Movatterモバイル変換


[0]ホーム

URL:


GB2423342A - Maintenance of brake system for aircract - Google Patents

Maintenance of brake system for aircract
Download PDF

Info

Publication number
GB2423342A
GB2423342AGB0503322AGB0503322AGB2423342AGB 2423342 AGB2423342 AGB 2423342AGB 0503322 AGB0503322 AGB 0503322AGB 0503322 AGB0503322 AGB 0503322AGB 2423342 AGB2423342 AGB 2423342A
Authority
GB
United Kingdom
Prior art keywords
aircraft
brake
faults
wear
braking system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
GB0503322A
Other versions
GB0503322D0 (en
Inventor
Carl Edward Trustee
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dunlop Aerospace Ltd
Original Assignee
Dunlop Aerospace Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dunlop Aerospace LtdfiledCriticalDunlop Aerospace Ltd
Priority to GB0503322ApriorityCriticalpatent/GB2423342A/en
Publication of GB0503322D0publicationCriticalpatent/GB0503322D0/en
Publication of GB2423342ApublicationCriticalpatent/GB2423342A/en
Withdrawnlegal-statusCriticalCurrent

Links

Classifications

Landscapes

Abstract

A method for maintaining the braking system of an aircraft involves recording signals indicative of the presence of faults in an aircraft braking system, excess wear of consumables used in the braking system, and conditions indicative of development of such faults/wear in said braking system, wherein said record is transferred to a ground based computer server which processes the recorded data to evaluate the condition of said braking system. The data may be transferred via a port connection when the aircraft is on the ground or by satellite when the aircraft is airborne. Ground based systems can then ensure that components/ spare parts required are provisioned at appropriate locations/airports so that personnel can carry out maintenance work without delays. Apparatus for executing the above method is also disclosed.

Description

: .: * I S * * * : : . : : *.
I.. a.. * * * S * * *
AIRCRAFT BRAKE MONITORING
This invention relates to aircraft, in particular braking systems for aircraft.
According to one aspect of the invention, there is provided a method for maintaining the braking system of an aircraft, the method comprising: forming a record of signals indicative of the presence of faults in the system, excess wear of consumables used in the system, and conditions indicative of imminent or likely development of such faults and/or excess wear; transferring said record to a ground based computer server; and separately or within said server, processing data relating to said faults, excess wear and conditions and thereby evaluating the condition of said braking system.
According to a second aspect of the invention, there is provided apparatus for maintaining a record of signals indicative of the presence of faults in the system, excess wear of consumables used in the system, and conditions indicative of imminent or likely development of such faults and/or excess wear; and for transferring said record to a ground base computer server; and separate or within said server, data processing means for processing data relating to said faults, excess wear, and said conditions and for thereby evaluating the conditions of said braking system.
For a better understanding of the invention, reference will now be made by example to the accompanying drawings, in which Figures 1 and 2 are respective flow charts for an aircraft product support system and a product support system incorporating brake health management.
ft a. * I..
a a * * * * a a * * I * a * * *Ia.:. *. *. *** The process flow chart of Figure 1 shows how an example of how an aircraft Product Support System (PSS) can be integrated with a Brake Health Monitoring system and Brake Health Management to provide an integrated supply chain in which logistics and inventory management ensure the required components are available when required at the right location.
Aircraft equipped with the Brake Health Monitoring System will monitor signals representative of the operation of the braking system and record such signals when required. The signals, particularly those representative of brake outputs can be compared against expected outputs for a known set of monitored brake inputs. Signals representative of brake outputs include but are not limited to brake torque, temperature and vibration. Signals representative of brake inputs include but are not limited to brake pressure, brake current for electrically actuated brakes, actuator position, heat pack mass, wheel speed and aircraft mass. Any variation between measured output and expected output for a given set of inputs can be representative of wear condition and or faults within a brake assembly, for example a low value for brake torque and brake temperature accompanied by a change in the dynamic characteristics of the brake could be representative of broken drive regions on one or more discs.
The Brake Health Monitoring System could be a stand-alone system associated only with the brake and brake control system. Alternatively, the Brake Health Monitoring system could be part of or interfaced with a larger aircraft health management system.
The Brake Health Monitoring System also needs to incorporate or interface with a Brake Health Management capability by processing monitored signals to determine brake health.
: .: * I * * * q * * * *, * : : ** * * * *I. ua* *,* *** * * Data from the Brake Health Monitoring System on the aircraft can be transferred by a suitable link to a ground based server. The link could be a physical connection to download data at some convenient time when the aircraft is on the ground or preferably it could be a wireless link for down loading data on a real time basis during operation of the aircraft.
Brake Health Monitoring System data representative of sensor signals can then be processed to evaluate brake condition, in particular to determine the wear state of the brake and/or any existing, potential or imminent faults in the brake. The evaluation of brake condition can be carried out by, for example, the brake supplier, the aircraft constructor, the aircraft operator or a third party maintenance provider. Alternatively, this assessment of brake condition can be carried out within the Aircraft Health Monitoring System and the data representing this assessment can be transferred to the ground based server.
Once an assessment of brake wear and/or brake faults has been carried out, either on the ground or on the aircraft, action can be triggered to plan, schedule and provide spares and satisfy maintenance requirements Brake wear can include the wear of any consumables in the brake, such as the heat stack, or any other parts in the brake that are subject to wear during their service life.
By monitoring brake wear a prediction of remaining brake heat stack life and other wearable component life can be carried out. This prediction of remaining life can then be used to determine when maintenance will be required using knowledge of the scheduled aircraft utilisation. By monitoring the wear condition and remaining life of the brakes on an aircraft it is possible to provision spare parts by ordering new heat stacks of brake discs when the lead-time for supply coincides with the remaining life. Use of I a *, Ia. I * *
I * * S * * ** IS. * * * :. .:. * **I *.
the P55 can provide a more integrated supply chain through the provision of information regarding what components will be needed, where and when they will be needed to all stakeholders within the supply chain. As a further step, thus system can be integrated with inventory management, logistics and manufacturing processes to ensure optimal and timely service provision of maintenance requirements.
In the interests of operational efficiency it is prudent to build in a safety factor for provisioning components, especially where long leadtime items are involved such as carbon-carbon brake discs.
Replacement brake heat stacks and other wearable components will be available at an appropriate time to coincide with maintenance action at a maintenance, repair and overhaul (MRO) facility. The supply of spare discs can preferable be handled through an inventory management system. The Inventory Management System can preferably track the availability of spare parts at a number of storage sites around the globe and move parts between locations so they can be provided from the most convenient location to meet the aircraft maintenance schedule.
If the health monitoring system indicates or predicts a fault or imminent fault in a brake then appropriate maintenance action can be planned around the aircraft operating schedule and any spare parts can be provisioned through the Inventory Management System to ensure the required parts are in the right place at the right time.
Corrective maintenance action can be carried out at a suitable MRO facility before the aircraft is returned to service with the operator. By provisioning spares parts and MRO activities around the aircraft operating schedule the disruption to the schedule and time the aircraft is out of service can be minimised. J, I.
$ I * I I * I * * ** **. I * * * :. * * * * *
S
Communication between the various parts of the process can be facilitated by utilising state of the art information technology including, but not limited to, satellite and Internet communication.
In order to further optimise maintenance routines it is desirable when a brake unit requires a new heat pack to be fitted to renew all brake heat packs to avoid the need to take the aircraft out of service on more than one occasion. However, to achieve this aim it is important to ensure that all the heat packs reach a, or close to a fully worn condition at the same time.
It is found that there is a spread of wear rates around the brakes on a aircraft so the brakes rarely reach a fully worn condition at the same time. GB 2,216,209 proposes a method and apparatus to disable less than all of the brakes on an aircraft during taxi operations when the wear rate of carbon-carbon friction discs has been found to be disproportionately high compared to the low energy levels that are involved.
By combining a system for disabling brakes during taxiing with a Brake Health Management System the wear of heat packs could be monitored and those heat packs with the most wear could be disabled during taxi operations. This would allow heat packs with the least wear to be used during taxiing, thereby increasing the wear of those heat packs until they were at the same wear state as the disabled heat packs.
The identity of heat stacks disabled on an aircraft would change over time as the wear state of the brake heat stacks changed, however, the overall aim of the system would be to balance the wear state of a predetermined number of heat stacks so they reached a fully worn condition and, therefore, a requirement for replacement at the I..
I I I I
. .:. . : : II.
:. .:. * I* *.I *** same time. The result is to minimise the number of times an aircraft only has to be taken out of service once in order to renew brake heat stacks and/or optimise heat stack replacements to coincide with scheduled maintenance events.
One non-limiting embodiment of a product support system incorporating Brake Health management is shown as a system overview in Figure 2 in which the various elements and lines of communication are depicted.
The product Support System compares apparent wear and failure rates to expectations. Trend analysis will then predict a time window for component replacement. Operator maintenance preferences, such as what, when and where to service, can be taken into account and an optimal recommendation for maintenance made. Any recommendations are made to maximise scheduled maintenance whilst minimising the cost of early replacement and unscheduled maintenance. In addition the capability to identify faults and brake condition electronically reduces the need for time-consuming inspections.
The aircraft constructor maintains a Health Management System that can manage the health of all health monitoring systems on an aircraft or, alternatively, just the brake health monitoring system and collects data from the aircraft Brake Health Monitoring System via a real time satellite link.
The aircraft wheel and brake manufacturer carries out the following functions * Fault Detection through diagnosis of messages supplied by Health Management System; : : * t. . . I I * I * * ,* II. 4 * * a *. .:. * * * * Wear Management by monitoring wear rates for in-service components using messages received from Health Management System; * Product Performance Improvement by monitoring wear and fault trends to support design improvement work; * Supply Chain Controller governs the movement of components and materials within the supply chain; * Production Controller to forecast demand for and initiate production of new components and assemblies; * Maintenance Planner supplies maintenance recommendations to operators, taking into account their preferred maintenance practices; * OEM Manager interfacing with and manage the relationship with the constructor; The aircraft wheel and brake manufacturer needs to provide systems and infrastructure to underpin the above functions, such as data storage and reporting.
Aircraft operators will interface with the Product Support System to advice preferences for where maintenance should be carried out. The Product Support System can provide proposals to operators for opportunistic (unscheduled) maintenance to meet their preferred maintenance practices. The aircraft operators might have in-house I. s * . 1*
I I I I I
I * * * ** : * * III us **I workshop facilities for providing maintenance or have relationships with third party MRO providers.
The Lead Logistics Provider will be responsible for logistics and inventory functions, interfacing with the aircraft wheel and brake manufacturer, MRO providers and operator workshops to provide parts at the required location and time.
The manufacturing function will preferably be part of the aircraft wheel and brake manufacturers organisation, although this could be a third party sub-contract facility The manufacturing function will utilise a production management tool such as SAP through which suppliers would preferably be able to interface with the Product Support System.
The MRO facility will contain their own maintenance planning systems. They will send and receive information and components via the Lead Logistics Provider. Such MRO organisations could be part of the aircraft wheel and brake manufacturer, the operator or be independent. The product Support System will manage the interface between MRO facilities, operators and third parties. * II.

Claims (3)

I I * * * I I II : : * I,. i, * *.I **e *,* CLAIMS
1. A method for maintaining the braking system of an aircraft, the method comprising: forming a record of signals indicative of the presence of faults in the system, excess wear of consumables used in the system, and conditions indicative of imminent or likely development of such faults and/or excess wear; transferring said record to a ground based computer server; and separately or within said server, processing data relating to said faults, excess wear and conditions and thereby evaluating the condition of said braking system.
2. Apparatus for maintaining a record of signals indicative of the presence of faults in the system, excess wear of consumables used in the system, and conditions indicative of imminent or likely development of such faults and/or excess wear; and for transferring said record to a ground base computer server; and separate or within said server, data processing means for processing data relating to said faults, excess wear, and said conditions and for thereby evaluating the conditions of said braking system.
3. A method and apparatus substantially as hereinbefore described with reference to the accompanying drawings
GB0503322A2005-02-172005-02-17Maintenance of brake system for aircractWithdrawnGB2423342A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
GB0503322AGB2423342A (en)2005-02-172005-02-17Maintenance of brake system for aircract

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
GB0503322AGB2423342A (en)2005-02-172005-02-17Maintenance of brake system for aircract

Publications (2)

Publication NumberPublication Date
GB0503322D0 GB0503322D0 (en)2005-03-23
GB2423342Atrue GB2423342A (en)2006-08-23

Family

ID=34385663

Family Applications (1)

Application NumberTitlePriority DateFiling Date
GB0503322AWithdrawnGB2423342A (en)2005-02-172005-02-17Maintenance of brake system for aircract

Country Status (1)

CountryLink
GB (1)GB2423342A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US7506941B2 (en)*2000-08-042009-03-24Meggitt Aerospace LimitedBrake condition monitoring
WO2009094243A1 (en)*2008-01-222009-07-30The Boeing CompanySystem and method for managing unscheduled maintenance and repair decisions
CN102030111A (en)*2010-11-162011-04-27中国民航大学Aircraft CFDS (Centralized Fault Display System) data analyzer and implementation method thereof
CN103612772A (en)*2013-10-282014-03-05西安航空制动科技有限公司Aircraft braking system dynamic load spectrum integration test method
CN104074897A (en)*2013-03-272014-10-01梅西耶-布加蒂-道提公司Method of managing the lifetime of a stack of disks of an aircraft brake
WO2018065159A1 (en)2016-10-062018-04-12Safran Aero Boosters SaMethod for replacing an aircraft part
EP3354523A1 (en)*2017-01-262018-08-01Airbus Operations LimitedFault detection based on brake torque and temperature
EP3552977A1 (en)*2018-04-092019-10-16Subaru CorporationAircraft management system
EP3566916A1 (en)*2016-09-202019-11-13Airbus Operations LimitedBrake wear reduction apparatus
CN110654566A (en)*2018-06-292020-01-07株式会社斯巴鲁 aircraft management system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN111523185B (en)*2020-04-222023-05-23西安航空制动科技有限公司Service life assessment method of aircraft brake control device

Citations (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US5581464A (en)*1992-08-141996-12-03Vorad Safety Systems, Inc.Recording of operational events in an automotive vehicle
WO2002012043A1 (en)*2000-08-042002-02-14Dunlop Aerospace LimitedBrake condition monitoring
US6471015B1 (en)*1997-05-092002-10-29Goodrich CorporationElectronic aircraft braking system with brake wear measurement, running clearance adjustment and plural electric motor-actuator RAM assemblies
US20030102191A1 (en)*2001-12-042003-06-05Devlieg Garrett H.System and method for aircraft braking system usage monitoring

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US5581464A (en)*1992-08-141996-12-03Vorad Safety Systems, Inc.Recording of operational events in an automotive vehicle
US5581464B1 (en)*1992-08-141999-02-09Vorad Safety Systems IncRecording of operational events in an automotive vehicle
US6471015B1 (en)*1997-05-092002-10-29Goodrich CorporationElectronic aircraft braking system with brake wear measurement, running clearance adjustment and plural electric motor-actuator RAM assemblies
WO2002012043A1 (en)*2000-08-042002-02-14Dunlop Aerospace LimitedBrake condition monitoring
US20030102191A1 (en)*2001-12-042003-06-05Devlieg Garrett H.System and method for aircraft braking system usage monitoring
US20040084252A1 (en)*2001-12-042004-05-06Devlieg Garrett H.System and method for aircraft braking system usage monitoring

Cited By (22)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US7506941B2 (en)*2000-08-042009-03-24Meggitt Aerospace LimitedBrake condition monitoring
US7901014B2 (en)2000-08-042011-03-08Meggitt Aerospace LimitedBrake condition monitoring
US8152246B2 (en)*2000-08-042012-04-10Meggitt Aerospace LimitedBrake condition monitoring
WO2009094243A1 (en)*2008-01-222009-07-30The Boeing CompanySystem and method for managing unscheduled maintenance and repair decisions
CN102030111A (en)*2010-11-162011-04-27中国民航大学Aircraft CFDS (Centralized Fault Display System) data analyzer and implementation method thereof
CN102030111B (en)*2010-11-162013-02-06中国民航大学 An aircraft CFDS data analyzer and its implementation method
CN104074897A (en)*2013-03-272014-10-01梅西耶-布加蒂-道提公司Method of managing the lifetime of a stack of disks of an aircraft brake
CN103612772A (en)*2013-10-282014-03-05西安航空制动科技有限公司Aircraft braking system dynamic load spectrum integration test method
CN103612772B (en)*2013-10-282015-10-21西安航空制动科技有限公司A kind of airplane brake system Dynamic Load Spectrum joint-trial method
EP3566916A1 (en)*2016-09-202019-11-13Airbus Operations LimitedBrake wear reduction apparatus
US10953861B2 (en)2016-09-202021-03-23Airbus Operations LimitedBrake wear reduction apparatus
US11027718B2 (en)2016-09-202021-06-08Airbus Operations LimitedBrake wear reduction apparatus
BE1024625B1 (en)*2016-10-062018-05-07Safran Aero Boosters S.A. METHOD OF REPLACING AN AIRCRAFT PIECE
WO2018065159A1 (en)2016-10-062018-04-12Safran Aero Boosters SaMethod for replacing an aircraft part
EP3354523A1 (en)*2017-01-262018-08-01Airbus Operations LimitedFault detection based on brake torque and temperature
US10696382B2 (en)2017-01-262020-06-30Airbus Operations LimitedFault detection based on brake torque and temperature
EP3552977A1 (en)*2018-04-092019-10-16Subaru CorporationAircraft management system
CN110356582A (en)*2018-04-092019-10-22株式会社斯巴鲁Aircraft management system
JP2019182158A (en)*2018-04-092019-10-24株式会社SubaruAircraft management system
US11155365B2 (en)2018-04-092021-10-26Subaru CorporationAircraft management system
CN110356582B (en)*2018-04-092024-07-05株式会社斯巴鲁Aircraft management system
CN110654566A (en)*2018-06-292020-01-07株式会社斯巴鲁 aircraft management system

Also Published As

Publication numberPublication date
GB0503322D0 (en)2005-03-23

Similar Documents

PublicationPublication DateTitle
US9015059B2 (en)Wireless system for automatic ordering of maintenance parts for equipment
US8694196B1 (en)Methods and systems for centrally managed maintenance program for aircraft fleets
CA2690459C (en)Remote monitoring systems and methods
US7496475B2 (en)Maintenance management of a machine
US20080082345A1 (en)System and method for evaluating risks associated with delaying machine maintenance
CN101753364B (en) Equipment status analysis and prediction and resource allocation method and system
US9286183B2 (en)Monitoring and diagnostic system for a fluid energy machine system and fluid energy machine system
US20170091634A1 (en)Machine diagnostics system
US20160349737A1 (en)Manufacturing efficiency optimization platform and tool condition monitoring and prediction method
US12112581B2 (en)System and method for remote diagnostics and monitoring of heavy equipment
GB2423342A (en)Maintenance of brake system for aircract
CN101472724A (en)Preventive Maintenance System
CA2611007A1 (en)System for providing multiple maintenance profiles using wireless communications
JP2006327361A (en)System, method and program for diagnosis and maintenance of ship
KR101278428B1 (en)Real-time collaborated enterprise asset management system based on condition-based maintenance and method thereof
EP1898361B1 (en)Arrangement, method and computer program product for enhanced prognostics
JP2017027449A (en)Platform and method for optimizing manufacturing efficiency by monitoring and predicting tool state
Ahmadi et al.Integration of RCM and PHM for the next generation of aircraft
EP4097549B1 (en)Risk-based manufacturing plant control
Lucht et al.Characterization of supply chains in the regeneration of complex capital goods
JPH0581502A (en)Centralized life managing system for equipment
KR20170054957A (en)Offshore plant preventive maintenance system and offshore plant preventive maintenance method using the same
Bowman et al.How the Internet of Things will improve reliability tracking
Sanket et al.Study on State-of-the-Art Preventive Maintenance Techniques for ADS Vehicle Safety
Baglee et al.The development of CMMS incorporating condition monitoring tools in the advances of Industry 4

Legal Events

DateCodeTitleDescription
WAPApplication withdrawn, taken to be withdrawn or refused ** after publication under section 16(1)

[8]ページ先頭

©2009-2025 Movatter.jp