Movatterモバイル変換


[0]ホーム

URL:


EP2833802A1 - Surgical staple cartridge with bendable tip - Google Patents

Surgical staple cartridge with bendable tip

Info

Publication number
EP2833802A1
EP2833802A1EP13773122.0AEP13773122AEP2833802A1EP 2833802 A1EP2833802 A1EP 2833802A1EP 13773122 AEP13773122 AEP 13773122AEP 2833802 A1EP2833802 A1EP 2833802A1
Authority
EP
European Patent Office
Prior art keywords
cartridge
anvil
jaw
surgical apparatus
pin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP13773122.0A
Other languages
German (de)
French (fr)
Other versions
EP2833802A4 (en
Inventor
Bryan D. Knodel
Bernard A. Hausen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dextera Surgical Inc
Original Assignee
Cardica Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cardica IncfiledCriticalCardica Inc
Publication of EP2833802A1publicationCriticalpatent/EP2833802A1/en
Publication of EP2833802A4publicationCriticalpatent/EP2833802A4/en
Withdrawnlegal-statusCriticalCurrent

Links

Classifications

Definitions

Landscapes

Abstract

One example of a surgical apparatus for treating tissue may include surgical staples; a cartridge that holds the surgical staples; and a bendable tip extending from the staple cartridge. Another example of a surgical apparatus for treating tissue may include an anvil; a jaw pivotally connected to the anvil; a staple cartridge detachably connected to the jaw; and a bendable tip extending from the staple cartridge.

Description

SURGICAL STAPLE CARTRIDGE WITH BEND ABLE TIP
CROSS REFERENCE TO RELATED APPLICATION
[0001] This application claims priority of U.S. Patent Application Serial No. 13/439,767, Attorney Docket No. 347, filed on April 4, 2012, which is hereby incorporated by reference in its entirety.
FIELD OF THE INVENTION
[0002] The invention generally relates to surgical staplers and stapling.
BACKGROUND
[0003] A linear cutter is a surgical tool that staples and cuts tissue to transect that tissue while leaving the cut ends hemostatic. A typical endocutter receives at its distal end a disposable single-use cartridge that holds several rows of staples, and includes an anvil opposed to the cartridge. The cartridge typically includes drivers positioned under the staples. The surgeon orients the end of the endocutter around the tissue to be transected, and compresses the anvil and cartridge together to clamp the tissue. Then, wedges advance into the cartridge, sequentially pushing the drivers upward, and the drivers in turn drive the staples upward against the anvil. Rows of staples are deployed on either side of the transection line, and a blade is advanced along the transection line to divide the tissue. In conventional surgical staplers, it is important to maintain a substantially constant gap between the anvil and the cartridge for proper staple formation. A staple urged outward from the cartridge or other staple holder is designed to encounter a staple pocket or other feature in the anvil at a certain point in its travel. If the staple encounters that staple pocket or other feature in the anvil too soon or too late, the staple may be malformed. For example, if the gap is too large, the staple may not be completely formed. As another example, if the gap is too small, the staple may be crushed. For this reason, a particular conventional linear cutter can only accept a cartridge with a corresponding particular staple size. Inserting into that linear cutter a cartridge holding larger or smaller staples, if that were even possible due to the size differential in the staples and staple drivers, would cause incomplete formation or malformation of those staples. BRIEF DESCRIPTION OF THE DRAWINGS
[0004] FIG. 1 is a side view of an exemplary surgical stapler.
[0005] FIG. 2 is a side view of an exemplary end effector of the stapler of FIG.
1, without a cartridge.
[0006] FIG. 3 is a perspective view of the end effector of FIG. 2.
[0007] FIG. 4 is a perspective cutaway view of the end effector of FIG. 2, loaded with a blue cartridge.
[0008] FIG. 5 is a perspective view of an exemplary blue cartridge.
[0009] FIG. 6 is a perspective view of an exemplary white cartridge.
[0010] FIG. 7 is a perspective view of an exemplary sled assembly, with a knife in the down position.
[0011] FIG. 8 is a perspective view of an exemplary sled assembly, with a knife in the up position.
[0012] FIG. 9 is a perspective view of the sled assembly of FIGS. 7-8 in an initial position in the blue cartridge of FIG. 5.
[0013] FIG. 10 is a perspective view of the sled assembly of FIGS. 7-8 in an initial position in the white cartridge of FIG. 6.
[0014] FIG. 11 is a side view of an exemplary anvil.
[0015] FIG. 12 is a top view of the anvil of FIG. 11.
[0016] FIG. 13 is a perspective view of an exemplary clamp strip.
[0017] FIG. 14 is a perspective view of the end effector of FIG. 2, loaded with a blue cartridge of FIG. 5.
[0018] FIG. 15 is a detail cutaway perspective view of the end effector of FIG.
14.
[0019] FIG. 16 is a perspective view of an exemplary jaw of the end effector of
FIG. 2.
[0020] FIG. 17 is a detail cutaway side view of the end effector of FIG. 14 in a clamped position.
[0021] FIG. 18 is a detail cutaway perspective view of the end effector of FIG.
2, loaded with a white cartridge of FIG. 6.
[0022] FIG. 19 is a cutaway perspective view of the end effector of FIG. 2 in trocar position, loaded with a white cartridge of FIG. 6. [0023] FIG. 20 is a cross-section view of the end effector of FIG. 2 in the trocar position, loaded with a white cartridge of FIG. 6.
[0024] FIG. 21 is a lower perspective view of the end effector of FIG. 2 in an open position.
[0025] FIG. 22 is a side view of the end effector of FIG. 2 in the clamped position, loaded with a blue cartridge of FIG. 5.
[0026] FIG. 23 is a detail cutaway view of the end effector of FIG. 2 showing the clamp gap.
[0027] FIG. 24 is a detail cutaway side view of the end effector of FIG. 14 in a clamped position, loaded with a blue cartridge of FIG. 5, in a stage of deployment.
[0028] FIG. 25 is a detail cutaway side view of the end effector of FIG. 24, in a further stage of deployment.
[0029] FIG. 26 is a detail cutaway side view of the end effector of FIG. 25, in a further stage of deployment.
[0030] FIG. 27 is a side view of the end effector of FIG. 14 in a clamped position, loaded with a white cartridge of FIG. 6.
[0031] FIG. 28 is a detail cutaway side view of the end effector of FIG. 14 in a clamped position, loaded with a white cartridge of FIG. 6.
[0032] FIG. 29 is a detail cutaway side view of the end effector of FIG. 14 in a firing position, loaded with a white cartridge of FIG. 6.
[0033] FIG. 30 is a perspective view of an end effector having a flexible tip attached to a cartridge.
[0034] FIG. 31 is a detail view of the flexible tip of FIG. 30.
[0035] FIG. 32 is a side cross-section of the flexible tip attached to the cartridge of
FIG. 30, showing its initial and deformed positions.
[0036] FIG. 33 is a side view of the end effector of FIG. 30 in an initial position.
[0037] The use of the same reference symbols in different figures indicates similar or identical items. DETAILED DESCRIPTION
[0038] U.S. Patent Application Publication No. 2009/0065552, published on March 12, 2009 (the "Endocutter Document"), is hereby incorporated by reference herein in its entirety.
[0039] Referring to FIG. 1, an exemplary surgical stapler 2 may include an end effector 4 connected to the distal end of a shaft 6. The proximal end of the shaft 6 may in turn be connected to a handle 8. The handle 8 may include a single trigger 10. The shaft 6 may be rigid or articulated. If the shaft 6 is articulated, any articulated region may be exposed, or may be covered with a sleeve or other suitable structure. Referring also to FIGS. 2-3, the end effector 4 may include an anvil 12 and a jaw 14. Referring also to FIGS. 4-6, the jaw 14 may be configured to receive at least one of a blue cartridge 16 and a white cartridge 30. The term "blue cartridge" is standard terminology for a cartridge that fires staples across a 0.035 inch clamp gap, and the term "white cartridge" is standard terminology for a cartridge that fires staples across a 0.020 inch clamp gap. Advantageously, the jaw 14 is configured to receive either cartridge 16, 30, as described in greater detail below. Alternately, the jaw 14 may be configured to receive one or more cartridges having staples of any suitable size.
[0040] Referring to FIG. 4, an exemplary blue cartridge 16 is shown, loaded onto the jaw 14. The blue cartridge 16 holds a plurality of staples 18, each frangibly affixed at one end to a corresponding feeder belt 20. The shape of the staples 18, the configuration of the staples 18 and the feeder belt 20, and the attachment between the staples 18 and the feeder belt 20 may be substantially as described in the Endocutter Document. Unlike the feeder belt described in the Endocutter Document, the feeder belt 20 of the blue cartridge 16 may be fixed in position relative to the blue cartridge 16. For example, the blue cartridge 16 may include one or more rails 22 defined therein, where a feeder belt 20 may be affixed to the upper surface of each rail 22. In this way, the blue cartridge 16 may be a single-use cartridge, which is replaced after each firing. The upper surface 24 of the blue cartridge 16 may include a plurality of apertures 26 defined therethrough, positioned in a way that corresponds to the locations of the staples 18 within the blue cartridge 16. Additionally, the upper surface 24 of the blue cartridge 16 may include a knife slot 28 through which a knife may slide, as described in greater detail below. Two rows of apertures 26 may be positioned on each lateral side of the knife slot 28, allowing two rows of staples 18 to be deployed therethrough into tissue, as described in greater detail below. As another example, only a single row of apertures 26 may be provided on at least one lateral side of the knife slot 28, allowing a single row of staples 18 to be deployed therethrough. As another example, three or more rows of apertures 26 may be provided on at least one lateral side of the knife slot 28, allowing three or more rows of staples 18 to be deployed therethrough. The blue cartridge 16 may include a housing 21 that defines a space therein. The upper surface 24 of the blue cartridge 16 may have a generally flat region 32 longitudinally extending along its lateral center, through which the knife slot 28 is defined, and two angled regions 34 connected to and each extending laterally from the generally flat region 32. The apertures 26 may be defined through the angled surfaces 34. The rails 22 defined within the blue cartridge 16 may be angled within the blue cartridge 16 in such a manner that the rails 22 are substantially perpendicular to the angled regions 34. Alternately, the rails 22 may be angled or oriented in any other suitable manner. As another example, the upper surface 24 of the blue cartridge 16 need not include angled regions 34, and instead may be substantially flat along its entirety. As another example of a blue cartridge 16, at least one feeder belt 20 may be configured to advance between firings, in a manner such as set forth in co-pending and commonly-assigned U.S. Patent Application Serial No. 12/471,672, filed on May 26, 2009, which is hereby incorporated by reference in its entirety. As another example of a blue cartridge 16, at least one feeder belt 20 may be omitted, and staples 18 that would otherwise have been frangibly affixed to that feeder belt 20 may instead be frangibly affixed to the upper surface 24, each adjacent to a corresponding aperture 26, in a manner such as set forth in copending and commonly-assigned U.S. Patent Application Serial No. 12/683,382, filed on January 6, 2010, which is hereby incorporated by reference in its entirety.
[0041] The white cartridge 30 may be configured in substantially the same way as the blue cartridge 16 described above, with three primary exceptions. First, the white cartridge 30 holds smaller staples 18 than are held by the blue cartridge 16. Second, as a consequence, the white cartridge 30 optionally may be shorter than the blue cartridge 16, although the cartridges 16, 30 may have substantially the same longitudinal dimensions as one another. Third, each cartridge 16, 30 includes a gap-setting feature that engages with the jaw 14 to set the gap between the anvil 12 and the cartridge 16, 30, and that gap-setting feature is located at a different location on each cartridge 16, 30. Referring to FIG. 5, on the blue cartridge 16, the blue gap-setting feature 36 may be located on one or both lateral sides of the blue cartridge 16, near the proximal end of the blue cartridge 16. The blue gap-setting feature 36 may be an indentation inward toward the lateral center of the blue cartridge 16, where a portion of the lateral edge of the blue cartridge 16 immediately proximal to the blue gap-setting feature 36 is located laterally inward relative to a portion of the lateral edge of the white cartridge 30 located immediately distal to the blue gap-setting feature 36. The blue gap-setting feature 36 may be defined on or near the upper surface 24 of the blue cartridge 16, but may be positioned differently on the blue cartridge 16. The interaction between the blue gap- setting feature 36 and the jaw 14 that sets the tissue gap is described in greater detail below. Referring to FIG. 6, on the white cartridge 30, the white gap-setting feature 38 may be located on one or both lateral sides of the white cartridge 30, at the proximal end of the white cartridge 30. The white gap-setting feature 38 may be located more proximal on the white cartridge 30 than the blue gap-setting feature 36 is located on the blue cartridge 16, where that difference in longitudinal position differentially engages the jaw 14 to change the tissue gap between the cartridge 16, 30 and the jaw 14 depending on the cartridge 16, 30 loaded onto the jaw 14. The white gap-setting feature 38 may be an absence of an indentation, particularly where the white gap-setting feature 38 is located at the proximal end of the white cartridge 30, or extends slightly proximal from the proximal end of the white cartridge 30. The white gap-setting feature 38 may be defined on or near the upper surface 24 of the white cartridge 30, but may be positioned differently on the white cartridge 30. The interaction between the white gap- setting feature 38 and the jaw 14 that sets the tissue gap is described in greater detail below. Although a blue cartridge 16 and a white cartridge 30 have been described here, other or additional sizes of cartridge may be fabricated as disclosed above, where differences between the gap-setting features of the cartridges results in a difference in tissue gap between the jaw 14 and the cartridge.
[0042] Referring to FIG. 7, a sled 40 is slidable along either cartridge 16, 30. The sled 40 may include a plurality of wedges 42, and a knife 44 that may be pivotable relative to a remainder of the sled 40. Each wedge 42 may be shaped in any suitable manner that causes staples 18 contacted by that wedge 42 to first move upward and deform against the anvil 12, then break apart from the feeder belt 20, in a manner such as described in the Endocutter Document. As one example, the upper surface of at least one wedge 42 may include a first surface 46 that may be angled or curved, or both, downwardly in the distal direction. The wedge 42 optionally may also include a second surface 48 proximal to the first surface 46, where the second surface may be substantially flat. Alternately, the second surface 48 is curved or angled, and/or is included as a portion of the first surface. The wedge 42 may include a third surface 50 that may be angled or curved, or both, downwardly in the distal direction. As described in greater detail below, contact between the first surface 46 and a staple 18 bends the staple 18, and contact between the second surface 50 and the staple 18 breaks off the staple 18 from the feeder belt 20. The lower surface of the wedge 42 may be substantially linear.
[0043] The wedges 42 may be angled relative to a vertical reference plane defined to pass through both the longitudinal centerline of the cartridge 16, 20 and the knife slot 28 of the cartridge 16, 30. This definition of "vertical," and the use of terms such as "vertical," "horizontal," "lateral," "up,", "down," "upper," and "lower," is solely for convenience in describing the surgical stapler 2, and does not limit the orientation of the surgical stapler 2 in use. The wedges 42 may be angled relative to the reference plane such that the lower surface of each wedge 42 is laterally closer to the reference plane than the upper surface of each wedge 42. The wedges 42 on each side of the reference plane may be substantially parallel to one another, or may be angled relative to each other as well. The sled 40 may include a central platform 52 that is oriented generally longitudinally. Two wedges 42 may be attached directly to the central platform 52, one on each lateral side thereof. An outrigger 54 may extend outward from each of those wedges 42, where each outrigger 54 is in turn connected to a different, further-lateral wedge 42. The central platform 52, wedges 42 and outriggers 54 may be fabricated as an integral unit, such as by molding, or may be fabricated separately and assembled together at a later time. The central platform 52 may include a fin 66 extending from the proximal end thereof. The fin 66 may extend laterally across less than all of the width of the central platform 52, and may be angled such that the bottom of the fin 66 is positioned proximally outward further from the central platform 52 than the top of the fin 66. Alternately, the fin 66 may be omitted, or may extend laterally across the entirety of the proximal end of the central platform 52.
[0044] The knife 44 may be received in, and rotatable relative to, the central platform 52. Advantageously, the knife 44 may be substantially laterally centered in the central platform 52, such that the knife 44 is substantially bisected by the reference plane. Referring also to FIG. 9, the central platform 52 may include a knife aperture 56 defined therein. At least part of the knife aperture 56 may extend completely through the central platform 52. A pivot axle 58 may extend laterally from the knife 44; the axle 58 may be a single rod, or may be defined by two separate pins extending from the knife 44. The pivot axle 58 may be received in an axle receiver 60 defined in the central platform 52, which may be part of the knife aperture 56 or separate from the knife aperture 56. The pivot axle 58 may be held by the axle receiver 60 in any way that allows the pivot axle 58 to pivot. The axle receiver 60 may hold the pivot axle 58 laterally and/or longitudinally in a fixed location relative to the central platform 52. One or more flip pins 62 also may extend laterally from the knife 44. The flip pins 62 may be two ends of a single rod, or two separate pins extending from the knife 44. As described in greater detail below, the flip pins 62 are used to flip the knife 44 upward from the initial stowed configuration. As seen in FIGS. 7-10, the knife 44 may be initially configured in a stowed position. In the stowed position, the blade 64 is oriented generally downward, such that a user cannot injure himself or herself due to inadvertent contact with the blade 64.
[0045] Referring to FIGS. 9-10, the sled 40 is configured to slide within a remainder of a corresponding cartridge 16, 30. The sled 40 is part of the cartridge 16, 30, such that after depletion of the staples 18 in the cartridge 16, 30, the sled 40 is removed from the jaw 14 with the cartridge 16, 30. In this way, the blade 64 of the knife 44 can retain sharpness effectively; in addition, reloading a fresh cartridge 16, 30 onto the jaw 14 may be simplified by retaining the sled 40 with the remainder of the cartridge 16, 30. The sled 40 may be held within a remainder of the cartridge 16, 30 by at least one outrigger 54, such that the outrigger 54 can only move proximally to a point where it contacts the outer shell 68 of the cartridge 16, 30. The sled 40 is located at that most-proximal point in FIGS. 9-10. Alternately, the sled 40 may be slidable out of the cartridge 16, 30 prior to exchange of the cartridge 16, 30, such that the sled 40 and knife 44 can be reused with different cartridges 16, 30. Each cartridge 16, 30 may include a plurality of slots 70 along which the wedges 42 slide, and which guide the wedges 42 to ensure they slide longitudinally along a substantially linear path to sequentially engage a plurality of staples 18.
[0046] Turning to FIGS. 2 and 11-15, a remainder of the end effector 4 includes the anvil 12 and the jaw 14. The anvil 12 and the jaw 14 may be pivotally
interconnected by two pivot pins 72. The pivot pins 72 may be laterally spaced relative to one another, such that the I-beam, described in greater detail below, is able to advance between them. Alternately, a single pivot pin 72 laterally spanning the end effector may be utilized. Referring to FIG. 1 1, each side of the the anvil 12 may include a pivot pin receiver 76 defined therein or completely therethrough, in order to receive the corresponding pivot pin 72 therein. In this way, the anvil 12 is pivotable about the lateral axis defined by the pivot pin receiver 76. The pivot pins 72, and thus the lateral axis defined by the pivot pin receiver 76, may be substantially perpendicular to and spaced apart from the longitudinal centerline of the cartridge 16. Alternately, the pivot pins 72 and pivot pin receiver 76 may be oriented differently relative to one another, and/or the lateral axis defined by the pivot pin receiver 76 may intersect the longitudinal centerline of the cartridge 16. Referring also to FIG. 12, the anvil 12 may include two spaced-apart legs 78 defining a space 80 therebetween. A cam path 82 may be defined in, or completely through, one or both legs 78. The cam path 82 may be configured in any suitable manner. As one example, the cam path 82 includes a first segment 84 and a second segment 86 proximal to the first segment 84, where the segments 84, 86 collectively define a continuous cam path 82. Starting at the distal end of the cam path 82, the first segment 84 defines a path that moves upward in the proximal direction. The first segment 84 may be straight, curved, or both in combination, or otherwise shaped. The second segment 86 then defines a path that moves downward in the proximal direction. The second segment 86 may be straight, curved, or both in combination, or otherwise shaped. Turning to FIG. 13, a clamp strip 90 may include a cam pin 92 attached thereto. The clamp strip 90 may be a thin, elongated structure that is fabricated from metal or any other suitable material. The clamp strip 90 may extend through the shaft 6 to the handle 8 of the surgical stapler 2. The cam pin 92 may be positioned at or near the distal end of the clamp strip 90, and may be oriented generally perpendicular to the longitudinal centerline of the clamp strip 90. Alternately, the cam pin 92 may be oriented differently relative to the clamp strip 90. The cam pin 92 may be a single pin structure, or may be composed of two separate pins, one extending from either lateral side of the clamp strip 90. If so, the two separate pins are advantageously aligned with one another, but need not be. Referring also to FIGS. 14-15, the cam pin 92 is configured to be received in each cam path 82 of the anvil 12. The space 80 defined between the legs 78 of the anvil 12 receives the distal end of the clamp strip 90.
[0047] Referring to FIGS. 14-16, the jaw 14 may include a channel 94 defined generally longitudinally along a majority of its length, in its lower, inner surface. At the proximal end of the jaw 14, two jaw walls 96 may be laterally spaced apart by the channel 95. Each jaw wall 96 may include a cam pin slot 98 defined therein or completely therethrough. Each cam pin slot 98 may be substantially straight and substantially parallel to the longitudinal centerline of the jaw 14. Alternately, at least one cam pin slot 98 may be oriented differently. The cam pin slots 98 receive the cam pin 92. Moving from the center laterally outward toward one side, the cam pin 92 extends from the clamp strip 90, then through the cam slot 82 on the leg 78 of the anvil 12, then through the cam pin slot 98 in the jaw wall 96. This interaction between the cam pin 92, the cam slot 82, and the cam pin slot 98 is used to lock the height of the anvil 12 relative to the jaw 14, as described below. Additionally, in each jaw wall 96, a pivot pin slot 99 is defined therein or completely therethrough. The pivot pin slots 99 may be substantially vertical, and each may be substantially perpendicular to the cam pin slot 98 defined in the same jaw wall 96. Each pivot pin slot 99 is advantageously located distal to and spaced apart from the corresponding cam pin slot 98 in the same jaw wall 96. Alternately, the pivot pin slots 99 may be located or oriented in any other suitable manner. The pivot pin slots 99 receive the pivot pins 72.
[0048] Referring to FIG. 15, a shuttle 100 is positioned against at least one jaw wall 96. Advantageously, two shuttles 100 are provided, each associated with a different jaw wall 96. The shuttle 100 includes a center aperture 102 that may be generally trapezoidal. The center aperture 102 may include a lower surface 104, a distal surface 106, an upper surface 108, and a proximal surface 110. The surfaces 104, 106, 108, 110 are generally linear, and curve where they intersect. However, the surfaces 104, 106, 108, 110 may be shaped differently and/or may intersect differently. The lower surface 104 may be generally straight and extend generally longitudinally. The distal surface 106 may be generally straight, and extend generally vertically and generally perpendicular to the lower surface 104. The upper surface 108 may be generally straight, and may be vertically higher at its proximal end than its distal end. Thus, the proximal end of the upper surface 108 may be positioned further away from the lower surface 104 than the distal end of the upper surface 108. The proximal surface 110 may be generally straight, and extend generally vertically and generally
perpendicular to the lower surface 104. Advantageously, the proximal surface 110 is longer than the distal surface 106. Each shuttle 110 may be positioned against a shuttle cutout 114 defined in the inner surface of a corresponding jaw wall 96. Each shuttle 100 may include a tail 112 extending in the proximal direction within a tail retainer 116 defined in an inner surface of a corresponding jaw wall 96. Each shuttle 100 may be biased distally, such as by a compression spring wound about a corresponding tail 112. Forward motion of the shuttle 100 as a result of the biasing force of the spring 118 may be limited by the distal end of the corresponding shuttle cutout 114.
[0049] Each pivot pin 72 extends into the center aperture 102 of the
corresponding shuttle 100. Moving from the center laterally outward toward one side, the pivot pin 72 extends from the deployment strip 74, then through the pivot pin receiver 76 in the anvil 12, then through the center aperture 102 of the shuttle 100, then through the pivot pin slot 99 in the jaw wall 96.
[0050] Referring to FIG. 17, the deployment strip 74 may be a thin, elongated structure that is fabricated from metal or any other suitable material. The deployment strip 74 may extend through the shaft 6 to the handle 8 of the surgical stapler 2. A foot 120 may extend downward from the deployment strip 74, at a location near or at the distal end of the deployment strip 74. The foot 120 is advantageously wider in the lateral direction than the deployment strip 74. A pin cutout 122 may be provided at or in proximity to the distal end of the deployment strip 74, at or near an upper end of the deployment strip 74. The pin cutout 122 may include a first channel 124 and a second channel 126 positioned below the first channel 124. The first channel 124 and second channel 126 may be shaped in substantially the same manner. A detent finger 128 separates the channels 124, 126 along the majority of their length. The detent finger 128 does not extend all the way to the distal end of the pin cutout 122, and is spaced apart from the distal end of the pin cutout 122 by a distance as least as great as the diameter of a cross pin 130. The cross pin 130 extends laterally through the pin cutout 122, but is not fixed to the deployment strip 74. Rather, the cross pin 130 is movable within the pin cutout 122, as is described in greater detail below. The anvil 12 includes two pin paths 132 defined laterally therein, spaced apart by a lateral distance at least as great as the lateral thickness of the deployment strip 74. The proximal end of each pin path 132 may be a pocket 134. The remainder of each pin path 132 may be a substantially linear travel slot 136 that is connected to and extends distally from the pocket 136. The cross pin 130 is thus slidable along the pin path 132, and movable within the pin cutout 122, while being trapped by and constrained within the pin path 132 and pin cutout 122.
Flexible Tip
[0051] Referring to FIGS. 30-31, optionally a flexible tip 200 may extend from the cartridge 16, 30. The flexible tip 200 may extend from the distal end of the cartridge 16, 30, or may extend from a different portion of the cartridge 16, 30. The flexible tip 200 may lie in a plane that laterally bisects the cartridge 16, 30, or may lie in a different plane or be laterally curved. Moving in the distal direction from the proximal end of the flexible tip 200, the flexible tip 200 initially may curve upwardly. Alternately, the flexible tip 200 initially may be straight, angled or form any other suitable shape.
Optionally, an aperture may be defined completely through the flexible tip 200 to allow a user to route a length of suture through that aperture. The aperture may be straight, angled, curved or have any suitable shape or orientation. As one example, the aperture may be substantially linear and oriented substantially laterally through the flexible tip 200. As another example, the aperture may extend substantially vertically through the flexible tip 200.
[0052] Referring also to FIG. 32, the flexible tip 200 may include a bendable core 202 surrounded partially or entirely by a soft outer cover 204. The bendable core 202 may be elastically deformable, superelastically deformable, malleable, and/or plastically deformable, and may be fabricated from any suitable metal, plastic or other material. The soft outer cover 204 may be fabricated from silicone or any other suitable material. As another example, the soft outer cover 204 may be fabricated as a tapered wireform wound about the bendable core 202. The free end 206 is advantageously blunt. The soft outer cover 204 may be liquid injection molded over the bendable core 202 and a portion of the cartridge 16, 30 in order to connect the bendable core 202 to the cartridge 16, 30. However, the flexible tip 200 may be fabricated in any other suitable manner. For example, the soft outer cover 204 may be mechanically attached to the cartridge 16, 30 in any suitable manner, and the bendable core 202 may then be mechanically attached to an inner plenum within the soft outer cover 204. As another example, the soft outer cover 204 may be omitted, and the bendable core 202 may be attached directly to the distal end of the cartridge 16, 30.
[0053] Referring also to FIG. 33, the flexible tip 200 is shown in an initial state. In the initial state, the flexible tip 200 lies within the diameter 210 defined by the outer surface of the end effector 4 in trocar position. In this way, the flexible tip 200 does not interfere with insertion of the end effector 4 through the lumen of a trocar to a surgical site.
Operation - Inserting Blue Cartridge [0054] Prior to operation of the surgical stapler 2, the user chooses a cartridge 16, 30 for insertion into the jaw 14. Referring to FIGS. 2, 4, 5 and 15, the user may select a blue cartridge 16. The user then places the blue cartridge 16 into the jaw 14. The blue cartridge 16 may be friction-fit into the jaw 14, or may be locked affirmatively into the jaw 14 in any suitable manner. Referring in particular to FIG. 15, as the blue cartridge 16 is inserted into the jaw 14, each blue gap-setting feature 36 of the blue cartridge 16 comes into proximity with, and may contact, the shuttle 100. The shuttle 100 is biased distally, so each pivot pin 72 may be positioned against the proximal surface 110 of the center aperture 102 of the shuttle 100. The end effector 4 may be in the open position, so each pivot pin 72 is in a higher vertical position than when the end effector 4 is in the closed position. Thus, each pivot pin 72 may also be positioned against the upper surface 108 of the center aperture 102. As a result, before the blue cartridge 16 is loaded into the jaw 14, each pivot pin 72 may be positioned in the upper proximal corner of the center aperture 102. When the blue cartridge 16 is loaded, its blue gap-setting feature 36 is positioned far enough distally that it does not substantially engage the shuttle 100, leaving each pivot pin 72 in its original position in the upper proximal corner of the center aperture 102. Referring also to FIG. 4, when each pivot pin 72 is in the upper proximal corner of the center aperture 102, it may also be positioned at the upper end of the corresponding pivot pin slot 99 defined in the corresponding jaw wall 96.
[0055] Referring also to FIG. 17, after the blue cartridge 16 has been inserted into the jaw 14, the distal end of the deployment strip 74 is in proximity to, or in contact with, the fin 66 of the sled 40.
Operation - Inserting White Cartridge
[0056] Prior to operation of the surgical stapler 2, the user chooses a cartridge 16, 30 for insertion into the jaw 14. Referring to FIGS. 2, 6, 15 and 18, the user may select a white cartridge 30. The user then places the white cartridge 30 into the jaw 14. The white cartridge 30 may be friction-fit into the jaw 14, or may be locked
affirmatively into the jaw 14 in any suitable manner. Referring in particular to FIG. 18, as the white cartridge 30 is inserted into the jaw 14, each white gap-setting feature 38 of the white cartridge 30 contacts the corresponding shuttle 100 and pushes the
corresponding shuttle 100 in the proximal direction, overcoming the distal bias of the shuttles 100. As with the blue cartridge 16 described above, initially before loading the white cartridge 30 each pivot pin 72 is positioned in the upper proximal corner of the center aperture 102 of each shuttle 100. As each shuttle 100 moves proximally as a result of contact with the corresponding white gap-setting feature 38, each pivot pin 72 remains in substantially the same longitudinal position as a consequence of engagement between each pivot pin 72 and the corresponding pivot pin slot 99 defined in the corresponding jaw wall 96. That is, each pivot pin slot 99 substantially constrains the pivot pin 72 retained therein against longitudinal motion, while allowing vertical motion within the height defined by the pivot pin slot 99. Thus, as each shuttle 100 moves proximally, while the corresponding pivot pin 72 does not, contact between the upper surface 108 of the center aperture 102, which is sloped downward toward the distal direction, pushes the pivot pin 72 downward. When the white cartridge 30 has been fully inserted into the jaw 14, the white gap-setting features 38 have pushed each shuttle 100 proximally to a point at which each pivot pin 72 is located at the upper distal corner of the center aperture 102 of each shuttle 100. Because the distal surface 106 of each center aperture 102 is shorter in height than the proximal surface 110 of each center aperture 102, the upper distal corner of the center aperture 102 of each shuttle 100 is lower in height than the upper proximal corner of the center aperture 102 of each shuttle 100. Consequently, insertion of the white cartridge 30 into the jaw 14 has moved the pivot pin 72 lower. When each pivot pin 72 is in the upper distal corner of the center aperture 102, it may also be positioned at the lower end of the corresponding pivot pin slot 99 defined in the corresponding jaw wall 96.
[0057] As described above, the white gap-setting features 38 are located more proximal on the white cartridge 30 than the blue gap-setting features 36 are located on the blue cartridge 16. In this way, engagement between the white cartridge 30 and the shuttles 100 urges the shuttles 100 proximally a greater amount than engagement (or affirmative nonengagement) between the blue cartridge 16 and the shuttles 100. Thus, the clamp gap between the anvil 12 and any cartridge inserted into the jaw 14 is set by the longitudinal position of the shuttles 100, which controls the vertical position of the corresponding pivot pins 72. When the pivot pins 72 are set higher by the blue cartridge 16, the clamp gap is set larger to allow thicker tissue to be clamped between the anvil 12 and the blue cartridge 16, where the staples 18 held by the blue cartridge 16 are sized to staple tissue of that thickness. When the pivot pins 72 are set lower by the white cartridge 30, the clamp gap is set smaller to allow thinner tissue to be clamped between the anvil 12 and the white cartridge 30, where the staples 18 held by the white cartridge 30 are concomitantly smaller to staple thinner tissue. In this way, the clamp gap between the anvil 12 and each cartridge 16, 30 is automatically set to a distance that the staples 18 in the particular cartridge 16, 30 can be deployed across.
[0058] The shuttles 100 can be configured to accommodate additional sizes of cartridges, if desired. As one example, the end effector 4 may also accommodate a green cartridge, which holds larger staples than the blue cartridge 16. The term "green cartridge" is standard terminology for a cartridge that fires staples across a 0.050 inch clamp gap. If so, the shuttle 100 may be larger, and the upper surface 108 of the center aperture 102 of the shuttle 100 may be shaped differently to provide a stable position for the corresponding pivot pin 72 between the upper corners of that center aperture 102. For example, the upper surface 108 of the center aperture 102 of each shuttle 100 may be stepped such that the corresponding pivot pin 72 may reside at that step in a stable manner when the blue cartridge 16 is inserted into the end effector; if so, each pivot pin 72 may be positioned at the upper proximal corner of the center aperture 102 of each shuttle 100 when the green cartridge is inserted. Further, in such a situation, the white gap-setting features 38 are still located more proximal on the white cartridge 30 than the blue gap-setting features 36 are located on the blue cartridge 16; however, the blue gap- setting features 36 would be located proximally enough on the blue cartridge 16 to push the shuttles 100 proximally enough to allow the pivot pins 72 to seat in the steps in the center apertures 102, and the green gap-setting features would not substantially cause the shuttles 100 to move proximally.
[0059] When a cartridge 16, 30 is loaded onto the jaw 14, the end effector 4 is advantageously in an open position, such that the distal end of the anvil 12 is spaced apart from the jaw 14, and such that the anvil 12 is positioned at an angle relative to the jaw 14. In this way, there is sufficient clearance for the user to easily attach a cartridge 16, 30 to the jaw. In this open position, the clamp strip 90 may be positioned longitudinally relative to the anvil 12 such that the cam pin 92 is located at the proximal end of each first segment 84 of the cam path 82 defined in each leg 78 of the anvil 12. Alternately, the cam pin 92 may be positioned differently relative to the cam paths 82 defined in the legs 78 of the anvil 12.
Operation - Trocar Position
[0060] After a cartridge 16, 30 has been loaded onto the jaw 14, the surgical stapler 2 is ready for firing. The surgical stapler 2 may be used in a minimally-invasive procedure, where it is inserted through a trocar port into a patient's body. If so, it is advantageous to minimize the cross-sectional area of the end effector 4 during insertion into the patient in order to minimize the size of the trocar port that must be inserted into the patient's body. The minimum cross-sectional area position of the end effector 4 is defined as the "trocar position." In the trocar position, the end effector 4
advantageously has a cross-sectional area that is at least as small as that of the shaft 6, and additionally does not extend radially from the longitudinal centerline of the shaft 6 a distance greater than the outer surface of the shaft 6. As one example, the shaft 6 is five millimeters in diameter, such that the radius from the longitudinal centerline of the shaft 6 to the outer surface of the shaft 6 is 2.5 millimeters. In trocar position, the end effector 4 would assume a configuration such that all portions of the end effector 4 would be positioned radially within 2.5 millimeters of the longitudinal centerline of the shaft 6. As another example, the trocar position of the end effector 4 may result in the end effector 4 having a cross-sectional area that is larger than that of the shaft 6, or extending radially from the longitudinal centerline of the shaft 6 a distance greater than the outer surface of the shaft 6. The trocar position of the end effector 4 is
advantageously a configuration of the end effector 4 in which the end effector 4 has a smaller cross-sectional area than a clamped configuration of the end effector 4. Further, in the trocar position, advantageously there is substantially no gap between the anvil 14 and the cartridge 16, 30 along a substantial length of the cartridge 16, 30. Optionally, a gap may still remain between the anvil 14 and the cartridge 16, 30 in trocar position.
[0061] The end effector 4 may be moved to the trocar position in any suitable manner. Referring also to FIGS. 19-20, as one example, to move the end effector 4 to the trocar position, the clamp strip 90 is advanced distally. The clamp strip 90 may be advanced distally in any suitable manner, such as by a force transmitted from the handle 8. As the clamp strip 90 advances distally, the cam pin 92 fixed to the clamp strip 90 advances distally as well. As the cam pin 92 advances distally, the cam pin 92 moves distally within each cam path 82 defined in each leg 78 of the anvil 12. Distal motion of the cam pin 92 moves the cam pin 92 within the first segment 84 of each cam path 82, which is oriented downward in the distal direction. Further, the cam pin 92 is constrained to move linearly and longitudinally by the cam pin slots 98 defined in the jaw 14. Consequently, as the cam pin 92 moves distally within the cam pin slots 98, the orientation of the first segment 84 of each cam path 82 defined in the anvil 12 causes the cam pin 92 to push the anvil 12 downward at the point of contact between the cam pin 92 and the anvil 12. As the anvil 12 is pushed downward, each pivot pin 72 is pushed downward within the center aperture 102 of the corresponding shuttle 100. Each pivot pin 72 may be pushed downward until it encounters the lower surface 104 of the center aperture 102. Alternately, at least one pivot pin 72 does not move downward a sufficient amount to encounter the lower surface 104 of the center aperture 102. Thus, when the end effector 4 is in the trocar position, each pivot pin 72 may be positioned in the lower distal corner of the center aperture 102 of each shuttle 100.
[0062] Referring also to FIG. 21, the anvil 12 may include a tissue stop 138 extending downward therefrom, at a location distal to the pivot pins 72. Referring also to FIG. 10, as the end effector 4 moves from the open position to the trocar position, the anvil 12 moves downward relative to the cartridge 16, 30 and the jaw 14. As the anvil 12 moves downward, the tissue stop 138 moves downward as well. As the tissue stop 138 continues to move downward, the tissue stop 138 may enter a space 140 defined in the proximal end of the cartridge 16, 30, where the space 140 is present to accommodate the tissue stop 138. As the tissue stop 138 continues to move downward, the tissue stop 138 encounters, and begins to exert a downward force upon, at least one flip pin 62 attached to the knife 44. The tissue stop 138 may be longitudinally bisected by a slot 142 that is at least as wide as the knife 44, such that a portion of the knife 44 can be received in the slot 142 as the tissue stop 138 continues to move downward. Because the flip pins 62 are located proximal to the pivot axle 58 of the knife 44, and the pivot axle 58 is fixed relative to the sled 40, the downward force exerted by the tissue stop 138 on the flip pins 62 flips the knife 44 up to a cutting position by rotating the flip pins 62 downward and proximally. The flip pins 62 may continue their rotation until encountering a surface of the sled 40, where that encounter prevents further rotation.
[0063] After the end effector 4 has been inserted into the patient, it is returned to the open position. The end effector 4 may be opened after it has been moved to the surgical space, or may be opened upon entry into the patient, at the discretion of the user. As can also been seen in FIG. 21, the anvil 12 pivots about a point substantially distal to its proximal end. The longitudinal distance between the proximal end of the anvil 12 and the point at which the anvil 12 pivots relative to the jaw 14 may be at least as long as the cam pin slots 98 defined in the jaw 14. The pivot pins 72 may be positioned substantially one-quarter of the length of the anvil 12 distally from the proximal end of the anvil 12. Further, in the open position, the legs 78 of the proximal end of the anvil 12 may protrude beneath the bottom of the jaw 14. An anvil aperture 158 may be defined through the lower surface of the jaw 14 in order to allow the proximal end of the anvil 12 to move therethrough and reach a position underneath the bottom of the jaw. In order to return the end effector 4 from the trocar position to the open position, the clamp strip 90 may be moved proximally, substantially to the position it had occupied when the cartridge 16, 30 was loaded onto the jaw 14. As a result, the clamp pin 92 moves proximally within each of the cam pin slots 98 in the jaw, and proximally within the cam paths 82 defined in the anvil 14. The consequence of this motion is substantially the reverse of the previous distal motion of the clamp pin 92 within the cam pin slots 98 and cam paths 82. As the cam pin 92 moves proximally within the cam pin slots 98, the orientation of the first segment 84 of each cam path 82 defined in the anvil 12 causes the cam pin 92 to pull the anvil 12 upward at the point of contact between the cam pin 92 and the anvil 12. As the anvil 12 is pulled upward, each pivot pin 72 is pushed downward within the center aperture 102 of the corresponding shuttle 100. Each pivot pin 72 may be pulled upward until it encounters the upper surface 108 of the center aperture 102. Alternately, at least one pivot pin 72 does not move upward a sufficient amount to encounter the upper surface 108 of the center aperture 102. Thus, when the end effector 4 is in the open position, each pivot pin 72 may be positioned in the upper distal corner of the center aperture 102 of each shuttle 100, in the position it had previously occupied when the end effector 4 was in the open position during loading of the cartridge 16, 30.
[0064] When the end effector 4 returns to the open position, the knife 44 remains in the flipped-up position, and is ready to cut tissue. The knife 44 remains in the flipped-up position because no force acts upon it to push it back to its down position. The pivot axle 58, and/or other portion of the knife, may be configured to have a small degree of frictional resistance to motion, in order to prevent the knife 44 from moving out of the flipped-up position as a result of the action of gravity or as a result of the user changing the orientation of the end effector 4. A detent or other mechanism or structure may instead be used to ensure that the knife remains in the flipped-up position during the transition of the end effector 4 from the trocar position to the open position.
Operation - Clamping
[0065] The user then places the end effector 4 about tissue to be treated, such that tissue is positioned between the anvil 12 and the cartridge 16, 30. Where the cartridge 16, 30 includes the optional flexible tip 200, the user may bend that flexible tip 200 after introduction through the trocar and prior to clamping. As seen in FIG. 32, the user may push the flexible tip 200 against a structure within the body to cause the flexible tip 200 to bend upward and toward the cartridge 16, 30. In this way, the flexible tip 200 may be used to hold delicate tissue in place. That is, the force required to bend the flexible tip 200 to the deformed position shown in dashed lines in FIG. 32 may be less than the force that delicate tissue exerts on the flexible tip 200 when the user utilizes the flexible tip 200 in the deformed position, such that the user can move the flexible tip 200 to a deformed position and then utilize that flexible tip 200 to engage and hold tissue to facilitate clamping.
[0066] Once the user is satisfied with the position of the end effector 4 relative to tissue, the user may clamp the end effector. Referring also to FIG. 22, as one example, in order to move from the open position to a clamped position, the clamp strip 90 is moved proximally. The clamp strip 90 may be retracted proximally in any suitable manner, such as by a force transmitted from the handle 8. As the clamp strip 90 retracts proximally, the cam pin 92 fixed to the clamp strip 90 retracts proximally as well. As the cam pin 92 retracts proximally, the cam pin 92 moves proximally within each cam path 82 defined in each leg 78 of the anvil 12. Proximal motion of the cam pin 92 moves the cam pin 92 within the second segment 86 of each cam path 82, which is oriented downward in the proximal direction. Further, the cam pin 92 is constrained to move linearly and longitudinally by the cam pin slots 98 defined in the jaw 14.
Consequently, as the cam pin 92 moves proximally within the cam pin slots 98, the orientation of the second segment 86 of each cam path 82 defined in the anvil 12 causes the cam pin 92 to lift the anvil 12 upward at the point of contact between the cam pin 92 and the anvil 12. As the proximal end of the anvil 12 is lifted upward, each pivot pin 72 experiences a force that urges that pivot pin 72 upward. However, each pivot pin 72 is already positioned against the upper surface 108 of the center aperture 102 of the corresponding shuttle 100, whether in the upper, distal corner of the center aperture 102 where the white cartridge 30 is loaded, or in the upper, proximal corner of the center aperture 102 where the blue cartridge 16 is loaded. Consequently, as the proximal end of the anvil 12 is lifted by the cam pin 92, the shuttles 100 provide a downward constraint on the anvil 12. As a result, the anvil 12 pivots about the pivot pins 72 as the proximal end of the anvil 12 is lifted. Thus, referring to FIG. 22, if no tissue were positioned between the anvil 12 and the cartridge 16, 30, then the anvil 12 would be angled forward, such that the distal end of the anvil 12 would be closer to the cartridge 16, 30 than the portion of the anvil 12 adjacent to the pivot pins 72. This angle of the anvil 12 compensates for deflection of the anvil 12 under tissue loading. Deflection of a cantilever such as the anvil 12 increases with distance from the pivot point, such that angling the anvil 12 forward as shown in FIG. 22 results in an anvil 12 that is substantially parallel to the cartridge 16, 30 when tissue is present between the anvil 12 and the cartridge 16, 30.
[0067] The end effector 4 has reached the clamped position after the cam pin 92 has reached the proximal end of the second segment 86 of the cam paths 82 in the anvil 12, such that it cannot move further proximally. Alternately, the tissue thickness may be such that the cam pin 92 only moves partially along the second segment 86 before it can no longer advance, due to the force needed to further compress the tissue being greater than the force that can be exerted by the cam pin 92. After the tissue has been clamped, the surgical stapler 2 is ready to fire. Optionally, a locking feature may be provided in the handle 8 or elsewhere to ensure that the end effector 4 remains locked. Such locking may be performed at the discretion of the user, or automatically, such as by immobilizing the clamp strip 90 to prevent it from moving after the end effector 4 reaches the clamped position. In the clamped position, the presence of a clamp gap between the anvil 12 and the cartridge 16, 30 means that the cross-sectional area of the end effector 4 in the clamped position is greater than the cross-sectional area of the end effector 4 in the trocar position.
Operation - Blue Cartridge
[0068] For the blue cartridge 16, the end effector 4 has reached the clamped position after the cam pin 92 has reached the proximal end of the second segment 86 of the cam paths 82 in the anvil 12, such that it cannot move further proximally.
Alternately, the cam pin 92 may only move partially along the second segment 86 before it can no longer advance, due to the force needed to further compress the tissue being greater than the force that can be exerted by the cam pin 92. After the tissue has been clamped, the surgical stapler 2 is ready to fire. Optionally, a locking feature may be provided in the handle 8 or elsewhere to ensure that the end effector 4 remains locked. Such locking may be performed at the discretion of the user, or automatically, such as by immobilizing the clamp strip 90 to prevent it from moving after the end effector 4 reaches the clamped position. [0069] The staples 18 in the blue cartridge 16 are designed to operate most efficaciously when deployed across a clamp gap of generally 0.035 inches. Referring also to FIG. 23, the clamp gap 144 is defined as the space between the anvil 12 and the cartridge 16, 30, measured longitudinally at the distal end of the tissue stop 138. The location of measurement is specified due to the fact that the anvil 12 angles downward in the distal direction in the absence of tissue, as described above. Thus, when the blue cartridge 16 is positioned in the jaw 14, the clamp gap 144 is advantageously substantially 0.035 inches. The clamp gap 144 is controlled by the position of the shuttles 100. As set forth above, when the blue cartridge 14 is loaded into the jaw 14, each pivot pin 72 is located in the upper, proximal corner of the center aperture 102 of the corresponding shuttle 100. This height of the pivot pins 72 results in an angle of the anvil 12 downward in the distal direction such that the clamp gap 144 measured at the distal end of the tissue stop 138, which is distal to the pivot pins 72, is the appropriate amount of 0.035 inches for a blue cartridge 16. At that height, each pivot pin 72 may be located at or near the upper end of the corresponding pivot pin slot 99 in the jaw 14. Alternately, at least one pivot pin 72 may be spaced downwardly from the upper end of the corresponding pivot pin slot 99 in the jaw 14.
[0070] Referring also to FIG. 17, in order to deploy staples 18 from the blue cartridge 16, the deployment strip 74 is advanced distally. The cross pin 130, held by the detent finger 128, is advanced distally with the deployment strip 74. Due to the spacing between the anvil 12 and the blue cartridge 16 set by the shuttles 100, the cross pin 130 is at substantially the same height relative to the blue cartridge 16 as the travel slots 136. That is, the cross pin 130 is in vertical alignment with the travel slots 136. As a result, as the cross pin 130 advances distally, it slides into the travel slots 136, held by the detent finger 128.
[0071] Referring also to FIG. 8, in addition, as the deployment strip 74 advances distally, the deployment strip 74 contacts the fin 66 of the sled 40, and thereby pushes the sled 40 distally. As the sled 40 advances distally, the wedges 42 and knife 44 advance distally. Each wedge 42 contacts, deforms, and then shears from the feeder belt 20 one or more staples 18, in a linearly sequential manner. Each wedge 42 directly contacts one or more staples 18, without the need for an intermediate staple driver between the wedge 42 and any staple 18. Deformation of the staples 18 and subsequent breaking off of those staples 18 from the corresponding feeder belt 20 may be performed substantially as set forth in the Endocutter Document. The knife 44 may be positioned proximal to one or more wedges 42, such that staples 18 are sequentially deployed before the stapled tissue is cut by the blade 64 of the knife 44. Alternately, the knife 44 may be positioned differently on the sled 40 such that the blade 64 cuts tissue at a different time relative to stapling.
[0072] Referring also to FIG. 24, as the deployment strip 74 advances, the cross pin 130 continues to advance distally along the travel slots 136. Additionally, the foot 120, which is attached to the deployment strip 74, advances distally with the
deployment strip 74. The foot 120 may slide along a channel 148 defined in an undersurface of the jaw 14, such that the bottom of the foot 120 is substantially flush with the undersurface of the jaw 14, or may simply slide along the undersurface of the jaw 14. In either case, the foot 120 travels distally at a height that is substantially the same along the entire distance of travel of the deployment strip 74. The combination of the cross pin 130 held in the travel slots 136 and by the deployment strip 74, and the foot 120 extending from the deployment strip 74 and sliding along a defined surface on the jaw 14, provides additional localized clamping between the cross pin 130 and the foot 120 as the deployment strip 74 advances. Because the foot 120 is constrained to travel along a longitudinal path defined by the channel 148 or the underside of the jaw 14, in order for the cross pin 130 to continue moving forward into the travel slots 136, the cross pin 130 must exert a downward force against the lower surfaces of the travel slots 136, locally increasing compression as necessary in order to counteract any bending of the anvil 12 as a result of compression of tissue between the anvil 12 and the blue cartridge 16.
[0073] Referring also to FIG. 25, as the deployment strip 74 nears the end of its travel distally, the knife 44 begins to rotate back downward to its down position.
Previously, the bottom of the knife 44 slid along the knife slot 150 defined in an undersurface of the jaw 14. The knife slot 150 may be defined completely through the undersurface of the jaw 14, or may simply be a recess within the jaw 14. As the deployment strip 74 nears the end of its travel, the bottom of the knife 44 contacts the distal end 152 of the knife slot 150. This contact occurs below the pivot axle 58 of the knife 44, thereby causing the knife 44 to rotate about the pivot axle 58 distally and downwardly. As the knife 44 rotates down and distally, it makes a final cut to tissue with a "karate chop" motion, if tissue is located at that position relative to the knife 44. Referring also to FIG. 26, the deployment strip 74 continues to advance, pushing the sled 40 and the knife 44 distally. The knife 44 has reached the down position, and is located within a parking space 154 defined within, and at or near the distal end of, the blue cartridge 16. In this way, after use the knife 44 is securely stowed in a manner in which it cannot cause inadvertent injury to the user. Advantageously, the sled 40 is frictionally locked into engagement, or otherwise affirmatively locked into engagement, with the parking space 154 such that the knife 44 is securely held inside the parking space 154. The deployment strip 74 may continue advancing distally until the cross pin 130 encounters the distal end of the travel slots 136, which stops further distal motion of the deployment strip 74. Alternately, or in addition, the foot 120 may encounter a foot stop 160 defined in the jaw 14, such as at the distal end of the channel 148, such that contact between the foot stop 160 and the foot 120 prevents further distal motion of the deployment strip 74. Alternately, the deployment strip 74 may be controlled by the handle 8 or in another manner to travel through a stroke and stop at a location that is defined other than by encountering a physical stop point that provides a barrier to further distal motion.
[0074] The tissue between the anvil 12 and blue cartridge 16 has now been stapled by staples 18 and divided by the knife 44. The deployment strip 74 is then moved proximally. The sled 40 is held in the parking space 154, and remains in the parking space 154 as the deployment strip 74 moves proximally to its initial location. The cross pin 130 moves proximally out of the travel slots 136 and into the pockets 134. At that time, the cross pin 130 and foot 120 no longer provide additional clamping to the end effector 4. The end effector 4 can then be undamped in the reverse of the manner in which it was clamped. The clamp strip 90 is moved distally, and the concomitant distal motion of the cam pin 92 moves the cam pin 92 distally within the second segment 86 of each cam path 82, which is oriented downward in the proximal direction. Further, the cam pin 92 is constrained to move linearly and longitudinally by the cam pin slots 98 defined in the jaw 14. Consequently, as the cam pin 92 moves distally within the cam pin slots 98, the orientation of the second segment 86 of each cam path 82 defined in the anvil 12 causes the cam pin 92 to push the anvil 12 downward at the point of contact between the cam pin 92 and the anvil 12. As the proximal end of the anvil 12 is pushed downward, each pivot pin 72 experiences a force that urges that pivot pin 72 upward. The end effector 4 thus returns to the open position.
[0075] The end effector 4 may then be withdrawn from the patient through a trocar, where the trocar was used to insert the end effector 4 into the patient. The end effector 4 may be placed in trocar position as described above. The end effector 4 is then withdrawn through the trocar. As is understood to those of ordinary skill in the art, a trocar is simply a tube with a lumen defined therein. Where the optional flexible tip 200 is attached to the cartridge 16, 30, the end effector 4 is pulled proximally into the lumen of the trocar. Where the flexible tip 200 has been moved upward and proximally to the deformed position of FIG. 32, the distal end 206 of that flexible tip 200 extends outside the diameter 210 defined by the outer surface of the end effector 4 in trocar position. Consequently, it may lie outside the diameter of the lumen of the trocar.
However, as the end effector 4 is moved proximally into the lumen of the trocar, a portion of the flexible tip 200 at or near the distal end 206 may contact the distal end of the trocar. This contact between the distal end of the trocar and the flexible tip 200 bends the flexible tip 200 back toward or to its initial position, within the diameter 210 defined by the outer surface of the end effector 4 in trocar position. In this way, the end effector 4 can be withdrawn from the patient through the lumen of the trocar. Similarly, where a trocar port is utilized instead of a trocar, the same deformation of the flexible tip 200 back to a position within the diameter 210 occurs when the flexible tip 200 in the deformed position contacts an edge of the trocar port and is bent back to a position within the diameter 210.
[0076] After the end effector 4 has been opened, the user can remove the spent blue cartridge 16. The sled 40, including the knife 44, is part of the spent blue cartridge 16, and is disposable along with the remainder of the spent blue cartridge 16. At that time, if the user wishes to perform further treatment of the patient, the user can insert a blue cartridge 16 or a white cartridge 30 into the jaw 14 of the end effector 4.
Operation - White Cartridge
[0077] Referring also to FIG. 27, the cam pin 92 need not travel proximally as far to clamp a white cartridge 30 as a blue cartridge 16. This is because the tissue to be clamped when a white cartridge 30 is used is thinner than the tissue clamped when a blue cartridge 16 is used, so that less force is necessary to effectuate clamping. The cam pin 92 need not travel completely to the proximal end of the second segment 86 of the cam paths 82 in the anvil 12, or the proximal ends of the cam pin slots 98 in the jaw 14, in order for the end effector to reach the clamped position when a white cartridge 30 is in place in the jaw 14. Alternately, the cam pin 92 may move completely the proximal end of the second segment 86 of the cam paths 82 in the anvil 12, and/or the proximal ends of the cam pin slots 98 in the jaw 14, to effectuate clamping where a white cartridge 30 is loaded into the jaw 14. As another example, it may be desirable for the cam pin 92 to move a fixed amount proximally each time clamping is performed in order to simplify construction and operation of the surgical stapler 2. If so, a pre-loaded compression spring (not shown) may be connected to the clamp strip 90, where the compression loaded is equal to the desired maximum tissue pressure to be exerted by the end effector 4 in clamped position. Further motion of the cam pin 92 proximally, after that force has been reached, is taken up by the spring, which absorbs the "extra" stroke of the clamp strip 90. In this way, the end effector 4 is clamped to a
predetermined force, rather than clamped to the position of the cam pin 92 within the end effector 4. After the tissue has been clamped, the surgical stapler 2 is ready to fire. Optionally, a locking feature may be provided in the handle 8 or elsewhere to ensure that the end effector 4 remains locked. Such locking may be performed at the discretion of the user, or automatically, such as by immobilizing the clamp strip 90 to prevent it from moving after the end effector 4 reaches the clamped position.
[0078] Referring also to FIG. 23, the staples 18 in the white cartridge 30 are designed to operate most efficaciously when deployed across a clamp gap 144 of generally 0.020 inch. The clamp gap 144 is controlled by the position of the shuttles 100. As set forth above, when the white cartridge 30 is loaded into the jaw 14, each pivot pin 72 is located in the upper, distal corner of the center aperture 102 of the corresponding shuttle 100. This height of the pivot pins 72 results in an angle of the anvil 12 downward in the distal direction such that the clamp gap 144 measured at the distal end of the tissue stop 138, which is distal to the pivot pins 72, is the appropriate amount of 0.020 inches for a blue cartridge 16. In this way, the cartridges 16, 30 each set a discrete clamp gap 144, such that the end effector 4 is configured to provide at least two discrete clamp gaps 144. Further, that height of each pivot pin 72 may place it substantially in the middle of the corresponding pivot pin slot 99. Alternately, at least one pivot pin 72 may be positioned against the lower end of the pivot pin slot 99 in the clamped position. In the clamped position, the height of each pivot pin 72 when the white cartridge 30 is used is lower than the height of each pivot pin 72 when the blue cartridge 16 is used.
[0079] Referring also to FIG. 28, in order to deploy staples 18 from the white cartridge 30, the deployment strip 74 is advanced distally. The cross pin 130, held by the detent finger 128, is advanced distally with the deployment strip 74. Due to the spacing between the anvil 12 and the white cartridge 30 set by the shuttles 100, the cross pin 130 is located higher relative to the white cartridge 30 as the travel slots 136. That is, the cross pin 130 is out of vertical alignment with the travel slots 136. As a result, as the cross pin 130 advances distally, it encounters the front wall 156 of each pocket 134. Continued motion distally of the deployment strip 74 thereby forces the cross pin 130 against the front wall 156, consequently forcing the cross pin 130 off of the detent finger 128 and into the first channel 124. As the deployment strip 74 continues to move distally, the cross pin 130 continues to slide into the first channel 124. The first channel 124 is oriented longitudinally, and downward in the longitudinal direction. Thus, the cross pin 130 continues to slide relative to the first channel 124 until the cross pin 130 is vertically aligned with the travel slots 136. At that time, further distal motion of the deployment strip 74 urges the cross pin 130 into the travel slots 136. Referring also to FIG. 29, the first channel 124 may be configured such that the proximal end of the first channel 124 is at substantially the same height relative to the white cartridge 30 as the travel slots 136, such that the cross pin 130 is located at the proximal end of the first channel 124 when the cross pin 130 is vertically aligned with the travel slots 136. This ability of the cross pin 130 to change vertical height depending on the clamp gap 144 set by the inserted cartridge 16, 30 allows the end effector 4 to clamp effectively at two or more discrete clamp gaps 144.
[0080] Deployment of staples 18 from the white cartridge 30 is performed substantially as described above with regard to the blue cartridge 16, and in the
Endocutter Document. Advancement of the deployment strip 74 pushes the sled 40 distally, which in turn deforms staples 18, breaks staples 18 from the corresponding feeder belt 20, and cuts the stapled tissue held between the anvil 12 and the white cartridge 30. Continued advancement of the deployment strip 74 completes a firing stroke, after which the knife 44 enters the parking space 154 at the distal end of the white cartridge 30. The deployment strip 74 may then be retracted proximally and the end effector 4 undamped and returned to the open position, at which time the user can remove the spent white cartridge 30. The sled 40, including the knife 44, is part of the spent white cartridge 30, and is disposable along with the remainder of the spent white cartridge 30. If the user wishes to perform further treatment of the patient, the user can insert a blue cartridge 16 or a white cartridge 30 into the jaw 14 of the end effector 4.
Manual Clamp Gap Setting [0081] As another example of the end effector 4, the clamp gap 144 optionally may be set manually, rather then automatically. By way of example, the shuttles 100 may be movable longitudinally as a result of manual intervention. A cable, rod, strip or other structure may extend from the shuttles 100 to the handle 8, such that the user can adjust the longitudinal position of the shuttles 100 by way of manual input to the handle 8. As another example, the longitudinal position of the shuttles 100 may be set by way of a switch, such as a slider, on the end effector 4 itself. Where the clamp gap 144 is set manually, the gap-setting features 36, 38 may be omitted from the cartridges 16, 30.
[0082] While the invention has been described in detail, it will be apparent to one skilled in the art that various changes and modifications can be made and equivalents employed, without departing from the present invention. It is to be understood that the invention is not limited to the details of construction, the
arrangements of components, and/or the method set forth in the above description or illustrated in the drawings. Statements in the abstract of this document, and any summary statements in this document, are merely exemplary; they are not, and cannot be interpreted as, limiting the scope of the claims. Further, the figures are merely exemplary and not limiting. Topical headings and subheadings are for the convenience of the reader only. They should not and cannot be construed to have any substantive significance, meaning or interpretation, and should not and cannot be deemed to indicate that all of the information relating to any particular topic is to be found under or limited to any particular heading or subheading. Therefore, the invention is not to be restricted or limited except in accordance with the following claims and their legal equivalents.

Claims

CLAIMS What is claimed is:
1. A surgical apparatus for treating tissue, comprising:
a plurality of surgical staples;
a cartridge that holds said surgical staples; and
a bendable tip extending from said staple cartridge.
2. The surgical apparatus of claim 1, wherein said surgical staples are frangibly affixed to said cartridge.
3. The surgical apparatus of claim 1, wherein said bendable tip is malleable.
4. The surgical apparatus of claim 1, wherein said bendable tip comprises a malleable core and a soft outer cover that surrounds said malleable core at least in part.
5. The surgical apparatus of claim 4, wherein said soft outer cover is composed of silicone.
6. The surgical apparatus of claim 1, wherein said bendable tip extends from the distal end of said cartridge.
7. The surgical apparatus of claim 1, wherein said bendable tip is curved upward along the distal direction.
8. The surgical apparatus of claim 1, wherein an aperture is defined through said bendable tip.
9. A surgical apparatus for treating tissue, comprising:
an anvil;
a jaw pivotally connected to said anvil;
a staple cartridge detachably connected to said jaw; and
a bendable tip extending from said staple cartridge.
10. The surgical apparatus of claim 9, wherein said bendable tip is malleable.
11. The surgical apparatus of claim 9, wherein said bendable tip comprises a malleable core and a soft outer cover that surrounds said malleable core at least in part.
12. The surgical apparatus of claim 11, wherein said soft outer cover is composed of silicone.
13. The surgical apparatus of claim 11, wherein said soft outer core is molded onto said cartridge.
14. The surgical apparatus of claim 9, wherein said anvil and said staple cartridge are movable to a trocar position; wherein said bendable tip is in an initial position when said anvil and said staple cartridge are in said trocar position, and wherein in said initial position said bendable tip is within a diameter defined by the outer surfaces of said anvil and said staple cartridge in said trocar position.
15. The surgical apparatus of claim 14, wherein at least the distal end of said bendable tip is bendable, out of said diameter defined by the outer surfaces of said anvil and said staple cartridge in said trocar position, to a deformed position.
16. The surgical apparatus of claim 15, further comprising a trocar having a lumen defined therein; wherein said anvil and said staple cartridge are movable to said trocar position while said bendable tip is in said deformed position; and wherein said anvil and said staple cartridge are retractable proximally into said lumen such that said bendable tip in said deformed position contacts the distal end of said trocar and is urged toward its said initial position.
17. The surgical apparatus of claim 9, wherein said surgical staples are frangibly affixed to said cartridge.
18. The surgical apparatus of claim 9, wherein said bendable tip extends from the distal end of said cartridge.
19. The surgical apparatus of claim 9, wherein said bendable tip is curved upward along the distal direction.
20. The surgical apparatus of claim 9, wherein an aperture is defined through said bendable tip.
EP13773122.0A2012-04-042013-03-29Surgical staple cartridge with bendable tipWithdrawnEP2833802A4 (en)

Applications Claiming Priority (2)

Application NumberPriority DateFiling DateTitle
US201213439767A2012-04-042012-04-04
PCT/US2013/034587WO2013151888A1 (en)2012-04-042013-03-29Surgical staple cartridge with bendable tip

Publications (2)

Publication NumberPublication Date
EP2833802A1true EP2833802A1 (en)2015-02-11
EP2833802A4 EP2833802A4 (en)2015-11-18

Family

ID=49300957

Family Applications (1)

Application NumberTitlePriority DateFiling Date
EP13773122.0AWithdrawnEP2833802A4 (en)2012-04-042013-03-29Surgical staple cartridge with bendable tip

Country Status (3)

CountryLink
EP (1)EP2833802A4 (en)
JP (1)JP2015513978A (en)
WO (1)WO2013151888A1 (en)

Families Citing this family (464)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US9060770B2 (en)2003-05-202015-06-23Ethicon Endo-Surgery, Inc.Robotically-driven surgical instrument with E-beam driver
US20070084897A1 (en)2003-05-202007-04-19Shelton Frederick E IvArticulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US11890012B2 (en)2004-07-282024-02-06Cilag Gmbh InternationalStaple cartridge comprising cartridge body and attached support
US9072535B2 (en)2011-05-272015-07-07Ethicon Endo-Surgery, Inc.Surgical stapling instruments with rotatable staple deployment arrangements
US8215531B2 (en)2004-07-282012-07-10Ethicon Endo-Surgery, Inc.Surgical stapling instrument having a medical substance dispenser
US11998198B2 (en)2004-07-282024-06-04Cilag Gmbh InternationalSurgical stapling instrument incorporating a two-piece E-beam firing mechanism
US7669746B2 (en)2005-08-312010-03-02Ethicon Endo-Surgery, Inc.Staple cartridges for forming staples having differing formed staple heights
US7934630B2 (en)2005-08-312011-05-03Ethicon Endo-Surgery, Inc.Staple cartridges for forming staples having differing formed staple heights
US11246590B2 (en)2005-08-312022-02-15Cilag Gmbh InternationalStaple cartridge including staple drivers having different unfired heights
US10159482B2 (en)2005-08-312018-12-25Ethicon LlcFastener cartridge assembly comprising a fixed anvil and different staple heights
US11484312B2 (en)2005-08-312022-11-01Cilag Gmbh InternationalStaple cartridge comprising a staple driver arrangement
US9237891B2 (en)2005-08-312016-01-19Ethicon Endo-Surgery, Inc.Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US20070106317A1 (en)2005-11-092007-05-10Shelton Frederick E IvHydraulically and electrically actuated articulation joints for surgical instruments
US8708213B2 (en)2006-01-312014-04-29Ethicon Endo-Surgery, Inc.Surgical instrument having a feedback system
US8186555B2 (en)2006-01-312012-05-29Ethicon Endo-Surgery, Inc.Motor-driven surgical cutting and fastening instrument with mechanical closure system
US7753904B2 (en)2006-01-312010-07-13Ethicon Endo-Surgery, Inc.Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US20110024477A1 (en)2009-02-062011-02-03Hall Steven GDriven Surgical Stapler Improvements
US11224427B2 (en)2006-01-312022-01-18Cilag Gmbh InternationalSurgical stapling system including a console and retraction assembly
US11278279B2 (en)2006-01-312022-03-22Cilag Gmbh InternationalSurgical instrument assembly
US20120292367A1 (en)2006-01-312012-11-22Ethicon Endo-Surgery, Inc.Robotically-controlled end effector
US8820603B2 (en)2006-01-312014-09-02Ethicon Endo-Surgery, Inc.Accessing data stored in a memory of a surgical instrument
US20110295295A1 (en)2006-01-312011-12-01Ethicon Endo-Surgery, Inc.Robotically-controlled surgical instrument having recording capabilities
US7845537B2 (en)2006-01-312010-12-07Ethicon Endo-Surgery, Inc.Surgical instrument having recording capabilities
US11793518B2 (en)2006-01-312023-10-24Cilag Gmbh InternationalPowered surgical instruments with firing system lockout arrangements
US8992422B2 (en)2006-03-232015-03-31Ethicon Endo-Surgery, Inc.Robotically-controlled endoscopic accessory channel
US8322455B2 (en)2006-06-272012-12-04Ethicon Endo-Surgery, Inc.Manually driven surgical cutting and fastening instrument
US10568652B2 (en)2006-09-292020-02-25Ethicon LlcSurgical staples having attached drivers of different heights and stapling instruments for deploying the same
US7506791B2 (en)2006-09-292009-03-24Ethicon Endo-Surgery, Inc.Surgical stapling instrument with mechanical mechanism for limiting maximum tissue compression
US11980366B2 (en)2006-10-032024-05-14Cilag Gmbh InternationalSurgical instrument
US8652120B2 (en)2007-01-102014-02-18Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between control unit and sensor transponders
US11291441B2 (en)2007-01-102022-04-05Cilag Gmbh InternationalSurgical instrument with wireless communication between control unit and remote sensor
US8632535B2 (en)2007-01-102014-01-21Ethicon Endo-Surgery, Inc.Interlock and surgical instrument including same
US8684253B2 (en)2007-01-102014-04-01Ethicon Endo-Surgery, Inc.Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US11039836B2 (en)2007-01-112021-06-22Cilag Gmbh InternationalStaple cartridge for use with a surgical stapling instrument
US20080169333A1 (en)2007-01-112008-07-17Shelton Frederick ESurgical stapler end effector with tapered distal end
US7673782B2 (en)2007-03-152010-03-09Ethicon Endo-Surgery, Inc.Surgical stapling instrument having a releasable buttress material
US8893946B2 (en)2007-03-282014-11-25Ethicon Endo-Surgery, Inc.Laparoscopic tissue thickness and clamp load measuring devices
US8931682B2 (en)2007-06-042015-01-13Ethicon Endo-Surgery, Inc.Robotically-controlled shaft based rotary drive systems for surgical instruments
US11564682B2 (en)2007-06-042023-01-31Cilag Gmbh InternationalSurgical stapler device
US7753245B2 (en)2007-06-222010-07-13Ethicon Endo-Surgery, Inc.Surgical stapling instruments
US11849941B2 (en)2007-06-292023-12-26Cilag Gmbh InternationalStaple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US9179912B2 (en)2008-02-142015-11-10Ethicon Endo-Surgery, Inc.Robotically-controlled motorized surgical cutting and fastening instrument
US7819298B2 (en)2008-02-142010-10-26Ethicon Endo-Surgery, Inc.Surgical stapling apparatus with control features operable with one hand
US8636736B2 (en)2008-02-142014-01-28Ethicon Endo-Surgery, Inc.Motorized surgical cutting and fastening instrument
US7866527B2 (en)2008-02-142011-01-11Ethicon Endo-Surgery, Inc.Surgical stapling apparatus with interlockable firing system
US8573465B2 (en)2008-02-142013-11-05Ethicon Endo-Surgery, Inc.Robotically-controlled surgical end effector system with rotary actuated closure systems
US8758391B2 (en)2008-02-142014-06-24Ethicon Endo-Surgery, Inc.Interchangeable tools for surgical instruments
JP5410110B2 (en)2008-02-142014-02-05エシコン・エンド−サージェリィ・インコーポレイテッド Surgical cutting / fixing instrument with RF electrode
US11986183B2 (en)2008-02-142024-05-21Cilag Gmbh InternationalSurgical cutting and fastening instrument comprising a plurality of sensors to measure an electrical parameter
US11272927B2 (en)2008-02-152022-03-15Cilag Gmbh InternationalLayer arrangements for surgical staple cartridges
US9585657B2 (en)2008-02-152017-03-07Ethicon Endo-Surgery, LlcActuator for releasing a layer of material from a surgical end effector
US11648005B2 (en)2008-09-232023-05-16Cilag Gmbh InternationalRobotically-controlled motorized surgical instrument with an end effector
US9386983B2 (en)2008-09-232016-07-12Ethicon Endo-Surgery, LlcRobotically-controlled motorized surgical instrument
US9005230B2 (en)2008-09-232015-04-14Ethicon Endo-Surgery, Inc.Motorized surgical instrument
US8210411B2 (en)2008-09-232012-07-03Ethicon Endo-Surgery, Inc.Motor-driven surgical cutting instrument
US8608045B2 (en)2008-10-102013-12-17Ethicon Endo-Sugery, Inc.Powered surgical cutting and stapling apparatus with manually retractable firing system
US8517239B2 (en)2009-02-052013-08-27Ethicon Endo-Surgery, Inc.Surgical stapling instrument comprising a magnetic element driver
RU2525225C2 (en)2009-02-062014-08-10Этикон Эндо-Серджери, Инк.Improvement of drive surgical suturing instrument
US8444036B2 (en)2009-02-062013-05-21Ethicon Endo-Surgery, Inc.Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
US8851354B2 (en)2009-12-242014-10-07Ethicon Endo-Surgery, Inc.Surgical cutting instrument that analyzes tissue thickness
US8220688B2 (en)2009-12-242012-07-17Ethicon Endo-Surgery, Inc.Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8783543B2 (en)2010-07-302014-07-22Ethicon Endo-Surgery, Inc.Tissue acquisition arrangements and methods for surgical stapling devices
US11298125B2 (en)2010-09-302022-04-12Cilag Gmbh InternationalTissue stapler having a thickness compensator
US10945731B2 (en)2010-09-302021-03-16Ethicon LlcTissue thickness compensator comprising controlled release and expansion
US9016542B2 (en)2010-09-302015-04-28Ethicon Endo-Surgery, Inc.Staple cartridge comprising compressible distortion resistant components
US9386988B2 (en)2010-09-302016-07-12Ethicon End-Surgery, LLCRetainer assembly including a tissue thickness compensator
US9629814B2 (en)2010-09-302017-04-25Ethicon Endo-Surgery, LlcTissue thickness compensator configured to redistribute compressive forces
US9364233B2 (en)2010-09-302016-06-14Ethicon Endo-Surgery, LlcTissue thickness compensators for circular surgical staplers
US11925354B2 (en)2010-09-302024-03-12Cilag Gmbh InternationalStaple cartridge comprising staples positioned within a compressible portion thereof
US9232941B2 (en)2010-09-302016-01-12Ethicon Endo-Surgery, Inc.Tissue thickness compensator comprising a reservoir
US9351730B2 (en)2011-04-292016-05-31Ethicon Endo-Surgery, LlcTissue thickness compensator comprising channels
US11812965B2 (en)2010-09-302023-11-14Cilag Gmbh InternationalLayer of material for a surgical end effector
US9788834B2 (en)2010-09-302017-10-17Ethicon LlcLayer comprising deployable attachment members
US12213666B2 (en)2010-09-302025-02-04Cilag Gmbh InternationalTissue thickness compensator comprising layers
US8695866B2 (en)2010-10-012014-04-15Ethicon Endo-Surgery, Inc.Surgical instrument having a power control circuit
AU2012250197B2 (en)2011-04-292017-08-10Ethicon Endo-Surgery, Inc.Staple cartridge comprising staples positioned within a compressible portion thereof
US11207064B2 (en)2011-05-272021-12-28Cilag Gmbh InternationalAutomated end effector component reloading system for use with a robotic system
US9044230B2 (en)2012-02-132015-06-02Ethicon Endo-Surgery, Inc.Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
BR112014024098B1 (en)2012-03-282021-05-25Ethicon Endo-Surgery, Inc. staple cartridge
JP6224070B2 (en)2012-03-282017-11-01エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Retainer assembly including tissue thickness compensator
MX358135B (en)2012-03-282018-08-06Ethicon Endo Surgery IncTissue thickness compensator comprising a plurality of layers.
US9101358B2 (en)2012-06-152015-08-11Ethicon Endo-Surgery, Inc.Articulatable surgical instrument comprising a firing drive
BR112014032776B1 (en)2012-06-282021-09-08Ethicon Endo-Surgery, Inc SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM
US9282974B2 (en)2012-06-282016-03-15Ethicon Endo-Surgery, LlcEmpty clip cartridge lockout
JP6290201B2 (en)2012-06-282018-03-07エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Lockout for empty clip cartridge
US12383267B2 (en)2012-06-282025-08-12Cilag Gmbh InternationalRobotically powered surgical device with manually-actuatable reversing system
US20140005718A1 (en)2012-06-282014-01-02Ethicon Endo-Surgery, Inc.Multi-functional powered surgical device with external dissection features
US20140001231A1 (en)2012-06-282014-01-02Ethicon Endo-Surgery, Inc.Firing system lockout arrangements for surgical instruments
US9408606B2 (en)2012-06-282016-08-09Ethicon Endo-Surgery, LlcRobotically powered surgical device with manually-actuatable reversing system
US9289256B2 (en)2012-06-282016-03-22Ethicon Endo-Surgery, LlcSurgical end effectors having angled tissue-contacting surfaces
US11278284B2 (en)2012-06-282022-03-22Cilag Gmbh InternationalRotary drive arrangements for surgical instruments
BR112015021082B1 (en)2013-03-012022-05-10Ethicon Endo-Surgery, Inc surgical instrument
RU2672520C2 (en)2013-03-012018-11-15Этикон Эндо-Серджери, Инк.Hingedly turnable surgical instruments with conducting ways for signal transfer
US20140252064A1 (en)*2013-03-052014-09-11Covidien LpSurgical stapling device including adjustable fastener crimping
US9629629B2 (en)2013-03-142017-04-25Ethicon Endo-Surgey, LLCControl systems for surgical instruments
US9808244B2 (en)2013-03-142017-11-07Ethicon LlcSensor arrangements for absolute positioning system for surgical instruments
US9826976B2 (en)2013-04-162017-11-28Ethicon LlcMotor driven surgical instruments with lockable dual drive shafts
BR112015026109B1 (en)2013-04-162022-02-22Ethicon Endo-Surgery, Inc surgical instrument
MX369362B (en)2013-08-232019-11-06Ethicon Endo Surgery LlcFiring member retraction devices for powered surgical instruments.
US9775609B2 (en)2013-08-232017-10-03Ethicon LlcTamper proof circuit for surgical instrument battery pack
MX369672B (en)2013-12-172019-11-15Standard Bariatrics IncResection line guide for a medical procedure and method of using same.
US20150173749A1 (en)2013-12-232015-06-25Ethicon Endo-Surgery, Inc.Surgical staples and staple cartridges
US20150173756A1 (en)2013-12-232015-06-25Ethicon Endo-Surgery, Inc.Surgical cutting and stapling methods
US9839428B2 (en)2013-12-232017-12-12Ethicon LlcSurgical cutting and stapling instruments with independent jaw control features
US9724092B2 (en)2013-12-232017-08-08Ethicon LlcModular surgical instruments
US9962161B2 (en)2014-02-122018-05-08Ethicon LlcDeliverable surgical instrument
JP6462004B2 (en)2014-02-242019-01-30エシコン エルエルシー Fastening system with launcher lockout
US10004497B2 (en)2014-03-262018-06-26Ethicon LlcInterface systems for use with surgical instruments
BR112016021943B1 (en)2014-03-262022-06-14Ethicon Endo-Surgery, Llc SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE
US12232723B2 (en)2014-03-262025-02-25Cilag Gmbh InternationalSystems and methods for controlling a segmented circuit
US20150272580A1 (en)2014-03-262015-10-01Ethicon Endo-Surgery, Inc.Verification of number of battery exchanges/procedure count
US10013049B2 (en)2014-03-262018-07-03Ethicon LlcPower management through sleep options of segmented circuit and wake up control
AU2015241193B2 (en)2014-03-292020-01-02Standard Bariatrics, Inc.End effectors surgical stapling devices, and methods of using same
WO2015153324A1 (en)2014-03-292015-10-08Standard Bariatrics, Inc.End effectors, surgical stapling devices, and methods of using same
BR112016023825B1 (en)2014-04-162022-08-02Ethicon Endo-Surgery, Llc STAPLE CARTRIDGE FOR USE WITH A SURGICAL STAPLER AND STAPLE CARTRIDGE FOR USE WITH A SURGICAL INSTRUMENT
CN106456176B (en)2014-04-162019-06-28伊西康内外科有限责任公司 Fastener Cartridge Including Extensions With Different Configurations
CN106456159B (en)2014-04-162019-03-08伊西康内外科有限责任公司 Fastener Cartridge Assembly and Nail Retainer Cover Arrangement
US10470768B2 (en)2014-04-162019-11-12Ethicon LlcFastener cartridge including a layer attached thereto
US10327764B2 (en)2014-09-262019-06-25Ethicon LlcMethod for creating a flexible staple line
US20150297225A1 (en)2014-04-162015-10-22Ethicon Endo-Surgery, Inc.Fastener cartridges including extensions having different configurations
ES2861258T3 (en)*2014-06-112021-10-06Applied Med Resources Circumferential Shot Surgical Stapler
US11311294B2 (en)2014-09-052022-04-26Cilag Gmbh InternationalPowered medical device including measurement of closure state of jaws
WO2016037158A1 (en)2014-09-052016-03-10Standard Bariatrics, Inc.Sleeve gastrectomy calibration tube and method of using same
US10135242B2 (en)2014-09-052018-11-20Ethicon LlcSmart cartridge wake up operation and data retention
BR112017004361B1 (en)2014-09-052023-04-11Ethicon Llc ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT
US10105142B2 (en)2014-09-182018-10-23Ethicon LlcSurgical stapler with plurality of cutting elements
US11523821B2 (en)2014-09-262022-12-13Cilag Gmbh InternationalMethod for creating a flexible staple line
CN107427300B (en)2014-09-262020-12-04伊西康有限责任公司 Surgical suture buttresses and auxiliary materials
US10076325B2 (en)2014-10-132018-09-18Ethicon LlcSurgical stapling apparatus comprising a tissue stop
US9924944B2 (en)2014-10-162018-03-27Ethicon LlcStaple cartridge comprising an adjunct material
US10517594B2 (en)2014-10-292019-12-31Ethicon LlcCartridge assemblies for surgical staplers
US11141153B2 (en)2014-10-292021-10-12Cilag Gmbh InternationalStaple cartridges comprising driver arrangements
US9844376B2 (en)2014-11-062017-12-19Ethicon LlcStaple cartridge comprising a releasable adjunct material
US10736636B2 (en)2014-12-102020-08-11Ethicon LlcArticulatable surgical instrument system
MX389118B (en)2014-12-182025-03-20Ethicon Llc SURGICAL INSTRUMENT WITH AN ANVIL THAT CAN BE SELECTIVELY MOVED ON A DISCRETE, NON-MOBILE AXIS RELATIVE TO A STAPLE CARTRIDGE.
US9844375B2 (en)2014-12-182017-12-19Ethicon LlcDrive arrangements for articulatable surgical instruments
US9987000B2 (en)2014-12-182018-06-05Ethicon LlcSurgical instrument assembly comprising a flexible articulation system
US10085748B2 (en)2014-12-182018-10-02Ethicon LlcLocking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US9844374B2 (en)2014-12-182017-12-19Ethicon LlcSurgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US9943309B2 (en)2014-12-182018-04-17Ethicon LlcSurgical instruments with articulatable end effectors and movable firing beam support arrangements
US10159483B2 (en)2015-02-272018-12-25Ethicon LlcSurgical apparatus configured to track an end-of-life parameter
US11154301B2 (en)2015-02-272021-10-26Cilag Gmbh InternationalModular stapling assembly
US9901342B2 (en)2015-03-062018-02-27Ethicon Endo-Surgery, LlcSignal and power communication system positioned on a rotatable shaft
JP2020121162A (en)2015-03-062020-08-13エシコン エルエルシーEthicon LLCTime dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement
US10687806B2 (en)2015-03-062020-06-23Ethicon LlcAdaptive tissue compression techniques to adjust closure rates for multiple tissue types
US9924961B2 (en)2015-03-062018-03-27Ethicon Endo-Surgery, LlcInteractive feedback system for powered surgical instruments
US9993248B2 (en)2015-03-062018-06-12Ethicon Endo-Surgery, LlcSmart sensors with local signal processing
US10245033B2 (en)2015-03-062019-04-02Ethicon LlcSurgical instrument comprising a lockable battery housing
US10548504B2 (en)2015-03-062020-02-04Ethicon LlcOverlaid multi sensor radio frequency (RF) electrode system to measure tissue compression
US10617412B2 (en)2015-03-062020-04-14Ethicon LlcSystem for detecting the mis-insertion of a staple cartridge into a surgical stapler
US9808246B2 (en)2015-03-062017-11-07Ethicon Endo-Surgery, LlcMethod of operating a powered surgical instrument
US10441279B2 (en)2015-03-062019-10-15Ethicon LlcMultiple level thresholds to modify operation of powered surgical instruments
US9918717B2 (en)*2015-03-182018-03-20Covidien LpPivot mechanism for surgical device
US10433844B2 (en)2015-03-312019-10-08Ethicon LlcSurgical instrument with selectively disengageable threaded drive systems
US10835249B2 (en)2015-08-172020-11-17Ethicon LlcImplantable layers for a surgical instrument
RU2725081C2 (en)2015-08-262020-06-29ЭТИКОН ЭлЭлСиStrips with surgical staples allowing the presence of staples with variable properties and providing simple loading of the cartridge
MX2022009705A (en)2015-08-262022-11-07Ethicon LlcSurgical staples comprising hardness variations for improved fastening of tissue.
US10980538B2 (en)2015-08-262021-04-20Ethicon LlcSurgical stapling configurations for curved and circular stapling instruments
MX2018002392A (en)2015-08-262018-08-01Ethicon LlcStaple cartridge assembly comprising various tissue compression gaps and staple forming gaps.
MX2022006189A (en)2015-09-022022-06-16Ethicon LlcSurgical staple configurations with camming surfaces located between portions supporting surgical staples.
US10238390B2 (en)2015-09-022019-03-26Ethicon LlcSurgical staple cartridges with driver arrangements for establishing herringbone staple patterns
US10285837B1 (en)2015-09-162019-05-14Standard Bariatrics, Inc.Systems and methods for measuring volume of potential sleeve in a sleeve gastrectomy
US10238386B2 (en)2015-09-232019-03-26Ethicon LlcSurgical stapler having motor control based on an electrical parameter related to a motor current
US10105139B2 (en)2015-09-232018-10-23Ethicon LlcSurgical stapler having downstream current-based motor control
US10327769B2 (en)2015-09-232019-06-25Ethicon LlcSurgical stapler having motor control based on a drive system component
US10363036B2 (en)2015-09-232019-07-30Ethicon LlcSurgical stapler having force-based motor control
US10299878B2 (en)2015-09-252019-05-28Ethicon LlcImplantable adjunct systems for determining adjunct skew
US11890015B2 (en)2015-09-302024-02-06Cilag Gmbh InternationalCompressible adjunct with crossing spacer fibers
US10433846B2 (en)2015-09-302019-10-08Ethicon LlcCompressible adjunct with crossing spacer fibers
US10980539B2 (en)2015-09-302021-04-20Ethicon LlcImplantable adjunct comprising bonded layers
US10478188B2 (en)2015-09-302019-11-19Ethicon LlcImplantable layer comprising a constricted configuration
US10368865B2 (en)2015-12-302019-08-06Ethicon LlcMechanisms for compensating for drivetrain failure in powered surgical instruments
US10292704B2 (en)2015-12-302019-05-21Ethicon LlcMechanisms for compensating for battery pack failure in powered surgical instruments
US10265068B2 (en)2015-12-302019-04-23Ethicon LlcSurgical instruments with separable motors and motor control circuits
BR112018016098B1 (en)2016-02-092023-02-23Ethicon Llc SURGICAL INSTRUMENT
US10413291B2 (en)2016-02-092019-09-17Ethicon LlcSurgical instrument articulation mechanism with slotted secondary constraint
US11213293B2 (en)2016-02-092022-01-04Cilag Gmbh InternationalArticulatable surgical instruments with single articulation link arrangements
US10448948B2 (en)2016-02-122019-10-22Ethicon LlcMechanisms for compensating for drivetrain failure in powered surgical instruments
US11224426B2 (en)2016-02-122022-01-18Cilag Gmbh InternationalMechanisms for compensating for drivetrain failure in powered surgical instruments
US10258331B2 (en)2016-02-122019-04-16Ethicon LlcMechanisms for compensating for drivetrain failure in powered surgical instruments
US10617413B2 (en)2016-04-012020-04-14Ethicon LlcClosure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US10413297B2 (en)2016-04-012019-09-17Ethicon LlcSurgical stapling system configured to apply annular rows of staples having different heights
US10357247B2 (en)2016-04-152019-07-23Ethicon LlcSurgical instrument with multiple program responses during a firing motion
US10335145B2 (en)2016-04-152019-07-02Ethicon LlcModular surgical instrument with configurable operating mode
US10828028B2 (en)2016-04-152020-11-10Ethicon LlcSurgical instrument with multiple program responses during a firing motion
US10456137B2 (en)2016-04-152019-10-29Ethicon LlcStaple formation detection mechanisms
US10405859B2 (en)2016-04-152019-09-10Ethicon LlcSurgical instrument with adjustable stop/start control during a firing motion
US11179150B2 (en)2016-04-152021-11-23Cilag Gmbh InternationalSystems and methods for controlling a surgical stapling and cutting instrument
US10426467B2 (en)2016-04-152019-10-01Ethicon LlcSurgical instrument with detection sensors
US11607239B2 (en)2016-04-152023-03-21Cilag Gmbh InternationalSystems and methods for controlling a surgical stapling and cutting instrument
US10492783B2 (en)2016-04-152019-12-03Ethicon, LlcSurgical instrument with improved stop/start control during a firing motion
US11317917B2 (en)2016-04-182022-05-03Cilag Gmbh InternationalSurgical stapling system comprising a lockable firing assembly
US20170296173A1 (en)2016-04-182017-10-19Ethicon Endo-Surgery, LlcMethod for operating a surgical instrument
US10363037B2 (en)2016-04-182019-07-30Ethicon LlcSurgical instrument system comprising a magnetic lockout
JP6980705B2 (en)2016-06-242021-12-15エシコン エルエルシーEthicon LLC Stapling system for use with wire staples and punched staples
JP6957532B2 (en)2016-06-242021-11-02エシコン エルエルシーEthicon LLC Staple cartridges including wire staples and punched staples
USD826405S1 (en)2016-06-242018-08-21Ethicon LlcSurgical fastener
US10893863B2 (en)2016-06-242021-01-19Ethicon LlcStaple cartridge comprising offset longitudinal staple rows
USD850617S1 (en)2016-06-242019-06-04Ethicon LlcSurgical fastener cartridge
USD847989S1 (en)2016-06-242019-05-07Ethicon LlcSurgical fastener cartridge
US10500000B2 (en)2016-08-162019-12-10Ethicon LlcSurgical tool with manual control of end effector jaws
JP2020501815A (en)2016-12-212020-01-23エシコン エルエルシーEthicon LLC Surgical stapling system
US20180168625A1 (en)2016-12-212018-06-21Ethicon Endo-Surgery, LlcSurgical stapling instruments with smart staple cartridges
US10426471B2 (en)2016-12-212019-10-01Ethicon LlcSurgical instrument with multiple failure response modes
MX2019007295A (en)2016-12-212019-10-15Ethicon LlcSurgical instrument system comprising an end effector lockout and a firing assembly lockout.
US11134942B2 (en)2016-12-212021-10-05Cilag Gmbh InternationalSurgical stapling instruments and staple-forming anvils
US10993715B2 (en)2016-12-212021-05-04Ethicon LlcStaple cartridge comprising staples with different clamping breadths
US11419606B2 (en)2016-12-212022-08-23Cilag Gmbh InternationalShaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US10687810B2 (en)2016-12-212020-06-23Ethicon LlcStepped staple cartridge with tissue retention and gap setting features
US11090048B2 (en)2016-12-212021-08-17Cilag Gmbh InternationalMethod for resetting a fuse of a surgical instrument shaft
US10582928B2 (en)2016-12-212020-03-10Ethicon LlcArticulation lock arrangements for locking an end effector in an articulated position in response to actuation of a jaw closure system
JP6983893B2 (en)2016-12-212021-12-17エシコン エルエルシーEthicon LLC Lockout configuration for surgical end effectors and replaceable tool assemblies
US10973516B2 (en)2016-12-212021-04-13Ethicon LlcSurgical end effectors and adaptable firing members therefor
US10945727B2 (en)2016-12-212021-03-16Ethicon LlcStaple cartridge with deformable driver retention features
US10813638B2 (en)2016-12-212020-10-27Ethicon LlcSurgical end effectors with expandable tissue stop arrangements
US10980536B2 (en)2016-12-212021-04-20Ethicon LlcNo-cartridge and spent cartridge lockout arrangements for surgical staplers
JP7010956B2 (en)2016-12-212022-01-26エシコン エルエルシー How to staple tissue
US10898186B2 (en)2016-12-212021-01-26Ethicon LlcStaple forming pocket arrangements comprising primary sidewalls and pocket sidewalls
US10568625B2 (en)2016-12-212020-02-25Ethicon LlcStaple cartridges and arrangements of staples and staple cavities therein
US10695055B2 (en)2016-12-212020-06-30Ethicon LlcFiring assembly comprising a lockout
JP7010957B2 (en)2016-12-212022-01-26エシコン エルエルシー Shaft assembly with lockout
US11684367B2 (en)2016-12-212023-06-27Cilag Gmbh InternationalStepped assembly having and end-of-life indicator
US20180168615A1 (en)2016-12-212018-06-21Ethicon Endo-Surgery, LlcMethod of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US10758229B2 (en)2016-12-212020-09-01Ethicon LlcSurgical instrument comprising improved jaw control
US10542982B2 (en)2016-12-212020-01-28Ethicon LlcShaft assembly comprising first and second articulation lockouts
US10485543B2 (en)2016-12-212019-11-26Ethicon LlcAnvil having a knife slot width
CN110087565A (en)2016-12-212019-08-02爱惜康有限责任公司Surgical stapling system
US20180168648A1 (en)2016-12-212018-06-21Ethicon Endo-Surgery, LlcDurability features for end effectors and firing assemblies of surgical stapling instruments
US11103244B2 (en)2017-02-172021-08-31Cilag Gmbh InternationalSurgical stapling end effector jaw with tip deflecting toward other jaw
US10729434B2 (en)*2017-02-172020-08-04Ethicon LlcSurgical stapler with insertable distal anvil tip
US11564684B2 (en)2017-02-172023-01-31Cilag Gmbh InternationalSurgical stapling end effector component with tip having varying bend angle
US11564687B2 (en)2017-02-172023-01-31Cilag Gmbh InternationalMethod of surgical stapling with end effector component having a curved tip
US10828031B2 (en)*2017-02-172020-11-10Ethicon LlcSurgical stapler with elastically deformable tip
US11272930B2 (en)2017-02-172022-03-15Cilag Gmbh InternationalMethod of surgical stapling with end effector component having a curved tip
US11090046B2 (en)2017-06-202021-08-17Cilag Gmbh InternationalSystems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US10813639B2 (en)2017-06-202020-10-27Ethicon LlcClosed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
USD879809S1 (en)2017-06-202020-03-31Ethicon LlcDisplay panel with changeable graphical user interface
US10881399B2 (en)2017-06-202021-01-05Ethicon LlcTechniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US10881396B2 (en)2017-06-202021-01-05Ethicon LlcSurgical instrument with variable duration trigger arrangement
US11517325B2 (en)2017-06-202022-12-06Cilag Gmbh InternationalClosed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US10327767B2 (en)2017-06-202019-06-25Ethicon LlcControl of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US11382638B2 (en)2017-06-202022-07-12Cilag Gmbh InternationalClosed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US10307170B2 (en)2017-06-202019-06-04Ethicon LlcMethod for closed loop control of motor velocity of a surgical stapling and cutting instrument
USD890784S1 (en)2017-06-202020-07-21Ethicon LlcDisplay panel with changeable graphical user interface
US10624633B2 (en)2017-06-202020-04-21Ethicon LlcSystems and methods for controlling motor velocity of a surgical stapling and cutting instrument
US10888321B2 (en)2017-06-202021-01-12Ethicon LlcSystems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US10646220B2 (en)2017-06-202020-05-12Ethicon LlcSystems and methods for controlling displacement member velocity for a surgical instrument
US10980537B2 (en)2017-06-202021-04-20Ethicon LlcClosed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US11653914B2 (en)2017-06-202023-05-23Cilag Gmbh InternationalSystems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US11071554B2 (en)2017-06-202021-07-27Cilag Gmbh InternationalClosed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
US10368864B2 (en)2017-06-202019-08-06Ethicon LlcSystems and methods for controlling displaying motor velocity for a surgical instrument
US10779820B2 (en)2017-06-202020-09-22Ethicon LlcSystems and methods for controlling motor speed according to user input for a surgical instrument
USD879808S1 (en)2017-06-202020-03-31Ethicon LlcDisplay panel with graphical user interface
US10993716B2 (en)2017-06-272021-05-04Ethicon LlcSurgical anvil arrangements
US11090049B2 (en)2017-06-272021-08-17Cilag Gmbh InternationalStaple forming pocket arrangements
US11266405B2 (en)2017-06-272022-03-08Cilag Gmbh InternationalSurgical anvil manufacturing methods
US10856869B2 (en)2017-06-272020-12-08Ethicon LlcSurgical anvil arrangements
US11324503B2 (en)2017-06-272022-05-10Cilag Gmbh InternationalSurgical firing member arrangements
US10772629B2 (en)2017-06-272020-09-15Ethicon LlcSurgical anvil arrangements
USD851762S1 (en)2017-06-282019-06-18Ethicon LlcAnvil
US10903685B2 (en)2017-06-282021-01-26Ethicon LlcSurgical shaft assemblies with slip ring assemblies forming capacitive channels
EP3420947B1 (en)2017-06-282022-05-25Cilag GmbH InternationalSurgical instrument comprising selectively actuatable rotatable couplers
US10758232B2 (en)2017-06-282020-09-01Ethicon LlcSurgical instrument with positive jaw opening features
USD854151S1 (en)2017-06-282019-07-16Ethicon LlcSurgical instrument shaft
US11259805B2 (en)2017-06-282022-03-01Cilag Gmbh InternationalSurgical instrument comprising firing member supports
US11484310B2 (en)2017-06-282022-11-01Cilag Gmbh InternationalSurgical instrument comprising a shaft including a closure tube profile
USD906355S1 (en)2017-06-282020-12-29Ethicon LlcDisplay screen or portion thereof with a graphical user interface for a surgical instrument
US10716614B2 (en)2017-06-282020-07-21Ethicon LlcSurgical shaft assemblies with slip ring assemblies with increased contact pressure
US10765427B2 (en)2017-06-282020-09-08Ethicon LlcMethod for articulating a surgical instrument
US11246592B2 (en)2017-06-282022-02-15Cilag Gmbh InternationalSurgical instrument comprising an articulation system lockable to a frame
US11564686B2 (en)2017-06-282023-01-31Cilag Gmbh InternationalSurgical shaft assemblies with flexible interfaces
US10898183B2 (en)2017-06-292021-01-26Ethicon LlcRobotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US11007022B2 (en)2017-06-292021-05-18Ethicon LlcClosed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US10258418B2 (en)2017-06-292019-04-16Ethicon LlcSystem for controlling articulation forces
US10398434B2 (en)2017-06-292019-09-03Ethicon LlcClosed loop velocity control of closure member for robotic surgical instrument
US10932772B2 (en)2017-06-292021-03-02Ethicon LlcMethods for closed loop velocity control for robotic surgical instrument
US10433843B2 (en)*2017-06-302019-10-08Aesculap AgWedge assembly for surgical staple cartridge
US11974742B2 (en)2017-08-032024-05-07Cilag Gmbh InternationalSurgical system comprising an articulation bailout
US11944300B2 (en)2017-08-032024-04-02Cilag Gmbh InternationalMethod for operating a surgical system bailout
US11471155B2 (en)2017-08-032022-10-18Cilag Gmbh InternationalSurgical system bailout
US11304695B2 (en)2017-08-032022-04-19Cilag Gmbh InternationalSurgical system shaft interconnection
US10912562B2 (en)2017-08-142021-02-09Standard Bariatrics, Inc.End effectors, surgical stapling devices, and methods of using same
USD907648S1 (en)2017-09-292021-01-12Ethicon LlcDisplay screen or portion thereof with animated graphical user interface
US10743872B2 (en)2017-09-292020-08-18Ethicon LlcSystem and methods for controlling a display of a surgical instrument
US10796471B2 (en)2017-09-292020-10-06Ethicon LlcSystems and methods of displaying a knife position for a surgical instrument
US10729501B2 (en)2017-09-292020-08-04Ethicon LlcSystems and methods for language selection of a surgical instrument
US10765429B2 (en)2017-09-292020-09-08Ethicon LlcSystems and methods for providing alerts according to the operational state of a surgical instrument
USD917500S1 (en)2017-09-292021-04-27Ethicon LlcDisplay screen or portion thereof with graphical user interface
US11399829B2 (en)2017-09-292022-08-02Cilag Gmbh InternationalSystems and methods of initiating a power shutdown mode for a surgical instrument
USD907647S1 (en)2017-09-292021-01-12Ethicon LlcDisplay screen or portion thereof with animated graphical user interface
US11090075B2 (en)2017-10-302021-08-17Cilag Gmbh InternationalArticulation features for surgical end effector
US11134944B2 (en)2017-10-302021-10-05Cilag Gmbh InternationalSurgical stapler knife motion controls
US10779903B2 (en)2017-10-312020-09-22Ethicon LlcPositive shaft rotation lock activated by jaw closure
US10842490B2 (en)2017-10-312020-11-24Ethicon LlcCartridge body design with force reduction based on firing completion
US11071543B2 (en)2017-12-152021-07-27Cilag Gmbh InternationalSurgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US11197670B2 (en)2017-12-152021-12-14Cilag Gmbh InternationalSurgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US10779825B2 (en)2017-12-152020-09-22Ethicon LlcAdapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US10687813B2 (en)2017-12-152020-06-23Ethicon LlcAdapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US10779826B2 (en)2017-12-152020-09-22Ethicon LlcMethods of operating surgical end effectors
US11033267B2 (en)2017-12-152021-06-15Ethicon LlcSystems and methods of controlling a clamping member firing rate of a surgical instrument
US11006955B2 (en)2017-12-152021-05-18Ethicon LlcEnd effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US10966718B2 (en)2017-12-152021-04-06Ethicon LlcDynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US10869666B2 (en)2017-12-152020-12-22Ethicon LlcAdapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US10743875B2 (en)2017-12-152020-08-18Ethicon LlcSurgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US10743874B2 (en)2017-12-152020-08-18Ethicon LlcSealed adapters for use with electromechanical surgical instruments
US10828033B2 (en)2017-12-152020-11-10Ethicon LlcHandheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US10716565B2 (en)2017-12-192020-07-21Ethicon LlcSurgical instruments with dual articulation drivers
US10729509B2 (en)2017-12-192020-08-04Ethicon LlcSurgical instrument comprising closure and firing locking mechanism
US11045270B2 (en)2017-12-192021-06-29Cilag Gmbh InternationalRobotic attachment comprising exterior drive actuator
USD910847S1 (en)2017-12-192021-02-16Ethicon LlcSurgical instrument assembly
US11020112B2 (en)2017-12-192021-06-01Ethicon LlcSurgical tools configured for interchangeable use with different controller interfaces
US10835330B2 (en)2017-12-192020-11-17Ethicon LlcMethod for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US11076853B2 (en)2017-12-212021-08-03Cilag Gmbh InternationalSystems and methods of displaying a knife position during transection for a surgical instrument
US12336705B2 (en)2017-12-212025-06-24Cilag Gmbh InternationalContinuous use self-propelled stapling instrument
US11311290B2 (en)2017-12-212022-04-26Cilag Gmbh InternationalSurgical instrument comprising an end effector dampener
US11179151B2 (en)2017-12-212021-11-23Cilag Gmbh InternationalSurgical instrument comprising a display
US11129680B2 (en)2017-12-212021-09-28Cilag Gmbh InternationalSurgical instrument comprising a projector
CN112702959B (en)*2018-07-162024-06-11爱惜康有限责任公司Surgical stapling end effector jaw having a distal end deflected toward another jaw
US11179154B2 (en)*2018-07-162021-11-23Cilag Gmbh InternationalSurgical stapling end effector component with deformable tip skewing in multiple planes
US10912561B2 (en)2018-07-162021-02-09Ethicon LlcButtress applier cartridge for surgical stapler having end effector with deflectable curved tip
US11160550B2 (en)*2018-07-162021-11-02Cilag Gmbh InternationalSurgical stapling end effector component with articulation and asymmetric deformable tip
US11045192B2 (en)2018-08-202021-06-29Cilag Gmbh InternationalFabricating techniques for surgical stapler anvils
US10779821B2 (en)2018-08-202020-09-22Ethicon LlcSurgical stapler anvils with tissue stop features configured to avoid tissue pinch
US11324501B2 (en)2018-08-202022-05-10Cilag Gmbh InternationalSurgical stapling devices with improved closure members
US20200054321A1 (en)2018-08-202020-02-20Ethicon LlcSurgical instruments with progressive jaw closure arrangements
US11083458B2 (en)2018-08-202021-08-10Cilag Gmbh InternationalPowered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
US11207065B2 (en)2018-08-202021-12-28Cilag Gmbh InternationalMethod for fabricating surgical stapler anvils
US11253256B2 (en)2018-08-202022-02-22Cilag Gmbh InternationalArticulatable motor powered surgical instruments with dedicated articulation motor arrangements
US11039834B2 (en)2018-08-202021-06-22Cilag Gmbh InternationalSurgical stapler anvils with staple directing protrusions and tissue stability features
US10912559B2 (en)2018-08-202021-02-09Ethicon LlcReinforced deformable anvil tip for surgical stapler anvil
US10842492B2 (en)2018-08-202020-11-24Ethicon LlcPowered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US11291440B2 (en)2018-08-202022-04-05Cilag Gmbh InternationalMethod for operating a powered articulatable surgical instrument
US10856870B2 (en)2018-08-202020-12-08Ethicon LlcSwitching arrangements for motor powered articulatable surgical instruments
USD914878S1 (en)2018-08-202021-03-30Ethicon LlcSurgical instrument anvil
US11304697B2 (en)*2019-01-302022-04-19Cilag Gmbh InternationalSurgical stapler with deflectable distal tip
US11439391B2 (en)2019-01-302022-09-13Cilag Gmbh InternationalSurgical stapler with toggling distal tip
US11317912B2 (en)*2019-01-302022-05-03Cilag Gmbh InternationalSurgical stapler with rotatable distal tip
US11696761B2 (en)2019-03-252023-07-11Cilag Gmbh InternationalFiring drive arrangements for surgical systems
US11147553B2 (en)2019-03-252021-10-19Cilag Gmbh InternationalFiring drive arrangements for surgical systems
US11147551B2 (en)2019-03-252021-10-19Cilag Gmbh InternationalFiring drive arrangements for surgical systems
US11172929B2 (en)2019-03-252021-11-16Cilag Gmbh InternationalArticulation drive arrangements for surgical systems
US11432816B2 (en)2019-04-302022-09-06Cilag Gmbh InternationalArticulation pin for a surgical instrument
US11648009B2 (en)2019-04-302023-05-16Cilag Gmbh InternationalRotatable jaw tip for a surgical instrument
US11903581B2 (en)2019-04-302024-02-20Cilag Gmbh InternationalMethods for stapling tissue using a surgical instrument
US11426251B2 (en)2019-04-302022-08-30Cilag Gmbh InternationalArticulation directional lights on a surgical instrument
US11253254B2 (en)2019-04-302022-02-22Cilag Gmbh InternationalShaft rotation actuator on a surgical instrument
US11452528B2 (en)2019-04-302022-09-27Cilag Gmbh InternationalArticulation actuators for a surgical instrument
US11471157B2 (en)2019-04-302022-10-18Cilag Gmbh InternationalArticulation control mapping for a surgical instrument
US11399837B2 (en)2019-06-282022-08-02Cilag Gmbh InternationalMechanisms for motor control adjustments of a motorized surgical instrument
US11660163B2 (en)2019-06-282023-05-30Cilag Gmbh InternationalSurgical system with RFID tags for updating motor assembly parameters
US11638587B2 (en)2019-06-282023-05-02Cilag Gmbh InternationalRFID identification systems for surgical instruments
US12004740B2 (en)2019-06-282024-06-11Cilag Gmbh InternationalSurgical stapling system having an information decryption protocol
US11627959B2 (en)2019-06-282023-04-18Cilag Gmbh InternationalSurgical instruments including manual and powered system lockouts
US11464601B2 (en)2019-06-282022-10-11Cilag Gmbh InternationalSurgical instrument comprising an RFID system for tracking a movable component
US11771419B2 (en)2019-06-282023-10-03Cilag Gmbh InternationalPackaging for a replaceable component of a surgical stapling system
US11684434B2 (en)2019-06-282023-06-27Cilag Gmbh InternationalSurgical RFID assemblies for instrument operational setting control
US11241235B2 (en)2019-06-282022-02-08Cilag Gmbh InternationalMethod of using multiple RFID chips with a surgical assembly
US11246678B2 (en)2019-06-282022-02-15Cilag Gmbh InternationalSurgical stapling system having a frangible RFID tag
US11051807B2 (en)2019-06-282021-07-06Cilag Gmbh InternationalPackaging assembly including a particulate trap
US11219455B2 (en)2019-06-282022-01-11Cilag Gmbh InternationalSurgical instrument including a lockout key
US11426167B2 (en)2019-06-282022-08-30Cilag Gmbh InternationalMechanisms for proper anvil attachment surgical stapling head assembly
US11291451B2 (en)2019-06-282022-04-05Cilag Gmbh InternationalSurgical instrument with battery compatibility verification functionality
US11298132B2 (en)2019-06-282022-04-12Cilag GmbH InlernationalStaple cartridge including a honeycomb extension
US11497492B2 (en)2019-06-282022-11-15Cilag Gmbh InternationalSurgical instrument including an articulation lock
US11376098B2 (en)2019-06-282022-07-05Cilag Gmbh InternationalSurgical instrument system comprising an RFID system
US11523822B2 (en)2019-06-282022-12-13Cilag Gmbh InternationalBattery pack including a circuit interrupter
US11298127B2 (en)2019-06-282022-04-12Cilag GmbH InterationalSurgical stapling system having a lockout mechanism for an incompatible cartridge
US11224497B2 (en)2019-06-282022-01-18Cilag Gmbh InternationalSurgical systems with multiple RFID tags
US11553971B2 (en)2019-06-282023-01-17Cilag Gmbh InternationalSurgical RFID assemblies for display and communication
US11259803B2 (en)2019-06-282022-03-01Cilag Gmbh InternationalSurgical stapling system having an information encryption protocol
US11478241B2 (en)2019-06-282022-10-25Cilag Gmbh InternationalStaple cartridge including projections
CN110403660A (en)*2019-08-212019-11-05舒拓 Cartridge assemblies and staplers for staplers
US12274635B2 (en)2019-11-042025-04-15Standard Bariatrics, Inc.Systems and methods of performing surgery using laplace's law tension retraction during surgery
BR112022008009A2 (en)2019-11-042022-07-12Standard Bariatrics Inc SYSTEMS AND METHODS OF PERFORMING SURGERY USING LAPLACE'S LAW TENSION RETRACTION DURING SURGERY
US12383260B2 (en)*2019-12-132025-08-12Covidien LpSurgical stapler with universal tip reload
US11234698B2 (en)2019-12-192022-02-01Cilag Gmbh InternationalStapling system comprising a clamp lockout and a firing lockout
US11576672B2 (en)2019-12-192023-02-14Cilag Gmbh InternationalSurgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11464512B2 (en)2019-12-192022-10-11Cilag Gmbh InternationalStaple cartridge comprising a curved deck surface
US11931033B2 (en)2019-12-192024-03-19Cilag Gmbh InternationalStaple cartridge comprising a latch lockout
US11529137B2 (en)2019-12-192022-12-20Cilag Gmbh InternationalStaple cartridge comprising driver retention members
US11701111B2 (en)2019-12-192023-07-18Cilag Gmbh InternationalMethod for operating a surgical stapling instrument
US11446029B2 (en)2019-12-192022-09-20Cilag Gmbh InternationalStaple cartridge comprising projections extending from a curved deck surface
US11607219B2 (en)2019-12-192023-03-21Cilag Gmbh InternationalStaple cartridge comprising a detachable tissue cutting knife
US11504122B2 (en)2019-12-192022-11-22Cilag Gmbh InternationalSurgical instrument comprising a nested firing member
US11844520B2 (en)2019-12-192023-12-19Cilag Gmbh InternationalStaple cartridge comprising driver retention members
US11911032B2 (en)2019-12-192024-02-27Cilag Gmbh InternationalStaple cartridge comprising a seating cam
US11304696B2 (en)2019-12-192022-04-19Cilag Gmbh InternationalSurgical instrument comprising a powered articulation system
US12035913B2 (en)2019-12-192024-07-16Cilag Gmbh InternationalStaple cartridge comprising a deployable knife
US11529139B2 (en)2019-12-192022-12-20Cilag Gmbh InternationalMotor driven surgical instrument
US11291447B2 (en)2019-12-192022-04-05Cilag Gmbh InternationalStapling instrument comprising independent jaw closing and staple firing systems
US11559304B2 (en)2019-12-192023-01-24Cilag Gmbh InternationalSurgical instrument comprising a rapid closure mechanism
USD976401S1 (en)2020-06-022023-01-24Cilag Gmbh InternationalStaple cartridge
USD975851S1 (en)2020-06-022023-01-17Cilag Gmbh InternationalStaple cartridge
USD966512S1 (en)2020-06-022022-10-11Cilag Gmbh InternationalStaple cartridge
USD975278S1 (en)2020-06-022023-01-10Cilag Gmbh InternationalStaple cartridge
USD975850S1 (en)2020-06-022023-01-17Cilag Gmbh InternationalStaple cartridge
USD974560S1 (en)2020-06-022023-01-03Cilag Gmbh InternationalStaple cartridge
USD967421S1 (en)2020-06-022022-10-18Cilag Gmbh InternationalStaple cartridge
CN115955943A (en)2020-06-302023-04-11标准肥胖病研究公司Systems, devices, and methods for preventing or reducing insufflation loss during laparoscopic procedures
US11871925B2 (en)2020-07-282024-01-16Cilag Gmbh InternationalSurgical instruments with dual spherical articulation joint arrangements
US11617577B2 (en)2020-10-292023-04-04Cilag Gmbh InternationalSurgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
US11931025B2 (en)2020-10-292024-03-19Cilag Gmbh InternationalSurgical instrument comprising a releasable closure drive lock
USD980425S1 (en)2020-10-292023-03-07Cilag Gmbh InternationalSurgical instrument assembly
US11717289B2 (en)2020-10-292023-08-08Cilag Gmbh InternationalSurgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11452526B2 (en)2020-10-292022-09-27Cilag Gmbh InternationalSurgical instrument comprising a staged voltage regulation start-up system
US11517390B2 (en)2020-10-292022-12-06Cilag Gmbh InternationalSurgical instrument comprising a limited travel switch
USD1013170S1 (en)2020-10-292024-01-30Cilag Gmbh InternationalSurgical instrument assembly
US11896217B2 (en)2020-10-292024-02-13Cilag Gmbh InternationalSurgical instrument comprising an articulation lock
US11534259B2 (en)2020-10-292022-12-27Cilag Gmbh InternationalSurgical instrument comprising an articulation indicator
US11779330B2 (en)2020-10-292023-10-10Cilag Gmbh InternationalSurgical instrument comprising a jaw alignment system
US11844518B2 (en)2020-10-292023-12-19Cilag Gmbh InternationalMethod for operating a surgical instrument
US12053175B2 (en)2020-10-292024-08-06Cilag Gmbh InternationalSurgical instrument comprising a stowed closure actuator stop
US11890010B2 (en)2020-12-022024-02-06Cllag GmbH InternationalDual-sided reinforced reload for surgical instruments
US11678882B2 (en)2020-12-022023-06-20Cilag Gmbh InternationalSurgical instruments with interactive features to remedy incidental sled movements
US11944296B2 (en)2020-12-022024-04-02Cilag Gmbh InternationalPowered surgical instruments with external connectors
US11653915B2 (en)2020-12-022023-05-23Cilag Gmbh InternationalSurgical instruments with sled location detection and adjustment features
US11849943B2 (en)2020-12-022023-12-26Cilag Gmbh InternationalSurgical instrument with cartridge release mechanisms
US11744581B2 (en)2020-12-022023-09-05Cilag Gmbh InternationalPowered surgical instruments with multi-phase tissue treatment
US11737751B2 (en)2020-12-022023-08-29Cilag Gmbh InternationalDevices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11627960B2 (en)2020-12-022023-04-18Cilag Gmbh InternationalPowered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11653920B2 (en)2020-12-022023-05-23Cilag Gmbh InternationalPowered surgical instruments with communication interfaces through sterile barrier
US11749877B2 (en)2021-02-262023-09-05Cilag Gmbh InternationalStapling instrument comprising a signal antenna
US11980362B2 (en)2021-02-262024-05-14Cilag Gmbh InternationalSurgical instrument system comprising a power transfer coil
US11793514B2 (en)2021-02-262023-10-24Cilag Gmbh InternationalStaple cartridge comprising sensor array which may be embedded in cartridge body
US11723657B2 (en)2021-02-262023-08-15Cilag Gmbh InternationalAdjustable communication based on available bandwidth and power capacity
US11925349B2 (en)2021-02-262024-03-12Cilag Gmbh InternationalAdjustment to transfer parameters to improve available power
US12108951B2 (en)2021-02-262024-10-08Cilag Gmbh InternationalStaple cartridge comprising a sensing array and a temperature control system
US11950779B2 (en)2021-02-262024-04-09Cilag Gmbh InternationalMethod of powering and communicating with a staple cartridge
US11701113B2 (en)2021-02-262023-07-18Cilag Gmbh InternationalStapling instrument comprising a separate power antenna and a data transfer antenna
US11751869B2 (en)2021-02-262023-09-12Cilag Gmbh InternationalMonitoring of multiple sensors over time to detect moving characteristics of tissue
US11812964B2 (en)2021-02-262023-11-14Cilag Gmbh InternationalStaple cartridge comprising a power management circuit
US12324580B2 (en)2021-02-262025-06-10Cilag Gmbh InternationalMethod of powering and communicating with a staple cartridge
US11950777B2 (en)2021-02-262024-04-09Cilag Gmbh InternationalStaple cartridge comprising an information access control system
US11744583B2 (en)2021-02-262023-09-05Cilag Gmbh InternationalDistal communication array to tune frequency of RF systems
US11730473B2 (en)2021-02-262023-08-22Cilag Gmbh InternationalMonitoring of manufacturing life-cycle
US11696757B2 (en)2021-02-262023-07-11Cilag Gmbh InternationalMonitoring of internal systems to detect and track cartridge motion status
US11717291B2 (en)2021-03-222023-08-08Cilag Gmbh InternationalStaple cartridge comprising staples configured to apply different tissue compression
US11737749B2 (en)2021-03-222023-08-29Cilag Gmbh InternationalSurgical stapling instrument comprising a retraction system
US11826042B2 (en)2021-03-222023-11-28Cilag Gmbh InternationalSurgical instrument comprising a firing drive including a selectable leverage mechanism
US11759202B2 (en)2021-03-222023-09-19Cilag Gmbh InternationalStaple cartridge comprising an implantable layer
US11723658B2 (en)2021-03-222023-08-15Cilag Gmbh InternationalStaple cartridge comprising a firing lockout
US11826012B2 (en)2021-03-222023-11-28Cilag Gmbh InternationalStapling instrument comprising a pulsed motor-driven firing rack
US11806011B2 (en)2021-03-222023-11-07Cilag Gmbh InternationalStapling instrument comprising tissue compression systems
AU2022242751B2 (en)2021-03-232024-05-02Standard Bariatrics, Inc.Systems and methods for preventing tissue migration in surgical staplers
US11896218B2 (en)2021-03-242024-02-13Cilag Gmbh InternationalMethod of using a powered stapling device
US11793516B2 (en)2021-03-242023-10-24Cilag Gmbh InternationalSurgical staple cartridge comprising longitudinal support beam
US11849944B2 (en)2021-03-242023-12-26Cilag Gmbh InternationalDrivers for fastener cartridge assemblies having rotary drive screws
US11944336B2 (en)2021-03-242024-04-02Cilag Gmbh InternationalJoint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US11786243B2 (en)2021-03-242023-10-17Cilag Gmbh InternationalFiring members having flexible portions for adapting to a load during a surgical firing stroke
US11896219B2 (en)2021-03-242024-02-13Cilag Gmbh InternationalMating features between drivers and underside of a cartridge deck
US11903582B2 (en)2021-03-242024-02-20Cilag Gmbh InternationalLeveraging surfaces for cartridge installation
US12102323B2 (en)2021-03-242024-10-01Cilag Gmbh InternationalRotary-driven surgical stapling assembly comprising a floatable component
US11744603B2 (en)2021-03-242023-09-05Cilag Gmbh InternationalMulti-axis pivot joints for surgical instruments and methods for manufacturing same
US11786239B2 (en)2021-03-242023-10-17Cilag Gmbh InternationalSurgical instrument articulation joint arrangements comprising multiple moving linkage features
US11849945B2 (en)2021-03-242023-12-26Cilag Gmbh InternationalRotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11832816B2 (en)2021-03-242023-12-05Cilag Gmbh InternationalSurgical stapling assembly comprising nonplanar staples and planar staples
US11826047B2 (en)2021-05-282023-11-28Cilag Gmbh InternationalStapling instrument comprising jaw mounts
US11957337B2 (en)2021-10-182024-04-16Cilag Gmbh InternationalSurgical stapling assembly with offset ramped drive surfaces
US11980363B2 (en)2021-10-182024-05-14Cilag Gmbh InternationalRow-to-row staple array variations
US11877745B2 (en)2021-10-182024-01-23Cilag Gmbh InternationalSurgical stapling assembly having longitudinally-repeating staple leg clusters
US12239317B2 (en)2021-10-182025-03-04Cilag Gmbh InternationalAnvil comprising an arrangement of forming pockets proximal to tissue stop
US11937816B2 (en)2021-10-282024-03-26Cilag Gmbh InternationalElectrical lead arrangements for surgical instruments
US12089841B2 (en)2021-10-282024-09-17Cilag CmbH InternationalStaple cartridge identification systems
US12432790B2 (en)2021-10-282025-09-30Cilag Gmbh InternationalMethod and device for transmitting UART communications over a security short range wireless communication

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPH05317322A (en)*1992-05-191993-12-03Olympus Optical Co LtdSuturing unit
US5766187A (en)*1995-10-111998-06-16Sugarbaker; David J.Mechanism for guiding surgical instruments
US6896683B1 (en)*1999-01-252005-05-24Applied Material Resources CorporationSurgical instrument with improved handle assembly
WO2006112849A1 (en)*2005-04-152006-10-26Satiety, Inc.Single fold device for tissue fixation
IL176133A0 (en)*2006-06-052006-10-05Medigus LtdStapler
US8136711B2 (en)*2006-09-082012-03-20Tyco Healthcare Group LpDissection tip and introducer for surgical instrument
US8496153B2 (en)*2007-03-292013-07-30Covidien LpAnvil-mounted dissecting tip for surgical stapling device
US7988026B2 (en)*2007-09-062011-08-02Cardica, Inc.Endocutter with staple feed
US8685020B2 (en)*2010-05-172014-04-01Ethicon Endo-Surgery, Inc.Surgical instruments and end effectors therefor

Also Published As

Publication numberPublication date
JP2015513978A (en)2015-05-18
WO2013151888A1 (en)2013-10-10
EP2833802A4 (en)2015-11-18

Similar Documents

PublicationPublication DateTitle
US8439246B1 (en)Surgical stapler with cartridge-adjustable clamp gap
WO2013151888A1 (en)Surgical staple cartridge with bendable tip
JP7537850B2 (en) Stapler cartridge including an integrated knife
EP3120783B1 (en)Small diameter cartridge design for a surgical stapling instrument
US9038881B1 (en)Feeder belt actuation mechanism for true multi-fire surgical stapler
CN110680437B (en)Surgical fastener applying apparatus
US7988026B2 (en)Endocutter with staple feed
US9168039B1 (en)Surgical stapler with staples of different sizes
AU646515B2 (en)Surgical stapler
US8636189B1 (en)Active wedge for surgical stapler
US8403956B1 (en)Multiple-use surgical stapler
US9655615B2 (en)Active wedge and I-beam for surgical stapler
US9345478B2 (en)Method for surgical stapling
WO2013122808A1 (en)Anvil-side staple trap
US11737753B2 (en)Surgical stapling apparatus with firing lockout mechanism
EP3677196B1 (en)Stapling device including tool assembly stabilizing member
CN214387566U (en) A kind of anti-misactivation endoscopic stapler
CN113303854A (en)Suture reload assembly with detachable knife
JPH05317323A (en)Suturing unit
EP3560437A1 (en)Stapling device with cut ring biasing member
CN114305556A (en) Surgical stapling device with safety features

Legal Events

DateCodeTitleDescription
PUAIPublic reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text:ORIGINAL CODE: 0009012

17PRequest for examination filed

Effective date:20141031

AKDesignated contracting states

Kind code of ref document:A1

Designated state(s):AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AXRequest for extension of the european patent

Extension state:BA ME

DAXRequest for extension of the european patent (deleted)
RA4Supplementary search report drawn up and despatched (corrected)

Effective date:20151020

RIC1Information provided on ipc code assigned before grant

Ipc:A61B 17/072 20060101AFI20151014BHEP

17QFirst examination report despatched

Effective date:20160609

RAP1Party data changed (applicant data changed or rights of an application transferred)

Owner name:DEXTERA SURGICAL INC.

STAAInformation on the status of an ep patent application or granted ep patent

Free format text:STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18DApplication deemed to be withdrawn

Effective date:20170620


[8]ページ先頭

©2009-2025 Movatter.jp