NO:1699
ProbeCCTGAAACAAGGCTGAGAATCCCGSEQ ID NO:1700
Reverse PrimerTACTCGATGGGCTCTGCTGSEQ ID NO:1701
PTENNM-000314.1Forward PrimerTGGCTAAGTGAAGATGACAATCATGSEQ ID NO:1702
ProbeCCTTTCCAGCTTTACAGTGAATTGCTGCASEQ ID NO:1703
Reverse PrimerTGCACATATCATTACACCAGTTCGTSEQ ID NO:1704
PTGER3NM_000957.2Forward PrimerTAACTGGGGCAACCTTTTCTSEQ ID NO:1705
ProbeCCTTTGCCTTCCTGGGGCTCTTSEQ ID NO:1706
Reverse PrimerTTGCAGGAAAAGGTGACTGTSEQ ID NO:1707
PTHLHNM_002820.1Forward PrimerAGTGACTGGGAGTGGGCTAGAASEQ ID NO:1708
ProbeTGACACCTCCACAACGTCGCTGGASEQ ID NO:1709
Reverse PrimerAAGCCTGTTACCGTGAATCGASEQ ID NO:1710
PTHR1NM_000316.1Forward PrimerCGAGGTACAAGCTGAGATCAAGAASEQ ID NO:1711
ProbeCCAGTGCCAGTGTCCAGCGGCTSEQ ID NO:1712
Reverse PrimerGCGTGCCTTTCGCTTGAASEQ ID NO:1713
PTK2NM_005607.3.Forward PrimerGACCGGTCGAATGATAAGGTSEQ ID NO:1714
ProbeACCAGGCCCGTCACATTCTCGTACSEQ ID NO:1715
Reverse PrimerCTGGACATCTCGATGACAGCSEQ ID NO:1716
PTK2BNMB_004103.3Forward PrimerCAAGCCCAGCCGACCTAAGSEQ ID NO:1717
ProbeCTCCGCAAACCAACCTCCTGGCTSEQ ID NO:1718
Reverse PrimerGAACCTGGAACTGCAGCTTTGSEQ ID NO:1719
PTP4A3NMB_007079.2Forward PrimerCCTGTTCTCGGCACCTTAAASEQ ID NO:1720
ProbeACCTGACTGCCCCGGGGTCTAATASEQ ID NO:1721
Reverse PrimerTATTGCCTTCGGGTGTCCSEQ ID NO:1722
PTP4A3 v2NM_032611.1Forward PrimerAATATTTGTGCGGGGTATGGSEQ ID NO:1723
ProbeCCAAGAGAAACGAGATTTAAAAACCCACCSEQ ID N0:1724
Reverse PrimerAACGAGATCCCTGTGCTTGTSEQ ID NO:1725
PTPD1NM_007039.2Forward PrimerCGCTTGCCTAACTCATACTTTCCSEQ ID NO:1726
ProbeTCCACGCAGCGTGGCACTGSEQ ID NO:1727
Reverse PrimerCCATTCAGACTGCGCCACTTSEQ ID NO:1728
PTPN1NM_002827.2Forward PrimerAATGAGGAAGTTTCGGATGGSEQ ID NO:1729
ProbeCTGATCCAGACAGCCGACCAGCTSEQ ID NO:1730
Reverse PrimerCTTCGATCACAGCCAGGTAGSEQ ID NO:1731
PTPRFNM_002840.2Forward PrimerTGTTTTAGCTGAGGGACGTGSEQ ID NO:1732
ProbeCCGACGTCCCCAAACCTAGCTAGGSEQ ID NO:1733
Reverse PrimerTACCAACCCTGGAATGTTGASEQ ID NO:1734
PTPRJNM_002843.2Forward PrimerAACTTCCGGTACCTCGTTCGTSEQ ID NO:1735
ProbeACTACATGAAGCAGAGTCCTCCCGAATCGSEQ ID NO:1736
Reverse PrimerAGCACTGCAATGCACCAGAASEQ ID NO:1737
PTPRONM_030667.1Forward PrimerCATGGCCTGATCATGGTGTSEQ ID NO:1738
ProbeCCCACAGCAAATGCTGCAGAAAGTSEQ ID NO:1739
Reverse PrimerCCATGTGTACAAACTGCAGGASEQ ID NO:1740
PTTG1NM_004219.2Forward PrimerGGCTACTCTGATCTATGTTGATAAGGAASEQ ID NO:1741
ProbeCACACGGGTGCCTGGTTCTCCASEQ ID NO:1742
Reverse PrimerGCTTCAGCCCATCCTTAGCASEQ ID NO:1743
RAB32NM_006834.2Forward PrimerCCTGCAGCTGTGGGACATSEQ ID NO:1744
ProbeCGATTTGGCAACATGACCCGAGTASEQ ID NO:1745
Reverse PrimerAGCACCAACAGCTTCCTTGSEQ ID NO:1746
RAB6CNM_032144.1Forward PrimerGCGACAGCTCCTCTAGTTCCASEQ ID NO:1747
ProbeTTCCCGAAGTCTCCGCCCGSEQ ID NO:1748
Reverse PrimerGGAACACCAGCTTGAATTTCCTSEQ ID NO:1749
RAC1NM_006908.3Forward PrimerTGTTGTAAATGTCTCAGCCCCSEQ ID NO:1750
ProbeCGTTCTTGGTCCTGTCCCTTGGASEQ ID NO:1751
Reverse PrimerTTGAGCAAAGCGTACAAAGGSEQ ID NO:1752
RAD51CNM_058216.1Forward PrimerGAACTTCTTGAGCAGGAGCATACCSEQ ID NO:1753
ProbeAGGGCTTCATAATCACCTTCTGTTCSEQ ID NO:1754
Reverse PrimerTCCACCCCCAAGAATATCATCTAGTSEQ ID NO:1755
RAD54LNMB_003579.2Forward PrimerAGCTAGCCTCAGTGACACACATGSEQ ID NQ:1756
ProbeACACAACGTCGGCAGTGCAACCTGSEQ ID NO:1757
Reverse PrimerCCGGATCTGACGGCTGTTSEQ ID NO:1758
RAF1NM_002880.1Forward PrimerCGTCGTATGCGAGAGTCTGTSEQ ID NO:1759
ProbeTCCAGGATGCCTGTTAGTTCTCAGCASEQ ID NO:1760
Reverse PrimerTGAAGGCGTGAGGTGTAGAASEQ ID NO:1761
RALBP1NM_006788.2Forward PrimerGGTGTCAGATATAAATGTGCAAATGCSEQ ID NO:1762
ProbeTGCTGTCCTGTCGGTCTCAGTACGTTCASEQ ID NO:1763
Reverse PrimerTTCGATATTGCCAGCAGCTATAAASEQ ID NO:1764
RANBP2NM_006267.3Forward PrimerTCCTTCAGCTTTCACACTGGSEQ ID NO:1765
ProbeTCCAGAAGAGTCATGCAACTTCATTTCTGSEQ ID NO:1766
Reverse PrimerAAATCCTGTTCCCACCTGACSEQ ID NO:1767
ranBP7NM_006391.1Forward PrimerAACATGATTATCCAAGCCGCSEQ ID NO:1768
ProbeAAGCCAATTTTGTCCACAATGGCASEQ ID NO:1769
Reverse PrimerGCCAACAAGCACTGTTATCGSEQ ID NO:1770
RANBP9NM_005493.2Forward PrimerCAAGTCAGTTGAGACGCCAGTTSEQ ID NO:1771
ProbeTTCTATGGCGGCCTGACTTCCTCCASEQ ID NO:1772
Reverse PrimerTGCAGCTCTCGTCCAAAGTGSEQ ID NO:1773
RAP1GDS1NM_021159.3Forward PrimerTGTGGATGCTGGATTGATTTSEQ ID NO:1774
ProbeCCACTGGTGCAGCTGCTAAATAGCASEQ ID NO:1775
Reverse PrimerAAGCAGCACTTCCTGGTCTTSEQ ID NO:1776
RARANM_000964.1Forward PrimerAGTCTGTGAGAAACGACCGAAACSEQ ID NO:1777
ProbeTCGGGCTTGGGCACCTCCTTCTTSEQ ID NO:1778
Reverse PrimerCGGCGTCAGCGTGTAGCTSEQ ID NO:1779
RARBNM_016152.2Forward PrimerTGCCTGGACATCCTGATTCTSEQ ID NO:1780
ProbeTGCACCAGGTATACCCCAGAACAAGASEQ ID NO:1781
Reverse PrimerAAGGCCGTCTGAGAAAGTCASEQ ID NO:1782
RASSF1NM_007182.3Forward PrimerAGTGGGAGACACCTGACCTTSEQ ID NO:1783
ProbeTTGATCTTCTGCTCAATCTCAGCTTGAGASEQ ID NO:1784
Reverse PrimerTGATCTGGGCATTGTACTCCSEQ ID NO:1785
RBM5NM_005778.1Forward PrimerCGAGAGGGAGAGCAAGACCATSEQ ID NO:1786
ProbeCTGCGCGGCCTTCCCATCASEQ ID NO:1787
Reverse PrimerTCTCGAATATCGCTCTCTGTGATGSEQ ID NO:1788
RBX1NM_014248.2Forward PrimerGGAACCACATTATGGATCTTTGCSEQ ID NO:1789
ProbeTAGAATGTCAAGCTAACCAGGCGTCCGCSEQ ID NO:1790
Reverse PrimerCATGCGACAGTACACTCTTCTGAASEQ ID NO:1791
RCC1NM_001269.2Forward PrimerGGGCTGGGTGAGAATGTGSEQ ID NO:1792
ProbeATACCAGGGCCGGCTTCTTCCTCTSEQ ID NO:1793
Reverse PrimerCACAACATCCTCCGGAATGSEQ ID NO:1794
REG4NM_032044.2Forward PrimerTGCTAACTCCTGCACAGCCSEQ ID NO:1795
ProbeTCCTCTTCCTTTCTGCTAGCCTGGCSEQ ID NO:1796
Reverse PrimerTGCTAGGTTTCCCCTCTGAASEQ ID NO:1797
RFCNM_003056.1Forward PrimerTCAAGACCATCATCACTTTCATTGTSEQ ID NO:1798
ProbeCCTCCCGGTCCGCAAGCAGTTSEQ ID NO:1799
Reverse PrimerGGATCAGGAAGTACACGGAGTATAACTSEQ ID NO:1800
RhoBNM_004040.2Forward PrimerAAGCATGAACAGGACTTGACCSEQ ID NO:1801
ProbeCTTTCCAACCCCTGGGGAAGACATSEQ ID NO:1802
Reverse PrimerCCTCCCCAAGTCAGTTGCSEQ ID NO:1803
rhoCNM_175744.1Forward PrimerCCCGTTCGGTCTGAGGAASEQ ID NO:1804
ProbeTCCGGTTCGCCATGTCCCGSEQ ID NO:1805
Reverse PrimerGAGCACTCAAGGTAGCCAAAGGSEQ ID NO:1806
RIZ1NM_012231.1Forward PrimerCCAGACGAGCGATTAGAAGCSEQ ID NO:1807
ProbeTGTGAGGTGAATGATTTGGGGGASEQ ID NO:1808
Reverse PrimerTCCTCCTCTTCCTCCTCCTCSEQ ID NO:1809
RNF11NM_014372.3Forward PrimerACCCTGGAAGAGATGGATCASEQ ID NO:1810
ProbeCCATCATACAGATCACACACTCCCGGSEQ ID NO:1811
Reverse PrimerATTGGGTCCCCATAAACAAASEQ ID NO:1812
ROCK1NM_005406.1Forward PrimerTGTGCACATAGGAATGAGCTTCSEQ ID NO:1813
ProbeTCACTCTCTTTGCTGGCCAACTGCSEQ ID NO:1814
Reverse PrimerGTTTAGCACGCAATTGCTCASEQ ID NO:1815
ROCK2NM_004850.3Forward PrimerGATCCGAGACCCTCGCTCSEQ ID NO:1816
ProbeCCCATCAACGTGGAGAGCTTGCTSEQ ID NO:1817
Reverse PrimerAGGACCAAGGAATTTAAGCCASEQ ID NO:1818
RPLPONM_001002.2Forward PrimerCCATTCTATCATCAACGGGTACAASEQ ID NO:1819
ProbeTCTCCACAGACAAGGCCAGGACTCGSEQ ID NO:1820
Reverse PrimerTCAGCAAGTGGGAAGGTGTAATCSEQ ID NO:1821
RPS13NM_001017.2Forward PrimerCAGTCGGCTTTACCCTATCGSEQ ID NO:1822
ProbeCAACTTCAACCAAGTGGGGACGCTSEQ ID NO:1823
Reverse PrimerTCTGCTCCTTCACGTCGTCSEQ ID NO:1824
RRM1NM_001033.1Forward PrimerGGGCTACTGGCAGCTACATTSEQ ID NO:1825
ProbeCATTGGAATTGCCATTAGTCCCAGCSEQ ID NO:1826
Reverse PrimerCTCTCAGCATCGGTACAAGGSEQ ID NO:1827
RRM2NM_001034.1Forward PrimerCAGCGGGATTAAACAGTCCTSEQ ID NO:1828
ProbeCCAGCACAGCCAGTTAAAAGATGCASEQ ID NO:1829
Reverse PrimerATCTGCGTTGAAGCAGTGAGSEQ ID NO:1830.
RTN4NM_007008.1Forward PrimerGACTGGAGTGGTGTTTGGTGSEQ ID NO:1831
ProbeCCAGCCTATTCCTGCTGCTTTCATTGSEQ ID NO:1832
Reverse PrimerCTGTTACGCTCACAATGCTGSEQ ID NO:1833
RUNX1NM_001754.2Forward PrimerAACAGAGACATTGCCAACCASEQ ID NO:1834
ProbeTTGGATCTGCTTGCTGTCCAAACCSEQ ID NO:1835
Reverse PrimerGTGATTTGCCCAGGAAGTTTSEQ ID NO:1836
RXRANM_002957.3Forward PrimerGCTCTGTTGTGTCCTGTTGCSEQ ID NO:1837
ProbeTCAGTCACAGGAAGGCCAGAGCCSEQ ID NO:1838
Reverse PrimerGTACGGAGAAGCCACTTCACASEQ ID NO:1839
S100A1NM_006271.1Forward PrimerTGGACAAGGTGATGAAGGAGSEQ ID NO:1840
ProbeCCTCCCCGTCTCCATTCTCGTCTASEQ ID NO:1841
Reverse PrimerAGCACCACATACTCCTGGAASEQ ID NO:1842
S100A2NM_005978.2Forward PrimerTGGCTGTGCTGGTCACTACCTSEQ ID NO:1843
ProbeCACAAGTACTCCTGCCAAGAGGGCGACSEQ ID NO:1844
Reverse PrimerTCCCCCTTACTCAGCTTGAACTSEQ ID NO:1845
S100A4NM_002961.2Forward PrimerGACTGCTGTCATGGCGTGSEQ ID NO:1846
ProbeATCACATCCAGGGCCTTCTCCAGASEQ ID NO:1847
Reverse PrimerCGAGTACTTGTGGAAGGTGGACSEQ ID NO:1848
S100A8NM_002964.3Forward PrimerACTCCCTGATAAAGGGGAATTTSEQ ID NO:1849
ProbeCATGCCGTCTACAGGGATGACCTGSEQ ID NO:1850
Reverse PrimerTGAGGACACTCGGTCTCTAGCSEQ ID NO:1851
S100A9NM_002965.2Forward PrimerCTTTGGGACAGAGTGCAAGASEQ ID NO:1852
ProbeCGATGACTTGCAAAATGTCGCAGCSEQ ID NO:1853
Reverse PrimerTGGTCTCTATGTTGCGTTCCSEQ ID NO:1854
S100PNM_005980.2Forward PrimerAGACAAGGATGCCGTGGATAASEQ ID NO:1855
ProbeTTGCTCAAGGACCTGGACGCCAASEQ ID NO:1856
Reverse PrimerGAAGTCCACCTGGGCATCTCSEQ ID NO:1857
SATNM_002970.1Forward PrimerCCTTTTACCACTGCCTGGTTSEQ ID NO:1858
ProbeTCCAGTGCTCTTTCGGCACTTCTGSEQ ID NO:1859
Reverse PrimerACAATGCTGTGTCCTTCCGSEQ ID NO:1860
SBA2NM_018639.3Forward PrimerGGACTCAACGATGGGCAGSEQ ID NO:1861
ProbeCCCTGTCTGCACCTCCCAGATCTTSEQ ID NO:1862
Reverse PrimerCGGAAAGATTCAAAAGCAGGSEQ ID NO:1863
SDC1NM_002997.1Forward PrimerGAAATTGACGAGGGGTGTCTSEQ ID NO:1864
ProbeCTCTGAGCGCCTCCATCCAAGGSEQ ID NO:1865
Reverse PrimerAGGAGCTAACGGAGAACCTGSEQ ID NO:1866
SEMA3BNM_004636.1Forward PrimerGCTCCAGGATGTGTTTCTGTTGSEQ ID NO:1867
ProbeTCGCGGGACCACCGGACCSEQ ID NO:1868
Reverse PrimerACGTGGAGAAGACGGCATAGASEQ ID NO:1869
SEMA3FNM_004186.1Forward PrimerCGCGAGCCCCTCATTATACASEQ ID NO:1870
ProbeCTCCCCACAGCGCATCGAGGAASEQ ID NO:1871
Reverse PrimerCACTCGCCGTTGACATCCTSEQ ID NO:1872
SEMA4BNM_020210.1Forward PrimerTTCCAGCCCAACACAGTGAASEQ ID NO:1873
ProbeACTTTGGCCTGCCCGCTCCTCTSEQ ID NO:1874
Reverse PrimerGAGTCGGGTCGCCAGGTTSEQ ID NO:1875
SFRP2NM_003013.2Forward PrimerCAAGCTGAACGGTGTGTCCSEQ ID NO:1876
ProbeCAGCACCGATTTCTTCAGGTCCCTSEO ID NO:1877
Reverse PrimerTGCAAGCTGTCTTTGAGCCSEQ ID NO:1878
SFRP4NM_003014.2Forward PrimerTACAGGATGAGGCTGGGCSEQ ID NO:1879
ProbeCCTGGGACAGCCTATGTAAGGCCASEQ ID NO:1880
Reverse PrimerGTTGTTAGGGCAAGGGGCSEQ ID NO:1881
SGCBNM_000232.1Forward PrimerCAGTGGAGACCAGTTGGGTAGTGSEQ ID NO:1882
ProbeCACACATGCAGAGCTTGTAGCGTACCCASEQ ID NO:1883
Reverse PrimerCCTTGAAGAGCGTCCCATCASEQ ID NO:1884
SHC1NM_003029.3Forward PrimerCCAACACCTTCTTGGCTTCTSEQ ID NO:1885
ProbeCCTGTGTTCTTGCTGAGCACCCTCSEQ ID NO:1886
Reverse PrimerCTGTTATCCCAACCCAAACCSEQ ID NO:1887
SHHNM_000193.2Forward PrimerGTCCAAGGCACATATCCACTGSEQ ID NO:1888
ProbeCACCGAGTTCTCTGCTTTCACCGASEQ ID NO:1889
Reverse PrimerGAAGCAGCCTCCCGATTTSEQ ID NO:1890
SINM_001041.1Forward PrimerAACGGACTCCCTCAATTTGTSEQ ID NO:1891
ProbeTGTCCATGGTCATGCAAATCTTGCSEQ ID NO:1892
Reverse PrimerGAAATTGCAGGGTCCAAGATSEO ID NO:1893
Siah-1NM_003031.2Forward PrimerTTGGCATTGGAACTACATTCASEQ ID NO:1894
ProbeTCCGCGGTATCCTCGGATTAGTTCSEQ ID NO:1895
Reverse PrimerGGTATGGAGAAGGGGGTCCSEQ ID NO:1896
SIAT4ANM_003033.2Forward PrimerAACCACAGTTGGAGGAGGACSEQ ID NO:1897
ProbeCAGAGACAGTTTCCCTCCCCGCTSEQ ID NO:1898
Reverse PrimerCGAAGGAAGGGTGTTGGTATSEQ ID NO:1899
SIAT7BNM_006456.1Forward PrimerTCCAGCCCAAATCCTCCTSEQ ID NO:1900
ProbeTGGCACATCCTACCCCAGATGCTASEQ ID NO:1901
Reverse PrimerGGTGTCCTGGAGTCCTTGAASEQ ID NO:1902
SIM2NM_005069.2Forward PrimerGATGGTAGGAAGGGATGTGCSEQ ID NO:1903
ProbeCGCCTCTCCACGCACTCAGCTATSEQ ID NO:1904
Reverse PrimerCACAAGGAGCTGTGAATGAGGSEQ ID NO:1905
SIN3ANM_015477.1Forward PrimerCCAGAGTCATGCTCATCCAGSEQ ID NO:1906
ProbeCTGTCCCTGCACTGGTGCAACTGSEQ ID NO:1907
Reverse PrimerCCACCTTCAGCCTCTGAAATSEQ ID NO:1908
SIR2NM_012238.3Forward PrimerAGCTGGGGTGTCTGTTTCATSEQ ID NO:1909
ProbeCCTGACTTCAGGTCAAGGGATGGSEQ ID NO:1910
Reverse PrimerACAGCAAGGCGAGCATAAATSEQ ID NO:1911
SKP1ANM_006930.2Forward PrimerCCATTGCCTTTGCTTTGTTCATSEQ ID NO:1912
ProbeTCCCATGGTTTTTATTCTGCCCTGCTGSEQ ID NO:1913
Reverse PrimerTTCCGGATTTCCTTTCTTTGCSEQ ID NO:1914
SKP2NM_005983.2Forward PrimerAGTTGCAGAATCTAAGCCTGGAASEO ID NO:1915
ProbeCCTGCGGCTTTCGGATCCCASEQ ID NO:1916
Reverse PrimerTGAGTTTTTTGCGAGAGTATTGACASEQ ID NO:1917
SLC25A3NM_213611.1Forward PrimerTCTGCCAGTGCTGAATTCTTSEQ ID NO:1918
ProbeTGCTGACATTGCCCTGGCTCCTATSEQ ID NO:1919
Reverse PrimerTTCGAACCTTAGCAGCTTCCSEQ ID NO:1920
SLC2A1NM_006516.1Forward PrimerGCCTGAGTCTCCTGTGCCSEQ ID NO:1921
ProbeACATCCCAGGCTTCACCCTGAATGSEQ ID NO:1922
Reverse PrimerAGTCTCCACCCTCAGGCATSEQ ID NO:1923
SLC31A1NM_001859.2Forward PrimerCCGTTCGAAGAGTCGTGAGSEQ ID NO:1924
ProbeTCTCCGAATCTTAACCCGTCACCCSEQ ID NO:1925
Reverse PrimerAGTCCAGCCACTAGCACCTCSEQ ID NO:1926
SLC5A8NM_145913.2Forward PrimerCCTGCTTTCAACCACATTGASEQ ID NO:1927
ProbeTCCCATTGCTCTTGCCACTCTGATSEQ ID NO:1928
Reverse PrimerAGAGCAGCTTCACAAACGAGSEQ ID NO:1929
SLC7A5NM_003486.4Forward PrimerGCGCAGAGGCCAGTTAAASEQ ID NO:1930
ProbeAGATCACCTCCTCGAACCCACTCCSEQ ID NO:1931
Reverse PrimerAGCTGAGCTGTGGGTTGCSEQ ID NO:1932
SLPINM_003064.2Forward PrimerATGGCCAATGTTTGATGCTSEQ ID NO:1933
ProbeTGGCCATCCATCTCACAGAAATTGGSEQ ID NO:1934
Reverse PrimerACACTTCAAGTCACGCTTGCSEQ ID NO:1935
SMARCA3NM_003071.2Forward PrimerAGGGACTGTCCTGGCACATSEQ ID NO:1936
ProbeAGCAAAAGACCCAGGACATCTGCASEQ ID NO:1937
Reverse PrimerCAACAAATTTGCCGCAGTCSEQ ID NO:1938
SNAI1NM_005985.2Forward PrimerCCCAATCGGAAGCCTAACTASEQ ID NO:1939
ProbeTCTGGATTAGAGTCCTGCAGCTCGCSEQ ID NO:1940
Reverse PrimerGTAGGGCTGCTGGAAGGTAASEQ ID NO:1941
SNAI2NM_003068.3Forward PrimerGGCTGGCCAAACATAAGCASEQ ID NO:1942
ProbeCTGCACTGCGATGCGCAGTCTAGAAAATCSEQ ID NO:1943
Reverse PrimerTCCTTGTCACAGTATTTACAGCTGAASEQ ID NO:1944
SNRPFNM_003095.1Forward PrimerGGCTGGTCGGCAGAGAGTAGSEQ ID NO:1945
ProbeAAACTCATGTAAACCACGGCCGAATGTTGSEQ ID NO:1946
Reverse PrimerTGAGGAAAGGTTTGGGATTGASEQ ID NO:1947
SOD1NM_000454.3Forward PrimerTGAAGAGAGGCATGTTGGAGSEQ ID NO:1948
ProbeTTTGTCAGCAGTCACATTGCCCAASEQ ID NO:1949
Reverse PrimerAATAGACACATCGGCCACACSEQ ID NO:1950
SOD2NM_000636.1Forward PrimerGCTTGTCCAAATCAGGATCCASEQ ID NO:1951
ProbeAACAACAGGCCTTATTCCACTGCTGGGSEQ ID NO:1952
Reverse PrimerAGCGTGCTCCCACACATCASEQ ID NO:1953
SOS1NM_005633.2Forward PrimerTCTGCACCAAATTCTCCAAGSEQ ID NO:1954
ProbeAACACCGTTAACACCTCCGCCTGSEQ ID NO:1955
Reverse PrimerGTGGTACTGGAAGCACCAGASEQ ID NO:1956
SOX17NM_022454.2Forward PrimerTCGTGTGCAAGCCTGAGASEQ ID NO:1957
ProbeCTCCCCTACCAGGGGCATGACTCSEQ ID NO:1958
Reverse PrimerCTGTCGGGGAGATTCACACSEQ ID NO:1959
SPARCNM_003118.1Forward PrimerTCTTCCCTGTACACTGGCAGTTCSEQ ID NO:1960
ProbeTGGACCAGCACCCCATTGACGGSEQ ID NO:1961
Reverse PrimerAGCTCGGTGTGGGAGAGGTASEQ ID NO:1962
SPINT2NM_021102.1Forward PrimerAGGAATGCAGCGGATTCCTSEQ ID NO:1963
ProbeCCCAAGTGCTCCCAGAAGGCAGGSEQ ID NO:1964
Reverse PrimerTCGCTGGAGTGGTCTTCAGASEQ ID NO:1965
SPRY1AK026960.1Forward PrimerCAGACCAGTCCCTGGTCATAGGSEQ ID NO:1966
ProbeCTGGGTCCGGATTGCCCTTTCAGSEQ ID NO:1967
Reverse PrimerCCTTCAAGTCATCCACAATCAGTTSEQ ID NO:1968
SPRY2NM_005842.1Forward PrimerTGTGGCAAGTGCAAATGTAASEQ ID NO:1969
ProbeCAGAGGCCTTGGGTAGGTGCACTCSEO ID NO:1970
Reverse PrimerGTCGCAGATCCAGTCTGATGSEQ ID NO:1971
SR-A1NM_021228.1Forward PrimerAGATGGAAGAAGCCAACCTGSEQ ID NO:1972
ProbeCTGGATCAGCTCCTGGGCCTTCSEQ ID NO:1973
Reverse PrimerCTGTGGCTGAGGATCTGGTSEQ ID NO:1974
ST14NM_021978.2Forward PrimerTGACTGCACATGGAACATTGSEQ ID NO:1975
ProbeAGGTGCCCAACAACCAGCATGTSEQ ID NO:1976
Reverse PrimerAAGAATTTGAAGCGCACCTTSEQ ID NO:1977
STAT1NM_007315.1Forward PrimerGGGCTCAGCTTTCAGAAGTGSEQ ID NO:1978
ProbeTGGCAGTTTTCTTCTGTCACCAAAASEQ ID NO:1979
Reverse PrimerACATGTTCAGCTGGTCCACASEQ ID NO:1980
STAT3NM_003150.1Forward PrimerTCACATGCCACTTTGGTGTTSEQ ID NO:1981
ProbeTCCTGGGAGAGATTGACCAGCASEQ ID NO:1982
Reverse PrimerCTTGCAGGAAGCGGCTATACSEQ ID NO:1983
STAT5ANM_003152.1Forward PrimerGAGGCGCTCAACATGAAATTCSEQ ID NO:1984
ProbeCGGTTGCTCTGCACTTCGGCCTSEQ ID NO:1985
Reverse PrimerGCCAGGAACACGAGGTTCTCSEQ ID NO:1986
STAT5BNM_012448.1Forward PrimerCCAGTGGTGGTGATCGTTCASEO ID NO:1987
ProbeCAGCCAGGACAACAATGCGACGGSEQ ID NO:1988
Reverse PrimerGCAAAAGCATTGTCCCAGAGASEQ ID NO:1989
STC1NM_003155.1Forward PrimerCTCCGAGGTGAGGAGGACTSEQ ID NO:1990
ProbeCACATCAAACGCACATCCCATGAGSEQ ID NO:1991
Reverse PrimerACCTCTCCCTGGTTATGCACSEQ ID NO:1992
STK11NM_000455.3Forward PrimerGGACTCGGAGACGCTGTGSEQ ID NO:1993
ProbeTTCTTGAGGATCTTGACGGCCCTCSEQ ID NO:1994
Reverse PrimerGGGATCCTTCGCAACTTCTTSEQ ID NO:1995
STK15NM_003600.1Forward PrimerCATCTTCCAGGAGGACCACTSEQ ID NO:1996
ProbeCTCTGTGGCACCCTGGACTACCTGSEQ ID NO:1997
Reverse PrimerTCCGACCTTCAATCATTTCASEQ ID NO:1998
STMN1NM_005563.2Forward PrimerAATACCCAACGCACAAATGASEQ ID NO:1999
ProbeCACGTTCTCTGCCCCGTTTCTTGSEQ ID NO:2000
Reverse PrimerGGAGACAATGCAAACCACACSEQ ID NO:2001
STMY3NM_005940.2Forward PrimerCCTGGAGGCTGCAACATACCSEQ ID NO:2002
ProbeATCCTCCTGAAGCCCTTTTCGCAGCSEQ ID NO:2003
Reverse PrimerTACAATGGCTTTGGAGGATAGCASEQ ID NO:2004
STSNM_000351.2Forward PrimerGAAGATCCCTTTCCTCCTACTGTTCSEQ ID NO:2005
ProbeCTTCGTGGCTCTCGGCTTCCCASEQ ID NO:2006
Reverse PrimerGGATGATGTTCGGCCTTGATSEQ ID NO:2007
SURVNM_001168.1Forward PrimerTGTTTTGATTCCCGGGCTTASEQ ID NO:2008
ProbeTGCCTTCTTCCTCCCTCACTTCTCACCTSEQ ID NO:2009
Reverse PrimerCAAAGCTGTCAGCTCTAGCAAAAGSEQ ID NO:2010
TAGLNNM_003186.2Forward PrimerGATGGAGCAGGTGGCTCAGTSEQ ID NO:2011
ProbeCCCAGAGTCCTCAGCCGCCTTCAGSEQ ID NO:2012
Reverse PrimerAGTCTGGAACATGTCAGTCTTGATGSEQ ID NO:2013
TBPNM_003194.1Forward PrimerGCCCGAAACGCCGAATATASEQ ID NO:2014
ProbeTACCGCAGCAAACCGCTTGGGSEQ ID NO:2015
Reverse PrimerCGTGGCTCTCTTATCCTCATGATSEQ ID NO:2016
TCF-1NM_000545.3Forward PrimerGAGGTCCTGAGCACTGCCSEQ ID NO:2017
ProbeCTGGGTTCACAGGCTCCTTTGTCCSEQ ID NO:2018
Reverse PrimerGATGTGGGACCATGCTTGTSEQ ID NO:2019
TCF-7NM_003202.2Forward PrimerGCAGCTGCAGTCAACAGTTCSEQ ID NO:2020
ProbeAAGTCATGGCCCAAATCCAGTGTGSEQ ID NO:2021
Reverse PrimerCTGTGAATGGGGAGGGGTSEQ ID NO:2022
TCF7L1NM_031283.1Forward PrimerCCGGGACACTTTCCAGAAGSEQ ID NO:2023
ProbeTCTCACTTCGGCGAAATAGTCCCGSEQ ID NO:2024
Reverse PrimerAGAACGCGCTGTCCTGAGSEQ ID NO:2025
TCF7L2NM_030756.1Forward PrimerCCAATCACGACAGGAGGATTSEQ ID NO:2026
ProbeAGACACCCCTACCCCACAGCTCTGSEQ ID NO:2027
Reverse PrimerTGGACACGGAAGCATTGACSEQ ID NO:2028
TCFL4NM_170607.2Forward PrimerCTGACTGCTCTGCTTAAAGGTGAASEQ ID NO:2029
ProbeTAGCAGGAACAACAACAAAAGCCAACCAASEQ ID NO:2030
Reverse PrimerATGTCTTGCACTGGCTACCTTGTSEQ ID NO:2031
TEKNM_000459.1Forward PrimerACTTCGGTGCTACTTAACAACTTACATCSEQ ID NO:2032
ProbeAGCTCGGACCACGTACTGCTCCCTGSEQ ID NO:2033
Reverse PrimerCCTGGGCCTTGGTGTTGACSEQ ID NO:2034
TERCU86046.1Forward PrimerAAGAGGAACGGAGCGAGTCSEQ ID NO:2035
ProbeCACGTCCCACAGCTCAGGGAATCSEQ ID NO:2036
Reverse PrimerATGTGTGAGCCGAGTCCTGSEQ ID NO:2037
TERTNM_003219.1Forward PrimerGACATGGAGAACAAGCTGTTTGCSEQ ID NO:2038
ProbeACCAAACGCAGGAGCAGCCCGSEQ ID NO:2039
Reverse PrimerGAGGTGTCACCAACAAGAAATCATSEQ ID NO:2040
TFF3NM_003226.1Forward PrimerAGGCACTGTTCATCTCAGTTTTTCTSEQ ID NO:2041
ProbeCAGAAAGCTTGCCGGGAGCAAAGGSEQ ID NO:2042
Reverse PrimerCATCAGGCTCCAGATATGAACTTTCSEQ ID NO:2043
TGFANM_003236.1Forward PrimerGGTGTGCCACAGACCTTCCTSEQ ID NO:2044
ProbeTTGGCCTGTAATCACCTGTGCAGCCTTSEQ ID NO:2045
Reverse PrimerACGGAGTTCTTGACAGAGTTTTGASEQ ID NO:2046
TGFB2NM_003238.1Forward PrimerACCAGTCCCCCAGAAGACTASEQ ID NO:2047
ProbeTCCTGAGCCCGAGGAAGTCCCSEQ ID NO:2048
Reverse PrimerCCTGGTGCTGTTGTAGATGGSEQ ID NO:2049
TGFB3NM_003239.1Forward PrimerGGATCGAGCTCTTCCAGATCCTSEQ ID NO:2050
ProbeCGGCCAGATGAGCACATTGCCSEQ ID NO:2051
Reverse PrimerGCCACCGATATAGCGCTGTTSEa ID NO:2052
TGFBINM_000358.1Forward PrimerGCTACGAGTGCTGTCCTGGSEQ ID NO:2053
ProbeCCTTCTCCCCAGGGACCTTTTCATSEQ ID NO:2054
Reverse PrimerAGTGGTAGGGCTGCTGGACSEQ ID NO:2055
TGFBR1NM_004612.1Forward PrimerGTCATCACCTGGCCTTGGSEQ ID NO:2056
ProbeAGCAATGACAGCTGCCAGTTCCACSEQ ID NO:2057
Reverse PrimerGCAGACGAAGCACACTGGTSEQ ID NO:2058
TGFBR2NM_003242.2Forward PrimerAACACCAATGGGTTCCATCTSEQ ID NO:2059
ProbeTTCTGGGCTCCTGATTGCTCAAGCSEQ ID NO:2060
Reverse PrimerCCTCTTCATCAGGCCAAACTSEQ ID NO:2061
THBS1NM_003246.1Forward PrimerCATCCGCAAAGTGACTGAAGAGSEG1 ID NO:2062
ProbeCCAATGAGCTGAGGCGGCCTCCSEQ ID NO:2063
Reverse PrimerGTACTGAACTCCGTTGTGATAGCATAGSEQ ID NO:2064
THY1NM_006288.2Forward PrimerGGACAAGACCCTCTCAGGCTSEQ ID NO:2065
ProbeCAAGCTCCCAAGAGCTTCCAGAGCSEQ ID NO:2066
Reverse PrimerTTGGAGGCTGTGGGTCAGSEQ ID NO:2067
TIMP1NM_003254.1Forward PrimerTCCCTGCGGTCCCAGATAGSEQ ID NO:2068
ProbeATCCTGCCCGGAGTGGAACTGAAGCSEQ ID NO:2069
Reverse PrimerGTGGGAACAGGGTGGACACTSEQ ID NO:2070
TIMP2NM_003255.2Forward PrimerTCACCCTCTGTGACTTCATCGTSEQ ID NO:2071
ProbeCCCTGGGACACCCTGAGCACCASEQ ID NO:2072
Reverse PrimerTGTGGTTCAGGCTCTTCTTCTGSEQ ID NO:2073
TIMP3NM_000362.2Forward PrimerCTACCTGCCTTGCTTTGTGASEQ ID NO:2074
ProbeCCAAGAACGAGTGTCTCTGGACCGSEQ ID NO:2075
Reverse PrimerACCGAAATTGGAGAGCATGTSEQ ID NO:2076
TJP1NM_003257.1Forward PrimerACTTTGCTGGGACAAAGGTCSEQ ID NO:2077
ProbeCTCGGGCCTGCCCACTTCTTCSEQ ID NO:2078
Reverse PrimerCACATGGACTCCTCAGCATCSEQ ID NO:2079
TK1NM_003258.1Forward PrimerGCCGGGAAGACCGTAATTGTSEQ ID NO:2080
ProbeCAAATGGCTTCCTCTGGAAGGTCCCASEQ ID NO:2081
Reverse PrimerCAGCGGCACCAGGTTCAGSEQ ID NO:2082
TLN1NM_006289.2Forward PrimerAAGCAGAAGGGAGAGCGTAAGASEQ ID NO:2083
ProbeCTTCCAGGCACACAAGAATTGTGGGCSEQ ID NO:2084
Reverse PrimerCCTTGGCCTCAATCTCACTCASEQ ID NO:2085
TMEPAINM_020182.3Forward PrimerCAGAAGGATGCCTGTGGCSEQ ID NO:2086
ProbeATTCCGTTGCCTGACACTGTGCTCSEQ ID NO:2087
Reverse PrimerGTAGACCTGCGGCTCTGGSEQ ID NO:2088
TMSB10NM_021103.2Forward PrimerGAAATCGCCAGCTTCGATAASEQ ID NO:2089
ProbeCGTCTCCGTTTTCTTCAGCTTGGCSEQ ID NO:2090
Reverse PrimerGTCGGCAGGGTGTTCTTTTSEQ ID NO:2091
TMSB4XNM_021109.2Forward PrimerCACATCAAAGAACTACTGACAACGAASEQ ID NO:2092
ProbeCCGCGCCTGCCTTTCCCASEQ ID NO:2093
Reverse PrimerCCTGCCAGCCAGATAGATAGACASEQ ID NO:2094
TNCNM_002160.1Forward PrimerAGCTCGGAACCTCACCGTSEQ ID NO:2095
ProbeCAGCCTTCGGGCTGTGGACATACSEQ ID NO:2096
Reverse PrimerGTAGCAGCCTTGAGGCCCSEQ ID NO:2097
TNFNMB_000594.1Forward PrimerGGAGAAGGGTGACCGACTCASEQ ID NO:2098
ProbeCGCTGAGATCAATCGGCCCGACTASEQ ID NO:2099
Reverse PrimerTGCCCAGACTCGGCAAAGSEQ ID NO:2100
TNFRSF5NM_001250.3Forward PrimerTCTCACCTCGCTATGGTTCGTSEQ ID NO:2101
ProbeTGCCTCTGCAGTGCGTCCTCTGGSEQ ID NO:2102
Reverse PrimerGATGGACAGCGGTCAGCAASEQ ID NO:2103
TNFRSF6BNM_003823.2Forward PrimerCCTCAGCACCAGGGTACCASEQ ID NO:2104
ProbeTGACGGCACGCTCACACTCCTCAGSEQ ID NO:2105
Reverse PrimerTGTCCTGGAAAGCCACAAAGTSEQ ID NO:2106
TNFSF4NM_003326.2Forward PrimerCTTCATCTTCCCTCTACCCAGASEQ ID NO:2107
ProbeCAGGGGTTGGACCCTTTCCATCTTSEQ ID NO:2108
Reverse PrimerGCTGCATTTCCCACATTCTCSEQ ID NO:2109
top2ANM_001067.1Forward PrimerAATCCAAGGGGGAGAGTGATSEQ ID NO:2110
ProbeCATATGGACTTTGACTCAGCTGTGGCSEQ ID NO:2111
Reverse PrimerGTACAGATTTTGCCCGAGGASEQ ID NO:2112
top2BNM_001068.1Forward PrimerTGTGGACATCTTCCCCTCAGASEQ ID NO:2113
ProbeTTCCCTACTGAGCCACCTTCTCTGSEQ ID NO:2114
Reverse PrimerCTAGCCCGACCGGTTCGTSEQ ID NO:2115
TPNM_001953.2Forward PrimerCTATATGCAGCCAGAGATGTGACASEQ ID NO:2116
ProbeACAGCCTGCCACTCATCACAGCCSEQ ID NO:2117
Reverse PrimerCCACGAGTTTCTTACTGAGAATGGSEQ ID NO:2118
TP53BP1NM_005657.1Forward PrimerTGCTGTTGCTGAGTCTGTTGSEQ ID NO:2119
ProbeCCAGTCCCCAGAAGACCATGTCTGSEQ ID NO:2120
Reverse PrimerCTTGCCTGGCTTCACAGATASEQ ID NO:2121
TP53BP2NM_005426.1Forward PrimerGGGCCAAATATTCAGAAGCSEQ ID NO:2122
ProbeCCACCATAGCGGCCATGGAGSEQ ID NO:2123
Reverse PrimerGGATGGGTATGATGGGACAGSEQ ID NO:2124
TP5313NM_004881.2Forward PrimerGCGGACTTAATGCAGAGACASEQ ID NO:2125
ProbeCAGTATGACCCACCTCCAGGAGCCSEQ ID NO:2126
Reverse PrimerTCAAGTCCCAAAATGTTGCTSEQ ID NO:2127
TRAG3NM_004909.1Forward PrimerGACGCTGGTCTGGTGAAGATGSEQ ID NO:2128
ProbeCCAGGAAACCACGAGCCTCCAGCSEQ ID NO:2129
Reverse PrimerTGGGTGGTTGTTGGACAATGSEQ ID NO:2130
TRAILNM_003810.1Forward PrimerCTTCACAGTGCTCCTGCAGTCTSEQ ID NO:2131
ProbeAAGTACACGTAAGTTACAGCCACACASEQ ID NO:2132
Reverse PrimerCATCTGCTTCAGCTCGTTGGTSEQ ID NO:2133
TSNM_001071.1Forward PrimerGCCTCGGTGTGCCTTTCASEQ ID NO:2134
ProbeCATCGCCAGCTACGCCCTGCTCSEQ ID NO:2135
Reverse PrimerCGTGATGTGCGCAATCATGSEQ ID NO:2136
TSTNM_003312.4Forward PrimerGGAGCCGGATGCAGTAGGASEQ ID NO:2137
ProbeACCACGGATATGGCCCGAGTCCASEQ ID NO:2138
Reverse PrimerAAGTCCATGAAAGGCATGTTGASEQ ID NO:2139
TUBA1NM_006000.1Forward PrimerTGTCACCCCGACTCAACGTSEQ ID NO:2140
ProbeAGACGCACCGCCCGGACTCACSEQ ID NO:2141
Reverse PrimerACGTGGACTGAGATGCATTCACSEQ ID NO:2142
TUBBNM_001069.1Forward PrimerCGAGGACGAGGCTTAAAAACSEQ ID NO:2143
ProbeTCTCAGATCAATCGTGCATCCTTAGTGAASEQ ID NO:2144
Reverse PrimerACCATGCTTGAGGACAACAGSEQ ID NO:2145
TUFMNM_003321.3Forward PrimerGTATCACCATCAATGCGGCSEQ ID NO:2146
ProbeCATGTGGAGTATAGCACTGCCGCCSEQ ID NO:2147
Reverse PrimerCAGTCTGTGTGGGCGTAGTGSEQ ID NO:2148
TULP3NM_003324.2Forward PrimerTGTGTATAGTCCTGCCCCTCAASEQ ID NO:2149
ProbeCCGGATTATCCGACATCTTACTGTGASEQ ID NO:2150
Reverse PrimerCCCGATCCATTCCCCTTTTASEQ ID NO:2151
tusc4NM_006545.4Forward PrimerGGAGGAGCTAAATGCCTCAGSEQ ID NO:2152
ProbeACTCATCAATGGGCAGAGTGCACCSEQ ID NO:2153
Reverse PrimerCCTTCAAGTGGATGGTGTTGSEQ ID NO:2154
UBBNM_018955.1Forward PrimerGAGTCGACCCTGCACCTGSEQ ID NO:2155
ProbeAATTAACAGCCACCCCTCAGGCGSEQ ID NO:2156
Reverse PrimerGCGAATGCCATGACTGAASEQ ID NO:2157
UBCNMB_021009.2Forward PrimerACGCACCCTGTCTGACTACASEQ ID NO:2158
ProbeCATCCAGAAAGAGTCCACCCTGCASEQ ID NO:2159
Reverse PrimerACCTCTAAGACGGAGCACCASEQ ID NO:2160
UBE2CNM_007019.2Forward PrimerTGTCTGGCGATAAAGGGATTSEQ ID NO:2161
ProbeTCTGCCTTCCCTGAATCAGACAACCSEQ ID NO:2162
Reverse PrimerATGGTCCCTACCCATTTGAASEQ ID NO:2163
UBE2MNM_003969.1Forward PrimerCTCCATAATTTATGGCCTGCAGTASEQ ID NO:2164
ProbeTCTTCTTGGAGCCCAACCCCGAGSEQ ID NO:2165
Reverse PrimerTGCGGCCTCCTTGTTCAGSEQ ID NO:2166
UBL1NM_003352.3Forward PrimerGTGAAGCCACCGTCATCATGSEQ ID NO:2167
ProbeCTGACCAGGAGGCAAAACCTTCAACTGASEQ ID NO:2168
Reverse PrimerCCTTCCTTCTTATCCCCCAAGTSEQ ID NO:2169
UCP2NM_003355.2Forward PrimerACCATGCTCCAGAAGGAGGSEQ ID NO:2170
ProbeCCCCGAGCCTTCTACAAAGGGTTCSEQ ID NO:2171
Reverse PrimerAACCCAAGCGGAGAAAGGSEQ ID NO:2172
UGT1A1NM_000463.2Forward PrimerCCATGCAGCCTGGAATTTGSEQ ID NO:2173
ProbeCTACCCAGTGCCCCAACCCATTCTCSEQ ID NO:2174
Reverse PrimerGAGAGGCCTGGGCACGTASEQ ID NO:2175
UMPSNM_000373.1Forward PrimerTGCGGAAATGAGCTCCACSEQ ID NO:2176
ProbeCCCTGGCCACTGGGGACTACACTASEQ ID NO:2177
Reverse PrimerCCTCAGCCATTCTAACCGCSEQ ID NO:2178
UNC5AXM_030300.7Forward PrimerGACAGCTGATCCAGGAGCCSEQ ID NO:2179
ProbeCGGGTCCTGCACTTCAAGGACAGTSEQ ID NO:2180
Reverse PrimerATGGATAGGCGCAGGTTGSEQ ID NO:2181
UNC5BNM_170744.2Forward PrimerAGAACGGAGGCCGTGACTSEQ ID NO:2182
ProbeCGGGACGCTGCTCGACTCTAAGAASEQ ID NO:2183
Reverse PrimerCATGCACAGCCCATCTGTSEQ ID NO:2184
UNC5CNM_003728.2Forward PrimerCTGAACACAGTGGAGCTGGTSEQ ID NO:2185
ProbeACCTGCCGCACACAGAGTTTGCSEQ ID NO:2186
Reverse PrimerCTGGAAGATCTGCCCTTCTCSEQ ID NO:2187
upaNM_002658.1Forward PrimerGTGGATGTGCCCTGAAGGASEQ ID NO:2188
ProbeAAGCCAGGCGTCTACACGAGAGTCTCACSEQ ID NO:2189
Reverse PrimerCTGCGGATCCAGGGTAAGAASEQ ID NO:2190
UPP1NM_003364.2Forward PrimerACGGGTCCTGCCTCAGTTSEQ ID NO:2191
ProbeTCAGCTTTCTCTGCATTGGCTCCCSEQ ID NO:2192
Reverse PrimerCGGGGCAATCATTGTGACSEQ ID NO:2193
VCAM1NM_001078.2Forward PrimerTGGCTTCAGGAGCTGAATACCSEQ ID NO:2194
ProbeCAGGCACACACAGGTGGGACACAAATSEQ ID NO:2195
Reverse PrimerTGCTGTCGTGATGAGAAAATAGTGSEQ ID NO:2196
VCLNM_003373.2Forward PrimerGATACCACAACTCCCATCAAGCTSEQ ID NO:2197
ProbeAGTGGCAGCCACGGCGCCSEQ ID NO:2198
Reverse PrimerTCCCTGTTAGGCGCATCAGSEQ ID NO:2199
VCPNM_007126.2Forward PrimerGGCTTTGGCAGCTTCAGATSEQ ID NO:2200
ProbeAGCTCCACCCTGGTTCCCTGAAGSEQ ID NO:2201
Reverse PrimerCTCCACTGCCCTGACTGGSEQ ID NO:2202
VDAC1NM_003374.1Forward PrimerGCTGCGACATGGATTTCGASEQ ID NO:2203
ProbeTTGCTGGGCCTTCCATCCGGSEQ ID NO:2204
Reverse PrimerCCAGCCCTCGTAACCTAGCASEQ ID NO:2205
VDAC2NM_003375.2Forward PrimerACCCACGGACAGACTTGCSEQ ID NO:2206
ProbeCGCGTCCAATGTGTATTCCTCCATSEQ ID NO:2207
Reverse PrimerAGCTTTGCCAAGGTCAGCSEQ ID NO:2208
VDRNM_000376.1Forward PrimerGCCCTGGATTTCAGAAAGAGSEQ ID NO:2209
ProbeCAAGTCTGGATCTGGGACCCTTTCCSEQ ID NO:2210
Reverse PrimerAGTTACAAGCCAGGGAAGGASEQ ID NO:2211
VEGFNM_003376.3Forward PrimerCTGCTGTCTTGGGTGCATTGSEQ ID NO:2212
ProbeTTGCCTTGCTGCTCTACCTCCACCASEQ ID NO:2213
Reverse PrimerGCAGCCTGGGACCACTTGSEQ ID NO:2214
VEGF_altspli ce1AF486837.1Forward PrimerTGTGAATGCAGACCAAAGAAAGASEQ ID NO:2215
ProbeAGAGCAAGACAAGAAAATCCCTGTGGGCSEQ ID NO:2216
Reverse PrimerGCTTTCTCCGCTCTGAGCAASEQ ID NO:2217
VEGF_altspli ce2AF214570.1Forward PrimerAGCTTCCTACAGCACAACAAATSEQ ID NO:2218
ProbeTGTCTTGCTCTATCTTTCTTTGGTCTGCASEQ ID NO:2219
Reverse PrimerCTCGGCTTGTCACATTTTTCSEQ ID NO:2220
VEGFBNM_003377.2Forward PrimerTGACGATGGCCTGGAGTGTSEQ ID NO:2221
ProbeCTGGGCAGCACCAAGTCCGGASEQ ID NO:2222
Reverse PrimerGGTACCGGATCATGAGGATCTGSEQ ID NO:2223
VEGFCNM_005429.2Forward PrimerCCTCAGCAAGACGTTATTTGAAATTSEQ ID NO:2224
ProbeCCTCTCTCTCAAGGCCCCAAACCAGTSEQ ID NO:2225
Reverse PrimerAAGTGTGATTGGCAAAACTGATTGSEQ ID NO:2226
VIMNMB_003380.1Forward PrimerTGCCCTTAAAGGAACCAATGASEQ ID NO:2227
ProbeATTTCACGCATCTGGCGTTCCASEQ ID NO:2228
Reverse PrimerGCTTCAACGGCAAAGTTCTCTTSEQ ID NO:2229
WIFNM_007191.2Forward PrimerTACAAGCTGAGTGCCCAGGSEQ ID NO:2230
ProbeTACAAAAGCCTCCATTTCGGCACCSEQ ID NO:2231
Reverse PrimerCACTCGCAGATGCGTCTTTSEQ ID NO:2232
WISP1NM_003882.2Forward PrimerAGAGGCATCCATGAACTTCACASEQ ID NO:2233
ProbeCGGGCTGCATCAGCACACGCSEQ ID NO:2234
Reverse PrimerCAAACTCCACAGTACTTGGGTTGASEQ ID NO:2235
Wnt-3aNM_033131.2Forward PrimerACAAAGCTACCAGGGAGTCGSEQ ID NO:2236
ProbeTTTGTCCACGCCATTGCCTCAGSEQ ID NO:2237
Reverse PrimerTGAGCGTGTCACTGCAAAGSEQ ID NO:2238
Wnt-5aNM_003392.2Forward PrimerGTATCAGGACCACATGCAGTACATCSEQ ID NO:2239
ProbeTTGATGCCTGTCTTCGCGCCTTCTSEQ ID NO:2240
Reverse PrimerTGTCGGAATTGATACTGGCATTSEQ ID NO:2241
Wnt-5bNM_032642.2Forward PrimerTGTCTTCAGGGTCTTGTCCASEQ ID NO:2242
ProbeTTCCGTAAGAGGCCTGGTGCTCTCSEQ ID NO:2243
Reverse PrimerGTGCACGTGGATGAAAGAGTSEQ ID NO:2244
WNT2NM_003391.1Forward PrimerCGGTGGAATCTGGCTCTGSEQ ID NO:2245
ProbeCTCCCTCTGCTCTTGACCTGGCTCSEQ ID NO:2246
Reverse PrimerCCATGAAGAGTTGACCTCGGSEQ ID NO:2247
wwoxNM_016373.1Forward PrimerATCGCAGCTGGTGGGTGTASEQ ID NO:2248
ProbeCTGCTGTTTACCTTGGCGAGGCCTTTSEQ ID NO:2249
Reverse PrimerAGCTCCCTGTTGCATGGACTTSEQ ID NO:2250
XPANM_000380.2Forward PrimerGGGTAGAGGGAAAAGGGTTCSEQ ID NO:2251
ProbeCAAAGGCTGAACTGGATTCTTAACCAAGASEQ ID NO:2252
Reverse PrimerTGCACCACCATTGCTATTATTSEQ ID NO:2253
XPCNM_004628.2Forward PrimerGATACATCGTCTGCGAGGAASEQ ID NO:2254
ProbeTTCAAAGACGTGCTCCTGACTGCCSEQ ID NO:2255
Reverse PrimerCTTTCAATGACTGCCTGCTCSEQ ID NO:2256
XRCC1NM_006297.1Forward PrimerGGAGATGAAGCCCCCAAGSEQ ID NO:2257
ProbeAGAAGCAACCCCAGACCAAAACCASEQ ID NO:2258
Reverse PrimerGTCCAGCTGCCTGAGTGGSEQ ID NO:2259
YB-1NM_004559.1Forward PrimerAGACTGTGGAGTTTGATGTTGTTGASEQ ID NO:2260
ProbeTTGCTGCCTCCGCACCCTTTTCTSEQ ID NO:2261
Reverse PrimerGGAACACCACCAGGACCTGTAASEQ ID NO:2262
YWHAHNM_003405.2Forward PrimerCATGGCCTCCGCTATGAASEQ ID NO:2263
ProbeAGGTTCATTCAGCTCTGTCACCGCSEQ ID NO:2264
Reverse PrimerGGAGATTTCGATCTTCATTGGASEQ ID NO:2265
zbtb7NM_015898.2Forward PrimerCTGCGTTCACACCCCAGTSEQ ID NO:2266
ProbeTCTCTCCAGAACAGCTCGCCCTGTSEQ ID NO:2267
Reverse PrimerCTCAGCCACGACAGATGGTSEQ ID NO:2268
ZG16NM_152338.1Forward PrimerTGCTGAGCCTCCTCTCCTTSEQ ID NO:2269
ProbeTACTCCTCATCACAGTGCCCCTGCSEQ ID NO:2270
Reverse PrimerGGATGGGGGTTAGTGATAAGGSEQ ID NO:2271
A-CateninNM_001903.1SEQ ID NO:2272
ABCB1NM_000927.2SEQ ID NO:2273
ABCC5NM_005688.1SEQ ID NO:2274
ABCC6NM_001171.2SEQ ID NO:2275
ACP1NM_004300.2GCTACCAAGTCCGTGCTGTTTGTGTGTCTGGGTAACATTTGTCGATCACCCATTGCAGAAGCAGTTTTCSEQ ID NO:2276
ADAM10NM_001110.1CCCATCAACTTGTGCCAGTACAGGGTCTGTGCAGTGGAGTAGGCACTTCAGTGGTCGAACCATCACCSEQ ID NO:2277
ADAM 17NM_003183.3SEQ ID NO:2278
ADAMTS12NM_030955.2GGAGAAGGGTGGAGTGCAGCACCCAGATGGATTCTGACTGTGCGGCCATCCAGAGACCTGACCCTGSEQ ID NO:2279
ADPRTNM_001618.2SEQ ID NO:2280
AGXTNM_000030.1CTTTTCCCTCCAGTGGCACCTCCTGGAAACAGTCCACTTGGGCGCAAAACCCAGTGCCTTCCAAATSEQ ID NO:2281
AKAP12NM_005100.2SEQ ID NO:2282
AKT1NM_005163.1SEQ ID NO:2283
AKT2NM_001626.2TCCTGCCACCCTTCAAACCTCAGGTCACGTCCGAGGTCGACACAAGGTACTTCGATGATGAATTTACCGCCSEQ ID NO:2284
AKT3NM_005465.1SEQ ID NO:2285
AL137428AL137428.1CAAGAAGAGGCTCTACCCTGGGACTGGGAATTTCCAAGGCCACCTTTGAGGATCGCAGAGCTCATTTSEQ ID NO:2286
ALCAMNM_001627.1GAGGAATATGGAATCCAAGGGGGCCAGTTCCTGCCGTCTGCTCTTCTGCCTCTTGATCTCCGCCACSEQ ID NO:2287
ALDH1A1NM_000689.1SEQ ID NO:2288
ALDOANM_000034.2GCCTGTACGTGCCAGCTCCCCGACTGCCAGAGCCTCAACTGTCTCTGCTTCGAGATCAAGCTCCGATGASEQ ID NO:2289
AMFRNM_001144.2SEQ ID NO:2290
ANGPT2NM_001147.1CCGTGAAAGCTGCTCTGTAAAAGCTGACACAGCCCTCCCAAGTGAGCAGGACTGTTCTTCCCACTGCAASEQ ID NO:2291
ANTXR1NM_032208.1CTCCAGGTGTACCTCCAACCCTAGCCTTCTCCCACAGCTGCCTACAACAGAGTCTCCCAGCCTTCTCSEQ ID NO:2292
ANXA1NM_000700.1GCCCCTATCCTACCTTCAATCCATCCTCGGATGTCGCTGCCTTGCATAAGGCCATAATGGTTAAAGGSEQ ID NO:2293
ANXA2NM_004039.1SEQ ID NO:2294
ANXA5NM_001154.2SEQ ID NO:2295
AP-1 (JUN official)NM_002228.2SEQ ID NO:2296
APCNM_000038.1GGACAGCAGGAATGTGTTTCTCCATACAGGTCACGGGGAGCCAATGGTTCAGAAACAAATCGAGTGGGTSEQ ID NO:2297
APEX-1NM_001641.2GATGAAGCCTTTCGCAAGTTCCTGAAGGGCCTGGCTTCCGGAAAGCCCCTTGTGCTGTGTGGAGACCTSEQ ID NO:2298
APG-1NM_014278.2ACCCCGGCCTGTATATCATTGGGATCAAGAACTCGAGCCATTGGAAATGCAGCAAAGAGCCAGATAGSEQ ID NO:2299
APN (ANPEP official)NM_001150.1SEQ ID NO:2300
APOC1NM_001645.3SEQ ID NO:2301
AREGNM_001657.1SEQ ID NO:2302
ARGNM_005158.2SEQ ID NO:2303
ARHFNM_019034.2SEQ ID NO:2304
ATOH1NM_005172.1GCAGCCACCTGCAACTTTGCAGGCGAGAGAGCATCCCGTCTACCCGCCTGAGCTGTCCCTCCTGGASEQ ID NO:2305
ATP5A1NM_004046.3GATGCTGCCACTCAACAACTTTTGAGTCGTGGCGTGCGTCTAACTGAGTTGCTGAAGCAAGGACASEQ ID NO:2306
ATP5ENM_006886.2CCGCTTTCGCTACAGCATGGTGGCCTACTGGAGACAGGCTGGACTCAGCTACATCCGATACTCCCASEQ ID NO:2307
AURKBNM_004217.1AGCTGCAGAAGAGCTGCACATTTGACGAGCAGCGAACAGCCACGATCATGGAGGAGTTGGCAGATGCSEQ ID NO:2308
Axin2NM_004655.2GGCTATGTCTTTGCACCAGCCACCAGCGCCAACGACAGTGAGATATCCAGTGATGCGCTGACGGATSEQ ID NO:2309
axin1NM_003502.2CCGTGTGACAGCATCGTTGTGGCGTACTACTTCTGCGGGGAACCCATCCCCTACCGCACCCTGGTGAGSEQ ID NO:2310
B-CateninNM_001904.1SEQ ID NO:2311
BADNM_032989.1SEQ ID NO:2312
BAG1NM_004323.2SEQ ID NO:2313
BAG2NM_004282.2CTAGGGGCAAAAAGCATGACTGCTTTTTCCTGTCTGGCATGGAATCACGCAGTCACCTTGGGCATTTAGSEQ ID NO:2314
BAG3NM_004281.2SEQ ID NO:2315
BakNM_001188.1CCATTCCCACCATTCTACCTGAGGCCAGGACGTCTGGGGTGTGGGGATTGGTGGGTCTATGTTCCCSEQ ID NO:2316
BaxNM_004324.1CCGCCGTGGACACAGACTCCCCCCGAGAGGTCTTTTTCCGAGTGGCAGCTGACATGTTTTCTGACGGCAASEQ ID NO:2317
BBC3NM_014417.1SEQ ID NO:2318
BCAS1NM_003657.1SEQ ID NO:2319
Bcl2NM_000633.1SEQ ID NO:2320
BCL2L10NM_020396.2SEQ ID NO:2321
BCL2L11NM_138621.1AATTACCAAGCAGCCGAAGACCACCCACGAATGGTTATCTTACGACTGTTACGTTACATTGTCCGCCTGSEQ ID NO:2322
BCL2L12NM_138639.1SEQ ID NO:2323
BclxNM_001191.1CTTTTGTGGAACTCTATGGGAACAATGCAGCAGCCGAGAGCCGAAAGGGCCAGGAACGCTTCAACCGCTGSEQ ID NO:2324
BCRPNM_004827.1SEQ ID NO:2325
BFGFNM_007083.1SEQ ID NO:2326
BGNNM_001711.3GAGCTCCGCAAGGATGACTTCAAGGGTCTCCAGCACCTCTACGCCCTCGTCCTGGTGAACAACAAGSEQ ID NO:2327
BIDNM_001196.2GGACTGTGAGGTCAACAACGGTTCCAGCCTCAGGGATGAGTGCATCACAAACCTACTGGTGTTTGGCTTCCSEQ ID NO:2328
BIKNM_001197.3ATTCCTATGGCTCTGCAATTGTCACCGGTTAACTGTGGCCTGTGCCCAGGAAGAGCCATTCACTCCTGCCSEQ ID NO:2329
BIN1NM_004305.1SEQ ID NO:2330
BLMHNM_000386.2SEQ ID NO:2331
BMP2NM_001200.1SEQ ID NO:2332
BMP4NM_001202.2GGGCTAGCCATTGAGGTGACTCACCTCCATCAGACTCGGACCCACCAGGGCCAGCATGTCAGGATTAGCSEQ ID NO:2333
BMP7NM_001719.1TCGTGGAACATGACAAGGAATTCTTCCACCCACGCTACCACCATCGAGAGTTCCGGTTTGATCTTTCCASEQ ID NO:2334
BMPR1ANM_004329.2TTGGTTCAGCGAACTATTGCCAAACAGATTCAGATGGTCCGGCAAGTTGGTAAAGGCCGATATGGAGASEQ ID NO:2335
BRAFNM_004333.1SEQ ID NO:2336
BRCA1NM_007295.1TCAGGGGGCTAGAAATCTGTTGCTATGGGCCCTTCACCAACATGCCCACAGATCAACTGGAATGGSEQ ID NO:2337
BRCA2NM_000059.1AGTTCGTGCTTTGCAAGATGGTGCAGAGCTTTATGAAGCAGTGAAGAATGCAGCAGACCCAGCTTACCTTSEQ ID NO:2338
BRKNM_005975.1SEQ ID NO:2339
BTF3NM_001207.2SEQ ID NO:2340
BTRCNM_033637.2GTTGGGACACAGTTGGTCTGCAGTCGGCCCAGGACGGTCTACTCAGCACAACTGACTGCTTCASEQ ID NO:2341
BUB1NM_004336.1CCGAGGTTAATCCAGCACGTATGGGGCCAAGTGTAGGCTCCCAGCAGGAACTGAGAGCGCCATGTCTTSEQ ID NO:2342
BUB1BNM_001211.3SEQ ID NO:2343
BUB3NM_004725.1SEQ ID NO:2344
c-ablNM_005157.2SEQ ID NO:2345
c-kitNM_000222.1SEQ ID NO:2346
c-myb(MYBofficial)NM_005375.1SEQ ID NO:2347
c-SrcNM_005417.3SEQ ID NO:2348
C20orf1NM_012112.2TCAGCTGTGAGCTGCGGATACCGCCCGGCAATGGGACCTGCTCTTAACCTCAAACCTAGGACCGTSEQ ID NO:2349
C20ORF126NM_030815.2CCAGCACTGCTCGTTACTGTCTGCCTTCAGTGGTCTGAGGTCCCAGTATGAACTGCCGTGAAGTCAASEQ ID NO:2350
C8orf4NM_020130.2CTACGAGTCAGCCCATCCATCCATGGCTACCACTTCGACACAGCCTCTCGTAAGAAAGCCGTGGGCASEQ ID NO:2351
CA9NM_001216.1SEQ ID NO:2352
Cad17NM_004063.2SEQ ID NO:2353
CALD1NM_004342.4SEQ ID NO:2354
CAPGNM_001747.1GATTGTCACTGATGGGGAGGAGCCTGCTGAGATGATCCAGGTCCTGGGCCCCAAGCCTGCTCTGAAGGSEQ ID NO:2355
CAPN1NM_005186.2SEQ ID NO:2356
CASP8NM_033357.1CCTCGGGGATACTGTCTGATCATCAACAATCACAATTTTGCAAAAGCACGGGAGAAAGTGCCCAAACTTCSEQ ID NO:2357
CASP9NM_001229.2SEQ ID NO:2358
CATNM_001752.1SEQ ID NO:2359
CAV1NM_001753.3SEQ ID NO:2360
CBLNM_005188.1TCATTCACAAACCTGGCAGTTATATCTTCCGGCTGAGCTGTACTCGTCTGGGTCAGTGGGCTATTGGGTATGSEQ ID NO:2361
CCL20NM_004591.1CCATGTGCTGTACCAAGAGTTTGCTCCTGGCTGCTTTGATGTCAGTGCTGCTACTCCACCTCTGCGGCGSEQ ID NO:2362
CCL3NM_002983.1SEQ ID NO:2363
CCNA2NM_001237.2SEQ ID NO:2364
CCNB1NM_031966.1SEQ ID NO:2365
CCNB2NM_004701.2SEQ ID NO:2366
CCND1NM_001758.1GCATGTTCGTGGCCTCTAAGATGAAGGAGACCATCCCCCTGACGGCCGAGAAGCTGTGCATCTACACCGSEQ ID NO:2367
CCND3NM_001760.2SEQ ID NO:2368
CCNE1NM_001238.1AAAGAAGATGATGACCGGGTTTACCCAAACTCAACGTGCAAGCCTCGGATTATTGCACCATCCAGAGGCTCSEQ ID NO:2369
CCNE2NM_057749.1SEQ ID NO:2370
CCNE2variant1NM_057749var1SEQ ID NO:2371
CCR7NM_001838.2GGATGACATGCACTCAGCTCTTGGCTCCACTGGGATGGGAGGAGAGGACAAGGGAAATGTCAGGSEQ ID NO:2372
CD105NM_000118.1SEQ ID NO:2373
CD134(TNFRSF4official)NM_003327.1SEQ ID NO:2374
CD18NM_000211.1SEQ ID NO:2375
CD24NM_013230.1SEQ ID NO:2376
CD28NM_006139.1TGTGAAAGGGAAACACCTTTGTCCAAGTCCCCTATTTCCCGGACCTTCTAAGCCCTTTTGGGTGCTSEQ ID NO:2377
CD31NM_000442.1SEQ ID NO:2378
CD34NM_001773.1CCACTGCACACACCTCAGAGGCTGTTCTTGGGGCCCTACACCTTGAGGAGGGGCAGGTAAACTCCTGSEQ ID NO:2379
CD3zNM_000734.1AGATGAAGTGGAAGGCGCTTTTCACCGCGGCCATCCTGCAGGCACAGTTGCCGATTACAGAGGCASEQ ID NO:2380
CD44EX55150SEQ ID NO:2381
CD44sM59040.1SEQ ID NO:2382
CD44v3AJ251595v3CACACAAAACAGAACCAGGACTGGACCCAGTGGAACCCAAGCCATTCAAATCCGGAAGTGCTACTTCAGSEQ ID NO:2383
CD44v6AJ251595v6SEQ ID NO:2384
CD68NM_001251.1SEQ ID NO:2385
CD80NM_005191.2TTCAGTTGCTTTGCAGGAAGTGTCTAGAGGAATATGGTGGGCACAGAAGTAGCTCTGGTGACCTTGATCAASEQ ID NO:2386
CD82NM_002231.2SEQ ID NO:2387
CD8ANM_171827.1AGGGTGAGGTGCTTGAGTCTCCAACGGCAAGGGAACAAGTACTTCTTGATACCTGGGATACTGTGCCCSEQ ID NO:2388
CD9NM_001769.1GGGCGTGGAACAGTTTATCTCAGACATCTGCCCCAAGAAGGACGTACTCGAAACCTTCACCGTGSEQ ID NO:2389
CDC2NM_001786.2GAGAGCGACGCGGTTGTTGTAGCTGCCGCTGCGGCCGCCGCGGAATAATAAGCCGGGATCTACCATACSEQ ID NO:2390
CDC20NM_001255.1TGGATTGGAGTTCTGGGAATGTACTGGCCGTGGCACTGGACAACAGTGTGTACCTGTGGAGTGCAAGCSEQ ID NO:2391
cdc25ANM_001789.1TCTTGCTGGCTACGCCTCTTCTGTCCCTGTTAGACGTCCTCCGTCCATATCAGAACTGTGCCACAATGCAGSEQ ID NO:2392
CDC25BNM_021874.1SEQ ID NO:2393
CDC25CNM_001790.2GGTGAGCAGAAGTGGCCTATATCGCTCCCCGTCGATGCCAGAGAACTTGAACAGGCCAAGACTGAAGSEQ ID NO:2394
CDC4NM_018315.2SEQ ID NO:2395
CDC42NM_001791.2SEQ ID NO:2396
CDC42BPANM_003607.2GAGCTGAAAGACGCACACTGTCAGAGGAAACTGGCCATGCAGGAATTCATGGAGATCAATGAGCGGCSEQ ID NO:2397
CDC6NM_001254.2GCAACACTCCCCATTTACCTCCTTGTTCTCCACCAAAGCAAGGCAAGAAAGAGAATGGTCCCCCTCASEQ ID NO:2398
CDCA7v2NM_145810.1AAGACCGTGGATGGCTACATGAATGAAGATGACCTGCCCAGAAGCCGTCGCTCCAGATCATCCGTGACCCTSEQ ID NO:2399
CDH1NM_004360.2SEQ ID NO:2400
CDH11NM_001797.2GTCGGCAGAAGCAGGACTTGTACCTTCTGCCCATAGTGATCAGCGATGGCGGCATCCCGCCCATGAGTAGSEQ ID NO:2401
CDH3NM_001793.3ACCCATGTACCGTCCTCGGCCAGCCAACCCAGATGAAATCGGCAACTTTATAATTGAGAACCTGAAGGCGGSEQ ID NO:2402
CDK2NM_001798.2SEQ ID NO:2403
CDX1NM_001804.1AGCAACACCAGCCTCCTGGCCACCTCCTCTCCAATGCCTGTGAAAGAGGAGTTTCTGCCATAGCCCSEQ ID NO:2404
Cdx2NM_001265.2GGGCAGGCAAGGTTTACACTGCGGAAGCCAAAGGCAGCTAAGATAGAAAGCTGGACTGACCAAAGACSEQ ID NO:2405
CEACAM1NM_001712.2ACTTGCCTGTTCAGAGCACTCATTCCTTCCCACCCCCAGTCCTGTCCTATCACTCTAATTCGGATTTGCCASEQ ID NO:2406
CEACAM6NM_002483.2CACAGCCTCACTTCTAACCTTCTGGAACCCACCCACCACTGCCAAGCTCACTATTGAATCCACGCCATTCAASEQ ID NO:2407
CEBPBNM_005194.2GCAACCCACGTGTAACTGTCAGCCGGGCCCTGAGTAATCGCTTAAAGATGTTCCTACGGGCTTGTSEQ ID NO:2408
CEGP1NM_020974.1SEQ ID NO:2409
CENPANM_001809.2TAAATTCACTCGTGGTGTGGACTTCAATTGGCAAGCCCAGGCCCTATTGGCCCTACAAGAGGCSEQ ID NO:2410
CENPENM_001813.1SEQ ID NO:2411
CENPFNM_016343.2CTCCCGTCAACAGCGTTCTTTCCAAACACTGGACCAGGAGTGCATCCAGATGAAGGCCAGACTCACCCSEQ ID NO:2412
CES2NM_003869.4SEQ ID NO:2413
CGA(CHGAofficial)NM_001275.2SEQ ID NO:2414
CGBNM_000737.2SEQ ID NO:2415
CHAF1BNM_005441.1SEQ ID NO:2416
CHD2NM_001271.1SEQ ID NO:2417
CHFRNM_018223.1SEQ ID NO:2418
Chk1NM_001274.1SEQ ID NO:2419
Chk2NM_007194.1SEQ ID NO:2420
CIAP1NM_001166.2SEQ ID NO:2421
cIAP2NM_001165.2SEQ ID NO:2422
CKS1BNM_001826.1SEQ ID NO:2423
CKS2NM_001827.1GGCTGGACGTGGTTTTGTCTGCTGCGCCCGCTCTTCGCGCTCTCGTTTCATTTTCTGCAGCGSEQ ID NO:2424
Claudin4NM_001305.2SEQ ID NO:2425
CLDN1NM_021101.3SEQ ID NO:2426
CLDN7NM_001307.3SEQ ID NO:2427
CLIC1NM_001288.3CGGTACTTGAGCAATGCCTACGCCCGGGAAGAATTCGCTTCCACCTGTCCAGATGATGAGGAGATCGASEQ ID NO:2428
CLTCNM_004859.1ACCGTATGGACAGCCACAGCCTGGCTTTGGGTACAGCATGTGAGATGAAGCGCTGATCCTGTAGTCASEQ ID NO:2429
CLUNM_001831.1SEQ ID NO:2430
cMetNM_000245.1SEQ ID NO:2431
cMYCNM_002467.1SEQ ID NO:2432
CNNNM_001299.2TCCACCCTCCTGGCTTTGGCCAGCATGGCGAAGACGAAAGGAAACAAGGTGAACGTGGGAGTGASEQ ID NO:2433
COL1A1NM_000088.2GTGGCCATCCAGCTGACCTTCCTGCGCCTGATGTCCACCGAGGCCTCCCAGAACATCACCTACCACTGSEQ ID NO:2434
COL1A2NM_000089.2SEQ ID NO:2435
COPS3NM_003653.2ATGCCCAGTGTTCCTGACTTCGAAACGCTATTCTCACAGGTTCAGCTCTTCATCAGCACTTGTAATGGGGAGSEQ ID NO:2436
COX2NM_000963.1SEQ ID NO:2437
COX3MITO_COX3SEQ ID NO:2438
CPNM_000096.1SEQ ID NO:2439
CRBPNM_002899.2TGGTCTGCAAGCAAGTATTCAAGAAGGTGCAGTGAGGCCCAAGCAGACAACCTTGTCCCAACCAATCAGCSEQ ID NO:2440
CREBBPNM_004380.1SEQ ID NO:2441
CRIP2NM_001312.1SEQ ID NO:2442
cripto(TDGF1offlcialNM_003212.1GGGTCTGTGCCCCATGACACCTGGCTGCCCAAGAAGTGTTCCCTGTGTAAATGCTGGCACGGTCASEQ ID NO:2443
CRK(a)NM_016823.2SEQ ID NO:2444
CRMP1NM_001313.1SEQ ID NO:2445
CRYABNM_001885.1GATGTGATTGAGGTGCATGGAAAACATGAAGAGCGCCAGGATGAACATGGTTTCATCTCCAGGGAGTTCSEQ ID NO:2446
CSEL1NM_001316.2TTACGCAGCTCATGCTCTTGAACGGCTCTTTACTATGCGAGGGCCTAACAATGCCACTCTCTTTACAGCTGCSEQ ID NO:2447
CSF1NM_000757.3SEQ ID NO:2448
CSK(SRC)NM_004383.1CCTGAACATGAAGGAGCTGAAGCTGCTGCAGACCATCGGGAAGGGGGAGTTCGGAGACGTGATGSEQ ID NO:2449
CTAG1BNM_001327.1GCTCTCCATCAGCTCCTGTCTCCAGCAGCTTTCCCTGTTGATGTGGATCACGCAGTGCTTTCTGCCCGTGTTSEQ ID NO:2450
CTGFNM_001901.1SEQ ID NO:2451
CTHRC1NM_138455.2GCTCACTTCGGCTAAAATGCAGAAATGCATGCTGTCAGCGTTGGTATTTCACATTCAATGGAGCTGASEQ ID NO:2452
CTLA4NM_005214.2CACTGAGGTCCGGGTGACAGTGCTTCGGCAGGCTGACAGCCAGGTGACTGAAGTCTGTGCGGCAACCTACSEQ ID NO:2453
CTNNBIP1NM_020248.2GTTTTCCAGGTCGGAGACGGAAGACCGGAGGCAGTAGCTGCAAAGCCCTTGGAACACCCTGGATGCTSEQ ID NO:2454
CTSBNM_001908.1GGCCGAGATCTACAAAAACGGCCCCGTGGAGGGAGCTTTCTCTGTGTATTCGGACTTCCTGCSEQ ID NO:2455
CTSDNM_001909.1SEQ ID NO:2456
CTSHNM_004390.1SEQ ID NO:2457
CTSLNM_001912.1SEQ ID NO:2458
CTSL2NM_001333.2TGTCTCACTGAGCGAGCAGAATCTGGTGGACTGTTCGCGTCCTCAAGGCAATCAGGGCTGCAATGGTSEQ ID NO:2459
CUL1NM_003592.2ATGCCCTGGTAATGTCTGCATTCAACAATGACGCTGGCTTTGTGGCTGCTCTTGATAAGGCTTGTGGTCGCSEQ ID NO:2460
CUL4ANM_003589.1SEQ ID NO:2461
CXCL12NM_000609.3GAGCTACAGATGCCCATGCCGATTCTTCGAAAGCCATGTTGCCAGAGCCAACGTCAAGCATCTCAAASEQ ID NO:2462
CXCR4NM_003467.1TGACCGCTTCTACCCCAATGACTTGTGGGTGGTTGTGTTCCAGTTTCAGCACATCATGGTTGGCCTTATCCTSEQ ID NO:2463
CYBANM_000101.1SEQ ID NO:2464
CYP1B1NM_000104.2CCAGCTTTGTGCCTGTCACTATTCCTCATGCCACCACTGCCAACACCTCTGTCTTGGGCTACCACATTCCCSEQ ID NO:2465
CYP2C8NM_000770.2SEQ ID NO:2466
CYP3A4NM_017460.3SEQ ID NO:2467
CYR61NM_001554.3SEQ ID NO:2468
DAPK1NM_004938.1SEQ ID NO:2469
DCCNM_005215.1SEQ ID NO:2470
DCC_exons18-23X76132_18-23GGTCACCGTTGGTGTCATCACAGTGCTGGTAGTGGTCATCGTGGCTGTGATTTGCACCCGACGCTCSEQ ID NO:2471
DCC_exons6-7X76132_6-7SEQ ID NO:2472
DCKNM_000788.1SEQ ID NO:2473
DDB1NM_001923.2TGCGGATCATCCGGAATGGAATTGGAATCCACGAGCATGCCAGCATTGACTTACCAGGCATCAAAGGASEQ ID NO:2474
DET1NM_017996.2CTTGTGGAGATCACCCAATCAGGTTCTATGCCCGGGACTCGGGCCTGCTCAAGTTTGAGATCCAGGCGGGSEQ ID NO:2475
DHFRNM_000791.2SEQ ID NO:2476
DHPSNM_013407.1SEQ ID NO:2477
DIABLONM_019887.1SEQ ID NO:2478
DIAPH1NM_005219.2CAAGCAGTCAAGGAGAACCAGAAGCGGCGGGAGACAGAAGAAAAGATGAGGCGAGCAAAACTSEQ ID NO:2479
DICER1NM_177438.1TCCAATTCCAGCATCACTGTGGAGAAAAGCTGTTTGTCTCCCCAGCATACTTTATCGCCTTCACTGCCSEQ ID NO:2480
DKK1NM_012242.1TGACAACTACCAGCCGTACCCGTGCGCAGAGGACGAGGAGTGCGGCACTGATGAGTACTGCGCTAGTCCCSEQ ID NO:2481
DLC1NM_006094.3GATTCAGACGAGGATGAGCCTTGTGCCATCAGTGGCAAATGGACTTTCCAAAGGGACAGCAAGAGGTGSEQ ID NO:2482
DPYDNM_000110.2SEQ ID NO:2483
DR4NM_003844.1SEQ ID NO:2484
DR5NM_003842.2SEQ ID NO:2485
DRG1NM_004147.3CCTGGATCTCCCAGGTATCATTGAAGGTGCCAAGGATGGGAAAGGTAGAGGTCGTCAAGTCATTGCASEQ ID NO:2486
DSPNM_004415.1SEQ ID NO:2487
DTYMKNM_012145.1SEQ ID NO:2488
DUSP1NM_004417.2SEQ ID NO:2489
DUSP2NM_004418.2SEQ ID NO:2490
DUTNM_001948.2ACACATGGAGTGCTTCTGGAACTATCAGCCCACTTGACCACCCAGTTTGTGGAAGCACAGGCAAGAGSEQ ID NO:2491
DYRK1BNM_004714.1SEQ ID NO:2492
E2F1NM_005225.1SEQ ID NO:2493
EDN1endothelinNM_001955.1SEQ ID NO:2494
EFNA1NM_004428.2TACATCTCCAAACCCATCCACCAGCATGAAGACCGCTGCTTGAGGTTGAAGGTGACTGTCAGTGGCAASEQ ID NO:2495
EFNA3NM_004952.3ACTACATCTCCACGCCCACTCACAACCTGCACTGGAAGTGTCTGAGGATGAAGGTGTTCGTCTGCTGSEQ ID NO:2496
EFNB1NM_004429.3GGAGCCCGTATCCTGGAGCTCCCTCAACCCCAAGTTCCTGAGTGGGAAGGGCTTGGTGATCTATCCSEQ ID NO:2497
EFNB2NM_004093.2SEQ ID NO:2498
EFPNM_005082.2SEQ ID NO:2499
EGFRNM_005228.1TGTCGATGGACTTCCAGAACCACCTGGGCAGCTGCCAAAAGTGTGATCCAAGCTGTCCCAATSEQ ID NO:2500
EGLN1NM_022051.1SEQ ID NO:2501
EGLN3NM_022073.2GCTGGTCCTCTACTGCGGGAGCCGGCTGGGCAAATACTACGTCAAGGAGAGGTCTAAGGCAATGGTGGSEQ ID NO:2502
EGR1NM_001964.2SEQ ID NO:2503
EGR3NM_004430.2SEQ ID NO:2504
EI24NM_004879.2SEQ ID NO:2505
EIF4ENM_001968.1SEQ ID NO:2506
EIF4EL3NM_004846.1AAGCCGCGGTTGAATGTGCCATGACCCTCTCCCTCTCTGGATGGCACCATCATTGAAGCTGGCGTCASEQ ID NO:2507
ELAVL1NM_001419.2SEQ ID NO:2508
EMP1NM_001423.1SEQ ID NO:2509
EMR3NM_032571.2TGGCCTACCTCTTCACCATCATCAACAGCCTCCAAGGCTTCTTCATCTTCTTGGTCTACTGCCTCCTCASEQ ID NO:2510
EMS1NM_005231.2GGCAGTGTCACTGAGTCCTTGAAATCCTCCCCTGCCCCGCGGGTCTCTGGATTGGGACGCACAGTGCASEQ ID NO:2511
ENO1NM_001428.2CAAGGCCGTGAACGAGAAGTCCTGCAACTGCCTCCTGCTCAAAGTCAACCAGATTGGCTCCGTGACCGSEQ ID NO:2512
EP300NM_001429.1SEQ ID NO:2513
EPAS1NM_001430.3SEQ ID NO:2514
EpCAMNM_002354.1SEQ ID NO:2515
EPHA2NM_004431.2SEQ ID NO:2516
EPHB2NM_004442.4CAACCAGGCAGCTCCATCGGCAGTGTCCATCATGCATCAGGTGAGCCGCACCGTGGACAGCATTACSEQ ID NO:2517
EPHB4NM_004444.3SEQ ID NO:2518
EphB6NM_004445.1ACTGGTCCTCCATCGGCTCCCCAGGAGCTTTGGTTTGAGGTGCAAGGCTCAGCACTCATGCTACACTGGSEQ ID NO:2519
EPM2ANM_005670.2ACTGTGGCACTTAGGGGAGATGACATTTGCTTTGGGCAGAGGCAGCTAGCCAGGACACATTTCCACTSEQ ID NO:2520
ErbB3NM_001982.1SEQ ID NO:2521
ERCC1NM_001983.1GTCCAGGTGGATGTGAAAGATCCCCAGCAGGCCCTCAAGGAGCTGGCTAAGATGTGTATCCTGGCCGSEQ ID NO:2522
ERCC2NM_000400.2TGGCCTTCTTCACCAGCTACCAGTACATGGAGAGCACCGTGGCCTCCTGGTATGAGCAGGGGATCCTTGSEQ ID NO:2523
EREGNM_001432.1SEQ ID NO:2524
ERK1Z11696.1ACGGATCACAGTGGAGGAAGCGCTGGCTCACCCCTACCTGGAGCAGTACTATGACCCGACGGATGAGSEQ ID NO:2525
ERK2NM_002745.1AGTTCTTGACCCCTGGTCCTGTCTCCAGCCCGTCTTGGCTTATCCACTTTGACTCCTTTGAGCCGTTTSEQ ID NO:2526
ESPL1NM_012291.1ACCCCCAGACCGGATCAGGCAAGCTGGCCCTCATGTCCCCTTCACGGTGTTTGAGGAAGTCTGCCCTACASEQ ID NO:2527
EstR1NM_000125.1CGTGGTGCCCCTCTATGACCTGCTGCTGGAGATGCTGGACGCCCACCGCCTACATGCGCCCACTAGCCSEQ ID NO:2528
ETV4NM_001986.1TCCAGTGCCTATGACCCCCCCAGACAAATCGCCATCAAGTCCCCTGCCCCTGGTGCCCTTGGACAGTSEQ ID NO:2529
F3NM_001993.2SEQ ID NO:2530
FABP4NM_001442.1GCTTTGCCACCAGGAAAGTGGCTGGCATGGCCAAACCTAACATGATCATCAGTGTGAATGGGGATGSEQ ID NO:2531
FAPNM_004460.2CTGACCAGAACCACGGCTTATCCGGCCTGTCCACGAACCACTTATACACCCACATGACCCACTTCCSEQ ID NO:2532
fasNM_000043.1SEQ ID NO:2533
faslNM_000639.1SEQ ID NO:2534
FASNNM_004104.4GCCTCTTCCTGTTCGACGGCTCGCCCACCTACGTACTGGCCTACACCCAGAGCTACCGGGCAAAGCSEQ ID NO:2535
FBXO5NM_012177.2SEQ ID NO:2536
FBXW7NM_033632.1CCCCAGTTTCAACGAGACTTCATTTCATTGCTCCCTAAAGAGTTGGCACTCTATGTGCTTTCATTCCTGGAACSEQ ID NO:2537
FDXRNM_004110.2GAGATGATTCAGTTACCGGGAGCCCGGCCCATTTTGGATCCTGTGGATTTCTTGGGTCTCCAGGACAAGATSEQ ID NO:2538
FESNM_002005.2CTCTGCAGGCCTAGGTGCAGCTCCTCAGCGGCTCCAGCTCATATGCTGACAGCTCTTCACAGTCCTGGSEQ ID NO:2539
FGF18NM_003862.1CGGTAGTCAAGTCCGGATCAAGGGCAAGGAGACGGAATTCTACCTGTGCATGAACCGCAAAGGCAAGCSEQ ID NO:2540
FGF2NM_002006.2SEQ ID NO:2541
FGFR1NM_023109.1SEQ ID NO:2542
FGFR2isoform1NM_000141.2SEQ ID NO:2543
FHITNM_002012.1CCAGTGGAGCGCTTCCATGACCTGCGTCCTGATGAAGTGGCCGATTTGTTTCAGACGACCCAGAGAGSEQ ID NO:2544
FIGFNM_004469.2SEQ ID NO:2545
FLJ12455NM_022078.1CCACCAGCATGAAGTTTCGGACAGACATGGCCTTTGTGAGGGGTTCCAGTTGTGCTTCAGACAGCCSEQ ID NO:2546
FLJ20712AK000719.1SEQ ID NO:2547
FLT1NM_002019.1SEQ ID NO:2548
FLT4NM_002020.1ACCAAGAAGCTGAGGACCTGTGGCTGAGCCCGCTGACCATGGAAGATCTTGTCTGCTACAGCTTCCAGGSEQ ID NO:2549
FOSNM_005252.2CGAGCCCTTTGATGACTTCCTGTTCCCAGCATCATCCAGGCCCAGTGGCTCTGAGACAGCCCGCTCCSEQ ID NO:2550
FOXO3ANM_001455.1SEQ ID NO:2551
FPGSNM_004957.3CAGCCCTGCCAGTTTGACTATGCCGTCTTCTGCCCTAACCTGACAGAGGTGTCATCCACAGGCAACSEQ ID NO:2552
FRP1NM_003012.2SEQ ID NO:2553
FSTNM_006350.2SEQ ID NO:2554
FurinNM_002569.1SEQ ID NO:2555
FUSNM_004960.1SEQ ID NO:2556
FUT1NM_000148.1CCGTGCTCATTGCTAACCACTGTCTGTCCCTGAACTCCCAGAACCACTACATCTGGCTTTGGGCAGSEQ ID NO:2557
FUT3NM_000149.1SEQ ID NO:2558
FUT6NM_000150.1CGTGTGTCTCAAGACGATCCCACTGTGTACCCTAATGGGTCCCGCTTCCCAGACAGCACAGGGACCSEQ ID NO:2559
FXYD5NM_014164.4AGAGCACCAAAGCAGCTCATCCCACTGATGACACCACGACGCTCTCTGAGAGACCATCCCCAAGCACSEQ ID NO:2560
FYNNM_002037.3GAAGCGCAGATCATGAAGAAGCTGAAGCACGACAAGCTGGTCCAGCTCTATGCAGTGGTGTCTGAGGAGSEQ ID NO:2561
FZD1NM_003505.1SEQ ID NO:2562
FZD2NM_001466.2SEQ ID NO:2563
FZD6NM_003506.2AATGAGAGAGGTGAAAGCGGACGGAGCTAGCACCCCCAGGTTAAGAGAACAGGACTGTGGTGAACCTSEQ ID NO:2564
G-CateninNM_002230.1TCAGCAGCAAGGGCATCATGGAGGAGGATGAGGCCTGCGGGCGCCAGTACACGCTCAAGAAAACCACCSEQ ID NO:2565
G1P2NM_005101.1CAACGAATTCCAGGTGTCCCTGAGCAGCTCCATGTCGGTGTCAGAGCTGAAGGCGCAGATCSEQ ID NO:2566
GADD45NM_001924.2SEQ ID NO:2567
GADD45BNM_015675.1ACCCTCGACAAGACCACACTTTGGGACTTGGGAGCTGGGGCTGAAGTTGCTCTGTACCCATGAACTCCCASEQ ID NO:2568
GADD45GNM_006705.2CGCGCTGCAGATCCATTTTACGCTGATCCAGGCTTTCTGCTGCGAGAACGACATCGACATAGTGCGSEQ ID NO:2569
GAGE4NM_001474.1SEQ ID NO:2570
GBP1NM_002053.1SEQ ID NO:2571
GBP2NM_004120.2SEQ ID NO:2572
GCLCNM_001498.1CTGTTGCAGGAAGGCATTGATCATCTCCTGGCCCAGCATGTTGCTCATCTCTTTATTAGAGACCCACTGACSEQ ID NO:2573
GCLMNM_002061.1SEQ ID NO:2574
GCNT1NM_001490.3SEQ ID NO:2575
GDF15NM_004864.1CGCTCCAGACCTATGATGACTTGTTAGCCAAAGACTGCCACTGCATATGAGCAGTCCTGGTCCTTCCACTGTSEQ ID NO:2576
GIT1NMB0.2GTGTATGACGAGGTGGATCGAAGAGAAAATGATGCAGTGTGGCTGGCTACCCAAAACCACAGCACTCTGGTSEQ ID NO:2577
GJA1NM_000165.2GTTCACTGGGGGTGTATGGGGTAGATGGGTGGAGAGGGAGGGGATAAGAGAGGTGCATGTTGGTATTTSEQ ID NO:2578
GJB2NM_004004.3SEQ ID NO:2579
GPX1NM_000581.2GCTTATGACCGACCCCAAGCTCATCACCTGGTCTCCGGTGTGTCGCAACGATGTTGCCTGGAACTTTSEQ ID NO:2580
GPX2NM_002083.1SEQ ID NO:2581
Grb10NM_005311.2CTTCGCCTTTGCTGATTGCCTCTCCAAACGCCTGCCTGACGACTGCCTTGGAGCATGTGCGTTATGGSEQ ID NO:2582
GRB14NMB_004490.1SEQ ID NO:2583
GRB2NM_002086.2SEQ ID NO:2584
GRB7NM_005310.1CCATCTGCATCCATCTTGTTTGGGCTCCCCACCCTTGAGAAGTGCCTCAGATAATACCCTGGTGGCCSEQ ID NO:2585
GRIK1NM_000830.2SEQ ID NO:2586
GRO1NM_001511.1SEQ ID NO:2587
GRPNM_002091.1SEQ ID NO:2588
GRPRNM_005314.1SEQ ID NO:2589
GSK3BNM_002093.2GACAAGGACGGCAGCAAGGTGACAACAGTGGTGGCAACTCCTGGGCAGGGTCCAGACAGGCCACAASEQ ID NO:2590
GSTA3NM_000847.3TCTCCAACTTCCCTCTGCTGAAGGCCCTGAAAACCAGAATCAGCAACCTGCCCACGGTGAAGAAGTSEQ ID NO:2591
GSTM1NM_000561.1SEQ ID NO:2592
GSTM3NM_000849.3SEQ ID NO:2593
GSTpNM_000852.2SEQ ID NO:2594
GSTT1NM_000853.1CACCATCCCCACCCTGTCTTCCACAGCCGCCTGAAAGCCACAATGAGAATGATGCACACTGAGGCCSEQ ID NO:2595
H2AFZNM_002106.2SEQ ID NO:2596
HB-EGFNM_001945.1SEQ ID NO:2597
hCRAaU78556.1SEQ ID NO:2598
HDAC1NM_004964.2SEQ ID NO:2599
HDAC2NM_001527.1SEQ ID NO:2600
HDGFNM_004494.1TCCTAGGCATTCTGGACCTCTGGGTTGGGATCAGGGGTAGGAATGGAAGGATGGAGCATCAACAGCSEQ ID NO:2601
hENT1NM_004955.1AGCCGTGACTGTTGAGGTCAAGTCCAGCATCGCAGGCAGCAGCACCTGGGAACGTTACTTSEQ ID NO:2602
HepsinNM_002151.1SEQ ID NO:2603
HER2NM_004448.1CGGTGTGAGAAGTGCAGCAAGCCCTGTGCCCGAGTGTGCTATGGTCTGGGCATGGAGCACTTGCGAGAGGSEQ ID NO:2604
HerstatinAF177761.2CACCCTGTCCTATCCTTCCTCAGACCCTCTTGGGACCTAGTCTCTGCCTTCTACTCTCTACCCCTGGCCSEQ ID NO:2605
HES6NM_018645.3TTAGGGACCCTGCAGCTCTGGAGTGGGTGGAGGGAGGGAGCTACGGGCAGGAGGAAGAATTTTGTAGSEQ ID NO:2606
HGFM29145.1CCGAAATCCAGATGATGATGCTCATGGACCCTGGTGCTACACGGGAAATCCACTCATTCCTTGGGSEQ ID NO:2607
HIF1ANM_001530.1SEQ ID NO:2608
HK1NM_000188.1TACGCACAGAGGCAAGCAGCTAAGAGTCCGGGATCCCCAGCCTACTGCCTCTCCAGCACTTCTCTCSEQ ID NO:2609
HLA-DPB1NM_002121.4SEQ ID NO:2610
HLA-DRANM_019111.3GACGATTTGCCAGCTTTGAGGCTCAAGGTGCATTGGCCAACATAGCTGTGGACAAAGCCAACCTGGASEQ ID NO:2611
HLA-DRB1NM_002124.1GCTTTCTCAGGACCTGGTTGCTACTGGTTCGGCAACTGCAGAAAATGTCCTCCCTTGTGGCTTCCTSEQ ID NO:2612
HLA-GNM_002127.2CCTGCGCGGCTACTACAACCAGAGCGAGGCCAGTTCTCACACCCTCCAGTGGATGATTGGCTGCGACCTGSEQ ID NO:2613
HMGB1NM_002128.3TGGCCTGTCCATTGGTGATGTTGCGAAGAAACTGGGAGAGATGTGGAATAACACTGCTGCAGATGACAAGCSEQ ID NO:2614
hMLHNM_000249.2SEQ ID NO:2615
HNRPABNM_004499.2SEQ ID NO:2616
HNRPDNM_031370.2GCCAGTAAGAACGAGGAGGATGAAGGCCATTCAAACTCCTCCCCACGACACTCTGAAGCAGCGACGSEQ ID NO:2617
HoxA1NM_005522.3AGTGACAGATGGACAATGCAAGAATGAACTCCTTCCTGGAATACCCCATACTTAGCAGTGGCGACTCGGSEQ ID NO:2618
HoxA5NM_019102.2SEQ ID NO:2619
HOXB13NM_006361.2CGTGCCTTATGGTTACTTTGGAGGCGGGTACTACTCCTGCCGAGTGTCCCGGAGCTCGCTGAAACCCTGTGSEQ ID NO:2620
HOXB7NMB_004502.2CAGCCTCAAGTTCGGTTTTCGCTACCGGAGCCTTCCCAGAACAAACTTCTTGTGCGTTTGCTTCCAACSEQ ID NO:2621
HRASNM_005343.2GGACGAATACGACCCCACTATAGAGGATTCCTACCGGAAGCAGGTGGTCATTGATGGGGAGACGTGCSEQ ID NO:2622
HSBP1NM_001537.1GGAGATGGCCGAGACTGACCCCAAGACCGTGCAGGACCTCACCTCGGTGGTGCAGACACTCCTGCAGSEQ ID NO:2623
HSD17B1NM_000413.1SEQ ID NO:2624
HSD17B2NM_002153.1GCTTTCCAAGTGGGGAATTAAAGTTGCTTCCATCCAACCTGGAGGCTTCCTAACAAATATCGCAGGCASEQ ID NO:2625
HSPA1ANM_005345.4CTGCTGCGACAGTCCACTACCTTTTTCGAGAGTGACTCCCGTTGTCCCAAGGCTTCCCAGAGCGAACCTGSEQ ID NO:2626
HSPA1BNM_005346.3GGTCCGCTTCGTCTTTCGAGAGTGACTCCCGCGGTCCCAAGGCTTTCCAGAGCGAACCTGTGCSEQ ID NO:2627
HSPA4NM_002154.3SEQ ID NO:2628
HSPA5NM_005347.2SEQ ID NO:2629
HSPA8NM_006597.3SEQ ID NO:2630
HSPB1NM_001540.2SEOIDNO:2631
HSPCANM_005348.2CAAAAGGCAGAGGCTGATAAGAACGACAAGTCTGTGAAGGATCTGGTCATCTTGCTTTATGAAACTGCGCTSEQ ID NO:2632
HSPE1NM_002157.1SEQ ID NO:2633
HSPG2NM_005529.2GAGTACGTGTGCCGAGTGTTGGGCAGCTCCGTGCCTCTAGAGGCCTCTGTCCTGGTCACCATTGAGSEQ ID NO:2634
ICAM1NM_000201.1GCAGACAGTGACCATCTACAGCTTTCCGGCGCCCAACGTGATTCTGACGAAGCCAGAGGTCTCAGAAGSEQ ID NO:2635
ICAM2NM_000873.2GGTCATCCTGACACTGCAACCCACTTTGGTGGCTGTGGGCAAGTCCTTCACCATTGAGTGCASEQ ID NO:2636
ID1NM_002165.1AGAACCGCAAGGTGAGCAAGGTGGAGATTCTCCAGCACGTCATCGACTACATCAGGGACCTTCAGTTGGASEQ ID NO:2637
ID2NM_002166.1SEQ ID NO:2638
ID3NM_002167.2SEQ ID NO:2639
ID4NM_001546.2SEQ ID NO:2640
IFIT1NM_001548.1SEQ ID NO:2641
IGF1NM_000618.1SEQ ID NO:2642
IGF1RNM_000875.2SEQ ID NO:2643
IGF2NM_000612.2SEQ ID NO:2644
IGFBP2NM_000597.1SEQ ID NO:2645
IGFBP3NM_000598.1ACGCACCGGGTGTCTGATCCCAAGTTCCACCCCCTCCATTCAAAGATAATCATCATCAAGAAAGGGCASEQ ID NO:2646
IGFBP5NM_000599.1TGGACAAGTACGGGATGAAGCTGCCAGGCATGGAGTACGTTGACGGGGACTTTCAGTGCCACACCTTCGSEQ ID NO:2647
IGFBP6NM_002178.1SEQ ID NO:2648
IGFBP7NM_001553GGGTCACTATGGAGTTCAAAGGACAGAACTCCTGCCTGGTGACCGGGACAACCTGGCCATTCAGACCCSEQ ID NO:2649
IHHNM_002181.1SEQ ID NO:2650
IL-8NM_000584.2AAGGAACCATCTCACTGTGTGTAAACATGACTTCCAAGCTGGCCGTGGCTCTCTTGGCAGCCTTCCTGATSEQ ID NO:2651
IL10NM_000572.1SEQ ID NO:2652
IL1BNM_000576.2AGCTGAGGAAGATGCTGGTTCCCTGCCCACAGACCTTCCAGGAGAATGACCTGAGCACCTTCTTTCCSEQ ID NO:2653
IL6NM_000600.1CCTGAACCTTCCAAAGATGGCTGAAAAAGATGGATGCTTCCAATCTGGATTCAATGAGGAGACTTGCCTGGTSEQ ID NO:2654
IL6STNM_002184.2SEQ ID NO:2655
ILT-2NM_006669.1AGCCATCACTCTCAGTGCAGCCAGGTCCTATCGTGGCCCCTGAGGAGACCCTGACTCTGCAGTSEQ ID NO:2656
IMP-1NM_006546.2GAAAGTGTTTGCGGAGCACAAGATCTCCTACAGCGGCCAGTTCTTGGTCAAATCCGGCTACGCCTTCSEQ ID NO:2657
IMP2NM_006548.3SEQ ID NO:2658
ING1LNM_001564.1SEQ ID NO:2659
ING5NM_032329.4CCTACAGCAAGTGCAAGGAATACAGTGACGACAAAGTGCAGCTGGCCATGCAGACCTACGAGATGSEQ ID NO:2660
INHANM_002191.2SEOIDNO:2661
INHBANM_002192.1SEQ ID NO:2662
INHBBNM_002193.1SEQ ID NO:2663
IRS1NM_005544.1SEQ ID NO:2664
ITGA3NM_002204.1SEQ ID NO:2665
ITGA4NM_000885.2CAACGCTTCAGTGATCAATCCCGGGGCGATTTACAGATGCAGGATCGGAAAGAATCCCGGCCAGACSEQ ID NO:2666
ITGA5NM_002205.1SEQ ID NO:2667
ITGA6NM_000210.1CAGTGACAAACAGCCCTTCCAACCCAAGGAATCCCACAAAAGATGGCGATGACGCCCATGAGGCTAAACSEQ ID NO:2668
ITGA7NM_002206.1SEQ10NO:2669
ITGAVNM_002210.2SEQ ID NO:2670
ITGB1NM_002211.2SEQ ID NO:2671
ITGB3NM_000212.1SEQ ID NO:2672
ITGB4NM_000213.2CAAGGTGCCCTCAGTGGAGCTCACCAACCTGTACCCGTATTGCGACTATGAGATGAAGGTGTGCGCSEQ ID NO:2673
ITGB5NM_002213.3TCGTGAAAGATGACCAGGAGGCTGTGCTATGTTTCTACAAAACCGCCAAGGACTGCGTCATGATGTTCACCSEQ ID NO:2674
K-rasNM_033360.2GTCAAAATGGGGAGGGACTAGGGCAGTTTGGATAGCTCAACAAGATACAATCTCACTCTGTGGTGGTCCTGSEQ ID NO:2675
KCNH2isoa/bNM_000238.2SEQ ID NO:2676
KCNH2isoa/cNM_172057.1SEQ ID NO:2677
KCNK4NM_016611.2CCTATCAGCCGCTGGTGTGGTTCTGGATCCTGCTCGGCCTGGCTTACTTCGCCTCAGTGCTCACCACCASEQ ID NO:2678
KDRNM_002253.1GAGGACGAAGGCCTCTACACCTGCCAGGCATGCAGTGTTCTTGGCTGTGCAAAAGTGGAGGCATTTTTSEQ ID NO:2679
Ki-67NM_002417.1SEQ ID NO:2680
KIAAG125NM_014792.2GTGTCCTGGTCCATGTGGTGCACGTGTCTCCACCTCCAAGGAGAGGCTCCTCAGTGTGCACCTCCCSEQ ID NO:2681
KIF22NM_007317.1CTAAGGCACTTGCTGGAAGGGCAGAATGCCAGTGTGCTTGCCTATGGACCCACAGGAGCTGGGAAGASEQ ID NO:2682
KIF2CNM_006845.2SEQ ID NO:2683
KIFC1XM_371813.1CCACAGGGTTGAAGAACCAGAAGCCAGTTCCTGCTGTTCCTGTCCAGAAGTCTGGCACATCAGGTGSEQ ID NO:2684
KitlngNM_000899.1SEQ ID NO:2685
KLF5NM_001730.3SEQ ID NO:2686
KLF6.NM_001300.4CACGAGACCGGCTACTTCTCGGCGCTGCCGTCTCTGGAGGAGTACTGGCAACAGACCTGCCTAGAGCSEQ ID NO:2687
KLK10NM_002776.1SEQ ID NO:2688
KLK6NM_002774.2SEQ ID NO:2689
KLRK1NM_007360.1TGAGAGCCAGGCTTCTTGTATGTCTCAAAATGCCAGCCTTCTGAAAGTATACAGCAAAGAGGACCAGGATSEQ ID NO:2690
KNTC2NM_006101.1ATGTGCCAGTGAGCTTGAGTCCTTGGAGAAACACAAGCACCTGCTAGAAAGTACTGTTAACCAGGGGCTCASEQ ID NO:2691
KRAS2NMB_004985.3SEQ ID NO:2692
KRT19NM_002276.1SEQ ID NO:2693
KRT8NM_002273.1SEQ ID NO:2694
LAMA3NM_000227.2SEQ ID NO:2695
LAMB3NM_000228.1ACTGACCAAGCCTGAGACCTACTGCACCCAGTATGGCGAGTGGCAGATGAAATGCTGCAAGTGTGACSEQ ID NO:2696
LAMC2NM_005562.1SEQ ID NO:2697
LATNM_014387.2GTGAACGTTCCGGAGAGCGGGGAGAGCGCAGAAGCGTCTCTGGATGGCAGCCGGGAGTATGTGAATGTSEQ ID NO:2698
LCN2NM_005564.2SEQ ID NO:2699
LDLRAP1NM_015627.1CAGTGCCTCTCGCCTGTCGACTGGGACAAGCCTGACAGCAGCGGCACAGAGCAGGATGACCTCTTCASEQ ID NO:2700
LEFNM_016269.2GATGACGGAAAGCATCCAGATGGAGGCCTCTACAACAAGGGACCCTCCTACTCGAGTTATTCCGGGSEQ ID NO:2701
LGALS3NM_002306.1AGCGGAAAATGGCAGACAATTTTTCGCTCCATGATGCGTTATCTGGGTCTGGAAACCCAAACCCTCAAGSEQ ID NO:2702
LGMNNM_001008530.1TTGGTGCCGTTCCTATAGATGATCCTGAAGATGGAGGCAAGCACTGGGTGGTGATCGTGGCAGGTTCSEQ ID NO:2703
LILRB3NM_006864.1CACCTGGTCTGGGAAGATACCTGGAGGTTTTGATTGGGGTCTCGGTGGCCTTCGTCCTGCTGCTCTTSEQ ID NO:2704
LMNB1NM_005573.1TGCAAACGCTGGTGTCACAGCCAGCCCCCCAACTGACCTCATCTGGAAGAACCAGAACTCGTGGGGSEQ ID NO:2705
LMYCNM_012421.1CCCATCCAGAACACTGATTGCTGTCATTCAAGTGAAAGGGATGGAGGTCAGAAAGGGTGCATAGAAAGCAGSEQ ID NO:2706
LOXNM_002317.3CCAATGGGAGAACAACGGGCAGGTGTTCAGCTTGCTGAGCCTGGGCTCACAGTACCAGCCTCAGCGSEQ ID NO:2707
LOXL2NM_002318.1TCAGCGGGCTCTTAAACAACCAGCTGTCCCCGCAGTAAAGAAGCCTGCGTGGTCAACTCCTGTCTTSEQ ID NO:2708
LRP5NM_002335.1CGACTATGACCCACTGGACAAGTTCATCTACTGGGTGGATGGGCGCCAGAACATCAAGCGAGCCAAGSEQ ID NO:2709
LRP6NM_002336.1GGATGTAGCCATCTCTGCCTCTATAGACCTCAGGGCCTTCGCTGTGCTTGCCCTATTGGCTTTGAACTSEQ ID NO:2710
LY6DNM_003695.2AATGCTGATGACTTGGAGCAGGCCCCACAGACCCCACAGAGGATGAAGCCACCCCACAGAGGATGCAGSEQ ID NO:2711
MADnNM_002357.1SEQ ID NO:2712
MAD1L1NM_003550.1AGAAGCTGTCCCTGCAAGAGCAGGATGCAGCGATTGTGAAGAACATGAAGTCTGAGCTGGTACGGCTSEQ ID NO:2713
MAD2L1NM_002358.2SEQ ID NO:2714
MADH2NM_005901.2GCTGCCTTTGGTAAGAACATGTCGTCCATCTTGCCATTCACGCCGCCAGTTGTGAAGAGACTGCTGGGATSEQ ID NO:2715
MADH4NM_005359.3SEQ ID NO:2716
MADH7NM_005904.1SEQ ID NO:2717
MAP2NM_031846.1CGGACCACCAGGTCAGAGCCAATTCGCAGAGCAGGGAAGAGTGGTACCTCAACACCCACTACCCCTGSEQ ID NO:2718
MAP2K1NM_002755.2SEQ ID NO:2719
MAP3K1XM_042066.8GGTTGGCATCAAAAGGAACTGGTGCAGGAGAGTTTCAGGGACAATTACTGGGGACAATTGCATTTATGGCASEQ ID NO:2720
MAPK14NM_139012.1SEQ ID NO:2721
MaspinNM_002639.1SEQ ID NO:2722
MAXNM_002382.3SEQ ID NO:2723
MCM2NM_004526.1SEQ ID NO:2724
MCM3NM_002388.2SEQ ID NO:2725
MCM6NM_005915.2SEQ ID NO:2726.
MCP1NM_002982.1CGCTCAGCCAGATGCAATCAATGCCCCAGTCACCTGCTGTTATAACTTCACCAATAGGAAGATCTCAGTGCSEQ ID NO:2727
MDKNM_002391.2GGAGCCGACTGCAAGTACAAGTTTGAGAACTGGGGTGCGTGTGATGGGGGCACAGGCACCAAAGTCSEQ ID NO:2728
MDM2NM_002392.1CTACAGGGACGCCATCGAATCCGGATCTTGATGCTGGTGTAAGTGAACATTCAGGTGATTGGTTGGATSEQ ID NO:2729
MGAT5NM_002410.2SEQ ID NO:2730
MGMTNM_002412.1GTGAAATGAAACGCACCACACTGGACAGCCCTTTGGGGAAGCTGGAGCTGTCTGGTTGTGAGCAGGGTCSEQ ID NO:2731
mGST1NM_020300.2SEQ ID NO:2732
MMP1NM_002421.2SEQ ID NO:2733
MMP12NM_002426.1SEQ ID NO:2734
MMP2NM_004530.1SEQ ID NO:2735
MMP7NM_002423.2SEQ ID NO:2736
MMP9NM_004994.1GAGAACCAATCTCACCGACAGGCAGCTGGCAGAGGAATACCTGTACCGCTATGGTTACACTCGGGTGSEQ ID NO:2737
MRP1NM_004996.2SEQ ID NO:2738
MRP2NM_000392.1AGGGGATGACTTGGACACATCTGCCATTCGACATGACTGCAATTTTGACAAAGCCATGCAGTTTTSEQ ID NO:2739
MRP3NM_003786.2SEQ ID NO:2740
MRP4NM_005845.1AGCGCCTGGAATCTACAACTCGGAGTCCAGTGTTTTCCCACTTGTCATCTTCTCTCCAGGGGCTCTSEQ ID NO:2741
MRPL40NM_003776.2ACTTGCAGGCTGCTATCCTTAACATGCTGCCCCTGAGAGTAGGAATGACCAGGGTTCAAGTCTGCTSEQ ID NO:2742
MSH2NM_000251.1SEQ ID NO:2743
MSH3NM_002439.1SEQ ID NO:2744
MSH6NM_000179.1TCTATTGGGGGATTGGTAGGAACCGTTACCAGCTGGAAATTCCTGAGAATTTCACCACTCGCAATTTGSEQ ID NO:2745
MT3NM_005954.1SEQ ID NO:2746
MTA1NM_004689.2SEQ ID NO:2747
MUC1NM_002456.1GGCCAGGATCTGTGGTGGTACAATTGACTCTGGCCTTCCGAGAAGGTACCATCAATGTCCACGACGTGGAGSEQ ID NO:2748
MUC2NM_002457.1CTATGAGCCATGTGGGAACCGGAGCTTCGAGACCTGCAGGACCATCAACGGCATCCACTCCAACATSEQ ID NO:2749
MUC5BXM_039877.11TGCCCTTGCACTGTCCTAACGGCTCAGCCATCCTGCACACCTACACCCACGTGGATGAGTGTGGCTGSEQ ID NO:2750
MUTYHNM_012222.1GTACGACCAAGAGAAACGGGACCTACCATGGAGAAGACGGGCAGAAGATGAGATGGACCTGGACAGGSEQ ID NO:2751
MVPNM_017458.1SEQ ID NO:2752
MX1NM_002462.2SEQ ID NO:2753
MXD4NM_006454.2SEQ ID NO:2754
MYBL2NM_002466.1SEQ ID NO:2755
MYH11NM_002474.1SEQ ID NO:2756
MYLKNM_053025.1SEQ ID NO:2757
NAT2NM_000015.1SEQ ID NO:2758
NAV2NM_182964.3CTCTCCCAGCACAGCTTGAACCTCACTGAGTCAACCAGCCTGGACATGTTGCTGGATGACACTGGTGSEQ ID NO:2759
NCAM1NM_000615.1SEQ ID NO:2760
NDE1NM_017668.1CTACTGCGGAAAGTCGGGGCACTGGAGTCCAAACTCGCTTCCTGCCGGAACCTCGTGTACGATCAGTCCSEQ ID NO:2761
NDRG1NM_006096.2AGGGCAACATTCCACAGCTGCCCTGGCTGTGATGAGTGTCCTTGCAGGGGCCGGAGTAGGAGCACTGSEQ ID NO:2762
NDUFS3NM_004551.1TATCCATCCTGATGGCGTCATCCCAGTGCTGACTTTCCTCAGGGATCACACCAATGCACAGTTCAASEQ ID NO:2763
NEDD8NM_006156.1TGCTGGCTACTGGGTGTTAGTTTGCAGTCCTGTGTGCTTCCCTCTCTTATGACTGTGTCCCTGGTTGTCSEQ ID NO:2764
NEK2NM_002497.1SEQ ID NO:2765
NF2NM_000268.2ACTCCAGAGCTGACCTCCACCGCCCAGCCTGGGAAGTCATTGTAGGGAGTGAGACACTGAAGCCCTGASEQ ID NO:2766
NFKBp50NM_003998.1SEQ ID NO:2767
NFKBp65NM_021975.1CTGCCGGGATGGCTTCTATGAGGCTGAGCTCTGCCCGGACCGCTGCATCCACAGTTTCCAGAACCTGGSEQ ID NO:2768
NISCHNM_007184.1SEQ ID NO:2769
Nkd-1NM_033119.3GAGAGAGTGAGCGAACCCTGCCCAGGCTCCAAGAAGCAGCTGAAGTTTGAAGAGCTCCAGTGCGACGSEQ ID NO:2770
NMBNM_021077.1GGCTGCTGGTACAAATACTGCAGAAATGACACCAATAATAGGGGCAGACACAACAGCGTGGCTTAGATTGSEQ ID NO:2771
NMBRNM_002511.1SEQ ID NO:2772
NME1NM_000269.1SEQ ID NO:2773
NOS3NM_000603.2ATCTCCGCCTCGCTCATGGGCACGGTGATGGCGAAGCGAGTGAAGGCGACAATCCTGTATGGCTCCGASEQ ID NO:2774
NOTCH1NM_017617.2SEQ ID NO:2775
NOTCH2NM_024408.2SEQ ID NO:2776
NPM1NM_002520.2SEQ ID NO:2777
NR4A1NM_002135.2CACAGCTTGCTTGTCGATGTCCCTGCCTTCGCCTGCCTCTCTGCCCTTGTCCTCATCACCGACCGGCATSEQ ID NO:2778
NRG1NM_013957.1SEQ ID NO:2779
NRP1NM_003873.1SEQ ID NO:2780
NRP2NM_003872.1SEQ ID NO:2781
NTN1NM_004822.1AGAAGGACTATGCCGTCCAGATCCACATCCTGAAGGCGGACAAGGCGGGGGACTGGTGGAAGTTCACGGSEQ ID NO:2782
NUFIP1NM_012345.1SEQ ID NO:2783
ODC1NM_002539.1SEQ ID NO:2784
OPN,osteopontinNM_000582.1SEQ ID NO:2785
ORC1LNM_004153.2TCCTTGACCATACCGGAGGGTGCATGTACATCTCCGGTGTCCCTGGGACAGGGAAGACTGCCACTGSEQ ID NO:2786
OSMNM_020530.3GTTTCTGAAGGGGAGGTCACAGCCTGAGCTGGCCTCCTATGCCTCATCATGTCCCAAACCAGACACCTSEQ ID NO:2787
OSMRNM_003999.1SEQ ID NO:2788
P14ARFS78535.1SEQ ID NO:2789
p16-INK4L27211.1SEQ ID NO:2790
p21NM_000389.1TGGAGACTCTCAGGGTCGAAAACGGCGGCAGACCAGCATGACAGATTTCTACCACTCCAAACGCCSEQ ID NO:2791
p27NM_004064.1CGGTGGACCACGAAGAGTTAACCCGGGACTTGGAGAAGCACTGCAGAGACATGGAAGAGGCGAGCCSEQ ID NO:2792
P53NM_000546.2CTTTGAACCCTTGCTTGCAATAGGTGTGCGTCAGAAGCACCCAGGACTTCCATTTGCTTTGTCCCGGGSEQ ID NO:2793
p53R2AB036063.1SEQ ID NO:2794
PADI4NM_012387.1AGCAGTGGCTTGCTTTCTTCTCCTGTGATGTCCCAGTTTCCCACTCTGAAGATCCCAACATGGTCCTAGCASEQ ID NO:2795
PAI1NM_000602.1SEQ ID NO:2796
Pak1NM_002576.3GAGCTGTGGGTTGTTATGGAATACTTGGCTGGAGGCTCCTTGACAGATGTGGTGACAGAAACTTGCATGGSEQ ID NO:2797
PARCNM_015089.1GGAGCTGACCTGCTTCCTACATCGCCTGGCCTCGATGCATAAGGACTATGCTGTGGTGCTCTGCTSEQ ID NO:2798
PCAFNM_003884.3AGGTGGCTGTGTTACTGCAACGTGCCACAGTTCTGCGACAGTCTACCTCGGTACGAAACCACACAGGTGSEQ ID NO:2799
PCNANM_002592.1SEQ ID NO:2800
PDGFANM_002607.2TTGTTGGTGTGCCCTGGTGCCGTGGTGGCGGTCACTCCCTCTGCTGCCAGTGTTTGGACAGAACCCASEQ ID NO:2801
PDGFBNM_002608.1ACTGAAGGAGACCCTTGGAGCCTAGGGGCATCGGCAGGAGAGTGTGTGGGCAGGGTTATTTASEQ ID NO:2802
PDGFCNM_016205.1SEQ ID NO:2803
PDGFDNM_025208.2SEQ ID NO:2804
PDGFRaNM_006206.2SEQ ID NO:2805
PDGFRbNM_002609.2CCAGCTCTCCTTCCAGCTACAGATCAATGTCCCTGTCCGAGTGCTGGAGCTAAGTGAGAGCCACCCSEQ ID NO:2806
PFN1NM_005022.2GGAAAACGTTCGTCAACATCACGCCAGCTGAGGTGGGTGTCCTGGTTGGCAAAGACCGGTCAAGTTTTSEQ ID NO:2807
PFN2NM_053024.1SEQ ID NO:2808
PGK1NM_000291.1SEQ ID NO:2809
P13KNM_002646.2SEQ ID NO:2810
PI3KC2ANM_002645.1SEQ ID NO:2811
PIK3CANM_006218.1GTGATTGAAGAGCATGCCAATTGGTCTGTATCCCGAGAAGCAGGATTTAGCTATTCCCACGCAGGACSEQ ID NO:2812
PIM1NM_002648.2CTGCTCAAGGACACCGTCTACACGGACTTCGATGGGACCCGAGTGTATAGCCCTCCAGAGTGGATCCSEQ ID NO:2813
Pin1NM_006221.1GATCAACGGCTACATCCAGAAGATCAAGTCGGGAGAGGAGGACTTTGAGTCTCTGGCCTCACAGTTCASEQ ID NO:2814
PKD1NM_000296.2CAGCACCAGCGATTACGACGTTGGCTGGGAGAGTCCTCACAATGGCTCGGGGACGTGGGCCTATTCAGSEQ ID NO:2815
PKR2NM_002654.3CCGCCTGGACATTGATTCACCACCCATCACAGCCCGGAACACTGGCATCATCTGTACCATTGGCCCAGSEQ ID NO:2816
PLA2G2ANM_000300.2SEQ ID NO:2817
PLAURNM_002659.1SEQ ID NO:2818
PLKNM_005030.2AATGAATACAGTATTCCCAAGCACATCAACCCCGTGGCCGCCTCCCTCATCCAGAAGATGCTTCAGACASEQ ID NO:2819
PLK3NM_004073.2TGAAGGAGACGTACCGCTGCATCAAGCAGGTTCACTACACGCTGCCTGCCAGCCTCTCACTGCCTGSEQ ID NO:2820
PLOD2NM_000935.2SEQ ID NO:2821
PMS1NM_000534.2SEQ ID NO:2822
PMS2NM_000535.2SEQ ID NO:2823
PPARGNM_005037.3TGACTTTATGGAGCCCAAGTTTGAGTTTGCTGTGAAGTTCAATGCACTGGAATTAGATGACAGCGACTTGGCSEQ ID NO:2824
PPIDNM_005038.1TCCTCATTTGGATGGGAAACATGTGGTGTTTGGCCAAGTAATTAAAGGAATAGGAGTGGCAAGGATATTGGSEQ ID NO:2825
PPM1DNM_003620.1GCCATCCGCAAAGGCTTTCTCGCTTGTCACCTTGCCATGTGGAAGAAACTGGCGGAATGGCCSEQ ID NO:2826
PPP2R4NM_178001.1SEQ ID NO:2827
PRNM_000926.2SEQ ID NO:2828
PRDX2NM_005809.4GGTGTCCTTCGCCAGATCACTGTTAATGATTTGCCTGTGGGACGCTCCGTGGATGAGGCTCTGCGGCTGSEQ ID NO:2829
PRDX3NM_006793.2SEQ ID NO:2830
PRDX4NM_006406.1SEQ ID NO:2831
PRDX6NM_004905.2SEQ ID NO:2832
PRKCANM_002737.1CAAGCAATGCGTCATCAATGTCCCCAGCCTCTGCGGAATGGATCACACTGAGAAGAGGGGGCGGATTTACSEQ ID NO:2833
PRKCB1NM_002738.5GACCCAGCTCCACTCCTGCTTCCAGACCATGGACCGCCTGTACTTTGTGATGGAGTACGTGAATGGGSEQ ID NO:2834
PRKCDNM_006254.1CTGACACTTGCCGCAGAGAATCCCTTTCTCACCCACCTCATCTGCACCTTCCAGACCAAGGACCACCTSEQ ID NO:2835
PRKRNM_002759.1SEQ ID NO:2836
pS2NM_003225.1SEQ ID NO:2837
PTCHNM_000264.2CCACGACAAAGCCGACTACATGCCTGAAACAAGGCTGAGAATCCCGGCAGCAGAGCCCATCGAGTASEQ ID NO:2838
PTENNM_000314.1SEQ ID NO:2839
PTGER3NM_000957.2SEQ ID NO:2840
PTHLHNM_002820.1SEQ ID NO:2841
PTHR1NM_000316.1SEQ ID NO:2842
PTK2NM_005607.3GACCGGTCGAATGATAAGGTGTACGAGAATGTGACGGGCCTGGTGAAAGCTGTCATCGAGATGTCCAGSEQ ID NO:2843
PTK2BNM_004103.3SEQ ID NO:2844
PTP4A3NM_007079.2AATATTTGTGCGGGGTATGGGGGTGGGTTTTTAAATCTCGTTTCTCTTGGACAAGCACAGGGATCTCGTTSEQ ID NO:2845
PTP4A3v2NM_032611.1CCTGTTCTCGGCACCTTAAATTATTAGACCCCGGGGCAGTCAGGTGCTCCGGACACCCGAAGGCAATASEQ ID NO:2846
PTPD1NM_007039.2SEQ ID NO:2847
PTPN1NM_002827.2SEQ ID NO:2848
PTPRFNM_002840.2SEQ ID NO:2849
PTPRJNM_002843.2SEQ ID NO:2850
PTPRONM_030667.1CATGGCCTGATCATGGTGTGCCCACAGCAAATGCTGCAGAAAGTATCCTGCAGTTTGTACACATGGSEQ ID NO:2851
PTTG1NM_004219.2SEQ ID NO:2852
RAB32NM_006834.2SEQ ID NO:2853
RAB6CNM_032144.1SEQ ID NO:2854
RAC1NM_006908.3TGTTGTAAATGTCTCAGCCCCTCGTTCTTGGTCCTGTCCCTTGGAACCTTTGTACGCTTTGCTCAASEQ ID NO:2855
RAD51CNM_058216.1SEQ ID NO:2856
RAD54LNM_003579.2AGCTAGCCTCAGTGACACACATGACAGGTTGCACTGCCGACGTTGTGTCAACAGCCGTCAGATCCGGSEQ ID NO:2857
RAF1NM_002880.1SEQ ID NO:2858
RALBP1NM_006788.2SEQ ID NO:2859
RANBP2NM_006267.3SEQ ID NO:2860
ranBP7NM_006391.1SEQ ID NO:2861
RANBP9NM_005493.2SEQ ID NO:2862
RAP1GDS1NM_021159.3TGTGGATGCTGGATTGATTTCACCACTGGTGCAGCTGCTAAATAGCAAAGACCAGGAAGTGCTGCTTSEQ ID NO:2863
RARANM_000964.1SEQ ID NO:2864
RARBNM_016152.2SEQ ID NO:2865
RASSF1NM_007182.3AGTGGGAGACACCTGACCTTTCTCAAGCTGAGATTGAGCAGAAGATCAAGGAGTACAATGCCCAGATCASEQ ID NO:2866
RBM5NM_005778.1CGAGAGGGAGAGCAAGACCATCATGCTGCGCGGCCTTCCCATCACCATCACAGAGAGCGATATTCGAGASEQ ID NO:2867
RBX1NM_014248.2SEQ ID NO:2868
RCC1NM_001269.2GGGCTGGGTGAGAATGTGATGGAGAGGAAGAAGCCGGCCCTGGTATCCATTCCGGAGGATGTTGTGSEQ ID NO:2869
REG4NM_032044.2SEQ ID NO:2870
RFCNM_003056.1SEQ ID NO:2871
RhoBNM_004040.2AAGCATGAACAGGACTTGACCATCTTTCCAACCCCTGGGGAAGACATTTGCAACTGACTTGGGGAGGSEQ ID NO:2872
rhoCNM_175744.1CCCGTTCGGTCTGAGGAAGGCCGGGACATGGCGAACCGGATCAGTGCCTTTGGCTACCTTGAGTGCTCSEQ ID NO:2873
RIZ1NM_012231.1SEQ ID NO:2874
RNF11NM_014372.3SEQ ID NO:2875
ROCK1NM_005406.1SEQ ID NO:2876
ROCK2NM_004850.3GATCCGAGACCCTCGCTCCCCCATCAACGTGGAGAGCTTGCTGGATGGCTTAAATTCCTTGGTCCTSEQ ID NO:2877
RPLPONM_001002.2SEQ ID NO:2878
RPS13NM_001017.2SEQ ID NO:2879
RRM1NM_001033.1GGGCTACTGGCAGCTACATTGCTGGGACTAATGGCAATTCCAATGGCCTTGTACCGATGCTGAGAGSEQ ID NO:2880
RRM2NM_001034.1CAGCGGGATTAAACAGTCCTTTAACCAGCACAGCCAGTTAAAAGATGCAGCCTCACTGCTTCAACGCAGATSEQ ID NO:2881
RTN4NM_007008.1SEQ ID NO:2882
RUNX1NM_001754.2AACAGAGACATTGCCAACCATATTGGATCTGCTTGCTGTCCAAACCAGCAAACTTCCTGGGCAAATCACSEQ ID NO:2883
RXRANM_002957.3GCTCTGTTGTGTCCTGTTGCCGGCTCTGGCCTTCCTGTGACTGACTGTGAAGTGGCTTCTCCGTACSEQ ID NO:2884
S100A1NM_006271.1TGGACAAGGTGATGAAGGAGCTAGACGAGAATGGAGACGGGGAGGTGGACTTCCAGGAGTATGTGGTGCTSEQ ID NO:2885
S100A2NM_005978.2SEQ ID NO:2886
S100A4NM_002961.2GACTGCTGTCATGGCGTGCCCTCTGGAGAAGGCCCTGGATGTGATGGTGTCCACCTTCCACAAGTACTCGSEQ ID NO:2887
S100A8NM_002964.3SEQ ID NO:2888
S100A9NM_002965.2CTTTGGGACAGAGTGCAAGACGATGACTTGCAAAATGTCGCAGCTGGAACGCAACATAGAGACCASEQ ID NO:2889
S100PNM_005980.2AGACAAGGATGCCGTGGATAAATTGCTCAAGGACCTGGACGCCAATGGAGATGCCCAGGTGGACTTCSEQ ID NO:2890
SATNM_002970.1CCTTTTACCACTGCCTGGTTGCAGAAGTGCCGAAAGAGCACTGGACTCCGGAAGGACACAGCATTGTSEQ ID NO:2891
SBA2NM_018639.3GGACTCAACGATGGGCAGATCAAGATCTGGGAGGTGCAGACAGGGCTCCTGCTTTTGAATCTTTCCGSEQ ID NO:2892
SDC1NM_002997.1SEQ ID NO:2893
SEMA3BNM_004636.1GCTCCAGGATGTGTTTCTGTTGTCCTCGCGGGACCACCGGACCCCGCTGCTCTATGCCGTCTTCTCCACGTSEQ ID NO:2894
SEMA3FNM_004186.1SEQ ID NO:2895
SEMA4BNM_020210.1TTCCAGCCCAACACAGTGAACACTTTGGCCTGCCCGCTCCTCTCCAACCTGGCGACCCGACTCSEQIDNO:2896
SFRP2NM_003013.2CAAGCTGAACGGTGTGTCCGAAAGGGACCTGAAGAAATCGGTGCTGTGGCTCAAAGACAGCTTGCASEQ ID NO:2897
SFRP4NM_003014.2TACAGGATGAGGCTGGGCATTGCCTGGGACAGCCTATGTAAGGCCATGTGCCCCTTGCCCTAACAACSEQ ID NO:2898
SGCBNM_000232.1SEQ ID NO:2899
SHC1NM_003029.3CCAACACCTTCTTGGCTTCTGGGACCTGTGTTCTTGCTGAGCACCCTCTCCGGTTTGGGTTGGGATAACAGSEQ ID NO:2900
SHHNM_000193.2GTCCAAGGCACATATCCACTGCTCGGTGAAAGCAGAGAACTCGGTGGCGGCCAAATCGGGAGGCTGCTTCSEQ ID NO:2901
SINM_001041.1SEQ ID NO:2902
Siah-1NM_003031.2TTGGCATTGGAACTACATTCAATCCGCGGTATCCTCGGATTAGTTCTAGGACCCCCTTCTCCATACCSEQ ID NO:2903
SIAT4ANM_003033.2AACCACAGTTGGAGGAGGACGGCAGAGACAGTTTCCCTCCCCGCTATACCAACACCCTTCCTTCGSEQ ID NO:2904
SIAT7BNM_006456.1TCCAGCCCAAATCCTCCTGGTGGCACATCCTACCCCAGATGCTAAAGTGATTCAAGGACTCCAGGACACCSEQ ID NO:2905
SIM2NM_005069.2GATGGTAGGAAGGGATGTGCCCGCCTCTCCACGCACTCAGCTATACCTCATTCACAGCTCCTTGTGSEQ ID NO:2906
SIN3ANM_015477.1SEQ ID NO:2907
SIR2NM_012238.3AGCTGGGGTGTCTGTTTCATGTGGAATACCTGACTTCAGGTCAAGGGATGGTATTTATGCTCGCCTTGCTGTSEQ ID NO:2908
SKP1ANM_006930.2SEQ ID NO:2909
SKP2NM_005983.2AGTTGCAGAATCTAAGCCTGGAAGGCCTGCGGCTTTCGGATCCCATTGTCAATACTCTCGCAAAAAACTCASEQ ID NO:2910
SLC25A3NM_213611.1TCTGCCAGTGCTGAATTCTTTGCTGACATTGCCCTGGCTCCTATGGAAGCTGCTAAGGTTCGAASEQ ID NO:2911
SLC2A1NM_006516.1GCCTGAGTCTCCTGTGCCCACATCCCAGGCTTCACCCTGAATGGTTCCATGCCTGAGGGTGGAGACTSEQ ID NO:2912
SLC31A1NM_001859.2CCGTTCGAAGAGTCGTGAGGGGGTGACGGGTTAAGATTCGGAGAGAGAGGTGCTAGTGGCTGGACTSEQ ID NO:2913
SLC5A8NM_145913.2SEQ ID NO:2914
SLC7A5NM_003486.4GCGCAGAGGCCAGTTAAAGTAGATCACCTCCTCGAACCCACTCCGGTTCCCCGCAACCCACAGCTCAGCTSEQ ID NO:2915
SLPINM_003064.2SEQ ID NO:2916
SMARCA3NM_003071.2AGGGACTGTCCTGGCACATTATGCAGATGTCCTGGGTCTTTTGCTTAGACTGCGGCAAATTTGTTGSEQ ID NO:2917
SNAI1NM_005985.2CCCAATCGGAAGCCTAACTACAGCGAGCTGCAGGACTCTAATCCAGAGTTTACCTTCCAGCAGCCCTACSEQ ID NO:2918
SNAI2NM_003068.3SEQ ID NO:2919
SNRPFNM_003095.1SEQ ID NO:2920
SOD1NM_000454.3TGAAGAGAGGCATGTTGGAGACTTGGGCAATGTGACTGCTGACAAAGATGGTGTGGCCGATGTGTCTATTSEQ ID NO:2921
SOD2NM_000636.1SEQ ID NO:2922
SOS1NM_005633.2TCTGCACCAAATTCTCCAAGAACACCGTTAACACCTCCGCCTGCTTCTGGTGCTTCCAGTACCACSEQ ID NO:2923
SOX17NM_022454.2TCGTGTGCAAGCCTGAGATGGGCCTCCCCTACCAGGGGCATGACTCCGGTGTGAATCTCCCCGACAGSEQ ID NO:2924
SPARCNM_003118.1SEQ ID NO:2925
SPINT2NM_021102.1AGGAATGCAGCGGATTCCTCTGTCCCAAGTGCTCCCAGAAGGCAGGATTCTGAAGACCACTCCAGCGASEQ ID NO:2926
SPRY1AK026960.1SEQ ID NO:2927
SPRY2NM_005842.1TGTGGCAAGTGCAAATGTAAGGAGTGCACCTACCCAAGGCCTCTGCCATCAGACTGGATCTGCGACSEQ ID NO:2928
SR-A1NM_021228.1SEQ ID NO:2929
ST14NM_021978.2TGACTGCACATGGAACATTGAGGTGCCCAACAACCAGCATGTGAAGGTGCGCTTCAAATTCTTSEQ ID NO:2930
STAT1NM_007315.1SEQ ID NO:2931
STAT3NM_003150.1TCACATGCCACTTTGGTGTTTCATAATCTCCTGGGAGAGATTGACCAGCAGTATAGCCGCTTCCTGCAAGSEQ ID NO:2932
STAT5ANM_003152.1SEQ ID NO:2933
STAT5BNM_012448.1SEQ ID NO:2934
STC1NM_003155.1SEQ ID NO:2935
STK11NM_000455.3GGACTCGGAGACGCTGTGCAGGAGGGCCGTCAAGATCCTCAAGAAGAAGAAGTTGCGAAGGATCCCSEQ ID NO:2936
STK15NM_003600.1CATCTTCCAGGAGGACCACTCTCTGTGGCACCCTGGACTACCTGCCCCCTGAAATGATTGAAGGTCGGASEQ ID NO:2937
STMN1NM_005563.2AATACCCAACGCACAAATGACCGCACGTTCTCTGCCCCGTTTCTTGCCCCAGTGTGGTTTGCATTGTCTCCSEQ ID NO:2938
STMY3NM_005940.2SEQ ID NO:2939
STSNM_000351.2SEQ ID NO:2940
SURVNM_001168.1SEQ ID NO:2941
TAGLNNM_003186.2SEQ ID NO:2942
TBPNM_003194.1GCCCGAAACGCCGAATATAATCCCAAGCGGTTTGCTGCGGTAATCATGAGGATAAGAGAGCCACGSEQ ID NO:2943
TCF-1NM_000545.3GAGGTCCTGAGCACTGCCAGGAGGGACAAAGGAGCCTGTGAACCCAGGACAAGCATGGTCCCACATCSEQ ID NO:2944
TCF-7NM_003202.2GCAGCTGCAGTCAACAGTTCAAAGAAGTCATGGCCCAAATCCAGTGTGCACCCCTCCCCATTCACAGSEQ ID NO:2945
TCF7L1NM_031283.1CCGGGACACTTTCCAGAAGCCGCGGGACTATTTCGCCGAAGTGAGAAGGCCTCAGGACAGCGCGTTCTSEQ ID NO:2946
TCF7L2NM_030756.1CCAATCACGACAGGAGGATTCAGACACCCCTACCCCACAGCTCTGACCGTCAATGCTTCCGTGTCCASEQ ID NO:2947
TCFL4NM_170607.2SEQ ID NO:2948
TEKNM_000459.1SEQ ID NO:2949
TERCU86046.1SEQ ID NO:2950
TERTNM_003219.1SEQ ID NO:2951
TFF3NM_003226.1SEQ ID NO:2952
TGFANM_003236.1SEQ ID NO:2953
TGFB2NM_003238.1SEQ ID NO:2954
TGFB3NM_003239.1GGATCGAGCTCTTCCAGATCCTTCGGCCAGATGAGCACATTGCCAAACAGCGCTATATCGGTGGCSEQ ID NO:2955
TGFBINM_000358.1GCTACGAGTGCTGTCCTGGATATGAAAAGGTCCCTGGGGAGAAGGGCTGTCCAGCAGCCCTACCACTSEQ ID NO:2956
TGFBR1NM_004612.1GTCATCACCTGGCCTTGGTCCTGTGGAACTGGCAGCTGTCATTGCTGGACCAGTGTGCTTCGTCTGCSEQ ID NO:2957
TGFBR2NM_003242.2AACACCAATGGGTTCCATCTTTCTGGGCTCCTGATTGCTCAAGCACAGTTTGGCCTGATGAAGAGGSEQ ID NO:2958
THBS1NM_003246.1SEQ ID NO:2959
THY1NM_006288.2GGACAAGACCCTCTCAGGCTGTCCCAAGCTCCCAAGAGCTTCCAGAGCTCTGACCCACAGCCTCCAASEQ ID NO:2960
TIMP1NM_003254.1SEQ ID NO:2961
TIMP2NM_003255.2TCACCCTCTGTGACTTCATCGTGCCCTGGGACACCCTGAGCACCACCCAGAAGAAGAGCCTGAACCACASEQ ID NO:2962
TIMP3NM_000362.2CTACCTGCCTTGCTTTGTGACTTCCAAGAACGAGTGTCTCTGGACCGACATGCTCTCCAATTTCGGTSEQ ID NO:2963
TJP1NM_003257.1SEQ ID NO:2964
TK1NM_003258.1SEQ ID NO:2965
TLN1NM_006289.2SEQ ID NO:2966
TMEPAINM_020182.3CAGAAGGATGCCTGTGGCCCTCGGAGAGCACAGTGTCAGGCAACGGAATCCCAGAGCCGCAGGTCTACSEQ ID NO:2967
TMSB10NM_021103.2GAAATCGCCAGCTTCGATAAGGCCAAGCTGAAGAAAACGGAGACGCAGGAAAAGAACACCCTGCCGACSEQ ID NO:2968
TMSB4XNM_021109.2CACATCAAAGAACTACTGACAACGAAGGCCGCGCCTGCCTTTCCCATCTGTCTATCTATCTGGCTGGCAGGSEQ ID NO:2969
TNCNM_002160.1AGCTCGGAACCTCACCGTGCCTGGCAGCCTTCGGGCTGTGGACATACCGGGCCTCAAGGCTGCTACSEQ ID NO:2970
TNFNM_000594.1GGAGAAGGGTGACCGACTCAGCGCTGAGATCAATCGGCCCGACTATCTCGACTTTGCCGAGTCTGGGCASEQ ID NO:2971
TNFRSF5NM_001250.3TCTCACCTCGCTATGGTTCGTCTGCCTCTGCAGTGCGTCCTCTGGGGCTGCTTGCTGACCGCTGTCCATCSEQ ID NO:2972
TNFRSF6BNM_003823.2SEQ ID NO:2973
TNFSF4NM_003326.2SEQ ID NO:2974
top2ANM_001067.1SEQ ID NO:2975
top2BNM_001068.1TGTGGACATCTTCCCCTCAGACTTCCCTACTGAGCCACCTTCTCTGCCACGAACCGGTCGGGCTAGSEQ ID NO:2976
TPNM_001953.2SEQ ID NO:2977
TP53BP1NM_005657.1SEQ ID NO:2978
TP53BP2NM_005426.1SEQ ID NO:2979
TP5313NM_004881.2GCGGACTTAATGCAGAGACAAGGCCAGTATGACCCACCTCCAGGAGCCAGCAACATTTTGGGACTTGASEQ ID NO:2980
TRAG3NM_004909.1GACGCTGGTCTGGTGAAGATGTCCAGGAAACCACGAGCCTCCAGCCCATTGTCCAACAACCACCCASEQ ID NO:2981
TRAILNM_003810.1SEQ ID NO:2982
TSNM_001071.1GCCTCGGTGTGCCTTTCAACATCGCCAGCTACGCCCTGCTCACGTACATGATTGCGCACATCACGSEQ ID NO:2983
TSTNM_003312.4GGAGCCGGATGCAGTAGGACTGGACTCGGGCCATATCCGTGGTGCCGTCAACATGCCTTTCATGGACTTSEQ ID NO:2984
TUBA1NM_006000.1TGTCACCCCGACTCAACGTGAGACGCACCGCCCGGACTCACCATGCGTGAATGCATCTCAGTCCACGTSEQ ID NO:2985
TUBBNM_001069.1SEQ ID NO:2986
TUFMNM_003321.3GTATCACCATCAATGCGGCTCATGTGGAGTATAGCACTGCCGCCCGCCACTACGCCCACACAGACTGSEQ ID NO:2987
TULP3NM_003324.2SEQ ID NO:2988
tusc4NM_006545.4GGAGGAGCTAAATGCCTCAGGCCGGTGCACTCTGCCCATTGATGAGTCCAACACCATCCACTTGAAGGSEQ ID NO:2989
UBBNM_018955.1SEQ ID NO:2990
UBCNM_021009.2ACGCACCCTGTCTGACTACAACATCCAGAAAGAGTCCACCCTGCACCTGGTGCTCCGTCTTAGAGGTSEQ ID NO:2991
UBE2CNM_007019.2TGTCTGGCGATAAAGGGATTTCTGCCTTCCCTGAATCAGACAACCTTTTCAAATGGGTAGGGACCATSEQ ID NO:2992
UBE2MNM_003969.1SEQ ID NO:2993
UBL1NM_003352.3SEQ ID NO:2994
UCP2NM_003355.2ACCATGCTCCAGAAGGAGGGGCCCCGAGCCTTCTACAAAGGGTTCATGCCCTCCTTTCTCCGCTTGGGTTSEQ ID NO:2995
UGT1A1NM_000463.2CCATGCAGCCTGGAATTTGAGGCTACCCAGTGCCCCAACCCATTCTCCTACGTGCCCAGGCCTCTCSEQ ID NO:2996
UMPSNM_000373.1SEQ ID NO:2997
UNC5AXM_030300.7GACAGCTGATCCAGGAGCCACGGGTCCTGCACTTCAAGGACAGTTACCACAACCTGCGCCTATCCATSEQ ID NO:2998
UNC5BNM_170744.2AGAACGGAGGCCGTGACTGCAGCGGGACGCTGCTCGACTCTAAGAACTGCACAGATGGGCTGTGCATGSEQ ID NO:2999
UNC5CNM_003728.2CTGAACACAGTGGAGCTGGTTTGCAAACTCTGTGTGCGGCAGGTGGAAGGAGAAGGGCAGATCTTCCAGSEQ ID NO:3000
upaNM_002658.1GTGGATGTGCCCTGAAGGACAAGCCAGGCGTCTACACGAGAGTCTCACACTTCTTACCCTGGATCCGCAGSEQ ID NO:3001
UPP1NM_003364.2SEQ ID NO:3002
VCAM1NM_001078.2SEQ ID NO:3003
VCLNM_003373.2GATACCACAACTCCCATCAAGCTGTTGGCAGTGGCAGCCACGGCGCCTCCTGATGCGCCTAACAGGGASEQ ID NO:3004
VCPNM_007126.2GGCTTTGGCAGCTTCAGATTCCCTTCAGGGAACCAGGGTGGAGCTGGCCCCAGTCAGGGCAGTGGAGSEQ ID NO:3005
VDAC1NM_003374.1SEQ ID NO:3006
VDAC2NM_003375.2ACCCACGGACAGACTTGCGCGCGTCCAATGTGTATTCCTCCATCATATGCTGACCTTGGCAAAGCTSEQ ID NO:3007
VDRNM_000376.1GCCCTGGATTTCAGAAAGAGCCAAGTCTGGATCTGGGACCCTTTCCTTCCTTCCCTGGCTTGTAACTSEQ ID NO:3008
VEGFNM_003376.3CTGCTGTCTTGGGTGCATTGGAGCCTTGCCTTGCTGCTCTACCTCCACCATGCCAAGTGGTCCCAGGCTGCSEQ ID NO:3009
VEGF_altsplice1AF486837.1SEQ ID NO:3010
VEGF_altsplice2AF214570.1SEQ ID NO:3011
VEGFBNM_003377.2SEQ ID NO:3012
VEGFCNM_005429.2SEQ ID NO:3013
VIMNM_003380.1SEQ ID NO:3014
WIFNM_007191.2TACAAGCTGAGTGCCCAGGCGGGTGCCGAAATGGAGGCTTTTGTAATGAAAGACGCATCTGCGAGTGSEQ ID NO:3015
WISP1NM_003882.2SEQ ID NO:3016
Wnt-3aNM_033131.2SEQ ID NO:3017
Wnt-5aNM_003392.2SEQ ID NO:3018
Wnt-5bNM_032642.2SEQ ID NO:3019
WNT2NM_003391.1CGGTGGAATCTGGCTCTGGCTCCCTCTGCTCTTGACCTGGCTCACCCCCGAGGTCAACTCTTCATGGSEQ ID NO:3020
wwoxNM_016373.1SEQ ID NO:3021
XPANM_000380.2SEQ ID NO:3022
XPCNM_004628.2SEQ ID NO:3023
XRCC1NM_006297.1GGAGATGAAGCCCCCAAGCTTCCTCAGAAGCAACCCCAGACCAAAACCAAGCCCACTCAGGCAGCTGGACSEQ ID NO:3024
YB-1NM_004559.1SEQ ID NO:3025
YWHAHNM_003405.2CATGGCCTCCGCTATGAAGGCGGTGACAGAGCTGAATGAACCTCTCTCCAATGAAGATCGAAATCTCCSEQ ID NO:3026
zbtb7NM_015898.2CTGCGTTCACACCCCAGTGTCACAGGGCGAGCTGTTCTGGAGAGAAAACCATCTGTCGTGGCTGAGSEQ ID NO:3027
ZG16NM_152338.1SEQ ID NO: 3028

Claims (11)

  1. A method of predicting clinical outcome for a human subject diagnosed withc olorectal cancer, comprising:
    determining a normalized expression level of an RNA transcript of EFNB2, or an expression product thereof, in a biological sample comprising cancer cells obtained from said human subject, and;
    predicting the likelihood of a positive clinical outcome for said human subject based on said normalized expression level, wherein normalized expression of an RNA transcript of EFNB2, or an expression product thereof, is negatively correlated with an increased likelihood of a positive clinical outcome.
  2. The method of claim 1, wherein said colorectal cancer is Dukes B (stage II) or Dukes C (stage III) colorectal cancer.
  3. The method of claim 1, wherein said colorectal cancer is Dukes B (stage II) or Dukes C (stage III) colorectal cancer, the method comprising:
    determining the normalized expression level of an RNA transcript of EFNB2 in a biological sample comprising cancer cells obtained from said human subject, and;
    predicting the likelihood of recurrence of colorectal cancer for the human subject based on the normalized expression level, wherein normalized expression of an RNA transcript of EFNB2 is positively correlated with increased likelihood of recurrence of colorectal cancer.
  4. The method of claim 2 or 3, wherein said colorectal cancer is Dukes B (stage II) or Dukes C (stage III) colon cancer.
  5. The method of any of claims 1-3, wherein said determining is after surgical resection of said cancer.
  6. The method of any of claims 1 to 5, wherein said normalized expression level of an RNA transcript of EFNB2 is determined using a PCR-based method.
  7. The method of any of claims 1 to 6, wherein said normalized expression level is normalized relative to the expression level of an RNA transcript of at least one reference gene.
  8. The method of claim 1, wherein said clinical outcome is expressed in terms of Recurrence-Free Interval (RFI), Overall Survival (OS), Disease-Free Survival (DFS), or Distant Recurrence-Free Interval (DRFI).
  9. The method of any of claims 1 to 8, further comprising the step of creating a report summarizing said prediction.
  10. The method of claim 5, wherein, if said likelihood of recurrence of colorectal cancer is increased, said patient is to be subjected to further therapy following said surgical resection.
  11. The method of claim 10, wherein said further therapy is chemotherapy and/or radiation therapy.
HK12107417.6A2006-01-112009-01-15Gene expression markers for colorectal cancer prognosisHK1167004A (en)

Applications Claiming Priority (3)

Application NumberPriority DateFiling DateTitle
US758392P2006-01-11
US800277P2006-05-12
US810077P2006-05-31

Related Parent Applications (1)

Application NumberTitlePriority DateFiling Date
HK09100394.3AAdditionHK1120089B (en)2006-01-112007-01-11Gene expression markers for colorectal cancer prognosis

Related Child Applications (1)

Application NumberTitlePriority DateFiling Date
HK09100394.3ADivisionHK1120089B (en)2006-01-112007-01-11Gene expression markers for colorectal cancer prognosis

Publications (1)

Publication NumberPublication Date
HK1167004Atrue HK1167004A (en)2012-11-16

Family

ID=

Similar Documents

PublicationPublication DateTitle
EP1974058B1 (en)Gene expression markers for colorectal cancer prognosis
US8067178B2 (en)Gene expression markers for prediction of patient response to chemotherapy
US10179936B2 (en)Gene expression profile algorithm and test for likelihood of recurrence of colorectal cancer and response to chemotherapy
US20090258795A1 (en)Gene expression markers for prediction of patient response to chemotherapy
HK1167004A (en)Gene expression markers for colorectal cancer prognosis
HK1162613A (en)Gene expression markers for colorectal cancer prognosis
HK1165507A (en)Gene expression markers for colorectal cancer prognosis
HK1165504A (en)Gene expression markers for colorectal cancer prognosis
HK1166351A (en)Gene expression markers for colorectal cancer prognosis
HK1166350A (en)Gene expression markers for colorectal cancer prognosis
HK1120089B (en)Gene expression markers for colorectal cancer prognosis
HK1166111A (en)Gene expression markers for colorectal cancer prognosis
HK1166352A (en)Gene expression markers for colorectal cancer prognosis

[8]ページ先頭

©2009-2025 Movatter.jp