Movatterモバイル変換


[0]ホーム

URL:


FI127689B - Arrangement for knee diagnostics - Google Patents

Arrangement for knee diagnostics
Download PDF

Info

Publication number
FI127689B
FI127689BFI20165832AFI20165832AFI127689BFI 127689 BFI127689 BFI 127689BFI 20165832 AFI20165832 AFI 20165832AFI 20165832 AFI20165832 AFI 20165832AFI 127689 BFI127689 BFI 127689B
Authority
FI
Finland
Prior art keywords
knee
estimate
medial
lateral
sensor
Prior art date
Application number
FI20165832A
Other languages
Finnish (fi)
Swedish (sv)
Other versions
FI20165832A7 (en
Inventor
Aleksei Tiulpin
Jérome Thevenot
Simo Saarakkala
Original Assignee
Oulun Yliopisto
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oulun YliopistofiledCriticalOulun Yliopisto
Priority to FI20165832ApriorityCriticalpatent/FI127689B/en
Priority to EP17809332.4Aprioritypatent/EP3534782A1/en
Priority to PCT/FI2017/050760prioritypatent/WO2018083385A1/en
Publication of FI20165832A7publicationCriticalpatent/FI20165832A7/en
Application grantedgrantedCritical
Publication of FI127689BpublicationCriticalpatent/FI127689B/en

Links

Classifications

Landscapes

Abstract

Translated fromEnglish

Järjestely (100) polvidiagnostiikkaan käsittäen mittalaitteen (110), joka on kiinnitettävissä jalkaan, ja prosessointilaitteen (140). Mittalaite (110) käsittää kolme kehikkoa (112, 116, 130) erilaisten sensorien kera: audiosensorit (124, 126), lämpösensorit (120, 122), ja inertiasensorit (114, 132). Prosessointilaite (140) on aikaansaatu: analysoimaan (202) mediaaliääntä ja lateraaliääntä tuottamaan arvio (204) polven nivelkitkasta; analysoimaan (206) reisi-inertiadataa ja sääri-inertiadataa tuottamaan arvio (208) polven virhelinjauksesta; analysoimaan (210) mediaalilämpötilaa ja lateraalilämpötilaa tuottamaan arvio (212) polven tulehduksesta; ja kokoamaan (214) arvio (216) polven (306) tilasta perustuen sanottuihin arvioihin (204, 208, 212).An arrangement (100) for knee diagnostics comprising a measuring device (110) which can be attached to a foot and a processing device (140). The measuring device (110) comprises three frames (112, 116, 130) with different sensors: audio sensors (124, 126), thermal sensors (120, 122), and inertia sensors (114, 132). The processing device (140) is provided for: analyzing (202) a medial and a lateral sound to produce (204) an estimate of knee joint friction; analyze (206) thigh inertia data and leg inertia data to produce (208) an estimate of knee misalignment; analyzing (210) the medial temperature and the lateral temperature to produce an estimate (212) of knee inflammation; and compiling (214) an estimate (216) of the condition of the knee (306) based on said estimates (204, 208, 212).

Description

Arrangement for knee diagnostics
Field
The invention relates to an arrangement for knee diagnostics.
Background
The knee joint can be affected by several conditions severely reducing its mobility or even leading to working disability. Common pathologic conditions affecting the knee joint are osteoarthritis and other traumatic- or inflammatoryrelated diseases inducing deterioration of the joint. The most common one of these conditions is knee osteoarthritis (OA) affecting approximately 10 % of population.
Knee OA involves multiple doctor appointments and expensive imaging examinations, often in specialized healthcare, due to its challenging diagnosis. For more information on osteoarthritis, see the following, incorporated herein by reference: Altman RD (1987). Overview of osteoarthritis. Am J Med. 83: 65-69. For more information on diagnosis, see the following, incorporated herein by 15 reference: Gunther KP, Sun Y (1999). Reliability of radiographic assessment in hip and knee osteoarthritis. Osteoarthritis and Cartilage 7: 239-46.
This complex disorder has been long recognized as a major public health problem: in addition to the deterioration of the quality of individuals’ life, it generates significant costs to society. First clinical symptoms of knee OA include 20 pain during joint movement, e.g., when running or walking in stairs. Subsequently, when the disease gets worse, pain will occur also during rest and the knee mobility will be significantly reduced. At the final stage, pain is intolerable and the knee mobility is highly limited, making survival of routine daily activities highly difficult. The only treatment at this stage is the complete knee replacement surgery, which 25 is major and relatively expensive operation requiring specialized healthcare.
While complete pharmaceutical cure of knee OA does not currently exist, the progression of the disease could be hindered by an early stage diagnosis. Similarly to knee OA, the diagnostics of other knee conditions suffers comparable issues due to their subjective assessment and can also lead to knee OA if not treated 30 properly, see the following, incorporated herein by reference: Culvenor AG,
20165832 prh 20 -11- 2018
Crossley KM (2016). Accelerated return to sport after anterior cruciate ligament injury: a risk factor for early knee osteoarthritis? BrJ Sports Med. 50(5):260-1.
The primary drawbacks of current clinical diagnostics of knee conditions are: time to get the final diagnosis can be long, both direct and indirect 5 costs related to non-diagnosed knee conditions are high, and false detection allows the knee joint to deteriorate further.
Eventually, a late diagnosis of knee OA reduces the available treatment options. On the other hand, for other knee conditions, a late diagnostics often cause the apparition to OA. From an economic point of view, alternative low-cost 10 solutions could replace some unnecessary and expensive clinical examinations at the specialized healthcare related to knee diagnostics.
At the moment, the assessment of knee conditions in the primary healthcare is performed using clinical (physical) examination, X-ray imaging and assessment of symptoms (pain and limited joint movement). However, it is often 15 difficult for a general practitioner to provide an objective and accurate diagnosis due to the insensitivity of clinical examination and X-ray imaging to tissue changes, especially in the case of soft tissues (ligaments, articular cartilage, menisci). Consequently, a patient with knee complaints is quite often referred to a specialized healthcare unit where more comprehensive evaluation of the knee joint 20 is possible, e.g., by using magnetic resonance imaging (MR1) or invasive knee arthroscopy.
In summary, at the moment, accurate diagnosis of early knee OA is not possible at the primary healthcare as it requires advanced techniques, i.e. expensive MR1 or invasive arthroscopy, which are not available and are typically 25 performed at a later stage of the disease at the specialized healthcare.
US 2016/0015280 discloses epidermal electronics to monitor repetitive stress injuries and arthritis, but without any specific frame structures.
US 2013/0211259 discloses determination of joint condition based on vibration analysis, disclosing a two-part brace limiting the knee movement.
20165832 prh 20 -11- 2018
Brief description
The present invention seeks to provide an improved arrangement for knee diagnostics.
According to an aspect of the present invention, there is provided an 5 arrangement as specified in claim 1.
According to another aspect of the present invention, there is provided a measurement apparatus as specified in claim 17.
According to another aspect of the present invention, there is provided a processing apparatus as specified in claim 18.
The present invention may provide the advantage of providing knee diagnostics in a non-invasive manner with a multi-modal data analysis. The present invention may allow to perform low-cost, comprehensive and efficient early knee OA diagnostics already at the primary healthcare. Furthermore, the present invention may allow to diagnose other knee conditions as well, such as anterior cruciate ligament (ACL) injury.
List of drawings
Example embodiments of the present invention are described below, by way of example only, with reference to the accompanying drawings, in which
Figure 1 illustrates example embodiments of an arrangement for knee diagnostics comprising a measurement apparatus attachable to a leg, and a processing apparatus communicatively couplable with the measurement apparatus;
Figure 2 is a flow chart illustrating example embodiments of processing in the processing apparatus;
Figure 3 illustrates example embodiments of the measurement apparatus comprising a first frame, a second frame, and a third frame;
Figure 4 illustrates example embodiments of the second frame;
Figure 5 illustrates example embodiments of the third frame;
Figure 6 illustrates example embodiments of the first frame; and
Figures 7, 8 and 9 illustrates example embodiments of sensor frames.
20165832 prh 20 -11- 2018
Description of embodiments
The following embodiments are only examples. Although the specification may refer to “an embodiment in several locations, this does not necessarily mean that each such reference is to the same embodiment(s), or that 5 the feature only applies to a single embodiment. Single features of different embodiments may also be combined to provide other embodiments. Furthermore, words comprising and including should be understood as not limiting the described embodiments to consist of only those features that have been mentioned and such embodiments may contain also features/structures that have not been 10 specifically mentioned.
Figure 1 illustrates example embodiments of an arrangement 100 for knee diagnostics comprising a measurement apparatus 110 attachable to a leg 300, and a processing apparatus 140 communicatively couplable 160 with the measurement apparatus 110.
In an example embodiment, the processing apparatus 140 is a computing device. It may be portable, mobile or stationary. A non-limiting list of example embodiments of the processing apparatus 140 comprises: a computer, a portable computer, a laptop, a mobile phone, a smartphone, a tablet computer, a smartwatch, smartglasses, or any other portable/mobile/stationary computing 20 device, which may output knee diagnosis with a user interface 150.
In an example embodiment, the processing apparatus 140 is a computing server. It may be implemented with any applicable technology. It may include one or more centralized computing apparatuses, or it may include more than one distributed computing apparatuses. It may be implemented with client25 server technology, or in a cloud computing environment, or with another technology applicable to the processing apparatus 140 capable of communicating 160 with the measurement apparatus 110.
In an example embodiment, the arrangement 100 may be an independent integrated apparatus comprising as its parts the measurement 30 apparatus 110 and the processing apparatus 140.
20165832 prh 20 -11- 2018
In an example embodiment, the arrangement 100 is sold as a product in itself, or the arrangement 100 is marketed as a service per use of the device (the analysis of the signal is performed remotely and the results are sent back to the customer).
In an example embodiment, different customers are considered for the arrangement 100:
1) The primary healthcare (both public and private). At the public healthcare, the apparatus 110 and service 140 is used already in the health centres and the test itself is supervised by a nurse or other trained person. At the private healthcare, big health clinics as well as private physiotherapists are the first targeted customers. The arrangement 100 provides a complementary source of information to the practitioner for the diagnosis of early and middle stage knee OA. The easy access to this information already at the primary healthcare prevents extra expenses related to unnecessary advanced examinations and doctor 15 appointments at the specialized healthcare.
2) Sports centres to assess the quality of the knee of athletes.
3) Companies developing orthopaedic devices to validate the design of their product from follow-up populations.
4) Personal users who desire to know the state of their knee.
In an example embodiment, the user interface 150 implements the exchange of graphical, textual and/or auditory information relating to knee diagnostics with the user. The user interface 150 may be realized with various techniques, such as a (multi-touch) display, means for producing sound (such as loudspeaker or earpiece), a keyboard, and/or a keypad, for example. The keyboard/keypad may comprise a complete (QWERTY) keyboard, or only a few push buttons and/or rotary buttons. In addition, or alternatively, the user interface 150 may comprise other user interface components, for example various means for focusing a cursor (mouse, track ball, arrow keys, touch sensitive area etc.) or elements enabling audio control.
20165832 prh 20 -11- 2018
In an example embodiment, the communication between the measurement apparatus 110 and the processing apparatus 140 may be implemented with wired and/or wireless communication technologies.
Figure 2 illustrates example embodiments of processing in the 5 processing apparatus 140.
Figure 3 illustrates example embodiments of the measurement apparatus 110 comprising a first frame 116, a second frame 112, and a third frame 130.
In an example embodiment, the frames 112, 116, 130 are made of suitable material, such as metal, plastics, and/or composite.
In an example embodiment, the frames 112, 116, 130 are made of 3D printed material and covered by a specific tissue commonly used in orthopaedic industry for the patient comfort. Some aluminium may be added in some parts of the frames 112,116,130 to increase its strength and decrease its fragility.
In an example embodiment, all sensors 114, 118, 120, 122, 124, 126,
132 may be embedded in printed frames, which may be changed very easily by placing them in a sensor frame 362, 364, 366, 368, 610 couplable with the frames 112, 116,130.
One benefit of having the frames 112,116,130 compared to some other studies using either tapes or just straps is that the locations of the sensors 114,118, 120,122,124,126,132 is quite reproducible not only between nurses who might put it on patients, but also anatomically between patients. In an example embodiment, a coupling 334 connecting the first frame 116 and the second frame 130 maintains the distance between the frames 116,130.
In an example embodiment, the measurement apparatus 110 further comprises a radio transmitter 134 to communicatively couple 160 the measurement apparatus 110 with the processing apparatus 140.
In an example embodiment, the processing apparatus 110 also comprises a radio receiver (or a radio transceiver) to communicatively couple 160 30 the measurement apparatus 110 with the processing apparatus 140.
20165832 prh 20 -11- 2018
In an example embodiment, the radio transmitter is a part of a radio transceiver. In an example embodiment, the radio transceiver comprises a cellular radio transceiver (communicating with technologies such as GSM, GPRS, EGPRS, WCDMA, UMTS, 3GPP, IMT, LTE, LTE-A, etc.) and/or a non-cellular radio 5 transceiver (communicating with short-range technologies such as Bluetooth, Bluetooth Low Energy, Wi-Fi, WLAN, etc.). With the cellular radio transceiver, the measurement apparatus 110 and the processing apparatus 140 may be distributed so that they are located in the same town, in different towns, or even in different continents. With the non-cellular radio transceiver, the measurement apparatus 10 110 and the processing apparatus 140 need to be near each other, in the same room or in the same building, for example, except if there is a communication network in between (such as a wireless access point connected to the Internet), then the distribution degree may be the same as with the cellular radio transceiver. Note that the use of the cellular radio transceiver may necessitate the use of a subscriber 15 identity module (SIM), and, consequently, the measurement apparatus 110 comprises a SIM card in a card reader, or a virtual (or software) SIM.
Note that the arrangement 100 may comprise other parts as well, which have not been described, but are naturally there: the measurement apparatus 110 comprises a power source (such as battery, which may be rechargeable) to feed 20 electric energy to the sensors 114,118,120,122,124,126,128,132, and also an interface, which collects the measurement data from the sensors 114, 118, 120, 122,124,126,128,132 to communicate the measurement data to the processing apparatus 140. The measurement data may be raw data from the sensors 114,118, 120,122,124,126,128, 132, or it may be pre-processed before communicated to 25 the processing apparatus 140.
In an example embodiment, the measurement apparatus 110 is designed to be totally non-invasive and painless to use.
In an example embodiment, the measurement apparatus 110 is divided into three main solid frames 112,116,130 covered with a protective textile (with 30 inner foam) for comfort of use. Each of the frames 112,116,130 may be designed
20165832 prh 20 -11- 2018 to fit the shape of the area it covers in order to ease its positioning and improve the reproducibility of data acquisition with fixed sensors.
The first frame 116 is attachable to a knee 306 and comprises a medial audio sensor 124 positioned and configured to measure a medial sound caused by 5 a movement of the leg 300 from a medial side of the knee 306, and a lateral audio sensor 126 positioned and configured to measure a lateral sound caused by the movement of the leg 300 from a lateral side of the knee 306.
In an example embodiment, the medial audio sensor 124 comprises a non-contact microphone 230, and the lateral audio sensor 126 comprises a non10 contact microphone 230.
In an example embodiment, the medial audio sensor 124 and the lateral audio sensor 126 are both located below the patella 308.
The first frame 116 also comprises a medial thermal sensor 120 positioned and configured to measure a medial temperature from the medial side 15 of the knee 306, and a lateral thermal sensor 122 positioned and configured to measure a lateral temperature from the lateral side of the knee 306.
In an example embodiment, the medial thermal sensor 120 comprises a non-contact infrared sensor 234, and the lateral thermal sensor 122 comprises a non-contact infrared sensor 234.
As the sensors 118,120,122 124,126 are non-contact, there is no need to use gel, making the measurement apparatus 110 easier to use.
The second frame 112 is attachable to a thigh 302 and comprises a thigh inertial sensor 114 positioned and configured to measure thigh inertial data. Figure 4 illustrates an example embodiment of the structure of a main part 310 and 25 a strap 312 of the second frame 112.
The third frame 130 is attachable to a lower leg 304 and comprises a lower leg inertial sensor 132 positioned and configured to measure lower leg inertial data. Figure 5 illustrates an example embodiment of the structure of a main part 320 and a strap 322 of the third frame 130.
In an example embodiment, the thigh inertial sensor 114 comprises a six degrees of freedom inertial measurement unit 232, and the lower leg inertial
20165832 prh 20 -11- 2018 sensor 132 comprises a six degrees of freedom inertial measurement unit 232. Six degrees of freedom refers to the freedom of movement of a rigid body in threedimensional space: change position as forward/backward (surge), up/down (heave), left/right (sway) translation in three perpendicular axes, combined with 5 changes in orientation through rotation (pitch, yaw, and roll) about three perpendicular axes.
In an example embodiment, the inertial measurement sensor 114,132 detects rate of acceleration using one or more accelerometers, and detects changes in rotational attributes (pitch, yaw and roll) using one or more gyroscopes.
In an example embodiment, multiple sizes of the second frame 112 and the third frame 130 are available based on the diameter of the thigh 302 and the lower leg 304.
In an example embodiment, one or two flexible straps 312, 322, 358, 360 are used to maintain the frames 112,116,130 in place.
In an example embodiment, the second frame 112 and the third frame
130 have the function to prevent the inertial sensors 114,132 to be affected by skin movements since one inertial sensor 114,132 is fixed on each frame 112,130.
The second frame 112 and the third frame 130 are rigid so as not to be affected by skin movements and have a better normalization of the data measured 20 with the sensors 114,132.
In an example embodiment illustrated in more detail in Figure 6, the first frame 116 comprises a stable part 340 attachable to the lower leg, and a moving part 342, which is coupled with the stable part 340 to be positionable above a patella 308, and comprising the medial audio sensor 124, the lateral audio 25 sensor 126, the medial thermal sensor 120, and the lateral thermal sensor 122.
In an example embodiment, the moving part 342 is coupled with the stable part 340 by a hinge 344 below the knee 306, by a first spring 600 at the medial side of the knee 306, and by a second spring 346 at the lateral side of the knee 306.
In an example embodiment, a tension of the first spring 600 is adjustable, and a tension of the second spring 346 is adjustable. In an example
20165832 prh 20 -11- 2018 embodiment, the tension of the springs 346, 600 may be adjusted by shifting a fixing 356, 604 of the spring 346, 600 in a slot 606, 608 as illustrated in Figure 6.
In an example embodiment, a first position of a first fixing 602 of the first spring 600 is adjustable, and a second position of a second fixing 348, 350, 5 352, 354 of the second spring 346 is adjustable. With this example embodiment, the fit of the moving part 342 above the patella 308 may be adjusted.
In an example embodiment, the stable part 340 may be attached on the upper tibia 304 by the mean of two straps 358, 360. In an example embodiment, the moving part 342 is constantly pulled towards the patella 308 by the tensile 10 springs 346, 600. By these means, the patient may walk and perform any movement that is requested by the data acquisition protocol without any discomfort.
In an example embodiment, the moving part 342 is always kept on the top of the skin without affecting the comfort of the patient. The first frame 116 15 keeps the sensors 118,120,122,124,126 always at the same location on the knee 306 (and at the same distance to the skin), without restraining the patient in any way, meaning s/he can moves his/her knee 306 the same way he would without the measurement apparatus 110.
In an example embodiment, the first frame 116 is configured to provide 20 a space between the medial audio sensor 124 and skin, the lateral audio sensor 126 and skin, the medial thermal sensor 120 and skin, and the lateral thermal sensor 122 and skin.
The structure of the first frame 116, and the placement of the audio sensors 124,126 thereto avoids the generation of acoustic artefact.
In an example embodiment, three sensor frames 362, 368,610 are fixed on the moving part 342, but may be removed to ease the change of sensors 118, 120, 122, 124, 126. These frames 362, 368, 610 have been designed to keep the sensors 118,120,122,124, 126 at a constant distance from the skin of the user.
Figures 7, 8 and 9 illustrates example embodiments of sensor frames 30 362, 364, 366, 368, 612.
20165832 prh 20 -11- 2018
As shown in Figure 7, the sensor frame 362, 610 accommodates the thermal sensor 120/122 in a first slot 712, and the audio sensor 124/126 in a second slot 714. Ridges 706, 708 couple with grooves of the first frame 116 to keep the sensor frame 362, 610 aligned when being placed in a half sphere -shaped 5 aperture in the first frame 116. Half sphere allows the rotation of the sensor frame 362,610 to keep it aligned to the skin. This rotation is regulated by a curvature 710 (there is a counterpart structure in the first frame 116 to follow the curvature 710).
There is also a half sphere aperture 704 in the sensor frame 362, 610 to keep the sensor frame 362, 610 in position (there is a counterpart structure in 10 the first frame 116 to couple with the half sphere aperture 704).
Slits 700, 702 on the sides of the sensor frame 362, 610 may be used to pass wires of the sensors 120,122,124,126, which enables their easy replacement.
As shown in Figure 7, a groove 716 in the slots 712, 714 may be used to regulate the insertion depth of the sensors 120,122,124,126.
Figure 8 illustrates example embodiments of the sensor frame 368. The reference thermal sensor 118 is inserted into an aperture 800. Wires of the sensor 118 may be routed through a slit 802. A groove 804 limits the insertion depth of the sensor 118 into the aperture 800.
Figure 9 illustrates example embodiments of the sensor frame 364, 366.
The thigh inertial sensor 114 or the lower leg inertial sensor 132 is inserted into an aperture 900.
The processing apparatus 140 comprises one or more processors 144, and one or more memories 146 including computer program code 148.
The term 'processor' 144 refers to a device that is capable of processing data. Depending on the processing power needed, the processing apparatus 140 may comprise several processors 144 such as parallel processors or a multicore processor. When designing the implementation of the processor 144 a person skilled in the art will consider the requirements set for the size and power consumption of the processing apparatus 140, the necessary processing capacity, production costs, and production volumes, for example.
20165832 prh 20 -11- 2018
The term 'memory' 146 refers to a device that is capable of storing data run-time (= working memory) or permanently (= non-volatile memory). The working memory and the non-volatile memory may be implemented by a randomaccess memory (RAM), dynamic RAM (DRAM), static RAM (SRAM), a flash memory, 5 a solid state disk (SSD), PROM (programmable read-only memory), a suitable semiconductor, or any other means of implementing an electrical computer memory.
The processor 144 and the memory 146 may be implemented by an electronic circuitry. A non-exhaustive list of implementation techniques for the 10 processor 144 and the memory 146 includes, but is not limited to: logic components, standard integrated circuits, application-specific integrated circuits (ASIC), system-on-a-chip (SoC), application-specific standard products (ASSP), microprocessors, microcontrollers, digital signal processors, special-purpose computer chips, field-programmable gate arrays (FPGA), and other suitable 15 electronics structures.
The computer program code 148 may be implemented by software and/or hardware. In an example embodiment, the software may be written by a suitable programming language (a high-level programming language, such as C, C++, or Java, or a low-level programming language, such as a machine language, or 20 an assembler, for example), and the resulting executable code 148 may be stored in the memory 146 and run by the processor 144. In an alternative example embodiment, the functionality of the hardware may be designed by a suitable hardware description language (such as Verilog or VHDL), and transformed into a gate-level netlist (describing standard cells and the electrical connections between 25 them), and after further phases the chip implementing the processor 144, memory 146 and the code 148 of the processing apparatus 100 may be fabricated with photo masks describing the circuitry.
The one or more memories 146 and the computer program code 148 are configured to, with the one or more processors 144, cause the processing 30 apparatus 140 at least to:
20165832 prh 20 -11- 2018
- analyze 202 the medial sound and the lateral sound to produce an assessment 204 of a joint friction of the knee 306;
- analyze 206 the thigh inertial data and the lower leg inertial data to produce an assessment 208 of a malalignment of the knee 306;
- analyze 210 the medial temperature and the lateral temperature to produce an assessment 212 of an inflammation of the knee 306; and
- compile 214 an assessment 216 of a condition of the knee 306 based on the assessment 204 of the joint friction of the knee 306, the assessment 208 of the malalignment of the knee 306, and the assessment 212 of the inflammation of the knee 306.
The data acquisition is performed by acquiring signals from the knee joint 306 using three modalities: acoustic (microphones on medial and lateral sides), thermal (temperature) in three locations (non-contact infrared sensors) and kinetic (6 degrees of freedom inertial measurement units). The arrangement 15 100 combines these three modalities together for the diagnostics of knee disorders.
The basis of choosing these modalities are as follows:
- Acoustic modality assesses the friction between the femoral and tibial cartilage, see the following, incorporated herein by reference: Mascaro Bl, Prior J, Shark LK, Selfe J, Cole P, Goodacre J (2009). Exploratory study of a non-invasive method based on acoustic emission for assessing the dynamic integrity of knee joints. Med Eng Phys. 31(8): 1013-22.
- Thermal modality assesses the inflammation of the knee joint, see the following, incorporated herein by reference: Ammer K (2012). Temperature of the human knee - a review. Thermology international 22(4): 137-51.
- Kinetic modality provides information on knee malalignment as a measure of varus/valgus angle within the joint, see the following, incorporated herein by reference: Chang A, Hochberg M, Song J, Dunlop D, et al. (2010). Frequency of varus and valgus thrust and factors associated with thrust presence in persons with or at higher risk of developing knee osteoarthritis. Arthritis Rheum.
62(5):1403-11.
20165832 prh 20 -11- 2018
During the signal acquisition, the user has to perform specific tasks (e.g. leg flexion ant extension, sit-to stand, walking, etc.) to collect the relevant information for each sensor 114, 118,120,122,124,126, 132.
After the signal acquisition, the automatic multi-modal data analysis is performed and relevant features for each modality are extracted (e.g. differences in temperatures, amount of acoustic emissions above a given threshold, varus/valgus angle, etc.).
In an example embodiment, in addition to the signal data, other variables such as age and body mass index are incorporated to the diagnostics 10 algorithm. The final diagnostics may be performed using machine learning techniques. Eventually, different algorithms may be used for classification. Additional diagnostic information may be provided by visualizing the measured data on a 2-dimensional plot using unsupervised machine learning methods. Such plot indicates the belonging of the analyzed subject to specific clusters 15 corresponding to different conditions, such as early OA, mid-stage OA, end-stage OA, etc.
As a final result, a diagnosis of a knee condition may be provided with an appropriate confidence interval. The diagnosis, naturally, may be subjected to an approval by authorized medical personnel.
In an example embodiment, patient clinical background information (e.g. pain map + clinical evaluation), medical imaging information (X-ray etc.) may be combined with the assessment 216 of the condition of the knee 306 in order to make a more specific diagnosis and prediction of knee condition.
As shown in Figure 1, a database 152 coupled with the processing 25 apparatus 140 may be used to store data processed by the arrangement 100.
In an example embodiment, the processing apparatus 140 is further caused to analyze 206 the thigh inertial data and the lower leg inertial data to produce a varus/valgus angle 226 of the knee 306 as a part of the assessment 208 of the malalignment of the knee 306. As was explained earlier, the inertial sensors 30 114,132 may provide raw data provided by both the accelerometer and gyroscope of each inertial sensor 114, 132. Then, the processed data of the thigh inertial
20165832 prh 20 -11- 2018 sensor 114 is related with the data from the lower leg inertial sensor 132 to assess the varus/valgus angle 226.
In an example embodiment, the processing apparatus 140 is further caused to analyze the thigh inertial data and the lower leg inertial data to produce 5 a flexion angle 224 of the knee 306 as a part of the assessment 208 of the malalignment of the knee 306.
In an example embodiment, the processing apparatus 140 is further caused to analyze the thigh inertial data and the lower leg inertial data to produce an assessment 228 of a ligament laxity of the knee 306 as a part of the assessment 10 208 of the malalignment of the knee 306.
In an example embodiment, the processing apparatus 140 is further caused to analyze the thigh inertial data and the lower leg inertial data to produce an assessment 220 of a deficiency in a cartilage of the knee 306 and/or an assessment 222 of a deficiency in a meniscus of the knee 306 as a part of the 15 assessment 208 of the malalignment of the knee 306.
In an example embodiment, the processing apparatus 140 is further caused to analyze the medial sound and the lateral sound to produce an assessment 220 of a deficiency in a cartilage of the knee 306 and/or an assessment 222 of a deficiency in a meniscus of the knee 306 as a part of the assessment 204 of the joint 20 friction of the knee 306.
In an example embodiment, the measurement apparatus 110 further comprises a reference thermal sensor 118 positioned and configured to measure a reference temperature from a patella 308, and the processing apparatus 140 is further caused to analyze 210 the medial temperature and the lateral temperature 25 in view of the reference temperature in order to produce the assessment 212 of the inflammation of the knee 306. Instead, or additionally, the processing apparatus 140 may further be caused to analyze 210 the medial temperature and the lateral temperature in view of each other in order to produce the assessment 212 of the inflammation of the knee 306.
20165832 prh 20 -11- 2018
In an example embodiment, the reference thermal sensor 118 is positioned and configured on top of the centre of the patella 308 and it is used as reference for skin temperature.
In an example embodiment, the measurement apparatus 110 further comprises a vibration sensor 128 positioned and configured to measure vibration caused by the movement of the leg 300, and the processing apparatus 140 is further caused to analyze 236 the vibration to produce an assessment 238 of an instability of the knee 300, and compile 214 the assessment 216 of the condition of the knee 306 also based on the assessment 238 of the instability of the knee 306.
In an example embodiment, illustrated also in Figure 2, a method for knee diagnostics is provided. The operations are not strictly in chronological order, and some of the operations may be performed simultaneously or in an order differing from the given ones. Other functions may also be executed between the operations or within the operations and other data exchanged between the 15 operations. Some of the operations or part of the operations may also be left out or replaced by a corresponding operation or a part of the operation. It should be noted that no special order of operations is required, except where necessary due to the logical requirements for the processing order. Note that also Figure 1 is referred to while explaining Figure 2.
The method starts in 200.
The method for knee diagnostics comprises:
analyzing 202 a medial sound and a lateral sound to produce an assessment 204 of a joint friction of the knee 306, wherein, both caused by a movement of the leg 300, the medial sound is measured with a medial audio sensor 25 124, and the lateral sound is measured with a lateral audio sensor 126;
analyzing 206 a thigh inertial data and a lower leg inertial data to produce an assessment 208 of a malalignment of the knee 306, wherein, both caused by a movement of the leg 300, the thigh inertial data is measured with a thigh inertial sensor 114, and the lower leg inertial data is measured with a lower 30 leg inertial sensor 132;
analyzing 210 a medial temperature and a lateral temperature to produce an assessment 212 of an inflammation of the knee 306, wherein the medial temperature is measured with a medial thermal sensor 120, and the lateral temperature is measured with a lateral thermal sensor 122; and compiling 214 an assessment 216 of a condition of the knee 306 based on the assessment 204 of the joint friction of the knee 306, the assessment 208 of the malalignment of the knee 306, and the assessment 212 of the inflammation of the knee 306.
The method ends in 218.
The example embodiments of the arrangement 100, measurement apparatus 110, and the processing apparatus 140 may be utilized to enhance the method with various further example embodiments. For example, various structural and/or operational details may supplement the method.
In an example embodiment, the sensors 114, 118, 120, 122, 124, 126,
132 are constituent parts of a measurement apparatus 110 attachable to the leg 300.
It will be obvious to a person skilled in the art that, as technology advances, the inventive concept can be implemented in various ways. The invention and its embodiments are not limited to the example embodiments 20 described above but may vary within the scope of the claims.

Claims (18)

Translated fromEnglish
PatenttivaatimuksetThe claims1. Järjestely (100) polvidiagnostiikkaan käsittäen mittalaitteen (110), joka on kiinnitettävissä jalkaan (300), ja prosessointilaitteen (140), joka on kommunikatiivisesti kytkettävissä (160) mittalaitteeseen (110), joka mittalaite 5 (110) käsittää:An arrangement (100) for knee diagnostics, comprising a measuring device (110) attachable to the leg (300) and a processing device (140) communicatively connectable (160) to the measuring device (110), the measuring device 5 (110) comprising:ensimmäisen kehikon (116), joka on kiinnitettävissä polveen (306), joka ensimmäinen kehikko (116) käsittää mediaaliaudiosensorin (124), joka on sijoitettu ja konfiguroitu mittaamaan jalan (300) liikkeen aiheuttaman mediaaliäänen polven (306) mediaalipuolelta, ja lateraaliaudiosensorin (126), joka 10 on sijoitettu ja konfiguroitu mittaamaan jalan (300) liikkeen aiheuttaman lateraaliäänen polven (306) lateraalipuolelta, joka ensimmäinen kehikko (116) käsittää myös mediaalilämpösensorin (120), joka on sijoitettu ja konfiguroitu mittamaan mediaalilämpötilan polven (306) mediaaliselta puolelta, ja lateraalilämpösensorin (122), joka on sijoitettu ja konfiguroitu mittamaan 15 lateraalilämpötilan polven (306) lateraalipuolelta, jossa ensimmäinen kehikko (116) on konfiguroitu varaamaan tila mediaaliaudiosensorin (124) ja ihon väliin, ja tila lateraaliaudiosensorin (126) ja ihon väliin, minkä avulla akustisen artefaktin generoinnilta vältytään, ja jossa ensimmäinen kehikko (116) käsittää stabiilin osan (340), joka on kiinnitettävissä sääreen (304), ja liikkuvan osan (342), joka on 20 kytketty stabiiliin osaan (340), jotta se on sijoitettavissa patellan (308) päälle, ja joka käsittää mediaaliaudiosensorin (124), lateraaliaudiosensorin (126), mediaalilämpösensorin (120) ja lateraalilämpösensorin (122), minkä avulla polvi (306) on liikuteltavissa kuten ilman mittalaitetta (110);a first frame (116) attachable to the knee (306), the first frame (116) comprising a medial audio sensor (124) positioned and configured to measure the medial sound caused by the movement of the foot (300) from the medial side of the knee (306), and a lateral audio sensor (126) positioned and configured to measure the lateral sound caused by the movement of the foot (300) from the lateral side of the knee (306), the first frame (116) also comprising a medial temperature sensor (120) positioned and configured to measure the medial temperature from the medial side of the knee (306); (122) positioned and configured to measure 15 lateral temperatures on the lateral side of the knee (306), wherein the first frame (116) is configured to occupy a space between the medial audio sensor (124) and the skin, and a space between the lateral audio sensor (126) and the skin. generation is avoided, and wherein the first frame (116) comprises a stable a portion (340) attachable to the lower leg (304) and a movable portion (342) coupled to the stable portion (340) for placement on the patella (308) and comprising a medial audio sensor (124), a lateral audio sensor (126), a medial temperature sensor (120) and a lateral temperature sensor (122), allowing the knee (306) to be moved as without the measuring device (110);toisen kehikon (112), joka on kiinnitettävissä reiteen (302), joka toinen 25 kehikko (112) käsittää reisi-inertiasensorin (114), joka on sijoitettu ja konfiguroitu mittaamaan reisi-inertiadataa; ja kolmannen kehikon (130), joka on kiinnitettävissä sääreen (304), joka kolmas kehikko (130) käsittää sääri-inertiasensorin (132), joka on sijoitettu ja konfiguroitu mittaamaan sääri-inertiadataa;a second frame (112) attachable to the thigh (302), the second frame (112) comprising a thigh inertia sensor (114) positioned and configured to measure thigh inertia data; and a third frame (130) attachable to the leg (304), the third frame (130) comprising a leg inertia sensor (132) positioned and configured to measure leg inertia data;30 ja joka prosessointilaite (140) käsittää:30 and which processing device (140) comprises:yhden tai useamman prosessorin (144); ja yhden tai useamman muistin (146), joka sisältää tietokoneohjelmakoodin (148);one or more processors (144); and one or more memories (146) containing computer program code (148);yksi tai useampi muisti (146) ja tietokoneohjelmakoodi (148) ovat 35 konfiguroitu, yhdellä tai useammalla prosessorilla (144), aikaansaamaan prosessointilaitteen (140) ainakin:the one or more memories (146) and the computer program code (148) are configured, by the one or more processors (144), to provide the processing device (140) with at least:20165832 prh 20 -11- 2018 analysoimaan (202) mediaaliääntä ja lateraaliääntä tuottamaan arvio (204) polven (306) nivelkitkasta;20165832 prh 20 -11- 2018 to analyze (202) the medial sound and the lateral sound to produce an estimate (204) of the joint friction of the knee (306);analysoimaan (206) reisi-inertiadataa ja sääriinertiadataa tuottamaan arvio (208) polven (306) virhelinjauksesta;analyzing (206) the thigh inertia data and the leg inertia data to produce an estimate (208) of the knee (306) misalignment;5 analysoimaan (210) mediaalilämpötilaa ja lateraalilämpötilaa tuottamaan arvio (212) polven (306) tulehduksesta; ja kokoamaan (214) arvio (216) polven (306) tilasta perustuen arvioon (204) polven (306) nivelkitkasta, arvioon (208) polven (306) virhelinjauksesta ja arvioon (212) polven (306) tulehduksesta.5 analyzing (210) the medial temperature and the lateral temperature to produce an estimate (212) of knee (306) inflammation; and compiling (214) an estimate (216) of knee (306) condition based on an estimate (204) of knee (306) joint friction, an estimate (208) of knee (306) misalignment, and an estimate (212) of knee (306) inflammation.10102. Patenttivaatimuksen 1 mukainen järjestely, jossa liikkuva osa (342) on kytketty stabiiliin osaan (340) polven (306) alapuolella olevalla nivelellä (344), ensimmäisellä jousella (600) polven (306) mediaalipuolella, ja toisella jousella (346) polven (306) lateraalipuolella.The arrangement of claim 1, wherein the movable member (342) is coupled to the stable member (340) by a joint (344) below the knee (306), a first spring (600) on the medial side of the knee (306), and a second spring (346) on the knee (306). 306) on the lateral side.3. Patenttivaatimuksen 2 mukainen järjestely, jossa ensimmäisen 15 jousen (600) jännitys on säädettävissä, ja toisen jousen (346) jännitys on säädettävissä.The arrangement of claim 2, wherein the tension of the first spring (600) is adjustable and the tension of the second spring (346) is adjustable.4. Patenttivaatimuksen 2 tai 3 mukainen järjestely, jossa ensimmäisen jousen (600) ensimmäisen kiinnityksen (602) ensimmäinen sijainti on säädettävissä, ja toisen jousen (346) toisen kiinnityksen (348, 350, 352, 354)The arrangement of claim 2 or 3, wherein the first position of the first attachment (602) of the first spring (600) is adjustable, and the first position of the second attachment (348, 350, 352, 354) of the second spring (346).20 toinen sijainti on säädettävissä.20 second position is adjustable.5. Jonkin edellisen patenttivaatimuksen mukainen järjestely, jossa ensimmäinen kehikko (116) on konfiguroitu varaamaan tila mediaalilämpösensorin (120) ja ihon väliin, ja tila lateraalilämpösensorin (122) ja ihon väliin.An arrangement according to any preceding claim, wherein the first frame (116) is configured to occupy a space between the medial temperature sensor (120) and the skin, and a space between the lateral temperature sensor (122) and the skin.25256. Jonkin edellisen patenttivaatimuksen mukainen järjestely, jossa mediaaliaudiosensori (124) käsittää kontaktittoman mikrofonin, ja lateraaliaudiosensori (126) käsittää kontaktittoman mikrofonin.An arrangement according to any preceding claim, wherein the medial audio sensor (124) comprises a contactless microphone, and the lateral audio sensor (126) comprises a contactless microphone.7. Jonkin edellisen patenttivaatimuksen mukainen järjestely, jossa mediaalilämpösensori (120) käsittää kontaktittoman infrapunasensorin, jaAn arrangement according to any preceding claim, wherein the media temperature sensor (120) comprises a non-contact infrared sensor, and30 lateraalilämpösensori (122) käsittää kontaktittoman infrapunasensorin.The lateral temperature sensor (122) comprises a non-contact infrared sensor.8. Jonkin edellisen patenttivaatimuksen mukainen järjestely, jossa mittalaite (110) lisäksi käsittää referenssilämpösensorin (118), joka on sijoitettu ja konfiguroitu mittaamaan referenssilämpötilan patellasta (308), ja prosessointilaite (140) on lisäksi aikaansaatu analysoimaan (210)An arrangement according to any preceding claim, wherein the measuring device (110) further comprises a reference temperature sensor (118) positioned and configured to measure the reference temperature from the patella (308), and the processing device (140) is further provided to analyze (210)35 mediaalilämpötilaa ja lateraalilämpötilaa suhteessa referenssilämpötilaan tuottamaan arvio (212) polven (306) tulehduksesta.35 medial temperature and lateral temperature relative to the reference temperature to produce an estimate (212) of knee (306) inflammation.20165832 prh 20 -11- 201820165832 prh 20 -11- 20189. Jonkin edellisen patenttivaatimuksen mukainen järjestely, jossa reisi-inertiasensori (114) käsittää kuuden vapausasteen inertiamittausyksikön, ja sääri-inertiasensori (132) käsittää kuuden vapausasteen inertiamittausyksikön.An arrangement according to any preceding claim, wherein the thigh inertia sensor (114) comprises a six degree of freedom inertia measurement unit, and the leg inertia sensor (132) comprises a six degree of freedom inertia measurement unit.10. Jonkin edellisen patenttivaatimuksen mukainen järjestely, jossaAn arrangement according to any preceding claim, wherein5 prosessointilaite (140) on lisäksi aikaansaatu analysoimaan (206) reisiinertiadataa ja sääri-inertiadataa tuottamaan polven (306) varus/valgus -kulma (226) osana arviota (208) polven (306) virhelinjauksesta.The processing device (140) is further provided to analyze (206) the thigh inertia data and the leg inertia data to produce a knee (306) varus / valgus angle (226) as part of an estimate (208) of the knee (306) error alignment.11. Jonkin edellisen patenttivaatimuksen mukainen järjestely, jossa prosessointilaite (140) on lisäksi aikaansaatu analysoimaan reisi-inertiadataa jaThe arrangement of any preceding claim, wherein the processing device (140) is further provided to analyze the thigh inertia data and10 sääri-inertiadataa tuottamaan polven (306) koukistuskulma (224) osana arviota (208) polven (306) virhelinjauksesta.10 leg inertia data to provide a knee (306) flexion angle (224) as part of an estimate (208) of the knee (306) misalignment.12. Jonkin edellisen patenttivaatimuksen mukainen järjestely, jossa prosessointiyksikkö (140) on lisäksi aikaansaatu analysoimaan reisi-inertiadataa ja sääri-inertiadataa tuottamaan arvio (228) polven (306) nivelsideväljyydestäThe arrangement of any preceding claim, wherein the processing unit (140) is further provided to analyze the thigh inertia data and the leg inertia data to provide an estimate (228) of the ligament clearance of the knee (306).15 osana arviota (208) polven (306) virhelinjauksesta.15 as part of an estimate (208) of the error alignment of the knee (306).13. Jonkin edellisen patenttivaatimuksen mukainen järjestely, jossa prosessointiyksikkö (140) on lisäksi aikaansaatu analysoimaan reisi-inertiadataa ja sääri-inertiadataa tuottamaan arvio (220) puutteellisuudesta polven (306) rustossa ja/tai arvio (222) puutteellisuudesta polven (306) nivelkierukassa osanaThe arrangement of any preceding claim, wherein the processing unit (140) is further provided to analyze the thigh inertia data and the leg inertia data to produce an estimate (220) of a defect in the cartilage of the knee (306) and / or an estimate (222) of a defect in the knee (306)20 arviota (208) polven virhelinjauksesta.20 estimates (208) of knee misalignment.14. Jonkin edellisen patenttivaatimuksen mukainen järjestely, jossa prosessointiyksikkö (140) on lisäksi aikaansaatu analysoimaan mediaaliääntä ja lateraaliääntä tuottamaan arvio (220) puutteellisuudesta polven (306) rustossa ja/tai arvio (222) puutteellisuudesta polven (306) nivelkierukassa osana arviotaThe arrangement of any preceding claim, wherein the processing unit (140) is further provided to analyze the medial sound and the lateral sound to produce an estimate (220) of a defect in the cartilage of the knee (306) and / or an estimate (222) of a defect in the articular coil of the knee (306).25 (204) polven (306) nivelkitkasta.25 (204) knee (306) joint friction.15. Jonkin edellisen patenttivaatimuksen mukainen järjestely, jossa mittalaite (110) käsittää lisäksi lähettimen (134) kommunikatiivisesti kytkeä (160) mittalaite (110) prosessointilaitteen (140) kanssa.The arrangement of any preceding claim, wherein the measuring device (110) further comprises a transmitter (134) communicatively connecting (160) the measuring device (110) to the processing device (140).16. Jonkin edellisen patenttivaatimuksen mukainen järjestely, jossa 30 mittalaite (110) lisäksi käsittää tärinäsensorin (128), joka on sijoitettu ja konfiguroitu mittaamaan jalan liikkeen (300) aiheuttama tärinä, ja prosessointilaite (140) on lisäksi aikaansaatu analysoimaan (230) tärinää tuottamaan arvio (232) polven (306) epästabiilisuudesta, ja kokoamaan (214) arvio polven (306) tilasta (216) myös perustuen arvioon (232) polven (306) 35 epästabiilisuudesta.An arrangement according to any preceding claim, wherein the measuring device (110) further comprises a vibration sensor (128) positioned and configured to measure the vibration caused by the foot movement (300), and the processing device (140) is further provided to analyze (230) the vibration to produce an estimate. (232) knee (306) instability, and compile (214) an estimate of knee (306) condition (216) also based on estimate (232) of knee (306) 35 instability.20165832 prh 20 -11- 201820165832 prh 20 -11- 201817. Jonkin edellisen patenttivaatimuksen 1-16 mukainen mittalaite (110), joka mittalaite (110) käsittää:A measuring device (110) according to any one of the preceding claims 1 to 16, which measuring device (110) comprises:ensimmäisen kehikon (116), joka on kiinnitettävissä polveen (306), joka ensimmäinen kehikko (116) käsittää mediaaliaudiosensorin (124), joka on 5 sijoitettu ja konfiguroitu mittaamaan jalan (300) liikkeen aiheuttaman mediaaliäänen polven (306) mediaalipuolelta, ja lateraaliaudiosensorin (126), joka on sijoitettu ja konfiguroitu mittaamaan jalan (300) liikkeen aiheuttaman lateraaliäänen polven (306) lateraalipuolelta, joka ensimmäinen kehikko (116) käsittää myös mediaalilämpösensorin (120), joka on sijoitettu ja konfiguroitu 10 mittamaan mediaalilämpötilan polven (306) mediaaliselta puolelta, ja lateraalilämpösensorin (122), joka on sijoitettu ja konfiguroitu mittamaan lateraalilämpötilan polven (306) lateraalipuolelta, jossa ensimmäinen kehikko (116) on konfiguroitu varaamaan tila mediaaliaudiosensorin (124) ja ihon väliin, ja tila lateraaliaudiosensorin (126) ja ihon väliin, minkä avulla akustisen artefaktin 15 generoinnilta vältytään, ja jossa ensimmäinen kehikko (116) käsittää stabiilin osan (340), joka on kiinnitettävissä sääreen (304), ja liikkuvan osan (342), joka on kytketty stabiiliin osaan (340), jotta se on sijoitettavissa patellan (308) päälle, ja joka käsittää mediaaliaudiosensorin (124), lateraaliaudiosensorin (126), mediaalilämpösensorin (120) ja lateraalilämpösensorin (122), minkä avulla polvi 20 (306) on liikuteltavissa kuten ilman mittalaitetta (110);a first frame (116) attachable to the knee (306), the first frame (116) comprising a medial audio sensor (124) positioned and configured to measure the medial sound caused by the movement of the foot (300) from the medial side of the knee (306), and a lateral audio sensor (126) ) positioned and configured to measure the lateral sound caused by the movement of the foot (300) from the lateral side of the knee (306), the first frame (116) also comprising a medial temperature sensor (120) positioned and configured to measure the medial temperature from the medial side of the knee (306), and a lateral temperature sensor (122) positioned and configured to measure the lateral temperature on the lateral side of the knee (306), wherein the first frame (116) is configured to occupy a space between the medial audio sensor (124) and the skin, and a space between the lateral audio sensor (126) and the skin. 15 generation is avoided, and wherein the first frame (116) comprises a stab a leg portion (340) attachable to the lower leg (304) and a movable portion (342) coupled to the stable portion (340) for placement on the patella (308) and comprising a medial audio sensor (124), a lateral audio sensor ( 126), a medial temperature sensor (120) and a lateral temperature sensor (122), by means of which the knee 20 (306) can be moved as without the measuring device (110);toisen kehikon (112), joka on kiinnitettävissä reiteen (302), joka toinen kehikko (112) käsittää reisi-inertiasensorin (114), joka on sijoitettu ja konfiguroitu mittaamaan reisi-inertiadataa; ja kolmannen kehikon (130), joka on kiinnitettävissä sääreen (304), joka 25 kolmas kehikko (130) käsittää sääri-inertiasensorin (132), joka on sijoitettu ja konfiguroitu mittaamaan sääri-inertiadataa.a second frame (112) attachable to the thigh (302), the second frame (112) comprising a thigh inertia sensor (114) positioned and configured to measure thigh inertia data; and a third frame (130) attachable to the leg (304), the third frame (130) comprising a leg inertia sensor (132) positioned and configured to measure leg inertia data.18. Jonkin edellisen patenttivaatimuksen 1-16 mukainen prosessointilaite (140), joka prosessointilaite (140) käsittää:A processing device (140) according to any one of the preceding claims 1 to 16, which processing device (140) comprises:yhden tai useamman prosessorin (144); jaone or more processors (144); and30 yhden tai useamman muistin (146), joka sisältää tietokoneohjelmakoodin (148);30 one or more memories (146) containing computer program code (148);yksi tai useampi muisti (146) ja tietokoneohjelmakoodi (148) ovat konfiguroitu, yhdellä tai useammalla prosessorilla (144), aikaansaamaan prosessointilaitteen (140) ainakin:the one or more memories (146) and the computer program code (148) are configured, by the one or more processors (144), to provide the processing device (140) with at least:35 analysoimaan (202) mediaaliääntä ja lateraaliääntä tuottamaan arvio (204) polven (306) nivelkitkasta;35 analyzing (202) the medial sound and the lateral sound to produce an estimate (204) of the joint friction of the knee (306);analysoimaan (206) reisi-inertiadataa ja sääriinertiadataa tuottamaan arvio (208) polven (306) virhelinjauksesta;analyzing (206) the thigh inertia data and the leg inertia data to produce an estimate (208) of the knee (306) misalignment;analysoimaan (210) mediaalilämpötilaa ja lateraalilämpötilaa tuottamaan arvio (212) polven (306) tulehduksesta; jaanalyzing (210) the medial temperature and the lateral temperature to produce an estimate (212) of inflammation of the knee (306); and5 kokoamaan (214) arvio (216) polven (306) tilasta perustuen arvioon (204) polven (306) nivelkitkasta, arvioon (208) polven (306) virhelinjauksesta ja arvioon (212) polven (306) tulehduksesta.5 compile (214) an estimate (216) of the condition of the knee (306) based on an estimate (204) of the joint friction of the knee (306), an estimate (208) of the misalignment of the knee (306), and an estimate (212) of the inflammation of the knee (306).
FI20165832A2016-11-072016-11-07 Arrangement for knee diagnosticsFI127689B (en)

Priority Applications (3)

Application NumberPriority DateFiling DateTitle
FI20165832AFI127689B (en)2016-11-072016-11-07 Arrangement for knee diagnostics
EP17809332.4AEP3534782A1 (en)2016-11-072017-11-03Arrangement for knee diagnostics
PCT/FI2017/050760WO2018083385A1 (en)2016-11-072017-11-03Arrangement for knee diagnostics

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
FI20165832AFI127689B (en)2016-11-072016-11-07 Arrangement for knee diagnostics

Publications (2)

Publication NumberPublication Date
FI20165832A7 FI20165832A7 (en)2018-05-08
FI127689Btrue FI127689B (en)2018-12-14

Family

ID=60582614

Family Applications (1)

Application NumberTitlePriority DateFiling Date
FI20165832AFI127689B (en)2016-11-072016-11-07 Arrangement for knee diagnostics

Country Status (3)

CountryLink
EP (1)EP3534782A1 (en)
FI (1)FI127689B (en)
WO (1)WO2018083385A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN112004475A (en)*2018-04-102020-11-27奥卢大学Joint analysis probe
CN111374674B (en)*2018-12-292023-02-10西安思博探声生物科技有限公司Knee joint movement information processing equipment
CN111374672B (en)*2018-12-292024-01-19西安思博探声生物科技有限公司Intelligent knee pad and knee joint injury early warning method
CN111383755B (en)*2018-12-292024-03-19西安思博探声生物科技有限公司Knee joint disease evaluation system based on Internet of things cloud server
CN110448329A (en)*2019-09-032019-11-15覃健Knee joint friction sound detection device and double tops instrument dynamic angle monitoring method
CN110432872B (en)*2019-09-182022-03-01西安卡马蜥信息科技有限公司 Knee Ligament Injury Assessment Equipment

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
DE10018654A1 (en)*2000-04-142001-12-13Jacek Czernicki Method and device for determining the anatomical condition of a person or an animal, in particular for diagnosing osteoporosis
US20080161731A1 (en)*2006-12-272008-07-03Woods Sherrod AApparatus, system, and method for monitoring the range of motion of a patient's joint
US8444564B2 (en)*2009-02-022013-05-21Jointvue, LlcNoninvasive diagnostic system
US20130211259A1 (en)2009-02-022013-08-15Jointvue, LlcDetermination of joint condition based on vibration analysis
US20140128689A1 (en)*2011-04-062014-05-08Northeastern UniversityJoint sensor devices and methods
US9521965B2 (en)*2011-08-092016-12-20The Regents Of The University Of CaliforniaMechanical pivot shift measurement to evaluate joints
WO2013123263A1 (en)*2012-02-142013-08-22The Regents Of The University Of CaliforniaApparatus and method for quantifying stability of the knee
US20160015280A1 (en)2014-07-172016-01-21Elwha LlcEpidermal electronics to monitor repetitive stress injuries and arthritis
CN107613866B (en)*2015-03-232021-12-17合意骨科有限公司System and method for monitoring orthopedic implants and rehabilitation

Also Published As

Publication numberPublication date
FI20165832A7 (en)2018-05-08
EP3534782A1 (en)2019-09-11
WO2018083385A1 (en)2018-05-11

Similar Documents

PublicationPublication DateTitle
FI127689B (en) Arrangement for knee diagnostics
Majumder et al.A simple, low-cost and efficient gait analyzer for wearable healthcare applications
Sinclair et al.Three-dimensional kinematic comparison of treadmill and overground running
Laitenberger et al.Refinement of the upper limb joint kinematics and dynamics using a subject-specific closed-loop forearm model
Cutti et al.Ambulatory measurement of shoulder and elbow kinematics through inertial and magnetic sensors
Antos et al.Hand, belt, pocket or bag: Practical activity tracking with mobile phones
Chen et al.Improving energy expenditure estimation by using a triaxial accelerometer
CA2895571C (en)Method and system for human joint treatment plan and personalized surgery planning using 3-d kinematics, fusion imaging and simulation
ES2794024T3 (en) Helps in the evaluation and diagnosis of a pathology of the knee joint
US20180333107A1 (en)Non-invasive wearable device, process and systems with adjustable operation
CN105748037A (en) Motion sensory vest with biofeedback system for patients suffering from scoliosis
Lou et al.Development of a smart garment to reduce kyphosis during daily living
de Oliveira Gondim et al.Portable accelerometers for the evaluation of spatio-temporal gait parameters in people with Parkinson's disease: an integrative review
Faisal et al.Characterization of knee and gait features from a wearable tele-health monitoring system
Lightsey IV et al.The past, present, and future of remote patient monitoring in spine care: an overview
EP4301212A1 (en)Acousto-mechanic sensors and applications of same
US20210153804A1 (en)Joint analysis probe
Agravante et al.Emerging Technologies of Sensor-Based Assistive Devices for Spinal Position Monitoring: A Review
KR102433828B1 (en)Pain Behavior Monitoring System and Method for Managing Pain using the same
Paladugu et al.A sensor cluster to monitor body kinematics
LeMoyne et al.Evolutions for wearable and wireless systems
FaisalDevelopment of a Low-Cost and Easy-to-Use Wearable Knee Joint Monitoring System
AlfakirDevelopment of a System to Measure Adherence to Lower Back Pain Rehabilitation with Wearable Sensors and Artificial Intelligence
GanegodaAn implementation of the wireless body area network of synchronized inertial sensors for balance testing
Bächlin et al.Experiences in developing a wearable gait assistant for parkinson’s disease patients

Legal Events

DateCodeTitleDescription
FGPatent granted

Ref document number:127689

Country of ref document:FI

Kind code of ref document:B

MMPatent lapsed

[8]ページ先頭

©2009-2025 Movatter.jp