L'invention concerne un procédé de fabrication d'un matériau composite àThe invention relates to a method for producing a composite material for
densité de stockage et conductivité thermiques élevées, et un tel matériau high storage density and thermal conductivity, and such material
utilisable en procédé de type PSA, VSA, TSA ou SERP (SERP pour Sorption Enhanced Reaction Process = procédé de réaction 'sorption' améliorée) II est connu que les matériaux à changement de phase (MCP) agissent comme des puits thermiques à leur température de changement de phase. usable in the PSA, VSA, TSA or SERP (SERP method for enhanced sorption enhancement process) It is known that phase change materials (PCMs) act as heat sinks at their temperature of phase change.
Les MCP peuvent être organiques, telles que les paraffines et les io silicones, ou inorganiques, tels les sels hydratés et les alliages métalliques. MCPs can be organic, such as paraffins and silicones, or inorganic, such as hydrated salts and metal alloys.
La capacité d'absorption de chaleur d'un MCP est d'autant plus grande que sa chaleur latente est élevée. Les paraffines ont une chaleur latente généralement inférieure à celles des sels hydratés. Pourtant, elles sont souvent préférentiellement utilisées comme MCP car elles présentent un certain nombre d'avantages, tels que réversiblité du changement de phase, stabilité chimique, température définie de changement de phase, possiblité d'encapsulation, faible coût, large plage de température selon le nombre d'atomes de carbone et la structure de la molécule, toxicité limitée. The heat absorption capacity of a PCM is all the greater as its latent heat is high. Paraffins have a latent heat generally lower than those of hydrated salts. However, they are often preferentially used as MCP because they have a certain number of advantages, such as reversibility of the phase change, chemical stability, defined phase change temperature, encapsulation possibility, low cost, wide temperature range according to the number of carbon atoms and the structure of the molecule, limited toxicity.
Cependant, un inconvénient des paraffines est leur faible conductivité 20 thermique qui est de l'ordre de 0.1 ou 0.2 W/m/K selon que la paraffine est à l'état solide ou liquide. However, a disadvantage of paraffins is their low thermal conductivity which is of the order of 0.1 or 0.2 W / m / K depending on whether the paraffin is in the solid or liquid state.
Cet inconvénient constitue une limitation majeure dès que les applications du MCP concernent des systèmes soumis à des échanges thermiques rapides, de temps caractéristiques compris entre quelques secondes et quelques minutes. This disadvantage constitutes a major limitation as soon as the applications of the MCP concern systems subjected to rapid heat exchange, with characteristic times of between a few seconds and a few minutes.
Pour tenter d'y remédier, il a été proposé de combiner le MCP avec un matériau conducteur, ce qui consiste par exemple à imprégner les pores d'une matrice continue à forte conductivité thermique, tels les nids d'abeille, mousses, treillis, tissu métallique ou carboné, ou encore fibres continues de carbone, avec le MCP, ce qui permet d'atteindre des conductivités supérieures à celles obtenue précédemment, principalement du fait de la constitution d'un réseau conducteur continu. In an attempt to remedy this, it has been proposed to combine the MCP with a conductive material, which consists, for example, in impregnating the pores of a continuous matrix with a high thermal conductivity, such as honeycombs, foams, lattices, metal or carbon fabric, or continuous carbon fibers, with the MCP, which achieves conductivities higher than those obtained previously, mainly because of the formation of a continuous conductive network.
Ainsi, le document US-A-6,399,149 propose de remplir les pores d'une mousse de carbone (pitch-derived) avec le MCP. La mousse de carbone est fermée par des parois métalliques ou carbonées. Thus, US-A-6,399,149 proposes to fill the pores of a carbon foam (pitch-derived) with the MCP. The carbon foam is closed by metal or carbon walls.
Cependant, l'inconvénient de cette méthode est qu'elle nécessite la fabrication préalable d'une mousse de carbone avec des dimensions spécifiques. D'autre part, l'usinage d'une mousse de carbone n'est pas aisé, surtout si des tranches inférieures au centimètre sont requises. Enfin, si la mousse de carbone se brise à l'intérieur du dispositif, la conduction thermique n'est plus assurée et il faut démonter le système. However, the disadvantage of this method is that it requires the prior manufacture of a carbon foam with specific dimensions. On the other hand, machining a carbon foam is not easy, especially if slices less than one centimeter are required. Finally, if the carbon foam breaks inside the device, thermal conduction is no longer ensured and the system must be dismantled.
La solution consistant à imprégner des fibres carbonées poreuses par des MCP est, quant à elle, limitée par la quantité de MCP logeable car les MCP ne sont retenus dans les pores des fibres que par des forces de capillarité. L'ensemble comporte donc des volumes morts ne contenant pas de MCP. The solution consisting in impregnating porous carbonaceous fibers with PCMs is, in turn, limited by the amount of MCP that can be accommodated because the PCMs are retained in the pores of the fibers only by capillary forces. The set therefore includes dead volumes that do not contain PCM.
En définitive, les solutions ci-dessus ne sont pas idéales et présentent toutes des limites au plan industriel. Ultimately, the above solutions are not ideal and all have industrial limitations.
La présente invention se propose dès lors de pallier ces limitations et inconvénients en proposant un procédé amélioré de fabrication d'un matériau composite à densité de stockage et conductivité thermiques élevées, ainsi qu'un tel matériau composite. The present invention therefore proposes to overcome these limitations and disadvantages by proposing an improved method of manufacturing a composite material with high storage density and thermal conductivity, as well as such a composite material.
La solution de l'invention est alors un procédé de fabrication d'un matériau composite à densité de stockage et conductivité thermiques élevées, dans lequel on incorpore dans le réseau poreux d'une matrice continue à forte conductivité thermique, au moins un matériau à changement de phase (MCP) microencapsulé se présentant sous forme de microcapsules polymériques de diamètres compris entre 0.5 pm et 50 pm contenant au moins un matériau à changement de phase. The solution of the invention is then a method of manufacturing a composite material with a high storage density and thermal conductivity, in which is incorporated in the porous network of a continuous matrix with high thermal conductivity, at least one material to change microencapsulated phase (MCP) in the form of polymer microcapsules of diameters between 0.5 μm and 50 μm containing at least one phase change material.
Dans le cadre de l'invention, on appelle matrice continue à forte conductivité thermique , une matrice composé d'un materiaux possédant une conductivité thermique propre élevée (supérieure à 200 W/m/K) qui en fonction de sa porosité (75 à 90%) peut avoir une conductivité thermique supérieure à 10 W/m/K. In the context of the invention, a continuous matrix with a high thermal conductivity is called a matrix composed of a material having a high intrinsic thermal conductivity (greater than 200 W / m / K) which, depending on its porosity (75 to 90 %) may have a thermal conductivity greater than 10 W / m / K.
Selon le cas, le procédé de l'invention peut comprendre l'une ou plusieurs des caractéristiques suivantes: - les microcapsules de MPC ont un diamètre compris entre 1 et 10 pm. Depending on the case, the process of the invention may comprise one or more of the following characteristics: the microcapsules of MPC have a diameter of between 1 and 10 μm.
- la matrice continue à forte conductivité thermique est une mousse. the continuous matrix with high thermal conductivity is a foam.
- la matrice continue à forte conductivité thermique est choisie parmi les mousses céramiques, métalliques ou carbonées. - The continuous matrix with high thermal conductivity is selected from ceramic foams, metal or carbon.
- la matrice est agencée entre au moins deux feuilles métalliques. the matrix is arranged between at least two metal sheets.
- le MCP est choisi parmi les paraffines, les acides gras, les composés azotés, les composés oxygénés (alcool ou acides), les phényles et les sels lo hydratés. the MCP is chosen from paraffins, fatty acids, nitrogen compounds, oxygenated compounds (alcohol or acids), phenyls and hydrated salts.
L'invention concerne aussi une matrice poreuse comprenant des microencapsules polymériques contenant au moins un matériau à changement de phase (MCP) et ayant un diamètre compris entre 0,5 pm et 50 pm, susceptible d'être obtenu par le procédé de fabrication de l'invention. The invention also relates to a porous matrix comprising polymeric microencapsules containing at least one phase-change material (PCM) and having a diameter of between 0.5 μm and 50 μm, obtainable by the method of manufacturing the 'invention.
De préférence, la matrice est choisie parmi les mousses céramiques, métalliques ou carbonées. Preferably, the matrix is chosen from ceramic, metal or carbonaceous foams.
L'invention porte aussi sur une structure comprenant une matrice selon l'invention agencée entre au moins deux plaques métalliques, ainsi que sur l'utilisation d'une structure selon l'invention pour réaliser un échange thermique entre un fluide caloporteur et ladite structure. The invention also relates to a structure comprising a matrix according to the invention arranged between at least two metal plates, as well as to the use of a structure according to the invention for effecting a heat exchange between a coolant and said structure.
En d'autres termes, contrairement à ce que propose le document US-A-6,399, 149, à savoir une introduction directe du MPC dans une matrice continue à forte conductivité thermique, la solution de l'invention est basée sur une incorporation de MCP sous forme microencapsulée dans la matrice. In other words, contrary to the document US Pat. No. 6,399,149, namely a direct introduction of the MPC in a continuous matrix with a high thermal conductivity, the solution of the invention is based on an incorporation of MCP. in microencapsulated form in the matrix.
En effet, le fait d'utiliser un MPC microencapsulé permet de passer outre les limitations de l'enseignement du document US-A-6,399,149. Indeed, the fact of using a microencapsulated MPC makes it possible to overcome the limitations of teaching US-A-6,399,149.
Plus précisément, la technique de microencapsulation, le MCP est inséré dans des microsphères polymériques, de mélamine formaldéhyde ou d'acrylique par exemple, de diamètre compris entre 0,5 pm et 50 pm. A ces échelles, la conductivité thermique à travers la coque polymère et le MCP est très bonne. Les MCP microencapsulés ainsi obtenus se présentent sous la forme d'une poudre micronique particulièrement facile à manipuler et à mettre en oeuvre. La micro- encapsulation permet d'augmenter la surface d'échange du MCP avec le milieu extérieur et d'améliorer ainsi la cinétique thermique. More specifically, the microencapsulation technique, MCP is inserted in polymeric microspheres, melamine formaldehyde or acrylic for example, with a diameter of between 0.5 pm and 50 pm. At these scales, the thermal conductivity through the polymer shell and the MCP is very good. The microencapsulated MCPs thus obtained are in the form of a micron powder which is particularly easy to handle and to use. Microencapsulation makes it possible to increase the exchange surface of the PCM with the external medium and thus to improve the thermal kinetics.
Les mousses contenant des MCP microencapsulés selon l'invention sont utilisables dans des applications impliquant des variations rapides de température, c'est-à-dire comprises entre 5 secondes et 10 minutes, notamment en procédés VSA, PSA, TSA ou SERP pour la séparation ou la purification des gaz. The foams containing microencapsulated MCPs according to the invention can be used in applications involving rapid temperature variations, that is to say between 5 seconds and 10 minutes, in particular in the VSA, PSA, TSA or SERP methods for separation. or the purification of gases.
L'invention va être expliquée plus en détail en références aux figures annexées. The invention will be explained in more detail with reference to the appended figures.
io La figure 1 représente des vues grossies d'une mousse poreuse métallique selon l'invention, laquelle incorpore, dans son réseau poreux, un matériau à changement de phase (MCP) microencapsulé se présentant sous forme de microcapsules polymériques de diamètres compris entre 0.5 pm et 50 pm, typiquement entre 2 et 10 pm, contenant ledit matériau à changement de phase, par exemple les paraffines et les silicones. FIG. 1 represents magnified views of a porous metal foam according to the invention, which incorporates, in its porous network, a microencapsulated phase change material (MCP) in the form of polymer microcapsules with diameters of between 0.5 μm. and 50 μm, typically between 2 and 10 μm, containing said phase change material, for example paraffins and silicones.
La mousse peut être, selon le cas, de nature métallique, céramique ou carbonée et est préférentiellement agencée, c'est-à-dire prise en sandwich , entre deux feuilles ou plaques métalliques, comme visible sur la figure 2. The foam may be, as the case may be, of a metallic, ceramic or carbonaceous nature and is preferably arranged, that is to say sandwiched, between two sheets or metal plates, as can be seen in FIG. 2.
Il existe plusieurs manières de fabriquer une matrice selon l'invention. There are several ways to make a matrix according to the invention.
Une première méthode schématisée sur la Figure 3 consiste à remplir ou à incorporer aux espaces vides, c'est-à-dire au réseau poreux, d'une matrice 1 métallique ou carbonée agencée entre deux plaques métalliques 2, le MCP microencapsulé lequel y est introduit sous forme d'une solution 3 de MCP microencapsulé. La structure formée par la matrice 1 et les plaques 2 est posée sur un filtre ayant des pores de 1 pm, lequel sert à arrêter les microcapsules contenant le MCP et à les retenir dans la matrice continue à forte conductivité thermique. A first method shown diagrammatically in FIG. 3 consists in filling or incorporating into the empty spaces, that is to say the porous network, a metallic or carbon matrix 1 arranged between two metal plates 2, the microencapsulated MCP which is introduced in the form of a solution 3 of microencapsulated MCP. The structure formed by the matrix 1 and the plates 2 is placed on a filter having pores of 1 μm, which serves to stop the microcapsules containing the MCP and to retain them in the continuous matrix with high thermal conductivity.
Une autre méthode repose sur l'incorporation du MCP microencapsulé dans une mousse polymérique, tel du polyurétane expansé avec distribution de tailles de pores contrôlées, suivie d'un dépôt électrolytique de métal sur la mousse polymérique. Another method relies on the incorporation of microencapsulated MCP into a polymeric foam, such as expanded polyurethane with controlled pore size distribution, followed by electrolytic deposition of metal on the polymeric foam.
La mousse de l'invention peut être utilisée dans des systèmes impliquant des cycles de température rapides (entre 5 s et 10 min) tels les procédés VSA, PSA ou TSA pour la séparation ou la purification des gaz, par lesquelles sont produits un ou plusieurs composés parmi 02, H2, CO2, Ar, N2..., à partir de l'air, d'un mélange H2ICO, d'un syngas, d'un gaz résiduel de combustion par exemple, par adsorption sélective de N2, 02, CO, CO2, H2O, d'hydrocarbures saturés ou insaturés, de composés sulfurés ou d'oxydes d'azote; ou encore les procédés SERP. The foam of the invention can be used in systems involving fast temperature cycles (between 5 s and 10 min) such as VSA, PSA or TSA processes for gas separation or purification, by which one or more products are produced. O2, H2, CO2, Ar, N2 ... compounds, from air, a H2ICO mixture, a syngas, a combustion residual gas for example, by selective adsorption of N2, O2 CO, CO2, H2O, saturated or unsaturated hydrocarbons, sulfur compounds or oxides of nitrogen; or the SERP methods.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| FR0452079AFR2875432A1 (en) | 2004-09-17 | 2004-09-17 | Preparation of composite material, used in structure to carry out thermal exchange between coolant and structure, comprises incorporating microencapsulated phase change material into porous network of continuous matrix |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| FR0452079AFR2875432A1 (en) | 2004-09-17 | 2004-09-17 | Preparation of composite material, used in structure to carry out thermal exchange between coolant and structure, comprises incorporating microencapsulated phase change material into porous network of continuous matrix |
| Publication Number | Publication Date |
|---|---|
| FR2875432A1true FR2875432A1 (en) | 2006-03-24 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| FR0452079AWithdrawnFR2875432A1 (en) | 2004-09-17 | 2004-09-17 | Preparation of composite material, used in structure to carry out thermal exchange between coolant and structure, comprises incorporating microencapsulated phase change material into porous network of continuous matrix |
| Country | Link |
|---|---|
| FR (1) | FR2875432A1 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP2087998A1 (en)* | 2008-02-07 | 2009-08-12 | Océ-Technologies B.V. | A heat regulated printer element, use of a rubber material having a phase change material dispersed therein, a printer and a method of printing |
| US20120305213A1 (en)* | 2010-02-26 | 2012-12-06 | Aiichiro Tsukahara | Heat storage member and method for manufacturing the same |
| WO2014063191A1 (en) | 2012-10-26 | 2014-05-01 | Newcastle Innovation Limited | Alloys with inverse microstructures |
| FR3001184A1 (en)* | 2013-01-24 | 2014-07-25 | Valeo Systemes Thermiques | Heating, ventilating and/or air conditioning device for providing cooling air for car's passenger compartment, has composite material maintaining rigid structure, and including material forming structure for support of phase change material |
| CZ308571B6 (en)* | 2019-09-13 | 2020-12-09 | Technická univerzita v Liberci | Composite for thermal protection, in particular for cooling electronic components |
| FR3131772A1 (en)* | 2022-01-07 | 2023-07-14 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | MODULAR THERMAL STORAGE ASSEMBLY WITH PHASE CHANGE MATERIAL, WHOSE MANUFACTURE IS SIMPLIFIED |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4572864A (en)* | 1985-01-04 | 1986-02-25 | The United States Of America As Represented By The United States Department Of Energy | Composite materials for thermal energy storage |
| US5290904A (en)* | 1991-07-31 | 1994-03-01 | Triangle Research And Development Corporation | Heat shield |
| EP0623662A1 (en)* | 1992-02-28 | 1994-11-09 | Mitsubishi Paper Mills, Ltd. | Microcapsule for heat-storing material |
| US5435376A (en)* | 1992-08-17 | 1995-07-25 | Microtek Laboratories, Inc. | Flame resistant microencapsulated phase change materials |
| US5677048A (en)* | 1996-03-04 | 1997-10-14 | Gateway Technologies, Inc. | Coated skived foam and fabric article containing energy absorbing phase change material |
| US6270836B1 (en)* | 1998-07-27 | 2001-08-07 | Frisby Technologies, Inc. | Gel-coated microcapsules |
| DE10019931C1 (en)* | 2000-04-20 | 2001-11-08 | Fraunhofer Ges Forschung | Active thermal structural element has hypocaust element, inner duct structure for heating or cooling medium, phase change material |
| US20020054964A1 (en)* | 2000-09-21 | 2002-05-09 | Hartmann Mark H. | Stable phase change materials for use in temperature regulating synthetic fibers, fabrics and textiles |
| US6399149B1 (en)* | 1997-09-02 | 2002-06-04 | Ut-Battelle, Llc | Pitch-based carbon foam heat sink with phase change material |
| CH692574A5 (en)* | 2001-05-18 | 2002-08-15 | Schoeller Textil Ag | A process for producing temperature-regulating surfaces and products made from this. |
| DE10218977A1 (en)* | 2002-04-27 | 2003-11-06 | Merck Patent Gmbh | Surface modification of phase change material |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4572864A (en)* | 1985-01-04 | 1986-02-25 | The United States Of America As Represented By The United States Department Of Energy | Composite materials for thermal energy storage |
| US5290904A (en)* | 1991-07-31 | 1994-03-01 | Triangle Research And Development Corporation | Heat shield |
| EP0623662A1 (en)* | 1992-02-28 | 1994-11-09 | Mitsubishi Paper Mills, Ltd. | Microcapsule for heat-storing material |
| US5435376A (en)* | 1992-08-17 | 1995-07-25 | Microtek Laboratories, Inc. | Flame resistant microencapsulated phase change materials |
| US5677048A (en)* | 1996-03-04 | 1997-10-14 | Gateway Technologies, Inc. | Coated skived foam and fabric article containing energy absorbing phase change material |
| US6399149B1 (en)* | 1997-09-02 | 2002-06-04 | Ut-Battelle, Llc | Pitch-based carbon foam heat sink with phase change material |
| US6270836B1 (en)* | 1998-07-27 | 2001-08-07 | Frisby Technologies, Inc. | Gel-coated microcapsules |
| DE10019931C1 (en)* | 2000-04-20 | 2001-11-08 | Fraunhofer Ges Forschung | Active thermal structural element has hypocaust element, inner duct structure for heating or cooling medium, phase change material |
| US20020054964A1 (en)* | 2000-09-21 | 2002-05-09 | Hartmann Mark H. | Stable phase change materials for use in temperature regulating synthetic fibers, fabrics and textiles |
| CH692574A5 (en)* | 2001-05-18 | 2002-08-15 | Schoeller Textil Ag | A process for producing temperature-regulating surfaces and products made from this. |
| DE10218977A1 (en)* | 2002-04-27 | 2003-11-06 | Merck Patent Gmbh | Surface modification of phase change material |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP2087998A1 (en)* | 2008-02-07 | 2009-08-12 | Océ-Technologies B.V. | A heat regulated printer element, use of a rubber material having a phase change material dispersed therein, a printer and a method of printing |
| US20120305213A1 (en)* | 2010-02-26 | 2012-12-06 | Aiichiro Tsukahara | Heat storage member and method for manufacturing the same |
| US9909046B2 (en)* | 2010-02-26 | 2018-03-06 | Mitsubishi Heavy Industries, Ltd. | Heat storage member and method for manufacturing the same |
| WO2014063191A1 (en) | 2012-10-26 | 2014-05-01 | Newcastle Innovation Limited | Alloys with inverse microstructures |
| EP2912203B1 (en)* | 2012-10-26 | 2025-09-17 | MGA Thermal Pty Ltd | Method for storing and discharging energy through an inverse microstructure alloys |
| FR3001184A1 (en)* | 2013-01-24 | 2014-07-25 | Valeo Systemes Thermiques | Heating, ventilating and/or air conditioning device for providing cooling air for car's passenger compartment, has composite material maintaining rigid structure, and including material forming structure for support of phase change material |
| CZ308571B6 (en)* | 2019-09-13 | 2020-12-09 | Technická univerzita v Liberci | Composite for thermal protection, in particular for cooling electronic components |
| FR3131772A1 (en)* | 2022-01-07 | 2023-07-14 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | MODULAR THERMAL STORAGE ASSEMBLY WITH PHASE CHANGE MATERIAL, WHOSE MANUFACTURE IS SIMPLIFIED |
| EP4212814A1 (en)* | 2022-01-07 | 2023-07-19 | Commissariat à l'énergie atomique et aux énergies alternatives | Modular thermal storage assembly with phase-change material, the production of which is simplified |
| US12264882B2 (en) | 2022-01-07 | 2025-04-01 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | Modular heat-storage assembly with phase-change material, the manufacture of which is simplified |
| Publication | Publication Date | Title |
|---|---|---|
| WO2004050789A1 (en) | Composite material and use thereof for controlling thermal effects in a physicochemical process | |
| WO2010076415A1 (en) | Adiabatic tank for metal hydride | |
| FR3029803B1 (en) | ADSORBENT MIXTURE WITH ENHANCED THERMAL CAPACITY | |
| EP0664158B1 (en) | Realisation process of an active composite and active composite realised with this process | |
| FR2875432A1 (en) | Preparation of composite material, used in structure to carry out thermal exchange between coolant and structure, comprises incorporating microencapsulated phase change material into porous network of continuous matrix | |
| FR2854819A3 (en) | Solid absorbent material for purifying or separating gases such as air combines open-pore cellular and mechanical reinforcing materials | |
| EP0837116A1 (en) | Active composition of laminated structure containing a granule-shaped agent | |
| CA2923077A1 (en) | Regeneration of a trap for impurities in hydrogen using the heat leaving a hydride reservoir | |
| FR2963932A1 (en) | Recycling carbon dioxide for the production of fuel, comprises performing a reverse water-gas shift reaction in a homogeneous medium | |
| CA2098106A1 (en) | Process for improving heat and mass transfers to and/or through a wall | |
| FR2995797A1 (en) | ADSORBENT MIXTURE COMPRISING ADSORBANT PARTICLES AND PHASE CHANGE MATERIAL PARTICLES | |
| FR2891160A1 (en) | ADSORBENT COMPOSITE ADSORPTION BED PSA PROCESS AND MCP AGGLOMERATES WITH HIGH THERMAL CONDUCTIVITY | |
| FR2904819A1 (en) | METHOD FOR STORING HYDROGEN, DEVICE FOR CARRYING OUT SAID METHOD AND APPLICATIONS | |
| FR2891159A1 (en) | Pressure swing adsorption process for separation and-or purification of gases, e.g. hydrogen or oxygen, uses adsorbent beds containing adsorbent particles and agglomerated micro-capsules of phase-change material | |
| CA2172781A1 (en) | Lamellated active composite and use thereof as a reaction medium | |
| EP1496035A2 (en) | Magnesium borohydride and an oxidizer of the nitramines family containing solid compositions for generating hydrogen by combustion | |
| FR3068263B1 (en) | REACTOR-EXCHANGER MODULE HAVING AT LEAST TWO FLUID CIRCUITS REALIZED BY PLATE STACK, APPLICATIONS TO EXOTHERMIC OR ENDOTHERMIC CATALYTIC REACTIONS | |
| EP0658374B1 (en) | Diffusing elements facilitating the transfer of material in solid-gas reactions | |
| FR2874933A1 (en) | Process to increase thermal conductivity of microencapsulated phase change material, used to carry out heat exchange between heat transfer liquid and enclosure, comprises metalization of the external surface of microencapsulated material | |
| FR3115473A1 (en) | Reagent for thermal machine | |
| FR2931157A1 (en) | SOLID MATERIAL CONTAINING AN ACTIVE LOAD AND ENABLING GREAT FACILITY OF ACCESS TO THIS LOAD | |
| FR3132706A1 (en) | Hydrogen storage device in solid form | |
| EP3073212A1 (en) | Protection system of a reactive solid medium for a thermochemical reactor | |
| FR2651689A1 (en) | Oxidation reactor with head loss differential and its use | |
| WO2014091127A1 (en) | Pyrotechnic process for providing very highly pure hydrogen and associated device |
| Date | Code | Title | Description |
|---|---|---|---|
| ST | Notification of lapse | Effective date:20070531 |