Procedimiento de tratamiento de laateroesclerosis o reestenosis usando un agente estabilizante demicrotúbulos.Procedure of treatment ofatherosclerosis or restenosis using a stabilizing agent ofmicrotubules
La presente invención se refiere al uso de unsistema de administración de fármaco que comprende un medio paraadministrar de manera local paclitaxel, un derivado de paclitaxel uóxido de deuterio diferente de la inyección o infusión intravenosapara la fabricación de una composición farmacéutica para lareducción o prevención del desarrollo de aterosclerosis, en la quelos medios para la administración local de paclitaxel, un derivado de paclitaxel u óxido de deuterio soluble en agua, comprenden stentsde polímeros eluyentes de fármacos biodegradables.The present invention relates to the use of adrug delivery system comprising a means foradminister paclitaxel locally, a derivative of paclitaxel orDeuterium oxide other than intravenous injection or infusionfor the manufacture of a pharmaceutical composition for thereduction or prevention of the development of atherosclerosis, in whichmeans for local administration of paclitaxel, a derivativeof water soluble paclitaxel or deuterium oxide, comprise stentsof eluent polymers of biodegradable drugs.
Además, la presente invención se refiere al usode óxido de deuterio en la fabricación de una composición farmacéutica para la prevención de reestenosis o aterosclerosis enun paciente.In addition, the present invention relates to the usedeuterium oxide in the manufacture of a compositionpharmaceutical for the prevention of restenosis or atherosclerosis ina patient.
Además una realización de la presente invenciónes el uso de un derivado de paclitaxel soluble en agua en lafabricación de una composición farmacéutica para la prevención oreducción de aterosclerosis en un paciente En el que dicho derivadode paclitaxel se selecciona entre el grupo constituido por2'-succinil-paclitaxel; 2'-succinil-paclitaxeltrietanolamina; 2'-glutarilpaclitaxel; saltrietanolamina de 2'-glutarilpaclitaxel; 2'-O-éster con N-dimetilaminoetilo)glutamina; y sal clorhidrato de 2'-O-éster- con N-(dimetilaminoetilo) glutamina.In addition an embodiment of the present inventionis the use of a water soluble paclitaxel derivative in themanufacture of a pharmaceutical composition for prevention orreduction of atherosclerosis in a patient in which said derivativeof paclitaxel is selected from the group consisting of2'-succinyl-paclitaxel;2'-succinyl-paclitaxeltriethanolamine; 2'-glutarylpaclitaxel; Salt2'-glutarylpaclitaxel triethanolamine;2'-O-ester with N-dimethylaminoethyl)glutamine; and 2'-O-ester hydrochloride salt withN- (dimethylaminoethyl) glutamine.
Más concretamente, la invención se refiere aluso descrito más arriba para el tratamiento de estos pacientes conuna solución de paclitaxel a dosis baja para evitar o reducir eldesarrollo de la aterosclerosis.More specifically, the invention relates touse described above for the treatment of these patients witha low dose paclitaxel solution to avoid or reduce thedevelopment of atherosclerosis.
La vasculopatía es la principal causa de muertee incapacidad en el mundo desarrollado, que afecta particularmente a los ancianos. Sólo en Estados Unidos, a pesar de las alentadorasdisminuciones recientes, la cardiopatía vascular sigue siendoresponsable de casi un millón de muertes cada año y de más de lamitad de todas las muertes; cada año se hospitalizan casi 5millones de personas aquejadas de cardiopatía vascular. El coste deesta enfermedad, en cuanto a personas que la padecen y recursosmateriales, es casi incalculable.Vasculopathy is the leading cause of deathand disability in the developed world, which particularly affectsTo the elders. Only in the United States, despite the encouragingRecent decreases, vascular heart disease remainsresponsible for almost one million deaths each year and for more thanhalf of all deaths; every year almost 5 are hospitalizedmillions of people suffering from vascular heart disease. The cost ofthis disease, in terms of people who suffer from it and resourcesMaterials, it is almost incalculable.
La aterosclerosis es la forma más común devasculopatía y conduce a una administración insuficiente de sangre a los órganos corporales críticos, dando como resultado infarto demiocardio, apoplejía e insuficiencia renal. Además, laaterosclerosis causa complicaciones importantes en quienes sufrenhipertensión y diabetes y, también, en los fumadores de tabaco. Laaterosclerosis es una forma de lesión vascular crónica en la cualalgunas de las células normales del músculo liso vascular("VSMC") de la pared arterial, que normalmente controlan el tono vascular regulando el flujo sanguíneo, cambian su naturaleza ydesarrollan un comportamiento de "tipo canceroso". Estascélulas VSMC se vuelven anormalmente proliferativas, segregandosustancias (factores de crecimiento, enzimas degradantes de tejidosy otras proteínas) que les permiten invadir las paredes interiores del vaso y propagarse dentro de las mismas, bloqueando el flujosanguíneo y haciendo que vasos anormalmente susceptibles sebloqueen completamente por la coagulación local de la sangre,produciendo muerte del tejido abastecido por esa arteria.Atherosclerosis is the most common form ofvasculopathy and leads to insufficient administration of bloodto critical body organs, resulting in heart attackmyocardium, stroke and renal failure. Besides, theatherosclerosis causes major complications in those who sufferhypertension and diabetes and, also, in tobacco smokers. Theatherosclerosis is a form of chronic vascular injury in whichsome of the normal vascular smooth muscle cells("VSMC") of the arterial wall, which normally controls thevascular tone regulating blood flow, change its nature anddevelop a "cancerous type" behavior. TheseVSMC cells become abnormally proliferative, secretingsubstances (growth factors, tissue degrading enzymesand other proteins) that allow them to invade the inner wallsof the vessel and spread within them, blocking the flowblood and making abnormally susceptible vesselsblock completely by local blood clotting,producing death of the tissue supplied by that artery.
Como resultado, existe la necesidad de untratamiento quimioterapéutico satisfactorio que reduzca o evite elbloqueo arterial. La forma más eficaz de evitar esta enfermedad eshacerlo en el nivel celular, en lugar de mediante revascularizaciónquirúrgica que puede acarrear un riesgo importante de complicacioneso la muerte, consume tiempo y dinero y es inconveniente para elpaciente.As a result, there is a need for asatisfactory chemotherapeutic treatment that reduces or avoidsarterial blockage The most effective way to avoid this disease isdo it at the cellular level, instead of by revascularizationsurgery that may carry a significant risk of complicationsor death, consumes time and money and is inconvenient for thepatient.
Los microtúbulos, organelas celulares presentesen todas las células eucarióticas, son necesarios para las actividades celulares normales. Son un componente esencial del husoacromático necesario para la división celular, y también para elmantenimiento de la forma celular y otras actividades celulares comola movilidad, el anclaje, el transporte entre organelas celulares,los procesos de secreción extracelular (Dustin, P. (1980)Sci.Am., 243: 66-76), además de la modulación de lasinteracciones entre los factores de crecimiento y los receptores dela superficie celular y la transducción de señales intracelulares.Además, los microtúbulos desempeñan un papel regulador crítico enla replicación celular ya que el oncogenc-mos y la quinasa CDC-2, que regulan la entrada en la mitosis, se unen a la tubulina y lafosforilan (Verde, F.et al. (1990)Nature, 343:233-238), y el producto del gen supresor de tumor,p53, y el antígeno T de SV-40 se unen a la tubulina en un complejo ternario (Maxwell, S.A.et al. (1991)CellGrowth Differen., 2: 115-127). Los microtúbulos no son estáticos sino que están en equilibrio dinámico con sussubunidades de proteína soluble, los heterodímeros de tubulina\alpha y \beta. En condiciones fisiológicas la unión requiereguanosina trifosfato (GTP), y ciertas proteínas asociadas a losmicrotúbulos y organizadoras de los mismos y como cofactores; porotra parte, un nivel de calcio alto y temperaturas frías causandespolimerización.Microtubules, cellular organelles present in all eukaryotic cells, are necessary for normal cellular activities. They are an essential component of the achromatic spindle necessary for cell division, and also for the maintenance of the cellular form and other cellular activities such as mobility, anchoring, transport between cell organelles, extracellular secretion processes (Dustin, P. ( 1980)Sci. Am ., 243: 66-76), in addition to the modulation of the interactions between growth factors and cell surface receptors and intracellular signal transduction. In addition, microtubules play a critical regulatory role in cell replication since the oncogenec-mos and the CDC-2 kinase, which regulate the entry into mitosis, bind tubulin and phosphorylate (Verde, F.et al . (1990)Nature , 343: 233-238), and the product of the tumor suppressor gene, p53, and the SV-40 T antigen bind to tubulin in a ternary complex (Maxwell, SAet al . (1991 )Cell Growth Differen ., 2: 115-127). The microtubules are not static but are in dynamic equilibrium with their soluble protein subunits, the α and β tubulin heterodimers. Under physiological conditions the union requires guanosine triphosphate (GTP), and certain proteins associated with microtubules and their organizers and as cofactors; on the other hand, a high calcium level and cold temperatures cause depolymerization.
Por tanto, es de esperar que la interferenciacon este equilibrio normal entre el microtúbulo y sus subunidades interrumpa la división y la movilidad, además de otras actividadesdependientes de los microtúbulos. Esta estrategia se ha usado conun éxito importante en el tratamiento de ciertos tumores malignos.En realidad, los agentes antimicrotúbulo como la colquicina y losalcaloides de la vinca están entre los fármacos anticáncer másimportantes. Estos agentes antimicrotúbulo, que promueven ladesagregación de los microtúbulos, desempeñan papeles importantesen la quimioterapia de los neoplasmas más curables, incluyendo laleucemia linfocítica aguda, los linfomas hodgkinianos yahodgkinianos, y los tumores de células reproductoras, y también enel tratamiento paliativo de muchos otros cánceres.Therefore, it is expected that interferencewith this normal balance between the microtubule and its subunitsinterrupt division and mobility, in addition to other activitiesdependent on microtubules. This strategy has been used withan important success in the treatment of certain malignant tumors.Actually, antimicrotubule agents such as colchicine andVinca alkaloids are among the most anticancer drugsimportant. These antimicrotubule agents, which promote themicrotubule disaggregation, play important rolesin the chemotherapy of the most curable neoplasms, including theacute lymphocytic leukemia, hodgkin lymphomas andahodgkinians, and reproductive cell tumors, and also inPalliative treatment of many other cancers.
El agente antimicrotúbulo más novedoso ypromisorio en investigación es el paclitaxel. El paclitaxel es un agente antimicrotúbulo aislado de la corteza del tallo deTaxusbrevifolia, el tejo occidental (Pacífico). A diferencia deotros antimicrotúbulos como los alcaloides de la colquicina y lavinca que promueven la desagregación de los microtúbulos, elpaclitaxel actúa promoviendo la formación de microtúbulosinusualmente estables, inhibiendo la reorganización dinámica normalde la red de microtúbulos necesaria para la mitosis y laproliferación celular (Schiff, P.B.,et al. (1979)Nature 277: 665; Schiff, P.B.,et al. (1981)Biochemistry 20: 3247). En presencia de paclitaxel, laconcentración de tubulina requerida para la polimerización essignificativamente menor; la agregación de los microtúbulos seproduce sin GTP y a temperaturas bajas, y los microtúbulos formadosson más resistentes a la despolimerización por dilución, calcio,frío y fármacos inhibitorios. El paclitaxel se une reversiblementea la tubulina polimerizada, y otros fármacos de unión de la tubulinase unen a esta aún en presencia de paclitaxel.The most innovative and promising antimicrotubule agent in research is paclitaxel. Paclitaxel is an antimicrotubule agent isolated from the stem bark ofTaxus brevifolia , the western yew (Pacific). Unlike other antimicrotubules such as the alkaloids of colchicine and vinca that promote the breakdown of microtubules, paclitaxel acts by promoting the formation of unusually stable microtubules, inhibiting the normal dynamic reorganization of the microtubule network necessary for mitosis and proliferation. Cellular (Schiff, PB,et al . (1979)Nature 277: 665; Schiff, PB,et al . (1981)Biochemistry 20: 3247). In the presence of paclitaxel, the concentration of tubulin required for polymerization is significantly lower; Microtubule aggregation occurs without GTP and at low temperatures, and the formed microtubules are more resistant to depolymerization by dilution, calcium, cold and inhibitory drugs. Paclitaxel binds reversibly to polymerized tubulin, and other tubulin binding drugs bind to it even in the presence of paclitaxel.
El paclitaxel tiene uno de los espectros deactividad antineoplásica más amplios, renovando un intenso interés por las estrategias quimioterapéuticas dirigidas contra losmicrotúbulos (Rowinsky, E.K.,et al. 1990)Jrnl. ofNat'l. Cancer Inst., 82:1247-1259). En estudiosrecientes, el paclitaxel ha mostrado una actividad importante en elcáncer de ovario avanzado y resistente al tratamiento (Binzig, A.I.,et al. (1992)J. Clin. Oncol., 10: 1748), el melanomamaligno (Einzig, A.I. (1991)Invest. New Drugs, 9:59-64), y en los cánceres de mama (Holmes, F.A.,et al. (1991)JNCI, 83:1797-1805),cabeza y cuello y pulmón.Paclitaxel has one of the broadest antineoplastic activity spectra, renewing an intense interest in chemotherapeutic strategies directed against microtubules (Rowinsky, EK,et al . 1990)Jrnl. of Nat'l. Cancer Inst ., 82: 1247-1259). In recent studies, paclitaxel has shown significant activity in advanced and treatment-resistant ovarian cancer (Binzig, AI,et al . (1992)J. Clin. Oncol ., 10: 1748), malignant melanoma (Einzig, AI (1991)Invest. New Drugs , 9: 59-64), and in breast cancers (Holmes, FA,et al . (1991)JNCI , 83: 1797-1805), head and neck and lung.
El paclitaxel ha sido estudiado por sus efectoscontra el crecimiento tumoral en varios estudios clínicos usandovarias pautas de administración. Se han observado reaccionesalérgicas graves tras la administración de paclitaxel. Sin embargo,se ha demostrado que la incidencia y la gravedad de las reaccionesalérgicas es afectada por la dosis y la velocidad de la infusión deeste fármaco (Weiss, R.B.,et al. (1990)J. Clin.Oncol. 8: 1263).Paclitaxel has been studied for its effects against tumor growth in several clinical studies using various administration guidelines. Serious allergic reactions have been observed after administration of paclitaxel. However, it has been shown that the incidence and severity of allergic reactions is affected by the dose and rate of infusion of this drug (Weiss, RB,et al . (1990)J. Clin. Oncol . 8: 1263 ).
Las arritmias de paclitaxel están asociadas aarritmias cardiacas, y al igual que las reacciones alérgicas, suincidencia es afectada por la dosis y la velocidad de administracióndel fármaco. La bradicardia sinusal se presenta en el 40% de lospacientes y la arritmia Mobitz II en el 5% de los pacientes,comenzado 4-6 horas después del inicio de lainfusión de paclitaxel, y continuando durante 4-8horas después de terminada esta. En la mayoría de los pacientes, elritmo anormal es transitorio, asintomático y hemodinámicamenteestable, y no requiere medicamentos cardíacos o estimulacióneléctrica. Además, se ha observado que la incidencia de eventoscardiacos graves es baja en los pacientes que reciben paclitaxelsolo. Por consiguiente, se han usado tiempos de infusión de hasta24 horas en el tratamiento con paclitaxel para disminuir laincidencia de la toxicidad y las reacciones alérgicas a losfármacos.Paclitaxel arrhythmias are associated withcardiac arrhythmias, and like allergic reactions, yourincidence is affected by dose and speed of administrationof the drug. Sinus bradycardia occurs in 40% of thepatients and Mobitz II arrhythmia in 5% of patients,started 4-6 hours after the start of thepaclitaxel infusion, and continuing for 4-8hours after this is over. In most patients, theabnormal rhythm is transient, asymptomatic and hemodynamicallystable, and does not require cardiac medications or stimulationelectric In addition, it has been observed that the incidence of eventsHeart disease is low in patients receiving paclitaxelalone. Consequently, infusion times of up to24 hours in paclitaxel treatment to decreaseincidence of toxicity and allergic reactions todrugs
Durante la angioplastia, el inflado del catéterbalón intrarterial produce la desendotelización, ruptura de lalámina elástica interna y lesión de las células del músculo liso dela capa media. Finalmente se produce la desdiferenciación de lascélulas del músculo liso de la capa media vascular desde un fenotipocontráctil a un fenotipo secretor. Esto implica, principalmente, lasecreción de metaloproteinasas por parte de las células del músculoliso vascular que degradan la membrana basal circundante, laproliferación y la migración quimiotáxica dentro de la íntima, y lasecreción de una gran matriz extracelular, que forma la lesiónfibroproliferativa de la neoíntima. Gran parte de ladesdiferenciación fenotípica de las células del músculo lisovascular tras la lesión arterial es similar a la de las célulasneoplásicas (es decir, proliferación anormal, secreción demoléculas reguladoras del crecimiento y proteasa, migración einvasión basal).During angioplasty, catheter inflationIntra-arterial balloon causes dendothelialization, rupture of theinternal elastic lamina and smooth muscle cell injury ofthe middle layer Finally the dedifferentiation of thesmooth muscle cells of the vascular middle layer from a phenotypecontractile to a secretory phenotype. This implies, mainly, thesecretion of metalloproteinases by muscle cellsvascular smooth that degrade the surrounding basement membrane, theproliferation and chemotactic migration within the intimate, and thesecretion of a large extracellular matrix, which forms the lesionfibroproliferative of the neointima. Great part ofphenotypic dedifferentiation of smooth muscle cellsvascular after arterial injury is similar to that of cellsneoplastic (i.e. abnormal proliferation, secretion ofgrowth and protease regulatory molecules, migration andbasal invasion).
La técnica no ha sugerido el uso de paclitaxelpara prevenir o reducir la ateroesclerosis. Por tanto, el paso dela presente invención es evitar o reducir el desarrollo deaterosclerosis usando paclitaxel o un derivado del paclitaxelsoluble en agua. Este mecanismo para evitar la aterosclerosismediante la estabilización de los microtúbulos es apoyado porresultados análogos obtenidos en experimentos sobre proliferacióncelular y migración usando paclitaxel y ^{2}H_{2}O (óxido dedeuterio), que ejercen efectos comparables sobre los microtúbulos através de diferentes mecanismos subyacentes.The technique has not suggested the use of paclitaxelto prevent or reduce atherosclerosis. Therefore, the passage ofThe present invention is to prevent or reduce the development ofatherosclerosis using paclitaxel or a derivative of paclitaxelsoluble in water. This mechanism to prevent atherosclerosisBy stabilizing the microtubules it is supported byanalogous results obtained in experiments on proliferationcell and migration using paclitaxel and 2 H 2 O (oxide ofdeuterium), which exert comparable effects on microtubules athrough different underlying mechanisms.
Por consiguiente, un objetivo de la presenteinvención es proporcionar una preparación farmacéutica para prevenir o evitar la aterosclerosis en que dicha preparación farmacéuticacontenga una dosis baja de paclitaxel o de un derivado depaclitaxel soluble en agua.Therefore, an objective of the presentinvention is to provide a pharmaceutical preparation to prevent or avoid atherosclerosis in which said pharmaceutical preparationcontain a low dose of paclitaxel or a derivative ofWater soluble paclitaxel.
Toda la bibliografía citada se incorpora aquípor referencia.All the cited bibliography is incorporated hereby reference
También son de especial interés las siguientescitas bibliográficas: El efecto inhibitorio de DMSO en laproliferación de células cultivadas de músculo liso arterial secomenta enExp. and Molecular Pathology (1988), vol. 48, p.48 - 58. Se investiga la relación entre este fenómeno y losmicrotúbulos citoplásmicos. Los mecanismos fisiopatológicos de lareestenosis posterior a la angioplastia coronaria se investigan enJ. of Int. Med. (1993), vol. 233, p. 215 - 226. EnAtherosclerosis (1982), vol. 44, p. 385 - 390 se investiga eluso de antitubulinas para el tratamiento de la aterosclerosis. EnCirculation (1989), vol. 80/s-II, p. 66, sedescriben las investigacionesin vivo en conejosateroscleróticos, y se investigó el beneficio del tratamiento concolquicina después de una angioplastia ilíaca. Las actividadesnormolipémicas de los derivados de acrilofenona, que también tienen propiedades antimicrotubulares, se describen enMeth. and Find.Clin. Pharmacol. (1985), vol. 7, no. 4, p. 183 - 187. En lapatente de EE.UU. nº 5.223.269 (Liepins) se describen compuestos quecontienen deuterio que se utilizan para el tratamiento de lahipertensión. En la patente de EE.UU. nº 5.157.049 (Haugwitzetal.) se describen derivados del paclitaxel solubles en agua queson útiles para el tratamiento del cáncer.The following bibliographical citations are also of special interest: The inhibitory effect of DMSO on the proliferation of cultured arterial smooth muscle cells is discussed inExp. And Molecular Pathology (1988), vol. 48, p. 48-58. The relationship between this phenomenon and cytoplasmic microtubules is investigated. The pathophysiological mechanisms of restenosis after coronary angioplasty are investigated inJ. of Int. Med . (1993), vol. 233, p. 215-226. InAtherosclerosis (1982), vol. 44, p. 385 - 390 the use of antitubulins for the treatment of atherosclerosis is investigated. InCirculation (1989), vol. 80 / s-II, p. 66,in vivo investigationsin atherosclerotic rabbits are described, and the benefit of colchicine treatment after iliac angioplasty was investigated. The normolipemic activities of acrylphenone derivatives, which also have antimicrotubular properties, are described inMeth. and Find. Clin. Pharmacol (1985), vol. 7, no. 4, p. 183-187. In US Pat. No. 5,223,269 (Liepins) describes compounds containing deuterium that are used for the treatment of hypertension. In US Pat. No. 5,157,049 (Haugwitzet al .) water soluble paclitaxel derivatives that are useful for the treatment of cancer are described.
De acuerdo con los objetivos de la presenteinvención se proporciona un uso como el descrito más arriba para evitar o reducir la aterosclerosis, que comprende el tratamiento conun stent de polímero que elude fármaco biodegradable para laadministración local de una cantidad terapéuticamente eficaz depaclitaxel, un derivado del paclitaxel u óxido de deuterio. Unacantidad terapéuticamente eficaz del agente es una cantidadsuficiente como para evitar o reducir el desarrollo de laaterosclerosis. La invención además se refiere al uso de óxido dedeuterio en la fabricación de una composición farmacéutica para laprevención de reestenosis o aterosclerosis en pacientes. También serefiere al uso de derivados de paclitaxel solubles en aguacaracterizado en las reivindicaciones en la fabricación de unacomposición farmacéutica para la prevención de aterosclerosis npacientes.In accordance with the objectives of thisinvention a use is provided as described above foravoid or reduce atherosclerosis, which includes treatment witha polymer stent that eludes biodegradable drug forlocal administration of a therapeutically effective amount ofpaclitaxel, a derivative of paclitaxel or deuterium oxide. Atherapeutically effective amount of the agent is an amountenough to prevent or reduce the development of theatherosclerosis The invention further relates to the use ofdeuterium in the manufacture of a pharmaceutical composition forprevention of restenosis or atherosclerosis in patients. I also knowrefers to the use of water soluble paclitaxel derivativescharacterized in the claims in the manufacture of apharmaceutical composition for the prevention of atherosclerosis npatients
Este uso proporciona una forma eficaz de evitaro reducir el desarrollo de aterosclerosis en los pacientes susceptibles a esa enfermedad. Además, debido a que la dosis delagente quimioterapéutico es baja la posibilidad de un paciente dedesarrollar reacciones adversas es potencialmente baja.This use provides an effective way to avoidor reduce the development of atherosclerosis in patientssusceptible to that disease. In addition, because the dose ofChemotherapeutic agent is low a patient's chance ofDevelop adverse reactions is potentially low.
La Figura 1 representa la disminución inducidapor el paclitaxel de la capacidad de VSMC de invadir filtros revestidos con proteínas de la membrana basal, y la inhibición porel paclitaxel de la incorporación de[^{3}H]-timidina a las células del músculo lisovascular cultivadas.Figure 1 represents the induced decreaseby the paclitaxel of the ability of VSMC to invade filterscoated with basement membrane proteins, and inhibition bythe paclitaxel of the incorporation of[3 H] -thymidine to smooth muscle cellsCultivated vascular.
La Figura 2 muestra la inhibición por elpaclitaxel de la acumulación de neoíntima en las células del músculo liso vascular después de la lesión por el catéter balón de laarteria carótida de la rata.Figure 2 shows the inhibition bypaclitaxel of neointimal accumulation in muscle cells vascular smooth after balloon catheter injurycarotid artery of the rat.
La Figura 3 representa la inhibición de laquimioinvasión de VSMC dependiente de la dosis producida por el óxido de deuterio, y la inhibición de la incorporación debromodeoxiuridina (BrDU) a las células del músculo liso vascularproducida por el óxido de deuterio.Figure 3 represents the inhibition ofVSMC chemoinvasion dependent on the dose produced by thedeuterium oxide, and inhibition of the incorporation ofBromodeoxyuridine (BrDU) to vascular smooth muscle cellsproduced by deuterium oxide.
La Figura 4 muestra que las concentraciones depaclitaxel causan la unión de los microtúbulos dependiente de ladosis en células del músculo liso vascular cultivadas sobreplástico.Figure 4 shows that the concentrations ofpaclitaxel cause microtubule binding dependent on thedose in vascular smooth muscle cells grown onplastic.
La Figura 5 muestra la unión de los microtúbulosinducida por el óxido de deuterio en VSMC cultivadas.Figure 5 shows the junction of the microtubulesinduced by deuterium oxide in cultured VSMC.
El uso en la práctica de una realización en lapresente invención puede realizarse mediante varias víasalternativas de administración del fármaco, como la inyecciónsubcutánea o intraperitoneal, la infusión intravenosa continua, laingestión oral o la administración local (directa), o unacombinación de dos o más vías. Cuando se formula una solución parainyección o infusión continua, primero debe prepararse la soluciónde paclitaxel. El paclitaxel se administra mediante CTEP, DCT, NCI(IND nº 22850) como solución concentrada, 6 mg/ml, en viales de 5 ml (30 mg/vial) en un vehículo de aceite de castor polioxietilado(Cremophor EL®) al 50% y alcohol deshidratado, USP (50%). Losviales intactos se deben almacenar con refrigeración y diluirseantes de usar. Cuando se diluyen en inyección de dextrosa al 5% ocloruro de sodio al 0,9%, las concentraciones de paclitaxel de0,3-1,2 mg/ml son física y químicamente establesdurante al menos 12 horas a temperatura ambiente. (Datos deinvestigación del NCI; datos farmacéuticos (1990)). También se hademostrado que las concentraciones de paclitaxel de 0,6 mg/mldiluidos en D5W o NS y 1,2 mg/ml diluidos en NS preparado enrecipientes de poliolefina son estables al menos durante 25 horas atemperatura ambiente (20-23ºC). (Waugh,etal. (1990)Am. J. Hosp. Pharm. 48, 1520). Aunque estasconcentraciones han exhibido estabilidad para los periodos antesmencionados, no significa que limiten la práctica de la presenteinvención donde puede utilizarse cualquier concentración depaclitaxel.The use in practice of an embodiment in the present invention can be accomplished by several alternative routes of drug administration, such as subcutaneous or intraperitoneal injection, continuous intravenous infusion, oral ingestion or local (direct) administration, or a combination of Two or more ways. When a solution for continuous injection or infusion is formulated, the paclitaxel solution must first be prepared. Paclitaxel is administered by CTEP, DCT, NCI (IND No. 22850) as a concentrated solution, 6 mg / ml, in 5 ml vials (30 mg / vial) in a polyoxyethylated castor oil vehicle (Cremophor EL®) at 50 % and dehydrated alcohol, USP (50%). Intact vials should be stored refrigerated and diluted before use. When diluted by injection of 5% dextrose or 0.9% sodium chloride, paclitaxel concentrations of 0.3-1.2 mg / ml are physically and chemically stable for at least 12 hours at room temperature. (NCI research data; pharmaceutical data (1990)). It has also been shown that paclitaxel concentrations of 0.6 mg / ml diluted in D5W or NS and 1.2 mg / ml diluted in NS prepared in polyolefin containers are stable for at least 25 hours at room temperature (20-23 ° C). ). (Waugh,et al . (1990)Am. J. Hosp. Pharm . 48, 1520). Although these concentrations have exhibited stability for the aforementioned periods, it does not mean that they limit the practice of the present invention where any concentration of paclitaxel can be used.
Todas las soluciones de paclitaxel muestran unanebulosidad directamente proporcional a las concentraciones defármaco y el tiempo transcurrido después de la preparación. Despuésde la preparación de soluciones para infusión de paclitaxel se haobservado la formación de un pequeño número de fibras en la solución(dentro de los límites aceptables por la Prueba para el materialformado de partículas de la Farmacopea de Estados Unidos (USP) paraLVP). La formación de partículas no indica una pérdida de potenciadel fármaco; sin embargo, no deben usarse las soluciones quemuestren una formación excesiva de partículas. Por tanto, cuando selas administra por infusión continua, puede ser necesaria lafiltración en la vía y se puede realizar incorporando un filtrohidrófilo, microporoso, con un tamaño de poro inferior a los 0,22micrómetros (IVEX-HP In Line Filter Set-SL, 38,1 cm, modelo Abbott nº 4525 oequivalente) en el trayecto del líquido distal con respecto a unabomba de infusión.All paclitaxel solutions show ahaze directly proportional to the concentrations ofdrug and time elapsed after preparation. Afterof the preparation of paclitaxel infusion solutions has beenobserved the formation of a small number of fibers in the solution(within the limits acceptable by the Test for the materialformed from particles of the United States Pharmacopeia (USP) toLVP). Particle formation does not indicate a loss of powerof the drug; however, solutions thatshow excessive particle formation. Therefore, whenadministered by continuous infusion, thefiltration in the track and can be done incorporating a filterhydrophilic, microporous, with a pore size less than 0.22micrometers (IVEX-HP In Line FilterSet-SL, 38.1 cm, Abbott model No. 4525 orequivalent) in the distal fluid path with respect to ainfusion pump
El paclitaxel debe prepararse en recipientespara solución no plastificados (por ejemplo, vidrio, poliolefina opolipropileno) debido a la disolución del plastificantedietilhexilftalato (DEHP) de las bolsas y las vías intravenosas decloruro de polivinilo (PVC). El paclitaxel no debe administrarse através de equipos de PVC intravenoso o de inyección. Por tanto,deben usarse equipos de poliolefina o vías de poliolefina como los equipos intravenosos de nitroglicerina (o equivalentes) paraconectar la botella o bolsa (que contiene la solución de paclitaxelpara una infusión continua) a la bomba intravenosa, un filtro de0,22 micrómetros se sujeta al equipo intravenoso y luego puedesujetarse directamente al dispositivo de acceso central delpaciente. Si es necesario puede usarse un equipo de extensión devía de polivinilo (Polyfin^{TM} Extension Set, MiniMed Techologies, Modelo nº 126) para proporcionar distancia adicionalentre la bomba intravenosa y el dispositivo de acceso central delpaciente.Paclitaxel should be prepared in containersfor non-plasticized solution (for example, glass, polyolefin orpolypropylene) due to the dissolution of the plasticizerdiethylhexylphthalate (DEHP) of the bags and intravenous routes ofpolyvinyl chloride (PVC). Paclitaxel should not be administered tothrough intravenous or injection PVC equipment. So,Polyolefin equipment or polyolefin pathways such asintravenous nitroglycerin equipment (or equivalent) forconnect the bottle or bag (containing paclitaxel solutionfor a continuous infusion) to the intravenous pump, a filter of0.22 micrometers is attached to the intravenous equipment and then canbe attached directly to the central access device of thepatient. If necessary, extension equipment can be used.polyvinyl pathway (Polyfin ™ Extension Set, MiniMedTechologies, Model No. 126) to provide additional distancebetween the intravenous pump and the central access device of thepatient.
Una pauta de administración para seres humanospuede consistir (aunque no se limita a la misma) en unpretratamiento intravenoso continuo de 24 horas con0,5-2 mg/kg (20-80 mg/m^{2}) comomáximo antes del procedimiento vascular, alrededor de0,25-2 mg/kg (10-80 mg/m^{2}) deinfusión intravenosa continua en 24 horas posprocedimiento, luegoalrededor de 0,25-2 mg/kg (10-80mg/m^{2}) de infusión intravenosa continua durante 24 horas cada 21 días durante 1 a 6 ciclos. Esta dosificación essignificativamente menor que la usada para tratar cánceres humanos(aproximadamente 4-6 mg/kg).An administration guideline for human beingsit may consist (although not limited to it) in a24-hour continuous intravenous pretreatment with0.5-2 mg / kg (20-80 mg / m2) asmaximum before the vascular procedure, around0.25-2 mg / kg (10-80 mg / m2) ofcontinuous intravenous infusion in 24 hours post-procedure, thenabout 0.25-2 mg / kg (10-80mg / m2) of continuous intravenous infusion for 24 hours each21 days for 1 to 6 cycles. This dosage issignificantly lower than that used to treat human cancers(approximately 4-6 mg / kg).
Una categoría de uso de paclitaxel abarcaría laprevención primaria o la atenuación del desarrollo de arteriopatía (aterosclerosis). Algunas de estas aplicaciones (entre las que seincluyen, por ejemplo, la prevención de la aterosclerosis delalotrasplante cardiaco, la insuficiencia multiorgánica que seproduce como resultado de las complicaciones vasculares de ladiabetes mellitus o la aterosclerosis acelerada resistente altratamiento farmacológico en pacientes que son malos candidatosquirúrgicos) pueden requerir ciclos posteriores de tratamiento queconsistan en infusiones intravenosas continuas a dosis baja(1-5 mg/m^{2}/día) durante 5-7días. Cada uno de los tratamientos de paclitaxel requerirá, por logeneral, un pretratamiento con 20 mg de dexametasona por vía oral14 a 7 horas antes del paclitaxel, 50 mg de difenhidraminaintravenosa y 300 mg de cimetidina intravenosa 30 minutos antes delpaclitaxel para reducir a mínimo los episodios de reacción alérgica.Otras aplicaciones que pueden no estar asociadas a un procedimientoquirúrgico incluyen el tratamiento de la displasia fibromuscular vascular, poliarteritis nudosa y arteritis de Takayasu. En cada unade las aplicaciones antes mencionadas también puede ser favorablela aplicación selectiva, localizada de preparaciones de liberaciónsostenida de paclitaxel, derivados de paclitaxel u óxido dedeuterio que permitan la administración local de fármaco a dosisaltas con poca toxicidad sistémica.A category of paclitaxel use would cover theprimary prevention or attenuation of the development of arteriopathy(atherosclerosis) Some of these applications (among which areinclude, for example, the prevention of atherosclerosis of thecardiac allogeneic transplant, the multi-organ failure thatproduced as a result of vascular complications of thediabetes mellitus or accelerated atherosclerosis resistant toPharmacological treatment in patients who are bad candidatessurgical) may require subsequent cycles of treatment thatconsist of continuous intravenous infusions at a low dose(1-5 mg / m2 / day) for 5-7days. Each of the paclitaxel treatments will require, soIn general, a pretreatment with 20 mg dexamethasone orally14 to 7 hours before paclitaxel, 50 mg of diphenhydramineintravenously and 300 mg of intravenous cimetidine 30 minutes beforepaclitaxel to minimize allergic reaction episodes.Other applications that may not be associated with a procedureSurgical include the treatment of fibromuscular dysplasiavascular, polyarteritis nodosa and Takayasu arteritis. In each oneof the aforementioned applications can also be favorableselective, localized application of release preparationsSustained paclitaxel, paclitaxel derivatives or oxide ofdeuterium allowing local administration of drug at dosesDischarges with low systemic toxicity.
Además, en la presente invención pueden usarsetambién los derivados solubles en agua de paclitaxel. Como sedescribe en la Pat. de EE.UU. nº 5.157.049 de Haugwitzet al.(incorporada aquí como cita bibliográfica) entre estos derivadossolubles en agua se incluyen2'-succinil-paclitaxel; 2'-succinil-paclitaxeltrietanolamina; 2'-glutarilpaclitaxel; saltrietanolamina de 2'-glutarilpaclitaxel;2'-O-éster con N-dimetilaminoetil)glutamina; sal clorhidrato de 2'-O-éster- conN-(dimetilaminoetilo) glutamina, aunque no se limitan a estos. Estos derivados de paclitaxel solubles en agua pueden administrarse conuna pauta análoga a la dada más arriba para paclitaxel con lasmodificaciones adecuadas pendientes de la aclaración de lasfarmacocinéticas de estos agentes.In addition, the water soluble derivatives of paclitaxel can also be used in the present invention. As described in Pat. from the USA No. 5,157,049 to Haugwitzet al . (incorporated herein as a citation) among these water soluble derivatives include 2'-succinyl-paclitaxel;2'-succinyl-paclitaxeltriethanolamine;2'-glutarylpaclitaxel;2'-glutarylpaclitaxel triethanolamine salt; 2'-O-ester with N-dimethylaminoethyl) glutamine; 2'-O-ester hydrochloride salt with N- (dimethylaminoethyl) glutamine, although not limited to these. These water soluble paclitaxel derivatives can be administered with a pattern analogous to that given above for paclitaxel with appropriate modifications pending clarification of the pharmacokinetics of these agents.
Una composición farmacéutica que comprenda unacantidad eficaz de un derivado de paclitaxel soluble en agua comoingrediente activo se prepara fácilmente mediante los procedimientosbien conocidos en la técnica, con excipientes estériles atóxicosfarmacéuticamente aceptables, si es necesario. Esas preparacionespueden administrarse por vía oral o de forma inyectable, odirectamente sobre una zona afectada, a un paciente en riesgo dedesarrollar la enfermedad.A pharmaceutical composition that comprises aeffective amount of a water soluble paclitaxel derivative asActive ingredient is easily prepared by the procedureswell known in the art, with non-toxic sterile excipientsPharmaceutically acceptable, if necessary. Those preparationsthey can be administered orally or by injection, ordirectly on an affected area, to a patient at risk ofdevelop the disease
Los ejemplos siguientes ilustran la eficacia delpaclitaxel, los derivados del paclitaxel y el óxido de deuterio enla inhibición de la proliferación y migración de células del músculoliso vascular.The following examples illustrate the effectiveness ofpaclitaxel, paclitaxel derivatives and deuterium oxide ininhibition of proliferation and migration of muscle cellsvascular smooth
Se comprobó la capacidadin vitro de lascélulas del músculo liso vascular cultivadas, pretratadas con diferentes concentraciones de paclitaxel, de invadir filtrosrevestidos con proteínas de membrana basal reconstituidas paraevaluar en qué medida la unión de los microtúbulos inducida por elpaclitaxel entorpece los procesos celulares necesarios para laformación de neoíntimain vivo.Thein vitro ability of cultured vascular smooth muscle cells, pretreated with different concentrations of paclitaxel, to invade filters coated with reconstituted basement membrane proteins to assess the extent to which paclitaxel-induced microtubule binding hinders cellular processes was checked necessary for neointimal formationin vivo .
Se aislaron células del músculo liso vascular(VSMC) por digestión enzimática con colagenasa/elastasa de las capas medias de la aorta de rata obtenidas de ratas Wistar de 6meses. Se mantuvieron las células en cultivo con suero fetal bovinoal 10%, con DMEM con alto contenido de glucosa y suplementoaminoácido. Los cultivos celulares se mantuvieron a 37ºC en CO_{2}al 5%.Vascular smooth muscle cells were isolated(VSMC) by enzymatic digestion with collagenase / elastase of themiddle layers of rat aorta obtained from Wistar rats of 6months Cells were maintained in culture with fetal bovine serum10%, with high glucose DMEM and supplementamino acid Cell cultures were maintained at 37 ° C in CO2at 5%
Después de un pretratamiento de paclitaxel de 18horas en cultivo, las células se fijaron en formalina al 3,7%, sepermeabilizaron con Triton X-100 al 1%, y latubulina polimerizada se marcó con un anticuerpo frente a6-tubulina (anticuerpo monoclonal SMI 62 frente a6-tubulina polimerizada, Paragon Biotec, Inc.,Baltimore, Maryland, EE.UU.). El marcado secundario se logró con 1nm de anticuerpo de conejo antirratón conjugado con de oro,mejorado con plata (Goldmark Biologicals, Phillipsburg, New Jersey,EE.UU.). En la Figura 4 se muestran microfotografías ópticasrepresentativas de VSMC de (A) control, y tratadas con (B) 0,1 nM depaclitaxel, (C) 1 nM de paclitaxel y (D) 10 mM de paclitaxel.After a pretreatment of paclitaxel of 18hours in culture, the cells were fixed in 3.7% formalin,permeabilized with 1% Triton X-100, and thepolymerized tubulin was labeled with an antibody against6-tubulin (monoclonal antibody SMI 62 against6-polymerized tubulin, Paragon Biotec, Inc.,Baltimore, Maryland, USA). Secondary marking was achieved with 1nm of rabbit conjugated anti-mouse antibody with gold,enhanced with silver (Goldmark Biologicals, Phillipsburg, New Jersey,USA.). Figure 4 shows optical microphotographs.VSMC representative of (A) control, and treated with (B) 0.1 nM ofpaclitaxel, (C) 1 nM of paclitaxel and (D) 10 mM of paclitaxel.
Se realizaron determinaciones de quimioinvasión(cámara Boyden) usando una cámara Boyden modificada (Albini,etal. (1987)Cancer Res., 47: 3239-3245),que comprende una cámara superior separada de una cámara inferior por un filtro poroso PVPF. Los filtros PVPF (diámetro de poro de 8\mum, Nucleopore Filters, Pleasonton, California, EE.UU.) serecubrieron y consecutivamente se secaron con aire, con solucionesque contenían 100 \mug/ml de colágeno tipo I, 5 \mug/ml defibronectina y 5 \mug de membrana basal reconstituida (producida a partir de tumorEnglebreth-Holm-Swarm (Kleinman,et al. (1986)Biochemistry, 25:312-318), que produjo una matriz de recubrimientocontinuo de 10 \mum de espesor. Se montaron las cámaras Boydenagregando 10 ng/ml de PDGF BB en DMEM a la cámara baja (factorquimiotáctico). Se suspendieron células (aproximadamente 200.000) en DMEM con 0,1% BSA y se agregaron luego a la cámara superior.Algunas de las células usadas en estos estudios se pretrataron 18horas con paclitaxel (concentración 30 pM a 100 nM) en cultivo. Enlos grupos tratados con paclitaxel, se agregó el paclitaxel a lascámaras superior y inferior a la misma concentración usada para elpretratamiento. Las cámaras se incubaron luego durante 4 horas a37ºC en una atmósfera de CO_{2} al 5%. Al final del periodo deincubación, se fijaron las células y se tiñeron con hematoxilina yeosina. Las células de la superficie superior (no invasoras) seeliminaron mecánicamente, y las células de la parte inferior delfiltro (invasoras) se contaron con un aumento de 400 x (se contaronen cuatro campos al azar por filtro y todos los experimentos sehicieron por triplicado y cada determinación triplicada se repitióal menos tres veces en ocasiones diferentes usando preparacionesdiferentes de células del músculo liso vascular). Se determinó laquimiotaxia de forma análoga en las cámaras Boyden descritas másarriba, excepto que se omitió la membrana basal reconstituida. Losexpertos en la técnica aceptan que en esta determinación dequimioinvasión muestra una correlación alta entre la invasividadin vitro y el comportamiento celular que se produceinvivo (Iwamoto, Y.,et al. (1992)Avances inExperimental Medicine & Biology, 324:141-9).Chemoinvasion determinations (Boyden chamber) were performed using a modified Boyden chamber (Albini,et al . (1987)Cancer Res ., 47: 3239-3245), which comprises an upper chamber separated from a lower chamber by a PVPF porous filter. PVPF filters (8 µm pore diameter, Nucleopore Filters, Pleasonton, California, USA) were coated and subsequently air dried, with solutions containing 100 µg / ml of type I collagen, 5 µg / ml of fibronectin and 5 µg of reconstituted basement membrane (produced from Englebreth-Holm-Swarm tumor (Kleinman,et al . (1986)Biochemistry , 25: 312-318), which produced a continuous coating matrix of 10 Thickness: Boyden chambers were mounted by adding 10 ng / ml of PDGF BB in DMEM to the lower chamber (chemotactic factor) Cells (approximately 200,000) were suspended in DMEM with 0.1% BSA and then added to the upper chamber Some of the cells used in these studies were pretreated 18 hours with paclitaxel (30 pM concentration at 100 nM) in culture In paclitaxel-treated groups, paclitaxel was added to the upper and lower chambers at the same concentration used for pretreatment. The cameras are incubated they were then rummed for 4 hours at 37 ° C in a 5% CO2 atmosphere. At the end of the incubation period, the cells were fixed and stained with hematoxylin and eosin. The cells of the upper surface (non-invasive) were removed mechanically, and the cells of the lower part of the filter (invasive) were counted with an increase of 400 x (they were counted in four random fields per filter and all experiments were done in triplicate and each triplicate determination was repeated at least three times on different occasions using different preparations of vascular smooth muscle cells). Chemotaxia was determined analogously in the Boyden chambers described above, except that the reconstituted basement membrane was omitted. Those skilled in the art accept that in this chemoinvasion determination it shows a high correlation betweenin vitro invasiveness and cellular behavior that occursin vivo (Iwamoto, Y.,et al . (1992)Advances in Experimental Medicine & Biology , 324 : 141-9).
Usando el PDGF-BB como factorquimiotáctico, el paclitaxel inhibió la invasión de células delmúsculo liso vascular con la mitad de la concentración inhibitoriamáxima de 0,5 nM. El paclitaxel causó una inhibición esencialmentetotal a 100 nM y aún era significativamente resolutiva la inhibicióna 30 pM (la menor dosis usada) (Figura 1). Se realizó de formaanáloga una determinación de quimiotaxia (filtro recubierto sólo por fibronectina y colágeno I, sin proteínas de la membrana basal queocluyeran los poros del filtro) con PDGF-BB comofactor quimiotáctico produciendo un resultado similar. Estosresultados demuestran que, al menos a niveles nanomolares defármaco, el paclitaxel inhibe la invasión de VSMC principalmente através de la inhibición del movimiento y/o cambios de forma, másque inhibiendo la secreción celular de colagenasas ymetaloproteinasas, que se sabe que son necesarias para que las VSMCpenetren las proteínas de la membrana basal en estadeterminación.Using the PDGF-BB as a factorchemotactic, paclitaxel inhibited cell invasion ofvascular smooth muscle with half the inhibitory concentration0.5 nM maximum. Paclitaxel caused an inhibition essentiallytotal at 100 nM and inhibition was still significantly resolvableat 30 pM (the lowest dose used) (Figure 1). It was done in a wayanalogous a chemotaxis determination (filter coated only by fibronectin and collagen I, without basement membrane proteins thatocclude the pores of the filter) with PDGF-BB asChemotactic factor producing a similar result. Theseresults show that, at least at nanomolar levels ofdrug, paclitaxel inhibits the invasion of VSMC mainly tothrough the inhibition of movement and / or shape changes, morethat inhibiting the cellular secretion of collagenases andmetalloproteinases, which are known to be necessary for the VSMCpenetrate the basement membrane proteins in thisdetermination.
Se realizó la cimografía de la gelatinasa en lossobrenadantes extraídos después de 4 horas de terminadas lasdeterminaciones de las cámaras Boyden descritas mas arriba. Lasproteinasas degradantes de gelatina segregadas en los medios porlas VSMC se analizaron por electroforesis en gel no reductor depoliacrilamida-dodecilsulfato sódico en un gel depoliacrilamida al 10% con 0,1% (p/v) de gelatina. Después de laelectroforesis, se renaturalizaron las gelatinasas incubando el geldurante 30 minutos a 23ºC en Triton X-100 al 2,5%(v/v) seguido de 18 horas de incubación a 37ºC en NaCl 0,2 M, 5 nmCaCl_{2} 0,02% Brij 35 (p/v), 50 mM Tris-HCl (pH7,6). Los geles se tiñeron durante 90 minutos con CoomassieBrilliant Blue G-250 al 0,5% y se destiñeron conácido acético al 10%, metanol al 40%. La actividad gelatinolíticaestuvo indicada por una banda clara contra el fondo de gelatinateñida de azul.Gelatinase cymography was performed in thesupernatants removed after 4 hours after completion ofBoyden camera determinations described above. Thedegrading gelatin proteinases secreted in the media byVSMC were analyzed by non-reducing gel electrophoresis ofsodium polyacrylamide dodecyl sulfate in a gel10% polyacrylamide with 0.1% (w / v) gelatin. After theelectrophoresis, the gelatinases were renatured by incubating the gelfor 30 minutes at 23 ° C in 2.5% Triton X-100(v / v) followed by 18 hours of incubation at 37 ° C in 0.2 M NaCl, 5 nmCaCl 2 0.02% Brij 35 (w / v), 50 mM Tris-HCl (pH7.6). The gels were stained for 90 minutes with CoomassieBrilliant Blue G-250 0.5% and faded with10% acetic acid, 40% methanol. Gelatinolytic activitywas indicated by a clear band against the bottom of jellydyed blue
Estas determinaciones de la gelatinasa porcimografía de los experimentos de invasión en cámaras Boydenconfirman que el nivel de secreción de colagenasa de las VSMC novarió significativamente a lo largo del intervalo de paclitaxel de30 pM a 100 mM, en comparación con el control (Figura 2, recuadroinsertado).These determinations of gelatinase bycimography of Boyden cameras invasion experimentsconfirm that the level of collagenase secretion of the VSMC does notvaried significantly over the paclitaxel interval of30 pM at 100 mM, compared to the control (Figure 2, boxinserted).
Para confirmar el hecho de que la estabilizaciónde los microtúbulos y la hiperpolimerización es el factor crítico ysuficiente implicado en la inhibición de la invasividad de las VSMCpor el paclitaxel, se realizó la determinación de quimioinvasión(cámara Boyden) con óxido de deuterio (^{2}H_{2}O, agua pesada).El óxido de deuterio aumenta la polimerización demicrotúbulos/tubulina mediante un mecanismo distinto que el paclitaxel. Una combinación de los efectos de isótopo y de solventedel óxido de deuterio aumenta reversiblemente la polimerización delos microtúbulos reduciendo la concentración crítica para lapolimerización de los heterodímeros de\alpha\beta-tubulina mediante el aumento de lasinteracciones hidrófobas de la tubulina (Itoh, T.J.et al.(1984)Biochim. Biophys. Acta., 800: 21-27),y convirtiendo una población de tubulina no polimerizable en laforma polimerizable (Takahashi, T.C.,et al. (1984)CellStruct. Funct., 9: 45-52).To confirm the fact that microtubule stabilization and hyperpolymerization is the critical and sufficient factor involved in the inhibition of VSMC invasiveness by paclitaxel, the chemoinvasion (Boyden chamber) with deuterium oxide (^ {2} H2O, heavy water). Deuterium oxide increases microtubule / tubulin polymerization by a different mechanism than paclitaxel. A combination of the isotope and solvent effects of deuterium oxide reversibly increases the polymerization of microtubules by reducing the critical concentration for the polymerization of α? Beta-tubulin heterodimers by increasing the hydrophobic interactions of tubulin (Itoh , TJet al . (1984)Biochim. Biophys. Acta ., 800: 21-27), and converting a population of non-polymerizable tubulin into the polymerizable form (Takahashi, TC,et al . (1984)Cell Struct .Funct . , 9: 45-52).
Se aislaron VSMC por digestión enzimáticacolagenasa/elastasa de las capas medias de la aorta de rata obtenida de ratas Wistar de 6 meses. Las células se mantuvieron en cultivocon suero fetal bobino al 10%, DMEM de alto contenido en glucosa ysuplemento aminoácido. Los cultivos celulares se mantuvieron a 37ºCen CO_{2} al 5%.VSMC were isolated by enzymatic digestioncollagenase / elastase of the middle layers of the rat aorta obtained of 6 month Wistar rats. The cells were maintained in culturewith 10% bovine fetal serum, high glucose DMEM andamino acid supplement Cell cultures were maintained at 37 ° C.in 5% CO2.
En células tratadas con óxido de deuterio, sesustituyó el agua (H_{2}O) por ^{2}H_{2}O (v/v) en la preparación del medio de cultivo concentrado de DMEM. Después de 18horas de pretratamiento con óxido de deuterio en cultivo, sefijaron las células en formalina al 3,7%, se permeabilizaron conTriton X-100 al 1% y la tubulina polimerizada semarcó con anticuerpoanti-\beta-tubulina de ratón(anticuerpo monoclonal SMI 62 contra\beta-tubulina polimerizada, Paragon Biotec,Inc., Baltimore, Maryland, Estados Unidos). Se logró el marcadosecundario con 1 nm de anticuerpo de conejo antirratón conjugadocon oro mejorado con plata (Goldmark Biologicals, Phillipsburg, NewJersey, Estados Unidos). En las Figuras 5A-5B semuestran fotomicrografías ópticas de VSMC de control (5A) y tratadascon óxido de deuterio al 75% (5B).In cells treated with deuterium oxide, itreplaced the water (H2O) with2H2O (v / v) in thepreparation of DMEM concentrated culture medium. After 18hours of pretreatment with deuterium oxide in culture,they fixed the cells in 3.7% formalin, permeabilized with1% Triton X-100 and the polymerized tubulin aremarked with antibodymouse anti-β-tubulin(monoclonal antibody SMI 62 againstpolymerized β-tubulin, Paragon Biotec,Inc., Baltimore, Maryland, United States). Marking was achievedsecondary with 1 nm rabbit conjugate anti-mouse antibodywith gold enhanced with silver (Goldmark Biologicals, Phillipsburg, NewJersey, United States). In Figures 5A-5B,show optical photomicrographs of control VSMC (5A) and treatedwith 75% deuterium oxide (5B).
Las determinaciones de quimioinvasión serealizaron usando una cámara Boyden modificada, que consistió en una cámara superior separada de la cámara inferior por un filtroporoso PVPF. Se recubrieron filtros PVPF (diámetro de poro de 8\mum, Nucleopore Filters, Pleasonton, California, Estados Unidos)y se secaron con aire consecutivamente con soluciones que contenían100 \mug/ml de colágeno tipo I, 5 \mug/ml de fibronectina y 5\mug de membrana basal reconstituida (producida a partir del tumorEnglebreth-Holm-Swarm), que produjo un revestimiento continuo de matriz de 10 \mum de espesor. Lascámaras Boyden se ensamblaron con 10 ng/ml dePDGF-BB en DMEM en la cámara inferior (factorquimiotáctico), luego se agregaron a la cámara superior células (aproximadamente 200.000) suspendidas en DMEM con BSA al 0,1%.Algunas de las células usadas en estas determinaciones sepretrataron 18 horas con óxido de deuterio (sustitución del H_{2}Oen un 25%, 50% o 75% v/v) en cultivo. En los grupos tratados conóxido de deuterio el DMEM sustituido con ^{2}H_{2}O (v/v) seagregó a las cámaras superior e inferior a la misma concentraciónque la usada en el pretratamiento. Luego se incubaron las cámaras durante 4 horas a 37ºC en una atmósfera húmeda con CO_{2} al 5%.Al finalizar el experimento, se eliminaron los filtros, y lascélulas se fijaron y se tiñeron con hematoxilina y eosina. Despuésde eliminar mecánicamente las células de la superficie superior delfiltro (no invasoras), se contaron las células del lado inferior (invasoras) con un aumento de 400 X (se contaron cuatro campos alazar por filtro y se hicieron todos los experimentos portriplicado).Chemoinvasion determinations areperformed using a modified Boyden camera, which consisted ofan upper chamber separated from the lower chamber by a filterPVPF porous. PVPF filters were coated (pore diameter of 8\ mum, Nucleopore Filters, Pleasonton, California, United States)and air dried consecutively with solutions containing100 µg / ml of type I collagen, 5 µg / ml of fibronectin and 5? of reconstituted basement membrane (produced from the tumorEnglebreth-Holm-Swarm), which produceda continuous matrix coating 10 µm thick. TheBoyden cameras were assembled with 10 ng / ml ofPDGF-BB in DMEM in the lower chamber (factorchemotactic), then cells were added to the upper chamber(approximately 200,000) suspended in DMEM with 0.1% BSA.Some of the cells used in these determinations arepretreated 18 hours with deuterium oxide (replacement of H2Oin 25%, 50% or 75% v / v) in culture. In the groups treated withdeuterium oxide the DMEM substituted with 2 H 2 O (v / v) isadded to the upper and lower chambers at the same concentrationthan used in pretreatment. Then the cameras were incubatedfor 4 hours at 37 ° C in a humid atmosphere with 5% CO2.At the end of the experiment, the filters were removed, and thecells were fixed and stained with hematoxylin and eosin. Afterto mechanically remove cells from the upper surface of thefilter (non-invasive), lower side cells were counted(invasive) with an increase of 400 X (four fields were countedrandom by filter and all experiments were done bytriplicate).
\newpage\ newpageVSMC cultivadas pretratadas durante 18 horas conóxido de deuterio al 25%, 50% ó 75% causaron una hiperpolimerización de los microtúbulos dependiente de la dosis similar a la observadacon paclitaxel. Este tratamiento inhibió de la misma forma lainvasión de la cámara de Boyden por las células del músculo lisovascular mediada por PDGF, logrando la mitad de la inhibiciónmáxima con ^{2}H_{2}O al 25% y una inhibición casi total con^{2}H_{2}O al 75% (Figura 3).VSMC cultured pretreated for 18 hours with25%, 50% or 75% deuterium oxide caused hyperpolymerization of dose-dependent microtubules similar to that observedwith paclitaxel This treatment similarly inhibited theinvasion of the Boyden chamber by smooth muscle cellsPDGF-mediated vascular, achieving half of the inhibitionmaximum with 25% H2O2 and an almost total inhibition with75% H2O2 (Figure 3).
Además de participar en la repoblación y lamigración de células, las diversas moléculas reguladoras delcrecimiento elaboradas tras la lesión arterial, como PDGP y bFGF,participan también en la mitogénesis y en la proliferación celular.Para medir el efecto del paclitaxel sobre la síntesis de ADN de lasVSMC, se midió la incorporación de[^{3}H]-timidina. Las VSMC se cultivaron en placasa razón de 4,5 x 10^{4} en placas de 24 pocillos. Después de 5horas de incubación en FCS+DMEM al 10% se agregaron 0,5 mCi de[^{3}H]-timidina y se continuó la incubacióndurante 16 horas más. Se lavaron las células dos veces con soluciónsalina tampón fosfato, se extrajeron con TCA al 10% durante 2 horassobre hielo, luego se centrifugaron a 2.000 g durante 10 minutos. Se decantaron los sobrenadantes y se solubilizaron los sedimentos en0,5 ml de NaOH 1 N. Después de neutralizar con 0,5 ml de HCl 1 N,se determinó la absorción de [^{3}H]-timidina conun contador de centelleo líquido Beckman. Las VSMC se trataron convarias concentraciones de paclitaxel durante 18 horas antes delagregado de timidina y durante la incorporación de timidina. Cadauna de las condiciones de estos experimentos se realizó portriplicado.In addition to participating in restocking andcell migration, the various regulatory molecules of thegrowths developed after arterial injury, such as PDGP and bFGF,They also participate in mitogenesis and cell proliferation.To measure the effect of paclitaxel on the DNA synthesis ofVSMC, the incorporation of[3 H] -thymidine. VSMCs were platedat a rate of 4.5 x 10 4 in 24-well plates. After 5incubation hours in FCS + 10% DMEM 0.5 mCi of[<3> H] -thymidine and incubation was continuedfor 16 more hours. The cells were washed twice with solutionphosphate buffered saline, extracted with 10% TCA for 2 hourson ice, then centrifuged at 2,000 g for 10 minutes.The supernatants were decanted and the sediments were solubilized in0.5 ml of 1 N NaOH After neutralizing with 0.5 ml of 1 N HCl,the absorption of [3 H] -thymidine was determined witha Beckman liquid scintillation counter. VSMCs were treated withvarious concentrations of paclitaxel for 18 hours beforethymidine aggregate and during thymidine incorporation. Everyone of the conditions of these experiments was performed bytriplicate.
El paclitaxel inhibió la incorporación de[^{3}H]-timidina, un índice de división celular, alas VSMC cultivadas, de forma dependiente de la dosis, con la mitadde la concentración inhibitoria máxima de 5 mM. El paclitaxel causóuna inhibición esencialmente total a 100 nM y se detectó unainhibición significativa a 1 nM (Figura 1). El hecho de que esteperfil de inhibición difiera en cierto modo del de la invasión yquimiotaxia, demostrando una sensibilidad menor en una unidadlogarítmica de concentración pero con una dependencia con pendientemayor, posiblemente surja debido a los papeles considerablementediferentes desempeñados por los microtúbulos entre estos procesos.El paclitaxel también inhibió la expresión del mRNA delc-fos estimulada por PDGF-BBen este modelo cultivado de VSMC, de forma dependiente de la dosis,con la mitad de la concentración inhibitoria máxima de 1 nM, conuna inhibición esencialmente total por encima de los 20 nM. Así lainhibición de una inducción génica temprana inmediata es otromecanismo importante mediante el cual el paclitaxel bloquea laestimulación del factor de crecimiento en las VSMC y, al menos enparte, puede ser la causa subyacente de los resultados de laincorporación de timidina.Paclitaxel inhibited the incorporation of [3 H] -thymidine, a cell division index, to cultured VSMC, dose-dependent, with half the maximum inhibitory concentration of 5 mM. Paclitaxel caused an essentially total inhibition at 100 nM and a significant inhibition at 1 nM was detected (Figure 1). The fact that this inhibition profile differs somewhat from that of invasion and chemotaxis, demonstrating a lower sensitivity in a logarithmic unit of concentration but with a dependence with greater slope, possibly arises due to the considerably different roles played by microtubules between these processes Paclitaxel also inhibited the expression ofc-fos mRNA stimulated by PDGF-BB in this cultured VSMC model, dose-dependent, with half the maximum inhibitory concentration of 1 nM, with an essentially total inhibition above of 20 nM. Thus the inhibition of an immediate early gene induction is another important mechanism by which paclitaxel blocks the stimulation of the growth factor in VSMC and, at least in part, may be the underlying cause of the results of thymidine incorporation.
Así el paclitaxel inhibe significativamente lainvasión y proliferación de células del músculo liso vascularinvitro mediante la interferencia con la función de losmicrotúbulos, interrumpiendo el movimiento y la capacidad dealterar la forma, además de la expresión génica temprana y laproliferación celular estimulada por el factor de crecimiento aconcentraciones cien a mil veces menores a las usadas para tratar elcáncer humano.Thus, paclitaxel significantly inhibits the invasion and proliferation of vascular smooth muscle cellsin vitro by interfering with the function of microtubules, disrupting movement and the ability to alter the form, in addition to early gene expression and cell proliferation stimulated by the growth factor at concentrations one hundred to a thousand times lower than those used to treat human cancer.
Se midió la incorporación de un análogo de latimidina, la bromodeoxiuridina (BrDU), para determinar el efecto del óxido de deuterio sobre la síntesis de ADN de las VSMC. Secultivaron VSMC en placas a razón de 4,5 x 10^{4} en placas de 24pocillos. Después de 20 horas de incubación FCS+DMEM al 10% a variasconcentraciones de ^{2}H_{2}O, se agregaron 10 \muM de BrDU yse continuó la incubación durante otras 4 horas. Se lavaron dosveces las células con solución salina tampón fosfato (PBS) y sefijaron con metanol al 100% (-20ºC) durante 10 minutos. Seincubaron las células durante 2 horas con HCl 1 N paradesnaturalizar el ADN y luego se lavaron 4 veces en PBS. Se incubóanticuerpo BrDU monoclonal de ratón (Boehringer Mannheim) enBSA-PBS al 2% con células durante 1 hora. Despuésdel lavado con PBS, se agregó anticuerpo de cabra antirratónconjugado con fosfatasa alcalina. Los núcleos celulares quecontenían timidina sustituida por BrDU se tiñeron de rojo con unsustrato de fosfatasa alcalina, mientras el resto de los núcleos setiñeron de azul. La fracción de núcleosBrDU-positivos se comparó con el control (definidocomo el 100%) y la de los grupos pretratados con óxido dedeuterio.The incorporation of an analog of theThymidine, Bromodeoxyuridine (BrDU), to determine the effectof deuterium oxide on the synthesis of VSMC DNA. Becultured VSMC in plates at a rate of 4.5 x 10 4 in 24 plateswells. After 20 hours of incubation FCS + DMEM 10% to severalconcentrations of 2 H 2 O, 10 µM of BrDU were added andincubation was continued for another 4 hours. They washed twotimes the cells with phosphate buffer saline (PBS) and itfixed with 100% methanol (-20 ° C) for 10 minutes. Beincubated the cells for 2 hours with 1 N HCl todenature the DNA and then wash 4 times in PBS. It was incubatedmouse monoclonal BrDU antibody (Boehringer Mannheim) in2% BSA-PBS with cells for 1 hour. Afterfrom the PBS wash, goat anti-mouse antibody was addedconjugated with alkaline phosphatase. Cell nuclei thatcontained thymidine substituted by BrDU stained red with aalkaline phosphatase substrate, while the rest of the nuclei areThey dyed blue. The nucleus fractionBrDU-positive was compared with the control (definedas 100%) and that of the groups pretreated with oxide ofdeuterium.
Los resultados indicaron que el óxido dedeuterio inhibió de forma similar al paclitaxel la proliferación yla síntesis de ADN de las VSMC cultivadas, de forma dependiente dela dosis, consistente con el equilibrio crítico de la dinámicamicrotúbulo-tubulina en la proliferación de célulasdel músculo liso vascular.The results indicated that the oxide ofdeuterium similarly inhibited proliferation and paclitaxel andDNA synthesis of cultured VSMCs, depending onthe dose, consistent with the critical balance of dynamicsmicrotubule-tubulin in cell proliferationof vascular smooth muscle.
Mientras que el paclitaxel y el óxido dedeuterio tienen potencialmente múltiples efectos intracelulares, lacoincidencia de sus efectos paralelos sobre los microtúbulos (apesar de los diferentes mecanismos de acción) y sobre lafuncionalidad de las VSMC a múltiples niveles, indica que elmecanismo común de estabilización de los microtúbulos esresponsable de los cambios funcionales observados. Así, teniendo encuenta los resultados de los experimentos con paclitaxel y conóxido de deuterio, es evidente que los microtúbulos estáninvolucrados en el control de los mecanismos intracelulares máscríticos y sensibles necesarios para que las VSMC sufran lasmúltiples transformaciones implicadas en el desarrollo de laaterosclerosis después de la lesión arterial, haciendo que losmicrotúbulos sean objetivos particularmente estratégicos parainfluir el resultado.While paclitaxel and oxidedeuterium potentially have multiple intracellular effects, thecoincidence of its parallel effects on microtubules (adespite the different mechanisms of action) and on theVSMC functionality at multiple levels, indicates that thecommon mechanism of microtubule stabilization isresponsible for the observed functional changes. So, taking incount the results of paclitaxel experiments and withdeuterium oxide, it is clear that microtubules areinvolved in the control of intracellular mechanisms morecritical and sensitive necessary for VSMC to suffer themultiple transformations involved in the development of theatherosclerosis after arterial injury, causing themicrotubules are particularly strategic objectives forinfluence the result.
Siguiendo el protocolo aprobado por el NationalInstitute on Aging Animal Care and use Committee, se anestesiaron ratas Wistar de 6 meses de la colonia GRC con 20 mg depentobarbital/kg de peso corporal, 2 mg de ketamina/kg de pesocorporal y 4 mg de xilacina/kg de peso corporal por víaintraperitoneal. La arteria carótida externa izquierda se canulócon un catéter de embolectomía Fogarty de 2 French, se infló consolución salina y se pasó tres veces hacia arriba y hacia abajo dela arteria carótida primitiva para producir lesión distensora, condesendotelización. Se trataron los animales con 2 mg de solución depaclitaxel/kg de peso corporal o los animales de control convehículo solo (13,4 ml/kg de peso corporal por día de 1:2:2:165DMSO:Cremophor EL:Etanol deshidratado:solución salina tamponadafosfato) por inyección intraperitoneal comenzando 2 horas después de la lesión. La solución de paclitaxel o el vehículo solo seadministró una vez al día como una inyección intraperitoneal, durante los 4 días siguientes. Después de 11 días 8 animalestratados con paclitaxel y 10 tratados con vehículo) se anestesiaroncomo se describió más arriba, y se aisló la arteria carótida y sefijó en formalina tamponada al 10% y se embebió en parafina.Secciones transversales de las carótidas se montaron sobreportaobjetos para microscopio y se tiñeron con colorantehematoxilina y eosina. La imagen de la arteria carótida se proyectó sobre una tabla de traducción a la forma digital, y se midieron lasáreas de las secciones transversales de la íntima y la media. Losresultados se muestran en la Figura 2.Following the protocol approved by the NationalInstitute on Aging Animal Care and use Committee, anesthetized6 months Wistar rats from the GRC colony with 20 mg ofpentobarbital / kg body weight, 2 mg ketamine / kg weightbody weight and 4 mg xylazine / kg body weight per routeintraperitoneal The left external carotid artery was cannulatedwith a 2 French Fogarty embolectomy catheter, it was inflated withsaline solution and it was passed three times up and downthe primitive carotid artery to produce a distensive lesion, withdendotization. The animals were treated with 2 mg of solutionpaclitaxel / kg body weight or control animals withsingle vehicle (13.4 ml / kg body weight per day of 1: 2: 2: 165DMSO: Cremophor EL: Dehydrated ethanol: buffered salinephosphate) by intraperitoneal injection starting 2 hours after the injury The paclitaxel solution or the vehicle is onlyadministered once a day as an intraperitoneal injection,for the next 4 days. After 11 days 8 animalstreated with paclitaxel and 10 treated with vehicle) were anesthetizedas described above, and the carotid artery was isolated andfixed in 10% buffered formalin and embedded in paraffin.Transverse sections of the carotids were mounted onmicroscope slides and stained with dyehematoxylin and eosin. The image of the carotid artery was projectedon a translation table in digital form, and theareas of the cross sections of the intimate and the middle. TheResults are shown in Figure 2.
El análisis cuantitativo de los segmentoslesionados de la carótida mostraron que el tratamiento conpaclitaxel redujo el área de la neoíntima en un 70% en comparacióncon los animales tratados con vehículo (Tabla I) (*P < 0,001;\daggerP = NS; \ddaggerP < 0,001). Varios de los animalestratados con paclitaxel mostraron una neoíntima virtualmenteindiscernible (en presencia de endotelio despojado, que proporcionalesión), mientras que todos los animales tratados con vehículodemostraron al menos un engrosamiento pequeño de la neoíntima.The quantitative analysis of the segmentsCarotid lesions showed that treatment withpaclitaxel reduced the area of the neointima by 70% comparedwith vehicle treated animals (Table I) (* P <0.001;\ daggerP = NS; \ ddaggerP <0.001). Several of the animalstreated with paclitaxel showed a virtually intimateindiscernible (in the presence of stripped endothelium, which providesinjury), while all animals treated with vehicleThey demonstrated at least a small thickening of the neointima.
Aunque la dosis sistémica de paclitaxelinvivo usada en estos experimentos (2 mg/kg) es significativamente menor que la usada normalmente para tratar cánceres humanos(aproximadamente 3-6 mg/kg); no obstante, es posible una dosificación sistémica drásticamente menor manteniendo eincluso mejorando la eficacia combinando un régimen depretratamiento con la duración óptima de del tratamiento. Además, elobjetivo del tratamiento es mantener las VSMC "activadas" bajocontrol o, preferiblemente, evitar la activación en primer lugarhasta que se ha resuelto el estímulo para el crecimiento y lamigración (más que causar citotoxicidad que produzca muerte celular); por tanto, el objetivo del tratamiento a corto plazo contoxicidad limitada puede ser posible en los seres humanos.Finalmente, los sistemas de administración de liberación sostenidalocal pueden ofrecer una mejor solución para evitar laaterosclerosis, ya que permiten concentraciones locales altas defármaco administrado y eliminan esencialmente los problemas detoxicidad sistémica. Entre los sistemas de administración defármacos que pueden ser valiosos se incluyen los stents metálicosrecubiertos de polímero impregnado en fármaco, los stents depolímero biodegradable eluyente de fármaco y las célulasendoteliales genéticamente sensibilizadas para recubrir stentsmetálicos o para administrarse directamente como una cubiertacelular endotelial local. (Muller, D.W.M.et al. (1991)JACC 17: 126b-131b). Estos sistemas permitenel uso seguro de un agente quimioterapéutico sin efectossecundarios sistémicos. Como alternativa, el tratamiento puede implicar un periodo de pretratamiento (es decir, antes de la cirugíavascular) vía infusión intravenosa continua durante un periodo,seguida de un tratamiento diferente durante (local, administracióndirecta) o después (oral, inyección) de la cirugía.Although the systemic dose of paclitaxelin vivo used in these experiments (2 mg / kg) is significantly lower than that normally used to treat human cancers (approximately 3-6 mg / kg); however, a drastically lower systemic dosage is possible while maintaining and even improving efficacy by combining a pretreatment regimen with the optimal duration of treatment. In addition, the goal of treatment is to keep VSMC "activated" under control or, preferably, to prevent activation first until the stimulus for growth and migration has been resolved (rather than causing cytotoxicity that causes cell death); therefore, the objective of short-term treatment with limited toxicity may be possible in humans. Finally, local sustained release administration systems may offer a better solution to avoid atherosclerosis, since they allow high local concentrations of administered drug and essentially eliminate systemic toxicity problems. Drug delivery systems that may be valuable include drug-coated polymer coated metal stents, drug eluting biodegradable polymer stents and genetically sensitized endothelial cells to coat metal stents or to be administered directly as an endothelial cell cover local. (Muller, DWMet al . (1991)JACC 17: 126b-131b). These systems allow the safe use of a chemotherapeutic agent without systemic side effects. Alternatively, treatment may involve a period of pretreatment (i.e., before vascular surgery) via continuous intravenous infusion over a period, followed by a different treatment during (local, direct administration) or after (oral, injection) of the surgery.
Los ejemplos anteriores enseñan los posiblesusos benéficos del paclitaxel, los derivados del paclitaxel y elóxido de deuterio para evitar el bloqueo arterial y, de esta forma,reducir la posibilidad o evitar los infartos de miocardio, lasapoplejías, la insuficiencia hepática y la diálisis renal, laceguera, la amputación de extremidades, pérdida nerviosa, necesidadde cirugía vascular correctora/angioplastia o transplante de órganos, y la incapacidad prematura y permanente que requierenhospitalización crónica. Se ha descrito en detalle la invención,pero se comprenderá que la invención puede tener otras realizacionesdiferentes.The previous examples teach the possiblebeneficial uses of paclitaxel, derivatives of paclitaxel anddeuterium oxide to prevent arterial blockage and, in this way,reduce the possibility or avoid myocardial infarctions,strokes, liver failure and renal dialysis, theblindness, limb amputation, nerve loss, needof corrective vascular surgery / angioplasty or transplantation oforgans, and the premature and permanent disability that requirechronic hospitalization The invention has been described in detail,but it will be understood that the invention may have other embodimentsdifferent.
| Application Number | Priority Date | Filing Date | Title | 
|---|---|---|---|
| US9906793A | 1993-07-29 | 1993-07-29 | |
| US99067 | 1993-07-29 | 
| Publication Number | Publication Date | 
|---|---|
| ES2210258T3 ES2210258T3 (en) | 2004-07-01 | 
| ES2210258T5true ES2210258T5 (en) | 2009-01-16 | 
| Application Number | Title | Priority Date | Filing Date | 
|---|---|---|---|
| ES94924519TExpired - LifetimeES2210258T5 (en) | 1993-07-29 | 1994-07-29 | PROCEDURE OF TREATMENT OF ATEROSCLEROSIS OR RESTENOSIS USING A STABILIZING AGENT OF MICROTUBLES. | 
| ES00128626TExpired - LifetimeES2255477T5 (en) | 1993-07-29 | 1994-07-29 | USE OF PACLITAXEL AND ITS DERIVATIVES IN THE MANUFACTURE OF A MEDICINAL PRODUCT FOR THE RESTREATMENT TREATMENT. | 
| Application Number | Title | Priority Date | Filing Date | 
|---|---|---|---|
| ES00128626TExpired - LifetimeES2255477T5 (en) | 1993-07-29 | 1994-07-29 | USE OF PACLITAXEL AND ITS DERIVATIVES IN THE MANUFACTURE OF A MEDICINAL PRODUCT FOR THE RESTREATMENT TREATMENT. | 
| Country | Link | 
|---|---|
| US (12) | US5616608A (en) | 
| EP (3) | EP1649853A3 (en) | 
| JP (3) | JP4850985B2 (en) | 
| AT (2) | ATE314845T1 (en) | 
| AU (1) | AU7476894A (en) | 
| DE (2) | DE69434598T3 (en) | 
| DK (2) | DK1118325T4 (en) | 
| ES (2) | ES2210258T5 (en) | 
| PT (2) | PT711158E (en) | 
| WO (1) | WO1995003795A1 (en) | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| US5811447A (en) | 1993-01-28 | 1998-09-22 | Neorx Corporation | Therapeutic inhibitor of vascular smooth muscle cells | 
| US6515009B1 (en) | 1991-09-27 | 2003-02-04 | Neorx Corporation | Therapeutic inhibitor of vascular smooth muscle cells | 
| US6306421B1 (en) | 1992-09-25 | 2001-10-23 | Neorx Corporation | Therapeutic inhibitor of vascular smooth muscle cells | 
| US6491938B2 (en) | 1993-05-13 | 2002-12-10 | Neorx Corporation | Therapeutic inhibitor of vascular smooth muscle cells | 
| US5981568A (en)* | 1993-01-28 | 1999-11-09 | Neorx Corporation | Therapeutic inhibitor of vascular smooth muscle cells | 
| US6663881B2 (en) | 1993-01-28 | 2003-12-16 | Neorx Corporation | Therapeutic inhibitor of vascular smooth muscle cells | 
| US20070116761A1 (en)* | 1993-02-22 | 2007-05-24 | Desai Neil P | Novel formulations of pharmacological agents, methods for the preparation thereof and methods for the use thereof | 
| US5439686A (en)* | 1993-02-22 | 1995-08-08 | Vivorx Pharmaceuticals, Inc. | Methods for in vivo delivery of substantially water insoluble pharmacologically active agents and compositions useful therefor | 
| US20030068362A1 (en)* | 1993-02-22 | 2003-04-10 | American Bioscience, Inc. | Methods and formulations for the delivery of pharmacologically active agents | 
| US20030133955A1 (en)* | 1993-02-22 | 2003-07-17 | American Bioscience, Inc. | Methods and compositions useful for administration of chemotherapeutic agents | 
| US20030073642A1 (en)* | 1993-02-22 | 2003-04-17 | American Bioscience, Inc. | Methods and formulations for delivery of pharmacologically active agents | 
| US5886026A (en)* | 1993-07-19 | 1999-03-23 | Angiotech Pharmaceuticals Inc. | Anti-angiogenic compositions and methods of use | 
| US20030203976A1 (en)* | 1993-07-19 | 2003-10-30 | William L. Hunter | Anti-angiogenic compositions and methods of use | 
| ATE420628T1 (en) | 1993-07-19 | 2009-01-15 | Angiotech Pharm Inc | ANTI-ANGIogenic AGENTS AND METHODS OF USE THEREOF | 
| ES2210258T5 (en)* | 1993-07-29 | 2009-01-16 | The Government Of The Usa, As Represented By The Secretary, Department Of Health And Human Services | PROCEDURE OF TREATMENT OF ATEROSCLEROSIS OR RESTENOSIS USING A STABILIZING AGENT OF MICROTUBLES. | 
| US5567592A (en)* | 1994-02-02 | 1996-10-22 | Regents Of The University Of California | Screening method for the identification of bioenhancers through the inhibition of P-glycoprotein transport in the gut of a mammal | 
| US6231600B1 (en) | 1995-02-22 | 2001-05-15 | Scimed Life Systems, Inc. | Stents with hybrid coating for medical devices | 
| US6558798B2 (en) | 1995-02-22 | 2003-05-06 | Scimed Life Systems, Inc. | Hydrophilic coating and substrates coated therewith having enhanced durability and lubricity | 
| CA2178541C (en)* | 1995-06-07 | 2009-11-24 | Neal E. Fearnot | Implantable medical device | 
| US7611533B2 (en) | 1995-06-07 | 2009-11-03 | Cook Incorporated | Coated implantable medical device | 
| US6774278B1 (en)* | 1995-06-07 | 2004-08-10 | Cook Incorporated | Coated implantable medical device | 
| GB9517780D0 (en) | 1995-08-31 | 1995-11-01 | Roslin Inst Edinburgh | Biological manipulation | 
| GB2318792B (en)* | 1995-08-31 | 2000-06-21 | Roslin Inst | Unactivated oocytes as cytoplast recipients for nuclear transfer | 
| US7307198B2 (en) | 1995-08-31 | 2007-12-11 | Roslin Institute | Ungulates produced by nuclear transfer of G1 cells | 
| GB9517779D0 (en)* | 1995-08-31 | 1995-11-01 | Roslin Inst Edinburgh | Biological manipulation | 
| RU2083210C1 (en)* | 1995-09-13 | 1997-07-10 | Николаева Ирина Сергеевна | Agent for prophylaxis, supporting and recovering therapy for control of pathology developing at ageing and/or pathogenic factors effect associated with dystrophic and degenerative organ and tissue alterations | 
| CN1219872A (en) | 1996-05-24 | 1999-06-16 | 血管技术药物公司 | Compositions and methods for treating or preventing diseases of the body passage | 
| US5834503A (en)* | 1996-06-14 | 1998-11-10 | Qlt Phototherapeutics, Inc. | Methods to treat arterial plaque | 
| DE19652374A1 (en)* | 1996-12-04 | 1998-06-10 | Schering Ag | Use of endothelin conjugates in therapy, new endothelin conjugates, agents containing them, and processes for their preparation | 
| US7749585B2 (en) | 1996-10-08 | 2010-07-06 | Alan Zamore | Reduced profile medical balloon element | 
| US6515016B2 (en)* | 1996-12-02 | 2003-02-04 | Angiotech Pharmaceuticals, Inc. | Composition and methods of paclitaxel for treating psoriasis | 
| US20030157187A1 (en)* | 1996-12-02 | 2003-08-21 | Angiotech Pharmaceuticals, Inc. | Compositions and methods for treating or preventing inflammatory diseases | 
| US6495579B1 (en) | 1996-12-02 | 2002-12-17 | Angiotech Pharmaceuticals, Inc. | Method for treating multiple sclerosis | 
| US7361804B1 (en) | 1997-02-19 | 2008-04-22 | Roslin Institute (Edinburgh) | Unactivated oocytes in nuclear transfer to produce ungulates | 
| AU6959898A (en)* | 1997-04-11 | 1998-11-11 | David J. Grainger | Compounds and therapies for the prevention of vascular and non-vascular pathol ogies | 
| US6273913B1 (en) | 1997-04-18 | 2001-08-14 | Cordis Corporation | Modified stent useful for delivery of drugs along stent strut | 
| US20030199425A1 (en)* | 1997-06-27 | 2003-10-23 | Desai Neil P. | Compositions and methods for treatment of hyperplasia | 
| US8853260B2 (en)* | 1997-06-27 | 2014-10-07 | Abraxis Bioscience, Llc | Formulations of pharmacological agents, methods for the preparation thereof and methods for the use thereof | 
| NZ525580A (en)* | 1997-06-27 | 2004-08-27 | Vivorx Pharmaceuticals Inc | Vehicles for intravenous administration of paclitaxel having reduced toxicity | 
| US7208010B2 (en)* | 2000-10-16 | 2007-04-24 | Conor Medsystems, Inc. | Expandable medical device for delivery of beneficial agent | 
| US20040254635A1 (en) | 1998-03-30 | 2004-12-16 | Shanley John F. | Expandable medical device for delivery of beneficial agent | 
| US7208011B2 (en)* | 2001-08-20 | 2007-04-24 | Conor Medsystems, Inc. | Implantable medical device with drug filled holes | 
| US6241762B1 (en)* | 1998-03-30 | 2001-06-05 | Conor Medsystems, Inc. | Expandable medical device with ductile hinges | 
| US6364856B1 (en)* | 1998-04-14 | 2002-04-02 | Boston Scientific Corporation | Medical device with sponge coating for controlled drug release | 
| US20030040790A1 (en)* | 1998-04-15 | 2003-02-27 | Furst Joseph G. | Stent coating | 
| US20020099438A1 (en)* | 1998-04-15 | 2002-07-25 | Furst Joseph G. | Irradiated stent coating | 
| US8029561B1 (en)* | 2000-05-12 | 2011-10-04 | Cordis Corporation | Drug combination useful for prevention of restenosis | 
| EP1174157B1 (en) | 1998-04-27 | 2005-06-29 | Surmodics Inc. | Bioactive agent release coating | 
| US6200477B1 (en)* | 1998-05-06 | 2001-03-13 | Alltech Associates, Inc. | Continuously regenerated and integrated suppressor and detector for suppressed ion chromatography and method | 
| US20030220258A1 (en)* | 2001-12-21 | 2003-11-27 | Robbert Benner | Treatment of ischemic events | 
| US6153252A (en)* | 1998-06-30 | 2000-11-28 | Ethicon, Inc. | Process for coating stents | 
| US8070796B2 (en) | 1998-07-27 | 2011-12-06 | Icon Interventional Systems, Inc. | Thrombosis inhibiting graft | 
| US7967855B2 (en)* | 1998-07-27 | 2011-06-28 | Icon Interventional Systems, Inc. | Coated medical device | 
| US6293967B1 (en) | 1998-10-29 | 2001-09-25 | Conor Medsystems, Inc. | Expandable medical device with ductile hinges | 
| US6071952A (en)* | 1998-12-02 | 2000-06-06 | Mylan Pharmaceuticals, Inc. | Stabilized injectable pharmaceutical compositions containing taxoid anti-neoplastic agents | 
| US20020065546A1 (en)* | 1998-12-31 | 2002-05-30 | Machan Lindsay S. | Stent grafts with bioactive coatings | 
| US20050171594A1 (en)* | 1998-12-31 | 2005-08-04 | Angiotech International Ag | Stent grafts with bioactive coatings | 
| US6120847A (en)* | 1999-01-08 | 2000-09-19 | Scimed Life Systems, Inc. | Surface treatment method for stent coating | 
| WO2000041687A2 (en)* | 1999-01-12 | 2000-07-20 | Quanam Medical Corporation | Composition and methods for administration of water-insoluble paclitaxel derivatives | 
| US6333347B1 (en)* | 1999-01-29 | 2001-12-25 | Angiotech Pharmaceuticals & Advanced Research Tech | Intrapericardial delivery of anti-microtubule agents | 
| US6419692B1 (en) | 1999-02-03 | 2002-07-16 | Scimed Life Systems, Inc. | Surface protection method for stents and balloon catheters for drug delivery | 
| CA2369739C (en)* | 1999-02-23 | 2008-12-16 | Angiotech Pharmaceuticals, Inc. | Compositions and methods for improving integrity of compromised body passageways and cavities | 
| US6774107B1 (en)* | 1999-03-18 | 2004-08-10 | Merck Patent Gmbh | Protein for blocking platelet adhesion | 
| US6156373A (en)* | 1999-05-03 | 2000-12-05 | Scimed Life Systems, Inc. | Medical device coating methods and devices | 
| US6290673B1 (en) | 1999-05-20 | 2001-09-18 | Conor Medsystems, Inc. | Expandable medical device delivery system and method | 
| US6258121B1 (en) | 1999-07-02 | 2001-07-10 | Scimed Life Systems, Inc. | Stent coating | 
| US7462162B2 (en) | 2001-09-04 | 2008-12-09 | Broncus Technologies, Inc. | Antiproliferative devices for maintaining patency of surgically created channels in a body organ | 
| US7815590B2 (en)* | 1999-08-05 | 2010-10-19 | Broncus Technologies, Inc. | Devices for maintaining patency of surgically created channels in tissue | 
| US20030070676A1 (en)* | 1999-08-05 | 2003-04-17 | Cooper Joel D. | Conduits having distal cage structure for maintaining collateral channels in tissue and related methods | 
| US6273901B1 (en) | 1999-08-10 | 2001-08-14 | Scimed Life Systems, Inc. | Thrombosis filter having a surface treatment | 
| ATE324867T1 (en)* | 1999-09-09 | 2006-06-15 | Univ California | ADMINISTRATION OF TAXANS TO ANGIOGENIC BLOOD VESSELS USING CATIONIC LIPOSOMES | 
| US6379382B1 (en) | 2000-03-13 | 2002-04-30 | Jun Yang | Stent having cover with drug delivery capability | 
| US6613082B2 (en) | 2000-03-13 | 2003-09-02 | Jun Yang | Stent having cover with drug delivery capability | 
| US7358330B2 (en)* | 2001-03-29 | 2008-04-15 | Biotempt B.V. | Immunoregulatory compositions | 
| AU2001253479A1 (en)* | 2000-04-13 | 2001-10-30 | Sts Biopolymers, Inc. | Targeted therapeutic agent release devices and methods of making and using the same | 
| US20050002986A1 (en)* | 2000-05-12 | 2005-01-06 | Robert Falotico | Drug/drug delivery systems for the prevention and treatment of vascular disease | 
| US8236048B2 (en) | 2000-05-12 | 2012-08-07 | Cordis Corporation | Drug/drug delivery systems for the prevention and treatment of vascular disease | 
| US7300662B2 (en) | 2000-05-12 | 2007-11-27 | Cordis Corporation | Drug/drug delivery systems for the prevention and treatment of vascular disease | 
| DE60131537T2 (en) | 2000-06-22 | 2008-10-23 | Nitromed, Inc., Lexington | NITROSED AND NITROSYLATED TAXANES, PREPARATIONS AND METHODS OF USE | 
| US7175658B1 (en)* | 2000-07-20 | 2007-02-13 | Multi-Gene Vascular Systems Ltd. | Artificial vascular grafts, their construction and use | 
| HUP0300810A2 (en) | 2000-07-20 | 2003-08-28 | M.G.V.S. Ltd. | Artifical vascular grafts, and methods of producing and using same | 
| MY128992A (en)* | 2000-08-25 | 2007-03-30 | Merck Patent Gmbh | Saratin for inhibiting platelet adhesion to collagen | 
| US20060222756A1 (en)* | 2000-09-29 | 2006-10-05 | Cordis Corporation | Medical devices, drug coatings and methods of maintaining the drug coatings thereon | 
| US7261735B2 (en)* | 2001-05-07 | 2007-08-28 | Cordis Corporation | Local drug delivery devices and methods for maintaining the drug coatings thereon | 
| US20020111590A1 (en)* | 2000-09-29 | 2002-08-15 | Davila Luis A. | Medical devices, drug coatings and methods for maintaining the drug coatings thereon | 
| WO2002026139A1 (en) | 2000-09-29 | 2002-04-04 | Cordis Corporation | Coated medical devices | 
| US6746773B2 (en) | 2000-09-29 | 2004-06-08 | Ethicon, Inc. | Coatings for medical devices | 
| EP1498084B1 (en) | 2000-10-16 | 2014-06-18 | Innovational Holdings, LLC | Expandable medical device for delivery of beneficial agent | 
| US6764507B2 (en) | 2000-10-16 | 2004-07-20 | Conor Medsystems, Inc. | Expandable medical device with improved spatial distribution | 
| US6545097B2 (en)* | 2000-12-12 | 2003-04-08 | Scimed Life Systems, Inc. | Drug delivery compositions and medical devices containing block copolymer | 
| AU2002249958B2 (en) | 2001-01-16 | 2007-11-08 | Vascular Therapies, Inc. | Implantable device containing resorbable matrix material and anti-proliferative drugs for preventing or treating failure of hemodialysis vascular access and other vascular grafts | 
| US20040073294A1 (en) | 2002-09-20 | 2004-04-15 | Conor Medsystems, Inc. | Method and apparatus for loading a beneficial agent into an expandable medical device | 
| US20040204756A1 (en)* | 2004-02-11 | 2004-10-14 | Diaz Stephen Hunter | Absorbent article with improved liquid acquisition capacity | 
| US6964680B2 (en) | 2001-02-05 | 2005-11-15 | Conor Medsystems, Inc. | Expandable medical device with tapered hinge | 
| US7771468B2 (en)* | 2001-03-16 | 2010-08-10 | Angiotech Biocoatings Corp. | Medicated stent having multi-layer polymer coating | 
| DE10115740A1 (en) | 2001-03-26 | 2002-10-02 | Ulrich Speck | Preparation for restenosis prophylaxis | 
| US6613083B2 (en) | 2001-05-02 | 2003-09-02 | Eckhard Alt | Stent device and method | 
| US8182527B2 (en) | 2001-05-07 | 2012-05-22 | Cordis Corporation | Heparin barrier coating for controlled drug release | 
| US7247313B2 (en) | 2001-06-27 | 2007-07-24 | Advanced Cardiovascular Systems, Inc. | Polyacrylates coatings for implantable medical devices | 
| US7056338B2 (en)* | 2003-03-28 | 2006-06-06 | Conor Medsystems, Inc. | Therapeutic agent delivery device with controlled therapeutic agent release rates | 
| US20040249443A1 (en)* | 2001-08-20 | 2004-12-09 | Shanley John F. | Expandable medical device for treating cardiac arrhythmias | 
| US7842083B2 (en) | 2001-08-20 | 2010-11-30 | Innovational Holdings, Llc. | Expandable medical device with improved spatial distribution | 
| US7708712B2 (en) | 2001-09-04 | 2010-05-04 | Broncus Technologies, Inc. | Methods and devices for maintaining patency of surgically created channels in a body organ | 
| US20030073961A1 (en)* | 2001-09-28 | 2003-04-17 | Happ Dorrie M. | Medical device containing light-protected therapeutic agent and a method for fabricating thereof | 
| US7108701B2 (en)* | 2001-09-28 | 2006-09-19 | Ethicon, Inc. | Drug releasing anastomosis devices and methods for treating anastomotic sites | 
| US8740973B2 (en)* | 2001-10-26 | 2014-06-03 | Icon Medical Corp. | Polymer biodegradable medical device | 
| US8133501B2 (en)* | 2002-02-08 | 2012-03-13 | Boston Scientific Scimed, Inc. | Implantable or insertable medical devices for controlled drug delivery | 
| US8685427B2 (en)* | 2002-07-31 | 2014-04-01 | Boston Scientific Scimed, Inc. | Controlled drug delivery | 
| US20110306997A9 (en)* | 2002-02-21 | 2011-12-15 | Roschak Edmund J | Devices for creating passages and sensing for blood vessels | 
| US20040230288A1 (en)* | 2002-04-17 | 2004-11-18 | Rosenthal Arthur L. | Medical devices adapted for controlled in vivo structural change after implantation | 
| US20030236513A1 (en)* | 2002-06-19 | 2003-12-25 | Scimed Life Systems, Inc. | Implantable or insertable medical devices for controlled delivery of a therapeutic agent | 
| US8211455B2 (en)* | 2002-06-19 | 2012-07-03 | Boston Scientific Scimed, Inc. | Implantable or insertable medical devices for controlled delivery of a therapeutic agent | 
| US7939094B2 (en)* | 2002-06-19 | 2011-05-10 | Boston Scientific Scimed, Inc. | Multiphase polymeric drug release region | 
| US7105175B2 (en)* | 2002-06-19 | 2006-09-12 | Boston Scientific Scimed, Inc. | Implantable or insertable medical devices for controlled delivery of a therapeutic agent | 
| US7005137B1 (en) | 2002-06-21 | 2006-02-28 | Advanceed Cardiovascular Systems, Inc. | Coating for implantable medical devices | 
| US7217426B1 (en) | 2002-06-21 | 2007-05-15 | Advanced Cardiovascular Systems, Inc. | Coatings containing polycationic peptides for cardiovascular therapy | 
| US7396539B1 (en)* | 2002-06-21 | 2008-07-08 | Advanced Cardiovascular Systems, Inc. | Stent coatings with engineered drug release rate | 
| EP2108362B1 (en) | 2002-06-26 | 2013-05-29 | MediGene AG | A cationic liposomal preparation comprising a taxane | 
| DK1521603T3 (en)* | 2002-07-12 | 2011-04-18 | Cook Inc | Coated medical device | 
| US7491233B1 (en) | 2002-07-19 | 2009-02-17 | Advanced Cardiovascular Systems Inc. | Purified polymers for coatings of implantable medical devices | 
| US8016881B2 (en) | 2002-07-31 | 2011-09-13 | Icon Interventional Systems, Inc. | Sutures and surgical staples for anastamoses, wound closures, and surgical closures | 
| US8920826B2 (en)* | 2002-07-31 | 2014-12-30 | Boston Scientific Scimed, Inc. | Medical imaging reference devices | 
| US20040063805A1 (en)* | 2002-09-19 | 2004-04-01 | Pacetti Stephen D. | Coatings for implantable medical devices and methods for fabrication thereof | 
| AU2003276920A1 (en)* | 2002-09-20 | 2004-04-08 | Innovational Holdings, Llc | Expandable medical device with openings for delivery of multiple beneficial agents | 
| DE10244847A1 (en) | 2002-09-20 | 2004-04-01 | Ulrich Prof. Dr. Speck | Medical device for drug delivery | 
| US20040127976A1 (en)* | 2002-09-20 | 2004-07-01 | Conor Medsystems, Inc. | Method and apparatus for loading a beneficial agent into an expandable medical device | 
| EP1542739B1 (en)* | 2002-09-26 | 2008-12-10 | Angiotech International Ag | Perivascular wraps | 
| AU2003291470A1 (en)* | 2002-11-08 | 2004-06-03 | Innovational Holdings, Llc | Expandable medical device and method for treating chronic total occlusions with local delivery of an angiogenic factor | 
| AU2003285195A1 (en)* | 2002-11-08 | 2004-06-03 | Innovational Holdings, Llc | Method and apparatus for treating vulnerable artherosclerotic plaque | 
| US20040142014A1 (en)* | 2002-11-08 | 2004-07-22 | Conor Medsystems, Inc. | Method and apparatus for reducing tissue damage after ischemic injury | 
| US7491234B2 (en)* | 2002-12-03 | 2009-02-17 | Boston Scientific Scimed, Inc. | Medical devices for delivery of therapeutic agents | 
| AU2003293796A1 (en)* | 2002-12-09 | 2004-06-30 | Novartis Ag | Microtubule stabilisers for treating stenosis in stents | 
| AU2003300022A1 (en)* | 2002-12-30 | 2004-07-29 | Angiotech International Ag | Silk-containing stent graft | 
| US8313759B2 (en)* | 2003-03-06 | 2012-11-20 | Boston Scientific Scimed, Inc. | Implantable or insertable medical devices containing miscible polymer blends for controlled delivery of a therapeutic agent | 
| BRPI0408891A (en)* | 2003-03-28 | 2006-04-11 | Kosan Biosciences Inc | devices, methods, and compositions for preventing restenosis | 
| AU2004226327A1 (en) | 2003-03-28 | 2004-10-14 | Innovational Holdings, Llc | Implantable medical device with beneficial agent concentration gradient | 
| US20050010170A1 (en)* | 2004-02-11 | 2005-01-13 | Shanley John F | Implantable medical device with beneficial agent concentration gradient | 
| US20040202692A1 (en)* | 2003-03-28 | 2004-10-14 | Conor Medsystems, Inc. | Implantable medical device and method for in situ selective modulation of agent delivery | 
| US7241455B2 (en)* | 2003-04-08 | 2007-07-10 | Boston Scientific Scimed, Inc. | Implantable or insertable medical devices containing radiation-crosslinked polymer for controlled delivery of a therapeutic agent | 
| US7306580B2 (en) | 2003-04-16 | 2007-12-11 | Cook Incorporated | Medical device with therapeutic agents | 
| US8791171B2 (en)* | 2003-05-01 | 2014-07-29 | Abbott Cardiovascular Systems Inc. | Biodegradable coatings for implantable medical devices | 
| US7563454B1 (en) | 2003-05-01 | 2009-07-21 | Advanced Cardiovascular Systems, Inc. | Coatings for implantable medical devices | 
| US7169179B2 (en) | 2003-06-05 | 2007-01-30 | Conor Medsystems, Inc. | Drug delivery device and method for bi-directional drug delivery | 
| US8002740B2 (en)* | 2003-07-18 | 2011-08-23 | Broncus Technologies, Inc. | Devices for maintaining patency of surgically created channels in tissue | 
| US8308682B2 (en) | 2003-07-18 | 2012-11-13 | Broncus Medical Inc. | Devices for maintaining patency of surgically created channels in tissue | 
| EP1648284A4 (en) | 2003-07-18 | 2011-12-28 | Broncus Tech Inc | Devices for maintaining patency of surgically created channels in tissue | 
| US7357940B2 (en)* | 2003-07-31 | 2008-04-15 | Boston Scientific Scimed, Inc. | Implantable or insertable medical devices containing graft copolymer for controlled delivery of therapeutic agents | 
| US9114199B2 (en)* | 2003-07-31 | 2015-08-25 | Boston Scientific Scimed, Inc. | Implantable or insertable medical devices containing acrylic copolymer for controlled delivery of therapeutic agent | 
| US8870814B2 (en)* | 2003-07-31 | 2014-10-28 | Boston Scientific Scimed, Inc. | Implantable or insertable medical devices containing silicone copolymer for controlled delivery of therapeutic agent | 
| US7914805B2 (en)* | 2003-07-31 | 2011-03-29 | Boston Scientific Scimed, Inc. | Implantable or insertable medical devices containing radiation-treated polymer for improved delivery of therapeutic agent | 
| US7785653B2 (en) | 2003-09-22 | 2010-08-31 | Innovational Holdings Llc | Method and apparatus for loading a beneficial agent into an expandable medical device | 
| US20050074453A1 (en)* | 2003-10-02 | 2005-04-07 | Ferree Bret A. | Methods of preventing adhesions following laminectomies and other surgical procedures | 
| AU2004289362A1 (en)* | 2003-11-10 | 2005-05-26 | Angiotech International Ag | Intravascular devices and fibrosis-inducing agents | 
| US20050100577A1 (en)* | 2003-11-10 | 2005-05-12 | Parker Theodore L. | Expandable medical device with beneficial agent matrix formed by a multi solvent system | 
| WO2005046516A2 (en)* | 2003-11-10 | 2005-05-26 | Angiotech International Ag | Medical implants and anti-scarring agents | 
| US20050208095A1 (en)* | 2003-11-20 | 2005-09-22 | Angiotech International Ag | Polymer compositions and methods for their use | 
| US20050220835A1 (en)* | 2004-03-30 | 2005-10-06 | Jayaraman Ramesh B | Agent eluting bioimplantable devices and polymer systems for their preparation | 
| WO2005097228A2 (en) | 2004-04-06 | 2005-10-20 | Surmodics, Inc. | Coating compositions for bioactive agents | 
| US9498563B2 (en)* | 2004-04-23 | 2016-11-22 | Boston Scientific Scimed, Inc. | Medical articles having therapeutic-agent-containing regions formed from coalesced polymer particles | 
| EP1604697A1 (en) | 2004-06-09 | 2005-12-14 | J.A.C.C. GmbH | Implantable device | 
| US20050287287A1 (en)* | 2004-06-24 | 2005-12-29 | Parker Theodore L | Methods and systems for loading an implantable medical device with beneficial agent | 
| US20080280973A1 (en)* | 2004-06-28 | 2008-11-13 | Wender Paul A | Laulimalide Analogues as Therapeutic Agents | 
| USD516723S1 (en) | 2004-07-06 | 2006-03-07 | Conor Medsystems, Inc. | Stent wall structure | 
| US8409167B2 (en) | 2004-07-19 | 2013-04-02 | Broncus Medical Inc | Devices for delivering substances through an extra-anatomic opening created in an airway | 
| US8119153B2 (en)* | 2004-08-26 | 2012-02-21 | Boston Scientific Scimed, Inc. | Stents with drug eluting coatings | 
| US7244443B2 (en) | 2004-08-31 | 2007-07-17 | Advanced Cardiovascular Systems, Inc. | Polymers of fluorinated monomers and hydrophilic monomers | 
| US20060051390A1 (en)* | 2004-09-03 | 2006-03-09 | Schwarz Marlene C | Medical devices having self-forming rate-controlling barrier for drug release | 
| WO2006050460A1 (en)* | 2004-10-29 | 2006-05-11 | Cook Incorporated | Vascular valves having implanted and target configurations and methods of preparing the same | 
| US20060093647A1 (en)* | 2004-10-29 | 2006-05-04 | Villafana Manuel A | Multiple layer coating composition | 
| USH2260H1 (en) | 2005-02-17 | 2011-07-05 | Angiotech International Ag | Stents combined with paclitaxel derivatives | 
| US20060201601A1 (en)* | 2005-03-03 | 2006-09-14 | Icon Interventional Systems, Inc. | Flexible markers | 
| WO2006096251A2 (en)* | 2005-03-03 | 2006-09-14 | Icon Medical Corp. | Improved metal alloys for medical device | 
| WO2006110197A2 (en)* | 2005-03-03 | 2006-10-19 | Icon Medical Corp. | Polymer biodegradable medical device | 
| US20060264914A1 (en)* | 2005-03-03 | 2006-11-23 | Icon Medical Corp. | Metal alloys for medical devices | 
| US9107899B2 (en) | 2005-03-03 | 2015-08-18 | Icon Medical Corporation | Metal alloys for medical devices | 
| US8323333B2 (en)* | 2005-03-03 | 2012-12-04 | Icon Medical Corp. | Fragile structure protective coating | 
| US7540995B2 (en) | 2005-03-03 | 2009-06-02 | Icon Medical Corp. | Process for forming an improved metal alloy stent | 
| US8574259B2 (en)* | 2005-05-10 | 2013-11-05 | Lifescreen Sciences Llc | Intravascular filter with drug reservoir | 
| US20070031611A1 (en)* | 2005-08-04 | 2007-02-08 | Babaev Eilaz P | Ultrasound medical stent coating method and device | 
| US9101949B2 (en)* | 2005-08-04 | 2015-08-11 | Eilaz Babaev | Ultrasonic atomization and/or seperation system | 
| US7896539B2 (en)* | 2005-08-16 | 2011-03-01 | Bacoustics, Llc | Ultrasound apparatus and methods for mixing liquids and coating stents | 
| US20080243068A1 (en)* | 2005-12-29 | 2008-10-02 | Kamal Ramzipoor | Methods and apparatus for treatment of venous insufficiency | 
| EP1984040A1 (en) | 2006-01-31 | 2008-10-29 | Multi Gene Vascular Systems, Inc. | Drug-eluting intravascular prostheses and methods of use | 
| EP1864692A1 (en)* | 2006-06-07 | 2007-12-12 | Biotempt B.V. | Use of peptides for the control of radiation injury | 
| EP1832301A3 (en)* | 2006-03-08 | 2007-12-05 | Sahajanand Medical Technologies PVT. ltd | Coatings for implantable medical devices | 
| US20080045589A1 (en)* | 2006-05-26 | 2008-02-21 | Susan Kelley | Drug Combinations with Substituted Diaryl Ureas for the Treatment of Cancer | 
| US9028859B2 (en) | 2006-07-07 | 2015-05-12 | Advanced Cardiovascular Systems, Inc. | Phase-separated block copolymer coatings for implantable medical devices | 
| US7722665B2 (en)* | 2006-07-07 | 2010-05-25 | Graft Technologies, Inc. | System and method for providing a graft in a vascular environment | 
| WO2008008291A2 (en)* | 2006-07-13 | 2008-01-17 | Icon Medical Corp. | Stent | 
| US20080085293A1 (en)* | 2006-08-22 | 2008-04-10 | Jenchen Yang | Drug eluting stent and therapeutic methods using c-Jun N-terminal kinase inhibitor | 
| US9700704B2 (en) | 2006-11-20 | 2017-07-11 | Lutonix, Inc. | Drug releasing coatings for balloon catheters | 
| US8414526B2 (en) | 2006-11-20 | 2013-04-09 | Lutonix, Inc. | Medical device rapid drug releasing coatings comprising oils, fatty acids, and/or lipids | 
| US8425459B2 (en) | 2006-11-20 | 2013-04-23 | Lutonix, Inc. | Medical device rapid drug releasing coatings comprising a therapeutic agent and a contrast agent | 
| US9737640B2 (en) | 2006-11-20 | 2017-08-22 | Lutonix, Inc. | Drug releasing coatings for medical devices | 
| US8414910B2 (en) | 2006-11-20 | 2013-04-09 | Lutonix, Inc. | Drug releasing coatings for medical devices | 
| US20080175887A1 (en) | 2006-11-20 | 2008-07-24 | Lixiao Wang | Treatment of Asthma and Chronic Obstructive Pulmonary Disease With Anti-proliferate and Anti-inflammatory Drugs | 
| US8414525B2 (en) | 2006-11-20 | 2013-04-09 | Lutonix, Inc. | Drug releasing coatings for medical devices | 
| US20080276935A1 (en) | 2006-11-20 | 2008-11-13 | Lixiao Wang | Treatment of asthma and chronic obstructive pulmonary disease with anti-proliferate and anti-inflammatory drugs | 
| US8998846B2 (en) | 2006-11-20 | 2015-04-07 | Lutonix, Inc. | Drug releasing coatings for balloon catheters | 
| US20080140002A1 (en)* | 2006-12-06 | 2008-06-12 | Kamal Ramzipoor | System for delivery of biologically active substances with actuating three dimensional surface | 
| US20080142616A1 (en)* | 2006-12-15 | 2008-06-19 | Bacoustics Llc | Method of Producing a Directed Spray | 
| US8586534B2 (en)* | 2007-05-08 | 2013-11-19 | Albert Einstein College Of Medicine Of Yeshiva University | Intracellular domain of a mammalian Fat1 (Fat1IC) | 
| US7780095B2 (en) | 2007-07-13 | 2010-08-24 | Bacoustics, Llc | Ultrasound pumping apparatus | 
| US7753285B2 (en) | 2007-07-13 | 2010-07-13 | Bacoustics, Llc | Echoing ultrasound atomization and/or mixing system | 
| CN101883605A (en)* | 2007-09-06 | 2010-11-10 | 波士顿科学西美德公司 | Methods and devices for delivering topical therapeutic agents to heart valves | 
| US8986253B2 (en) | 2008-01-25 | 2015-03-24 | Tandem Diabetes Care, Inc. | Two chamber pumps and related methods | 
| WO2010024898A2 (en) | 2008-08-29 | 2010-03-04 | Lutonix, Inc. | Methods and apparatuses for coating balloon catheters | 
| US8114429B2 (en) | 2008-09-15 | 2012-02-14 | Cv Ingenuity Corp. | Local delivery of water-soluble or water-insoluble therapeutic agents to the surface of body lumens | 
| US8257722B2 (en) | 2008-09-15 | 2012-09-04 | Cv Ingenuity Corp. | Local delivery of water-soluble or water-insoluble therapeutic agents to the surface of body lumens | 
| US8128951B2 (en) | 2008-09-15 | 2012-03-06 | Cv Ingenuity Corp. | Local delivery of water-soluble or water-insoluble therapeutic agents to the surface of body lumens | 
| US9198968B2 (en) | 2008-09-15 | 2015-12-01 | The Spectranetics Corporation | Local delivery of water-soluble or water-insoluble therapeutic agents to the surface of body lumens | 
| US8408421B2 (en) | 2008-09-16 | 2013-04-02 | Tandem Diabetes Care, Inc. | Flow regulating stopcocks and related methods | 
| CA2737461A1 (en) | 2008-09-19 | 2010-03-25 | Tandem Diabetes Care, Inc. | Solute concentration measurement device and related methods | 
| CN105214143A (en) | 2009-04-28 | 2016-01-06 | 苏尔莫迪克斯公司 | For sending the apparatus and method of bioactivator | 
| US20110319987A1 (en) | 2009-05-20 | 2011-12-29 | Arsenal Medical | Medical implant | 
| US8888840B2 (en)* | 2009-05-20 | 2014-11-18 | Boston Scientific Scimed, Inc. | Drug eluting medical implant | 
| US9265633B2 (en) | 2009-05-20 | 2016-02-23 | 480 Biomedical, Inc. | Drug-eluting medical implants | 
| CA2762811C (en)* | 2009-05-20 | 2023-03-21 | Arsenal Medical, Inc. | Self-expandable medical device comprising polymeric strands and coatings thereon | 
| US8992601B2 (en) | 2009-05-20 | 2015-03-31 | 480 Biomedical, Inc. | Medical implants | 
| US9309347B2 (en) | 2009-05-20 | 2016-04-12 | Biomedical, Inc. | Bioresorbable thermoset polyester/urethane elastomers | 
| EP2724739B1 (en) | 2009-07-30 | 2015-07-01 | Tandem Diabetes Care, Inc. | Portable infusion pump system | 
| US8372133B2 (en)* | 2009-10-05 | 2013-02-12 | 480 Biomedical, Inc. | Polymeric implant delivery system | 
| US20110218606A1 (en)* | 2010-03-02 | 2011-09-08 | Medtronic Vascular, Inc. | Methods for Stabilizing Femoral Vessels | 
| US8398916B2 (en) | 2010-03-04 | 2013-03-19 | Icon Medical Corp. | Method for forming a tubular medical device | 
| GB201022049D0 (en)* | 2010-12-29 | 2011-02-02 | Imp Innovations Ltd | Methods | 
| US9345532B2 (en) | 2011-05-13 | 2016-05-24 | Broncus Medical Inc. | Methods and devices for ablation of tissue | 
| US8709034B2 (en) | 2011-05-13 | 2014-04-29 | Broncus Medical Inc. | Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall | 
| US9757497B2 (en) | 2011-05-20 | 2017-09-12 | Surmodics, Inc. | Delivery of coated hydrophobic active agent particles | 
| US9861727B2 (en) | 2011-05-20 | 2018-01-09 | Surmodics, Inc. | Delivery of hydrophobic active agent particles | 
| US10213529B2 (en) | 2011-05-20 | 2019-02-26 | Surmodics, Inc. | Delivery of coated hydrophobic active agent particles | 
| WO2013078235A1 (en) | 2011-11-23 | 2013-05-30 | Broncus Medical Inc | Methods and devices for diagnosing, monitoring, or treating medical conditions through an opening through an airway wall | 
| EP2812008A4 (en)* | 2012-01-31 | 2015-10-28 | Cerulean Pharma Inc | Cyclodextrin-based polymers for therapeutic delivery | 
| US9180242B2 (en) | 2012-05-17 | 2015-11-10 | Tandem Diabetes Care, Inc. | Methods and devices for multiple fluid transfer | 
| US9956385B2 (en) | 2012-06-28 | 2018-05-01 | The Spectranetics Corporation | Post-processing of a medical device to control morphology and mechanical properties | 
| WO2014055493A1 (en) | 2012-10-02 | 2014-04-10 | Cerulean Pharma Inc. | Methods and systems for polymer precipitation and generation of particles | 
| US11504450B2 (en) | 2012-10-26 | 2022-11-22 | Urotronic, Inc. | Drug-coated balloon catheters for body lumens | 
| US10806830B2 (en) | 2012-10-26 | 2020-10-20 | Urotronic, Inc. | Drug-coated balloon catheters for body lumens | 
| US10898700B2 (en) | 2012-10-26 | 2021-01-26 | Urotronic, Inc. | Balloon catheters for body lumens | 
| US10850076B2 (en) | 2012-10-26 | 2020-12-01 | Urotronic, Inc. | Balloon catheters for body lumens | 
| US11938287B2 (en) | 2012-10-26 | 2024-03-26 | Urotronic, Inc. | Drug-coated balloon catheters for body lumens | 
| WO2014066085A1 (en) | 2012-10-26 | 2014-05-01 | Lixiao Wang | Drug coated balloon catheters for nonvascular strictures | 
| US10881839B2 (en) | 2012-10-26 | 2021-01-05 | Urotronic, Inc. | Drug-coated balloon catheters for body lumens | 
| WO2014071387A1 (en) | 2012-11-05 | 2014-05-08 | Surmodics, Inc. | Composition and method for delivery of hydrophobic active agents | 
| US11246963B2 (en) | 2012-11-05 | 2022-02-15 | Surmodics, Inc. | Compositions and methods for delivery of hydrophobic active agents | 
| US9173998B2 (en) | 2013-03-14 | 2015-11-03 | Tandem Diabetes Care, Inc. | System and method for detecting occlusions in an infusion pump | 
| US10525171B2 (en) | 2014-01-24 | 2020-01-07 | The Spectranetics Corporation | Coatings for medical devices | 
| HK1226581A1 (en)* | 2014-02-03 | 2017-09-29 | Novartis Ag | Filters for infusion sets | 
| BR112016030273A8 (en) | 2014-06-24 | 2021-05-18 | Icon Medical Corp | medical device and method of forming said device | 
| US11904072B2 (en) | 2015-04-24 | 2024-02-20 | Urotronic, Inc. | Drug coated balloon catheters for nonvascular strictures | 
| CN107635593A (en) | 2015-04-24 | 2018-01-26 | 优敦力公司 | Drug-Coated Balloon Catheters for Non-Stenosis | 
| US11766506B2 (en) | 2016-03-04 | 2023-09-26 | Mirus Llc | Stent device for spinal fusion | 
| US10898446B2 (en) | 2016-12-20 | 2021-01-26 | Surmodics, Inc. | Delivery of hydrophobic active agents from hydrophilic polyether block amide copolymer surfaces | 
| CN113727750B (en) | 2019-02-22 | 2024-09-17 | 优敦力公司 | Drug-coated balloon catheter for body cavities | 
| US12226552B2 (en) | 2019-09-30 | 2025-02-18 | Surmodics, Inc. | Active agent depots formed in situ | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| US515704A (en)* | 1894-02-27 | Cloud b | ||
| US5525338A (en)* | 1992-08-21 | 1996-06-11 | Immunomedics, Inc. | Detection and therapy of lesions with biotin/avidin conjugates | 
| US5157004A (en)* | 1986-12-27 | 1992-10-20 | Takeda Chemical Industries, Ltd. | Polypeptides and production thereof | 
| US5157049A (en)* | 1988-03-07 | 1992-10-20 | The United States Of America As Represented By The Department Of Health & Human Services | Method of treating cancers sensitive to treatment with water soluble derivatives of taxol | 
| US4942184A (en)* | 1988-03-07 | 1990-07-17 | The United States Of America As Represented By The Department Of Health And Human Services | Water soluble, antineoplastic derivatives of taxol | 
| WO1989010758A1 (en) | 1988-05-02 | 1989-11-16 | Zynaxis Technologies, Inc. | Compounds, compositions and method for binding bio-affecting substances to surface membranes of bio-particles | 
| US4939168A (en) | 1989-08-11 | 1990-07-03 | Harbor Branch Oceanographics Institution, Inc. | Discodermolide compounds, compositions containing same and methods of preparation and use | 
| US5010099A (en) | 1989-08-11 | 1991-04-23 | Harbor Branch Oceanographic Institution, Inc. | Discodermolide compounds, compositions containing same and method of preparation and use | 
| US5223269A (en)* | 1989-08-31 | 1993-06-29 | Andrejs Liepins | Methods and composition for the treatment of hypertension | 
| CA2049973C (en)† | 1990-02-28 | 2002-12-24 | Rodney G. Wolff | Intralumenal drug eluting prosthesis | 
| US5811447A (en) | 1993-01-28 | 1998-09-22 | Neorx Corporation | Therapeutic inhibitor of vascular smooth muscle cells | 
| AU3221993A (en)† | 1991-11-27 | 1993-06-28 | Phanos Technologies, Inc. | Compounds, compositions and methods for binding bio-affecting substances to surface membranes of bio-particles | 
| US5770609A (en) | 1993-01-28 | 1998-06-23 | Neorx Corporation | Prevention and treatment of cardiovascular pathologies | 
| US6251920B1 (en) | 1993-05-13 | 2001-06-26 | Neorx Corporation | Prevention and treatment of cardiovascular pathologies | 
| US5981568A (en) | 1993-01-28 | 1999-11-09 | Neorx Corporation | Therapeutic inhibitor of vascular smooth muscle cells | 
| ATE420628T1 (en)† | 1993-07-19 | 2009-01-15 | Angiotech Pharm Inc | ANTI-ANGIogenic AGENTS AND METHODS OF USE THEREOF | 
| US5886026A (en) | 1993-07-19 | 1999-03-23 | Angiotech Pharmaceuticals Inc. | Anti-angiogenic compositions and methods of use | 
| ES2210258T5 (en) | 1993-07-29 | 2009-01-16 | The Government Of The Usa, As Represented By The Secretary, Department Of Health And Human Services | PROCEDURE OF TREATMENT OF ATEROSCLEROSIS OR RESTENOSIS USING A STABILIZING AGENT OF MICROTUBLES. | 
| US5580898A (en) | 1994-05-24 | 1996-12-03 | The Trustees Of The University Of Pennsylvania | Method of stabilizing microtubules | 
| US5880626A (en)* | 1996-12-02 | 1999-03-09 | Vtc, Inc. | Active damping for a disk drive write circuit | 
| DE60131537T2 (en)* | 2000-06-22 | 2008-10-23 | Nitromed, Inc., Lexington | NITROSED AND NITROSYLATED TAXANES, PREPARATIONS AND METHODS OF USE | 
| Publication | Publication Date | Title | 
|---|---|---|
| ES2210258T5 (en) | PROCEDURE OF TREATMENT OF ATEROSCLEROSIS OR RESTENOSIS USING A STABILIZING AGENT OF MICROTUBLES. | |
| WO1995003795A9 (en) | Method of treating atherosclerosis or restenosis using microtubule stabilizing agent | |
| US7799346B2 (en) | Method of treatment directed to agent retention in biological tissues | |
| ES2388248T3 (en) | Dosage form comprising taxol in crystalline form | |
| Black et al. | Modulation of brain tumor capillaries for enhanced drug delivery selectively to brain tumor | |
| ES2753883T3 (en) | Composition for use in a method of treating hyperplasia | |
| ES2217306T3 (en) | THERAPEUTIC INHIBITOR OF LISAS VASCULAR MUSCLE CELLS. | |
| ES2820731T3 (en) | Limus deposit formulation on balloon catheters | |
| Chen et al. | Significant difference between sirolimus and paclitaxel nanoparticles in anti-proliferation effect in normoxia and hypoxia: The basis of better selection of atherosclerosis treatment | |
| US20050175668A1 (en) | Lapachone delivery systems, compositions and uses related thereto | |
| US20160331853A1 (en) | Compositions for radiotherapy and uses thereof | |
| US20230338626A1 (en) | Compositions and devices incorporating water-insoluble therapeutic agents and methods of the use thereof | |
| US20190216956A1 (en) | Compositions for radiotherapy and uses thereof | |
| CN115120611A (en) | NO donor micelle composition and preparation method and application thereof | |
| ES2363394B2 (en) | USE OF AMITRIPTILINE AS AN ANTITUMORAL AGENT FOR THE TREATMENT OF LUNG CANCER. | |
| US20210236668A1 (en) | Compositions for radiotherapy and uses thereof |