-1- La présente invention concerne un dispositif pédagogique médical deThe present invention relates to a medical teaching device of
type colonne vertébrale en matière plastique. Les colonnes pédagogiques souples ou rigidifiées actuelles permettent la visualisation anatomique des structures. Mais elles n'intègrent ni la modélisation des chaînes musculaires, c'est-à-dire des muscles unis par une solidarité de tension, ni la mise en évidençe expérimentale des conséquences fonctionnelles de leur présence, ni les répercussions physiopathologiques de leur perte de souplesse. Il manque donc un squelette pédagogique sur lequel des éléments techniques tels que des ficelles, des vis anneau, des vis crochet, et une sangle permettent la démonstration des mécanismes à l'origine des déformations et des douleurs vertébrales ainsi que leurs relations avec le couple tension musculaire/pression articulaire Le dispositif, selon l'invention, permet de remédier à ces inconvénients. Il est constitué en effet, selon une première caractéristique, d'une colonne vertébrale en matière plastique et d'une modélisation de la chaîne musculaire vertébrale postérieure par 2 ficelles postérieures, d'un muscle psoas par des ficelles antérieures et des muscles abdominaux par une sangle à clapet. Le raccourcissement de leur longueur au moyen de crochets d'attache, de noeuds ou de clapet de réglage induit des déformations, des hyperpressions et des limitations d'amplitudes articulaires très faciles à constater. Selon des modes particuliers de réalisation : - la diminution de longueur, par l'accrochage court de la double ficelle postérieure ou des ficelles antérieures va permettre l'apparition de réelles déformations au niveau de la colonne, d'une augmentation de la pression entre les vertèbres, évaluée par un doigt introduit entre deux vertèbres, et une diminution des amplitudes de mouvement en flexion la colonne, visualisant ainsi le rôle de chaînes musculaires, les relations entre tension musculaire, pression articulaire et douleur ainsi que les mécanismes de déformation de la colonne et le rôle des muscles abdominaux dans la statique. - les 2 vis crochet supérieures fixées sur l'arrière du crâne au niveau de l'occiput, de part et d'autre de la ligne médiane, peuvent constituer les points supérieurs d'accrochage de 2 ficelles. 5 10 15 20 25 30 -2- - les 25 paires de vis anneaux, fixées sur les 24 vertèbres et le haut du sacrum, peuvent constituer deux guides symétriques de coulissage pour les ficelles. - les 2 dernières paires de vis crochet, fixées au milieu et en bas du sacrum, peuvent constituer les points d'accrochage inférieurs, soit en position basse, ficelles tendues, soit en position haute, ficelles détendues. - les ficelles antérieures accrochées, par des vis crochet ou anneau, entre les vertèbres lombaires et le fémur peuvent symboliser le muscle psoas et par la présence de noeuds intermédiaires, être également accrochées en position plus courte. - une sangle qui relie l'os du pubis au sternum peut symboliser les muscles abdominaux et être également allongée ou raccourcie par le biais d'un clapet à ressort. - un élément de type fil de fer gainé peut remplacer la tige rigide ou semi-rigide habituellement en place dans les colonnes pédagogiques pour augmenter la souplesse et la déformabilité. - un ballonnet capteur de pression peut être placé entre les vertèbres lombaires ou cervicales et relié à un manomètre à ressort ou à colonne d'air pour remplacer le doigt, en général utilisé pour percevoir l'augmentation de pression intervertébrale. Les dessins annexés illustrent l'invention : La figure 1 représente le dispositif global de l'invention, de profil. La figure 2 représente le détail en coupe au niveau d'une vertèbre. En référence à ces dessins, le dispositif est constitué d'une colonne vertébrale en matière plastique (1), composée de 24 vertèbres, une base de crâne et un bassin reliés par deux ficelles postérieures (2) d'abord accrochées en haut à deux vis crochet à la base du crâne (3), puis engagées dans les 25 paires de vis anneau fixées à l'arrière des vertèbres (4) et pour être nouées ensemble et accrochées sur 2 des 4 paires de vis crochet fixées dans le sacrum (5) ; de cinq à 6 ficelles antérieures (6) fixées par des noeuds à des crochets (7) vissés entre le fémur et les vertèbres lombaires ; et d'une sangle antérieure (8) à clapet (9) passée en boucle au niveau du pubis et du sternum. Les ficelles qui représentent la chaîne musculaire vertébrale postérieure peuvent être accrochées soit aux 2 anneaux crochet supérieurs, soit aux 2 anneaux crochet inférieurs, selon les besoins de l'expérience. -3- Les ficelles antérieures qui représentent le muscle psoas sont fixées en bas ensemble au niveau du fémur, alors que les insertions hautes sont réparties sur les vertèbres lombaires. Des noeuds ajoutés sur les ficelles permettent de raccourcir la longueur de la totalité ou d'une partie de ce muscle psoas modélisé. La sangle antérieure relie en bas le pubis et en haut le sternum. Le clapet à ressort permet de faire varier la longueur de ce qui représente des muscles abdominaux modélisés. La figure 2 représente le détail d'une paire de vis à anneau (4), fixée dans une vertèbre lombaire ainsi que la section des 2 ficelles (2), et du fil de fer gainé (10) qui passent dans les anneaux ou dans le canal rachidien. Le dispositif permet la modélisation des adaptations articulaires et musculaires aux variations de longueur ou d'extensibilité des muscles. spine type of plastic material. Today's flexible or rigidified pedagogical columns allow the anatomical visualization of structures. But they do not integrate the modeling of the muscular chains, that is to say the muscles united by a tension solidarity, nor the experimental identification of the functional consequences of their presence, nor the physiopathological repercussions of their loss of flexibility. . It lacks a pedagogical skeleton on which technical elements such as strings, ring screws, hook screws, and a strap allow the demonstration of the mechanisms causing deformations and vertebral pain and their relationship with the tension torque. Muscle / articular pressure The device according to the invention overcomes these disadvantages. It consists in fact, according to a first characteristic, of a vertebral column in plastic material and of a modeling of the posterior vertebral muscle chain by 2 posterior strings, of a psoas muscle by anterior strings and abdominal muscles by a flap strap. The shortening of their length by means of hooks, knots or control valve induces deformations, hyperpressions and limitations of range of motion very easy to see. According to particular embodiments: - the decrease in length, by the short attachment of the double rear string or previous strings will allow the appearance of actual deformations at the column, an increase in pressure between the vertebrae, evaluated by a finger inserted between two vertebrae, and a decrease in the flexion of the column, thus visualizing the role of muscle chains, the relationships between muscle tension, joint pressure and pain as well as the mechanisms of deformation of the column and the role of the abdominal muscles in the static. - The 2 upper hook screws attached to the back of the skull at the occiput, on either side of the midline, can be the upper points of attachment of 2 strings. The 25 pairs of ring screws attached to the 24 vertebrae and the top of the sacrum may constitute two symmetrical sliding guides for the strings. - The last 2 pairs of hook screws, fixed in the middle and bottom of the sacrum, may be the lower attachment points, either in the low position, strings stretched, or in the up position, strings relaxed. - the anterior strings hooked by hook or ring screws between the lumbar vertebrae and the femur may symbolize the psoas muscle and by the presence of intermediate nodes, also be hung in a shorter position. - A strap that connects the pubic bone to the sternum can symbolize the abdominal muscles and can also be lengthened or shortened by means of a spring valve. - A sheathed wire element can replace the rigid or semi-rigid rod usually in place in the pedagogical columns to increase flexibility and deformability. - A pressure sensor balloon can be placed between the lumbar or cervical vertebrae and connected to a spring or air column pressure gauge to replace the finger, usually used to perceive the increase of intervertebral pressure. The attached drawings illustrate the invention: FIG. 1 represents the overall device of the invention, in profile. Figure 2 shows the sectional detail at a vertebra. Referring to these drawings, the device consists of a plastic spine (1), consisting of 24 vertebrae, a skull base and a pelvis connected by two rear strings (2) first hooked up to two screw hook at the base of the skull (3), then engaged in the 25 pairs of ring screws attached to the back of the vertebrae (4) and to be tied together and hung on 2 of 4 pairs of hook screws fixed in the sacrum ( 5); from five to six anterior strings (6) fixed by knots to hooks (7) screwed between the femur and the lumbar vertebrae; and an anterior strap (8) with a valve (9) looped around the pubis and the sternum. The strings that represent the posterior vertebral muscle chain can be hooked either to the 2 upper hook rings, or to the 2 lower hook rings, according to the needs of the experiment. The anterior strings that represent the psoas muscle are set down together at the femur, while the upper insertions are distributed over the lumbar vertebrae. Nodes added on the strings allow to shorten the length of all or part of this modeled psoas muscle. The anterior strap connects down the pubis and up the sternum. The spring check valve allows to vary the length of what represents abdominal muscles modeled. FIG. 2 shows the detail of a pair of ring screws (4), fixed in a lumbar vertebra as well as the section of the two strings (2), and of the sheathed wire (10) which pass through the rings or in the spinal canal. The device allows the modeling of joint and muscle adaptations to variations in the length or extensibility of the muscles.
Lorsque les ficelles postérieures sont raccourcies, la colonne se déforme en augmentant ses courbures (lordoses) lombaires ou cervicales et la pression augmente sensiblement entre les vertèbres, sur leur partie arrière (apophyses) en statique et sur leur partie avant (disque) en dynamique de flexion. When the posterior strings are shortened, the column deforms by increasing its lumbar or cervical lordosis and the pressure increases substantially between the vertebrae, on their rear part (apophyses) in static and on their front part (disc) in dynamics of bending.
Lorsque les ficelles antérieures sont raccourcies, la colonne se déforme en augmentant sa courbure (lordose) lombaire et la pression intervertébrale augmente sensiblement sur la partie arrière en statique. Par contre elle n'augmente pas en flexion. Lorsque la sangle abdominale est relâchée, la courbure lombaire 25 (lordose) est augmentée, ce qui reporte la pression intervertébrale vers l'arrière. Lorsque les ficelles antérieures et postérieures sont raccourcies, leurs effets de déformation se potentialisent au niveau lombaire. Le raccourcissent de la sangle abdominale peut diminuer cette déformation 30 mais au prix d'une augmentation de la pression intervertébrale en avant, c'est-à-dire au niveau du disque. L'invention concerne donc un dispositif permettant la mise en évidence du rôle fondamental de la souplesse Le dispositif selon l'invention est particulièrement destiné à la pédagogie dans le milieu médical ou de la santé, envers les étudiants ou envers le public et les patients au moment des explications sur le -4- fonctionnement d'une colonne vertébrale et sur les règles de sa protection. 10 15 20 25 30 When the anterior strings are shortened, the column deforms by increasing its lumbar curvature (lordosis) and the intervertebral pressure substantially increases on the rear part in static. On the other hand, it does not increase in flexion. When the lap belt is released, the lumbar curvature (lordosis) is increased, which carries the intervertebral pressure backwards. When the anterior and posterior strings are shortened, their deformation effects are potentiated at the lumbar level. The shortening of the abdominal strap may decrease this deformity but at the cost of an increase in intervertebral pressure forward, that is to say at the disc level. The invention therefore relates to a device for demonstrating the fundamental role of flexibility The device according to the invention is particularly intended for pedagogy in the medical or health environment, to students or to the public and patients at home. moment of explanation on the functioning of a spine and on the rules of its protection. 10 15 20 25 30
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| FR0704482AFR2917876B1 (en) | 2007-06-22 | 2007-06-22 | ANATOMICAL PEDAGOGICAL DEVICE OF THE VERTEBRAL COLUMN TYPE WHICH ENABLES TO DEMONSTRATE AND TEACH THE IMPORTANCE OF THE ROLE OF FLEXIBILITY |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| FR0704482AFR2917876B1 (en) | 2007-06-22 | 2007-06-22 | ANATOMICAL PEDAGOGICAL DEVICE OF THE VERTEBRAL COLUMN TYPE WHICH ENABLES TO DEMONSTRATE AND TEACH THE IMPORTANCE OF THE ROLE OF FLEXIBILITY |
| Publication Number | Publication Date |
|---|---|
| FR2917876A1true FR2917876A1 (en) | 2008-12-26 |
| FR2917876B1 FR2917876B1 (en) | 2010-01-15 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| FR0704482AExpired - Fee RelatedFR2917876B1 (en) | 2007-06-22 | 2007-06-22 | ANATOMICAL PEDAGOGICAL DEVICE OF THE VERTEBRAL COLUMN TYPE WHICH ENABLES TO DEMONSTRATE AND TEACH THE IMPORTANCE OF THE ROLE OF FLEXIBILITY |
| Country | Link |
|---|---|
| FR (1) | FR2917876B1 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2014052612A1 (en)* | 2012-09-27 | 2014-04-03 | Applied Medical Resources Corporation | Surgical training model for laparoscopic procedures |
| WO2014052808A1 (en)* | 2012-09-28 | 2014-04-03 | Applied Medical Resources Corporation | Surgical training model for transluminal laparoscopic procedures |
| US9898937B2 (en) | 2012-09-28 | 2018-02-20 | Applied Medical Resources Corporation | Surgical training model for laparoscopic procedures |
| US9922579B2 (en) | 2013-06-18 | 2018-03-20 | Applied Medical Resources Corporation | Gallbladder model |
| US9940849B2 (en) | 2013-03-01 | 2018-04-10 | Applied Medical Resources Corporation | Advanced surgical simulation constructions and methods |
| US9959786B2 (en) | 2012-09-27 | 2018-05-01 | Applied Medical Resources Corporation | Surgical training model for laparoscopic procedures |
| US10026337B2 (en) | 2013-07-24 | 2018-07-17 | Applied Medical Resources Corporation | First entry model |
| US10081727B2 (en) | 2015-05-14 | 2018-09-25 | Applied Medical Resources Corporation | Synthetic tissue structures for electrosurgical training and simulation |
| US10140889B2 (en) | 2013-05-15 | 2018-11-27 | Applied Medical Resources Corporation | Hernia model |
| US10198966B2 (en) | 2013-07-24 | 2019-02-05 | Applied Medical Resources Corporation | Advanced first entry model for surgical simulation |
| US10198965B2 (en) | 2012-08-03 | 2019-02-05 | Applied Medical Resources Corporation | Simulated stapling and energy based ligation for surgical training |
| US10223936B2 (en) | 2015-06-09 | 2019-03-05 | Applied Medical Resources Corporation | Hysterectomy model |
| US10332425B2 (en) | 2015-07-16 | 2019-06-25 | Applied Medical Resources Corporation | Simulated dissectible tissue |
| US10354556B2 (en) | 2015-02-19 | 2019-07-16 | Applied Medical Resources Corporation | Simulated tissue structures and methods |
| US10490105B2 (en) | 2015-07-22 | 2019-11-26 | Applied Medical Resources Corporation | Appendectomy model |
| US10535281B2 (en) | 2012-09-26 | 2020-01-14 | Applied Medical Resources Corporation | Surgical training model for laparoscopic procedures |
| US10679520B2 (en) | 2012-09-27 | 2020-06-09 | Applied Medical Resources Corporation | Surgical training model for laparoscopic procedures |
| US10706743B2 (en) | 2015-11-20 | 2020-07-07 | Applied Medical Resources Corporation | Simulated dissectible tissue |
| US10720084B2 (en) | 2015-10-02 | 2020-07-21 | Applied Medical Resources Corporation | Hysterectomy model |
| US10796606B2 (en) | 2014-03-26 | 2020-10-06 | Applied Medical Resources Corporation | Simulated dissectible tissue |
| US10818201B2 (en) | 2014-11-13 | 2020-10-27 | Applied Medical Resources Corporation | Simulated tissue models and methods |
| US10847057B2 (en) | 2017-02-23 | 2020-11-24 | Applied Medical Resources Corporation | Synthetic tissue structures for electrosurgical training and simulation |
| US10854112B2 (en) | 2010-10-01 | 2020-12-01 | Applied Medical Resources Corporation | Portable laparoscopic trainer |
| US11030922B2 (en) | 2017-02-14 | 2021-06-08 | Applied Medical Resources Corporation | Laparoscopic training system |
| US11120708B2 (en) | 2016-06-27 | 2021-09-14 | Applied Medical Resources Corporation | Simulated abdominal wall |
| US11158212B2 (en) | 2011-10-21 | 2021-10-26 | Applied Medical Resources Corporation | Simulated tissue structure for surgical training |
| US11403968B2 (en) | 2011-12-20 | 2022-08-02 | Applied Medical Resources Corporation | Advanced surgical simulation |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB2344922A (en)* | 1998-12-16 | 2000-06-21 | Autoliv Dev | A spine for a crash dummy |
| US6409516B1 (en)* | 2000-01-07 | 2002-06-25 | Gerald D. Thill | Posable skeleton |
| US6662148B1 (en)* | 2000-01-28 | 2003-12-09 | International Business Machines Corporation | Computation of shapes of three-dimensional linkage structures based on optimization techniques |
| DE20319899U1 (en)* | 2003-12-19 | 2004-03-11 | Meischter, Annette | Kit for a spine model |
| WO2006110629A1 (en)* | 2005-04-07 | 2006-10-19 | Wilkins Jason D | Orthopedic procedures training simulator |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| GB2344922A (en)* | 1998-12-16 | 2000-06-21 | Autoliv Dev | A spine for a crash dummy |
| US6409516B1 (en)* | 2000-01-07 | 2002-06-25 | Gerald D. Thill | Posable skeleton |
| US6662148B1 (en)* | 2000-01-28 | 2003-12-09 | International Business Machines Corporation | Computation of shapes of three-dimensional linkage structures based on optimization techniques |
| DE20319899U1 (en)* | 2003-12-19 | 2004-03-11 | Meischter, Annette | Kit for a spine model |
| WO2006110629A1 (en)* | 2005-04-07 | 2006-10-19 | Wilkins Jason D | Orthopedic procedures training simulator |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US10854112B2 (en) | 2010-10-01 | 2020-12-01 | Applied Medical Resources Corporation | Portable laparoscopic trainer |
| US12154454B2 (en) | 2010-10-01 | 2024-11-26 | Applied Medical Resources Corporation | Portable laparoscopic trainer |
| US11158212B2 (en) | 2011-10-21 | 2021-10-26 | Applied Medical Resources Corporation | Simulated tissue structure for surgical training |
| US12014652B2 (en) | 2011-10-21 | 2024-06-18 | Applied Medical Resources Corporation | Simulated tissue structure for surgical training |
| US11403968B2 (en) | 2011-12-20 | 2022-08-02 | Applied Medical Resources Corporation | Advanced surgical simulation |
| US10198965B2 (en) | 2012-08-03 | 2019-02-05 | Applied Medical Resources Corporation | Simulated stapling and energy based ligation for surgical training |
| US11514819B2 (en) | 2012-09-26 | 2022-11-29 | Applied Medical Resources Corporation | Surgical training model for laparoscopic procedures |
| US10535281B2 (en) | 2012-09-26 | 2020-01-14 | Applied Medical Resources Corporation | Surgical training model for laparoscopic procedures |
| US10679520B2 (en) | 2012-09-27 | 2020-06-09 | Applied Medical Resources Corporation | Surgical training model for laparoscopic procedures |
| US9959786B2 (en) | 2012-09-27 | 2018-05-01 | Applied Medical Resources Corporation | Surgical training model for laparoscopic procedures |
| US11361679B2 (en) | 2012-09-27 | 2022-06-14 | Applied Medical Resources Corporation | Surgical training model for laparoscopic procedures |
| US10121391B2 (en) | 2012-09-27 | 2018-11-06 | Applied Medical Resources Corporation | Surgical training model for laparoscopic procedures |
| WO2014052612A1 (en)* | 2012-09-27 | 2014-04-03 | Applied Medical Resources Corporation | Surgical training model for laparoscopic procedures |
| US11869378B2 (en) | 2012-09-27 | 2024-01-09 | Applied Medical Resources Corporation | Surgical training model for laparoscopic procedures |
| EP3483862A1 (en)* | 2012-09-27 | 2019-05-15 | Applied Medical Resources Corporation | Surgical training model for laparoscopic procedures |
| US11990055B2 (en) | 2012-09-27 | 2024-05-21 | Applied Medical Resources Corporation | Surgical training model for laparoscopic procedures |
| US10395559B2 (en) | 2012-09-28 | 2019-08-27 | Applied Medical Resources Corporation | Surgical training model for transluminal laparoscopic procedures |
| EP3467805A1 (en)* | 2012-09-28 | 2019-04-10 | Applied Medical Resources Corporation | Surgical training model for transluminal laparoscopic procedures |
| WO2014052808A1 (en)* | 2012-09-28 | 2014-04-03 | Applied Medical Resources Corporation | Surgical training model for transluminal laparoscopic procedures |
| US9898937B2 (en) | 2012-09-28 | 2018-02-20 | Applied Medical Resources Corporation | Surgical training model for laparoscopic procedures |
| US9940849B2 (en) | 2013-03-01 | 2018-04-10 | Applied Medical Resources Corporation | Advanced surgical simulation constructions and methods |
| US10140889B2 (en) | 2013-05-15 | 2018-11-27 | Applied Medical Resources Corporation | Hernia model |
| US11735068B2 (en) | 2013-06-18 | 2023-08-22 | Applied Medical Resources Corporation | Gallbladder model |
| US9922579B2 (en) | 2013-06-18 | 2018-03-20 | Applied Medical Resources Corporation | Gallbladder model |
| US11049418B2 (en) | 2013-06-18 | 2021-06-29 | Applied Medical Resources Corporation | Gallbladder model |
| US10026337B2 (en) | 2013-07-24 | 2018-07-17 | Applied Medical Resources Corporation | First entry model |
| US11450236B2 (en) | 2013-07-24 | 2022-09-20 | Applied Medical Resources Corporation | Advanced first entry model for surgical simulation |
| US12288476B2 (en) | 2013-07-24 | 2025-04-29 | Applied Medical Resources Corporation | Advanced first entry model for surgical simulation |
| US10198966B2 (en) | 2013-07-24 | 2019-02-05 | Applied Medical Resources Corporation | Advanced first entry model for surgical simulation |
| US10657845B2 (en) | 2013-07-24 | 2020-05-19 | Applied Medical Resources Corporation | First entry model |
| US10796606B2 (en) | 2014-03-26 | 2020-10-06 | Applied Medical Resources Corporation | Simulated dissectible tissue |
| US10818201B2 (en) | 2014-11-13 | 2020-10-27 | Applied Medical Resources Corporation | Simulated tissue models and methods |
| US11887504B2 (en) | 2014-11-13 | 2024-01-30 | Applied Medical Resources Corporation | Simulated tissue models and methods |
| US12211394B2 (en) | 2014-11-13 | 2025-01-28 | Applied Medical Resources Corporation | Simulated tissue models and methods |
| US11100815B2 (en) | 2015-02-19 | 2021-08-24 | Applied Medical Resources Corporation | Simulated tissue structures and methods |
| US12131664B2 (en) | 2015-02-19 | 2024-10-29 | Applied Medical Resources Corporation | Simulated tissue structures and methods |
| US10354556B2 (en) | 2015-02-19 | 2019-07-16 | Applied Medical Resources Corporation | Simulated tissue structures and methods |
| US10081727B2 (en) | 2015-05-14 | 2018-09-25 | Applied Medical Resources Corporation | Synthetic tissue structures for electrosurgical training and simulation |
| US11034831B2 (en) | 2015-05-14 | 2021-06-15 | Applied Medical Resources Corporation | Synthetic tissue structures for electrosurgical training and simulation |
| US10733908B2 (en) | 2015-06-09 | 2020-08-04 | Applied Medical Resources Corporation | Hysterectomy model |
| US10223936B2 (en) | 2015-06-09 | 2019-03-05 | Applied Medical Resources Corporation | Hysterectomy model |
| US11721240B2 (en) | 2015-06-09 | 2023-08-08 | Applied Medical Resources Corporation | Hysterectomy model |
| US12175883B2 (en) | 2015-06-09 | 2024-12-24 | Applied Medical Resources Corporation | Hysterectomy model |
| US10332425B2 (en) | 2015-07-16 | 2019-06-25 | Applied Medical Resources Corporation | Simulated dissectible tissue |
| US10755602B2 (en) | 2015-07-16 | 2020-08-25 | Applied Medical Resources Corporation | Simulated dissectible tissue |
| US11587466B2 (en) | 2015-07-16 | 2023-02-21 | Applied Medical Resources Corporation | Simulated dissectible tissue |
| US12087179B2 (en) | 2015-07-16 | 2024-09-10 | Applied Medical Resources Corporation | Simulated dissectible tissue |
| US10490105B2 (en) | 2015-07-22 | 2019-11-26 | Applied Medical Resources Corporation | Appendectomy model |
| US12243441B2 (en) | 2015-10-02 | 2025-03-04 | Applied Medical Resources Corporation | Hysterectomy model |
| US10720084B2 (en) | 2015-10-02 | 2020-07-21 | Applied Medical Resources Corporation | Hysterectomy model |
| US11721242B2 (en) | 2015-10-02 | 2023-08-08 | Applied Medical Resources Corporation | Hysterectomy model |
| US10706743B2 (en) | 2015-11-20 | 2020-07-07 | Applied Medical Resources Corporation | Simulated dissectible tissue |
| US12217625B2 (en) | 2015-11-20 | 2025-02-04 | Applied Medical Resources Corporation | Simulated dissectible tissue |
| US11120708B2 (en) | 2016-06-27 | 2021-09-14 | Applied Medical Resources Corporation | Simulated abdominal wall |
| US11830378B2 (en) | 2016-06-27 | 2023-11-28 | Applied Medical Resources Corporation | Simulated abdominal wall |
| US11030922B2 (en) | 2017-02-14 | 2021-06-08 | Applied Medical Resources Corporation | Laparoscopic training system |
| US12243439B2 (en) | 2017-02-14 | 2025-03-04 | Applied Medical Resources Corporation | Laparoscopic training system |
| US10847057B2 (en) | 2017-02-23 | 2020-11-24 | Applied Medical Resources Corporation | Synthetic tissue structures for electrosurgical training and simulation |
| Publication number | Publication date |
|---|---|
| FR2917876B1 (en) | 2010-01-15 |
| Publication | Publication Date | Title |
|---|---|---|
| FR2917876A1 (en) | Anatomical pedagogical device for use in e.g. healthcare establishment, has abdominal muscles with strap connecting lower part of sternum to pubis to shorten/extend muscles length for inducing hyperpressure and amplitude limitation | |
| Dolan et al. | Recent advances in lumbar spinal mechanics and their significance for modelling | |
| McGill et al. | Creep response of the lumbar spine to prolonged full flexion | |
| Schweizer | Biomechanical properties of the crimp grip position in rock climbers | |
| McGill et al. | Transfer of loads between lumbar tissues during the flexion-relaxation phenomenon | |
| Wehner et al. | Lower extremity exoskeleton reduces back forces in lifting | |
| WO2004016185A2 (en) | Distraction and damping system which can be adjusted as the vertebral column grows | |
| Zander et al. | Spinal loads as influenced by external loads: A combined in vivo and in silico investigation | |
| JP2009502213A (en) | Mobile spine stabilization device | |
| JP2007530144A5 (en) | ||
| WO2007104024A3 (en) | Artificial functional spinal unit system and method for use | |
| Azevedo et al. | Reliability of sagittal pelvic position assessments in standing, sitting and during hip flexion using palpation meter | |
| Vaarbakken et al. | Primary functions of the quadratus femoris and obturator externus muscles indicated from lengths and moment arms measured in mobilized cadavers | |
| Dreischarf et al. | In vivo implant forces acting on a vertebral body replacement during upper body flexion | |
| de Visser et al. | The role of quadratus lumborum asymmetry in the occurrence of lesions in the lumbar vertebrae of cricket fast bowlers | |
| Van Geffen et al. | Effects of sagittal postural adjustments on seat reaction load | |
| Rathore et al. | A focused review–Thoracolumbar spine: Anatomy, biomechanics and clinical significance | |
| Camilotti et al. | Stature recovery after sitting on land and in water | |
| US2320183A (en) | Orthopedic device | |
| Pawar et al. | Study of lumbar lordosis and pelvic position in Bharatanatyam dancers | |
| Lewton | Locomotor function and the evolution of the primate pelvis | |
| Mathias et al. | In healthy subjects, the sitting position can be used to validate the postural effects induced by wearing a lumbar lordosis brace | |
| Portero et al. | An update of neck muscle strength: from isometric to isokinetic assessment | |
| Daniela | The role of movement and non-movement in lumbar disc hernia development and auto-management | |
| Ning et al. | Passive lumbar tissue loading during trunk bending at three speeds: An in vivo study |
| Date | Code | Title | Description |
|---|---|---|---|
| ST | Notification of lapse | Effective date:20150227 |