Dispositif d'identification radio fréquence en polycarbonate et son procédé de fabrication Radio frequency identification device made of polycarbonate and its method of manufacture
Domaine techniqueTechnical area
La présente invention concerne le domaine des documents, objets de valeur et de sécurité contenant un dispositif électronique d'échange de données sans contact et concerne en particulier un dispositif d'identification radio fréquence (RFID) et son procédé de fabrication. The present invention relates to the field of documents, valuables and security containing an electronic device for contactless data exchange and concerns in particular a radio frequency identification device (RFID) and its manufacturing method.
Etat de la techniqueState of the art
Un dispositif d'identification radiofréquence (RFID) sans contact est un dispositif constitué principalement d'une antenne noyée dans un support du dispositif et d'une puce connectée à des plots de connexion de l'antenne. Ces dispositifs permettent l'échange d'informations avec l'extérieur par couplage électromagnétique à distance donc sans contact, entre son antenne et une deuxième antenne située dans le dispositif de lecture associé. Ces dispositifs sont utilisés aujourd'hui dans un grand nombre d'applications et en particulier pour l'identification des personnes circulant dans des zones à accès contrôlé ou transitant d'une zone à une autre. Le dispositif est généralement formé sur un support plan et flexible au format d'une carte bancaire ou bien à un format adapté pour pouvoir être inséré dans un document de sécurité ou de valeur. De tels dispositifs RFID sont appelés communément « inlay ». Généralement, la puce est connectée directement aux plots de l'antenne par « flip-chip ». Cependant, la puce peut-être également encapsulée dans un module afin d'être mieux protégée. A radiofrequency identification device (RFID) without contact is a device consisting mainly of an antenna embedded in a support of the device and a chip connected to the connection pads of the antenna. These devices allow the exchange of information with the outside by electromagnetic coupling at a distance and therefore without contact, between its antenna and a second antenna located in the associated reading device. These devices are used today in a large number of applications and in particular for the identification of people traveling in areas with controlled access or transit from one area to another. The device is generally formed on a flat and flexible support in the format of a bank card or in a format adapted to be inserted into a security document or value. Such RFID devices are commonly called "inlay". Generally, the chip is connected directly to the pads of the antenna by "flip-chip". However, the chip may also be encapsulated in a module to be better protected.
Des informations sont échangées entre le dispositif RFID et le lecteur et en particulier les informations stockées dans la puce qui ont trait à l'identification du possesseur de l'objet sur lequel se trouve le dispositif RFID et son autorisation à pénétrer dans une zone à accès contrôlé par exemple.Information is exchanged between the RFID device and the reader and in particular the information stored in the chip relating to the identification of the owner of the object on which the device is located. RFID and its authorization to enter a controlled access area for example.
Actuellement, ces dispositifs RFID peuvent être fabriqués selon plusieurs procédés de fabrication. On s'intéresse ici aux dispositifs RFID dont l'antenne est réalisée par impression sur un support thermoplastique. Un des procédés consiste à laminer ensemble plusieurs couches de matériau différent tel que du papier pour le support d'antenne et du thermoplastique pour les couches supérieure et inférieure. L'inconvénient du dispositif RFID obtenu par un tel procédé réside dans le fait qu'il se délamine dans son épaisseur et de ce fait est inadapté à une utilisation sur plusieurs années comme cela peut-être le cas pour les cartes d'identité. D'autre part, l'utilisation du même matériau pour les trois couches tel que du thermoplastique ne résout pas le problème de délamination et pose en plus des problèmes au moment de la laminâtion. En effet, le manque de flexibilité et d'élasticité des couches superposées ensemble peut fissurer l'antenne et par conséquent rompre la connexion électrique entre l'antenne et la puce lors des montées en pression. De plus, la montée en température lors de l'étape de lamination engendre des déformations du support qui peuvent entraîner également des fissurations de l'antenne aggravées par l'épaisseur importante à l'endroit du croisement des spires dû à la double épaisseur de matière conductrice formant les spires et de matière isolante pour séparer et isoler les spires entre elles. Currently, these RFID devices can be manufactured according to several manufacturing processes. We are interested here RFID devices whose antenna is made by printing on a thermoplastic support. One of the methods is to laminate together several layers of different material such as paper for the antenna support and thermoplastic for the upper and lower layers. The disadvantage of the RFID device obtained by such a method lies in the fact that it delaminates in its thickness and is therefore unsuitable for use over several years as may be the case for identity cards. On the other hand, the use of the same material for the three layers such as thermoplastic does not solve the problem of delamination and poses more problems at the time of laminating. Indeed, the lack of flexibility and elasticity of the superimposed layers together can crack the antenna and consequently break the electrical connection between the antenna and the chip during pressure rises. In addition, the rise in temperature during the lamination step generates deformations of the support which can also lead to cracking of the antenna aggravated by the large thickness at the crossing point of the turns due to the double thickness of material conductive forming turns and insulating material to separate and isolate the turns between them.
En outre, les dispositifs RFID réalisés à base d'antenne filaire ne comportent pas les mêmes inconvénients étant donné que le fil de cuivre ne se casse pas sous l'effet de la pression mais a tendance à se mouler dans le thermoplastique. De plus, de part sa faible épaisseur de l'ordre de 25 im et du fait que le fil de cuivre est gainé donc isolé, son utilisation permet d'éviter la couche isolante entre les spires superposées et d'obtenir une surépaisseur au niveau du croisement des spires de l'ordre de 50 μπι, donc peu contraignante.In addition, RFID devices made from wire antenna do not have the same disadvantages since the copper wire does not break under the effect of pressure but has a tendency to mold into the thermoplastic. In addition, because of its small thickness of the order of 25 μm and the fact that the copper wire is sheathed thus isolated, its use makes it possible to avoid the insulating layer between the superimposed turns and to obtain a overthickness at the crossing of the turns of the order of 50 μπι, so little constraining.
Exposé de l'inventionPresentation of the invention
C'est pourquoi le but de l'invention est de fournir un procédé de fabrication d'un dispositif RFID dont l'antenne est réalisée par impression sur un matériau thermoplastique, qui résout les problèmes de fissuration de l'antenne imprimée au moment de l'étape de laminâtion. This is why the object of the invention is to provide a method of manufacturing an RFID device whose antenna is produced by printing on a thermoplastic material, which solves the problems of cracking of the antenna printed at the time of printing. laminating step.
Un autre but de l'invention est de fournir un dispositif RFID qui ne présente pas de risque de délamination dans le temps. Another object of the invention is to provide an RFID device which does not present a risk of delamination over time.
L'objet de l'invention est donc un procédé de fabrication d'un dispositif d'identification radiofréquence (RFID) comprenant un substrat plan muni d'une antenne et d'une puce connectée à l'antenne, l'antenne formée par l'enroulement de plusieurs spires comprend une zone de croisement des spires, une bande isolante de matière diélectrique séparant les spires d'antenne superposées au niveau du croisement, le procédé comprenant les étapes suivantes : The object of the invention is therefore a method of manufacturing a radio frequency identification device (RFID) comprising a planar substrate provided with an antenna and a chip connected to the antenna, the antenna formed by the winding of several turns comprises a crossing zone of the turns, an insulating strip of dielectric material separating the superposed antenna turns at the crossing, the method comprising the following steps:
a) réaliser l' antenne consistant à imprimer des spires, deux plots de connexion d' encre conductrice et une bande isolante de matière diélectrique à l' endroit du croisement des spires, et à faire subir un traitement thermique au support afin de cuire ladite encre, a) forming the coil printing antenna, two conductive ink connection pads and an insulating strip of dielectric material at the crossover point of the turns, and heat - treating the substrate to bake said ink. ,
b) connecter ladite puce sur le support du coté de ladite antenne, b) connect said chip to the support on the side of said antenna,
c) superposer une seconde couche sur le substrat du côté de l'antenne, cette seconde couche comprenant une première perforation centrée sur la puce et une seconde perforation centrée sur la bande isolante de la zone de croisement de l'antenne, c) superposing a second layer on the substrate on the antenna side, this second layer comprising a first perforation centered on the chip and a second perforation centered on the insulating strip of the antenna crossing zone,
d) superposer une troisième couche sur la seconde couche, d) superimposing a third layer on the second layer,
e) laminer ensemble les trois couches. Description brève des figurese) rolling together the three layers. Brief description of the figures
Les buts, objets et caractéristiques de l'invention apparaîtront plus clairement à la lecture de la description qui suit faite en référence aux dessins dans lesquels : The objects, objects and features of the invention will appear more clearly on reading the following description given with reference to the drawings in which:
La figure 1 représente une vue de face de la couche supportant le dispositif radiofréquence , FIG. 1 represents a front view of the layer supporting the radio frequency device,
La figure 2 représente une vue en coupe selon l'axe A-A de la couche supportant le dispositif radiofréquence de la figure 1, FIG. 2 represents a sectional view along the axis A-A of the layer supporting the radiofrequency device of FIG. 1,
La figure 3 représente une vue de face de la seconde couche du support de dispositif RFID selon l'invention, FIG. 3 represents a front view of the second layer of the RFID device support according to the invention,
La figure 4 représente une vue en coupe du dispositif radiofréquence selon l'invention. FIG. 4 represents a sectional view of the radiofrequency device according to the invention.
Sur les figures, les éléments représentés ne sont pas aux proportions réels. In the figures, the elements represented are not in the real proportions.
Description détaillée de l'inventionDetailed description of the invention
Sur la figure 1, un substrat 10 au format carte de crédit est représenté vue de dessus. Dans la suite de la description ce substrat est désigné support d'antenne. Le support a un format ISO mais il pourrait avoir d'autres dimensions, et se présenter par exemple sous forme de bandes ou de planches comportant plusieurs support à découper au format ISO. Une sous-couche 12 d'épaisseur 5 μπι est déposée sur le support d'antenne 10 sur une zone représentée en gris sur la figure 1. Par exemple, cette sous-couche est réalisée par impression d'une encre, d'une résine ou d'un vernis. Selon un mode de réalisation, la sous-couche 12 est réalisée à partir d'une encre transparente teintée pour faciliter le repérage visuel. Selon le mode de réalisation préféré de l'invention, le support d'antenne 10 est en polycarbonate (PC). Une antenne 11 comportant un enroulement de plusieurs spires, deux plots de connexion 17 et 18 situés aux deux extrémités de l'enroulement et un pont électrique 13 est imprimée sur le support d'antenne 10 sur la sous -couche 12 et de façon à ne pas sortir de la zone définie par la sous-couche. La taille de la zone de sous -couche 12 est de préférence légèrement supérieure à l'empreinte de l'antenne comme on peut le voir sur la figure 1. La forme de la zone est donc déterminée directement par la forme de l'antenne.In FIG. 1, a substrate 10 in the credit card format is shown seen from above. In the following description this substrate is designated antenna support. The support has an ISO format but it could have other dimensions, and for example be in the form of strips or boards with several support to be cut in ISO format. An underlayer 12 of thickness 5 μπι is deposited on the antenna support 10 on an area shown in gray in FIG. 1. For example, this underlayer is produced by printing an ink, a resin or a varnish. According to one embodiment, the underlayer 12 is made from a tinted transparent ink to facilitate visual identification. According to the preferred embodiment of the invention, the antenna support 10 is made of polycarbonate (PC). An antenna 11 comprising a winding of several turns, two connection pads 17 and 18 located at both ends of the winding and an electric bridge 13 is printed on the antenna support 10 on the sub-layer 12 and so that not leave the area defined by the sublayer. The size of the underlayer zone 12 is preferably slightly greater than the footprint of the antenna as can be seen in FIG. 1. The shape of the zone is thus determined directly by the shape of the antenna.
Les spires de l' antenne et les plots de connexion sont réalisés par impression de type sérigraphie, flexographie, héliogravure, offset ou jet d' encre à partir d' encre conductrice de type encre époxy chargée de particules conductrices telles que par exemple d' argent ou d' or ou à partir d' un polymère conducteur. Selon un autre mode de réalisation, l'antenne est directement imprimée sur le support d'antenne sans sous-couche 12. Selon les deux modes de réalisation, avec et sans sous-couche, l' antenne est imprimée en plusieurs passages. Le premier passage consiste à imprimer les deux plots de connexion 17 et 18 de l' antenne et le pont électrique 13, appelé communément " cross-over ". Le deuxième passage consiste à imprimer une bande isolante 16 de matière diélectrique superposée au cross-over. Le troisième passage d' impression consiste à imprimer l' enroulement des spires dont l' extrémité intérieure 14 et l' extrémité extérieure 15 coupent, en passant dessus, le pont électrique 13 de façon à être connectées électriquement ensemble. La bande isolante 16 permet ainsi d' obtenir une zone de croisement de l' antenne où le pont électrique 13 et les spires de l' antenne se croisent sans risque de court-circuit. La superposition des spires croisées et du diélectrique atteint une épaisseur comprise entre 70 et 75 μιη. The turns of the antenna and the connection pads are produced by screen printing, flexo, gravure, offset or inkjet printing using epoxy ink conductive ink loaded with conductive particles such as, for example, silver. or gold or from a conductive polymer. According to another embodiment, the antenna is directly printed on the antenna support without underlayer 12. According to the two embodiments, with and without underlayer, the antenna is printed in several passes. The first pass is to print the two connection pads 17 and 18 of the antenna and the electric bridge 13, commonly called "cross-over". The second pass consists of printing an insulating strip 16 of dielectric material superimposed on the crossover. The third printing passage consists of printing the winding of the turns whose inner end 14 and the outer end 15 intersect the electrical bridge 13 so as to be electrically connected together. The insulating strip 16 thus makes it possible to obtain a crossing zone of the antenna where the electrical bridge 13 and the turns of the antenna intersect without any risk of a short circuit. The superposition of the crossed turns and the dielectric reaches a thickness between 70 and 75 μιη.
Une perforation 19 est effectuée dans le support d'antenne entre les plots de connexion 17 et 18. La perforation est effectuée au laser ou bien avec un emporte pièce . Selon la figure 2, un module de circuit intégré 29 comporte une puce 25, au moins deux plages de connexion 23 et 24. La connexion entre la puce et les plages 23 et 24 est réalisée par des fils conducteurs ou câbles de connexions 26, appelés communément « wire bonding ». La puce 25 et les fils sont encapsulés dans une résine de protection 27 à base d'un matériau résistant et ne conduisant pas l'électricité. L' encapsulâtion 27 (ou « molding ») est en quelque sorte une coque rigide qui vient englober la puce et son câblage de façon à la rendre moins fragile et davantage manipulable. L' encapsulation a une épaisseur comprise entre 200 et 240 μπι. Le module présente ainsi sur sa face supérieure une surface plane correspondant à la partie supérieure de 1 ' encapsulation 27 et sur sa face inférieure des plages de contact 23 et 24 destinées à venir se connecter à un circuit. Les plages 23 et 24 sont faites d'un matériau conducteur tel que de l'aluminium et leur épaisseur est comprise entre 70 et 100 μπι.A perforation 19 is made in the antenna support between the connection pads 17 and 18. The perforation is performed by laser or with a punch. According to FIG. 2, an integrated circuit module 29 comprises a chip 25, at least two connection pads 23 and 24. The connection between the chip and the strips 23 and 24 is formed by conducting wires or connection cables 26, called commonly "wire bonding". The chip 25 and the wires are encapsulated in a protective resin 27 based on a resistant material and not conducting electricity. The encapsulation 27 (or "molding") is a kind of rigid shell that includes the chip and its wiring so as to make it less fragile and more manipulable. The encapsulation has a thickness of between 200 and 240 μπι. The module thus has on its upper face a flat surface corresponding to the upper part of one encapsulation 27 and on its lower face contact pads 23 and 24 intended to connect to a circuit. The tracks 23 and 24 are made of a conductive material such as aluminum and their thickness is between 70 and 100 μπι.
Le module 29 est collé sur la couche de support d'antenne 10 grâce à deux plots de matière adhésive 33 et 34 placés à côté des plots de connexion d'antenne ou à cheval sur les plots de connexion d'antenne 17 et 18. Le module est positionné de sorte que les plots de connexion 17 et 18 soient en regard des plages de contact 23 et 24 du module et que la partie encapsulée du module ou encapsulation 27 soit dans la cavité 19. Et en particulier, une partie des plots de connexion 17 et 18 vient s'appuyer contre une partie des plages de contact 23 et 24 non recouverte de matière adhésive. La matière adhésive utilisée pour les plots 33 et 34 est une colle qui fixe uniquement le module à la couche de support 10 et comme cette colle n'est pas conductrice elle ne participe pas directement à la connexion électrique entre le module et l'antenne. La colle utilisée est de type époxy non chargée de particules conductrices et réticulable à chaud. Les plots de colle sont placés sur la couche de support 10 à proximité des plots d'antenne de façon à ce que lorsque le module 29 est mis en place dans la cavité 19, la colle des plots est écrasée par une petite partie des plages de contact du module jusqu'à ce qu'une autre partie des plages de contact rentre en contact avec les plots d'antenne. Les plots de colle atteignent alors la même épaisseur que les plots d'antenne ou sensiblement la même et viennent effleurer les plots d'antenne. L'opération qui consiste à placer le module dans la cavité s'accompagne d'une phase de chauffe des plages de contacts du module qui permet de réticuler la colle. Les plots de colle durcissent sous l'effet de la chaleur et maintiennent ainsi les plages du module 23 et 24 en contact contre les plots de connexion. Cette étape de cuisson de la colle est réalisée localement par application d'une résistance chauffante sans pression sur les plages de contacts du module.The module 29 is glued to the antenna support layer 10 by two pads of adhesive material 33 and 34 placed next to the antenna connection pads or straddling the antenna connection pads 17 and 18. module is positioned so that the connection pads 17 and 18 are opposite the contact pads 23 and 24 of the module and that the encapsulated portion of the module or encapsulation 27 is in the cavity 19. And in particular, a portion of the pads of connection 17 and 18 comes to bear against part of the contact pads 23 and 24 not covered with adhesive material. The adhesive material used for the pads 33 and 34 is an adhesive which fixes only the module to the support layer 10 and as this adhesive is not conductive it does not participate directly in the electrical connection between the module and the antenna. The adhesive used is epoxy type not loaded with conductive particles and heat-crosslinkable. The glue pads are placed on the support layer 10 to proximity of the antenna pads so that when the module 29 is placed in the cavity 19, the glue pads is crushed by a small portion of the contact pads of the module until another part of contact pads come into contact with the antenna pads. The glue pads then reach the same thickness as the antenna pads or substantially the same and come touching the antenna pads. The operation which consists of placing the module in the cavity is accompanied by a heating phase of the contact pads of the module which allows the adhesive to be cured. The glue pads harden under the effect of heat and thus maintain the areas of the module 23 and 24 in contact against the connection pads. This glue baking step is carried out locally by applying a heating resistor without pressure to the contact pads of the module.
Le contact serré des plages de contact 23, 24 du module et des plots de connexion 17, 18 de l'antenne garantit la fiabilité de la connexion électrique. Ainsi, dés la mise en place du module 29 dans la cavité 19, la connexion électrique est réalisée par la partie des plages de contact 23, 24 du module en contact direct avec les plots de connexion 17 et 18 de l'antenne. Le support ainsi obtenu est un support d'antenne muni d'un module solidaire du support et connecté électriquement à l'antenne. La connexion électrique a ainsi l'avantage d'être réalisée sans soudure ni apport de matière. The tight contact of the contact pads 23, 24 of the module and the connection pads 17, 18 of the antenna guarantees the reliability of the electrical connection. Thus, as soon as the module 29 is placed in the cavity 19, the electrical connection is made by the part of the contact pads 23, 24 of the module in direct contact with the connection pads 17 and 18 of the antenna. The support thus obtained is an antenna support provided with a module secured to the support and electrically connected to the antenna. The electrical connection has the advantage of being carried out without welding or adding material.
Selon un mode de réalisation de l'invention, les plots de connexion 17 et 18 de l'antenne ont une forme concave ou creuse ou bien encore évidée à la manière d'un anneau de sorte que les plots de matière adhésive 33 et 34 sont placés à l'intérieur du creux de la forme concave ou à l'intérieur de l'évidement. Dans un mode de réalisation préférentiel de l'invention, les plots d'antenne sont en forme de U de sorte que les plots de matière adhésive sont placés à l'intérieur du U. Selon la figure 3, une seconde couche 20 est représentée vue de dessus . Cette seconde couche est une couche de polycarbonate (PC) d'épaisseur comprise entre 50 et 60 μιη et de largeur et longueur identiques à la première couche du support d'antenne 10. Dans cette couche sont réalisées deux perforations 26 et 39 au laser ou bien à l'aide d'un emporte pièce. Ces deux perforations sont des cavités traversant toute l'épaisseur de la couche 20. La perforation 26 est située sur la couche 20 de façon à ce que lorsque la couche 20 recouvre la couche 10 en se superposant bord à bord, la bande isolante 16 apparaisse dans l'espace laissé par la perforation 26. De cette façon, la perforation 26 est centrée sur la bande isolante. De même, la perforation 39 est située sur la couche 20 de façon à ce que lorsque la couche 20 recouvre la couche 10 en se superposant bord à bord, la partie située entre les plots de connexion et une partie des plots de connexion apparaît dans l'espace laissé libre par la perforation 39. De cette façon, la perforation 39 est centrée sur le module 29.According to one embodiment of the invention, the connection pads 17 and 18 of the antenna have a concave or hollow shape or else recessed in the manner of a ring so that the pads of adhesive material 33 and 34 are placed inside the hollow of the concave shape or inside the recess. In a preferred embodiment of the invention, the antenna pads are U-shaped so that the pads of adhesive material are placed inside the U. According to Figure 3, a second layer 20 is shown from above. This second layer is a layer of polycarbonate (PC) with a thickness of between 50 and 60 μιη and of width and length identical to the first layer of the antenna support 10. In this layer two laser perforations 26 and 39 are produced. well using a cookie cutter. These two perforations are cavities through the entire thickness of the layer 20. The perforation 26 is located on the layer 20 so that when the layer 20 covers the layer 10 by overlapping edge to edge, the insulating strip 16 appears in the space left by the perforation 26. In this way, the perforation 26 is centered on the insulating strip. Similarly, the perforation 39 is located on the layer 20 so that when the layer 20 overlaps the layer 10 by overlapping edge to edge, the portion between the connection pads and a portion of the connection pads appears in the space left free by the perforation 39. In this way, the perforation 39 is centered on the module 29.
La figure 4 représente en coupe le support d'antenne 10 selon l'axe A-A de la figure 1, la seconde couche 20 et une troisième couche 30. Selon le procédé de fabrication du dispositif selon l'invention, la couche 20 est positionnée sur le support 10 de façon à ce que la face externe du module, donc celle comportant les plages de contact du module vient se loger dans la perforation 39. Une troisième couche 30 est également positionnée sur la couche 20. La couche 30 est une feuille de polycarbonate (PC) de dimensions identiques à celles des deux autres couches et d'épaisseur comprise entre 90 et 120 μιτι et de préférence égale à 100 μπι. La figure 5 représente en coupe le support d'antenne 10 selon l'axe B-B de la figure 2 et les secondes et troisième couches 20 et 30. Lors de l'étape de positionnement des couches 20 et 30 au dessus du support d'antenne 10, la bande isolante 16 vient se loger dans la perforation 26. L'étape suivante consiste à laminer ensemble les couches 10, 20 et 30. Les trois couches subissent donc une montée en température jusqu'à 180°C et une montée en pression. Lors de la lamination, la couche intermédiaire 20 ramollit à des températures plus basses que les couches inférieure et supérieure 10 et 30. Grâce à la pression exercée pendant l'étape de lamination, l'air emprisonnée entre les couches et en particulier dans les perforations 26 et 39 est chassée et remplacée par le polycarbonate ramolli)!. De cette façon, le polycarbonate de la couche intermédiaire 20 remplit les perforations pendant l'étape de lamination. La couche 20 munie de ces deux perforations éviteafe et compensent les surépaisseurs dues d'une part à la zone de croisement de l'antenne et d'autre part au module .FIG. 4 shows in section the antenna support 10 along the axis AA of FIG. 1, the second layer 20 and a third layer 30. According to the manufacturing method of the device according to the invention, the layer 20 is positioned on the support 10 so that the external face of the module, therefore that including the contact pads of the module is housed in the perforation 39. A third layer 30 is also positioned on the layer 20. The layer 30 is a sheet of polycarbonate (PC) of identical dimensions to those of the other two layers and of thickness between 90 and 120 μιτι and preferably equal to 100 μπι. FIG. 5 shows in section the antenna support 10 along the axis BB of FIG. 2 and the second and third layers 20 and 30. During the step of positioning the layers 20 and 30 above the antenna support 10, the insulating strip 16 is housed in the perforation 26. The next step is to laminate layers 10, 20 and 30 together. The three layers thus undergo a temperature rise up to 180 ° C and a rise in pressure. During lamination, the intermediate layer 20 softens at lower temperatures than the lower and upper layers 10 and 30. Due to the pressure exerted during the lamination step, air trapped between the layers and in particular in the perforations 26 and 39 is removed and replaced by softened polycarbonate). In this way, the polycarbonate of the intermediate layer 20 fills the perforations during the lamination step. The layer 20 provided with these two perforations avoids and compensates the extra thicknesses due firstly to the crossing zone of the antenna and secondly to the module.
A l'issue de cette étape de lamination, les trois couches 10, 20 et 30 sont soudées ensemble telles qu'on peut le voir sur la figure 6. Une fois soudées ensemble, les couches de polycarbonate ne se distinguent plus dans l'épaisseur du dispositif RFID obtenu de sorte qu'il n'y a aucune possibilité de délamination dans l'épaisseur. L'antenne 11 comprenant les spires, les deux plots de connexion 17 et 18 et le pont électrique 13 est complètement noyée dans le polycarbonate des trois couches 10, 20 et 30 soudées ensemble. Les bords du dispositif RFID selon l'invention sont uniformes et ne présentent pas de lignes de démarcation parallèles aux bords supérieurs 62 et inférieurs 61 qui pourraient présumer d'un assemblage de plusieurs couches entre elles ; ce qui rend impossible une tentative de délamination du dispositif dans son épaisseur. At the end of this lamination step, the three layers 10, 20 and 30 are welded together as can be seen in FIG. 6. Once welded together, the polycarbonate layers are no longer distinguished in the thickness RFID device obtained so that there is no possibility of delamination in the thickness. The antenna 11 comprising the turns, the two connection pads 17 and 18 and the electrical bridge 13 is completely embedded in the polycarbonate of the three layers 10, 20 and 30 welded together. The edges of the RFID device according to the invention are uniform and do not have parallel demarcation lines at the upper edges 62 and lower 61 which could assume an assembly of several layers together; which makes it impossible to attempt delamination of the device in its thickness.
Selon une variante de réalisation de l'invention, le module de circuit intégré est remplacé par une puce nue du type de la puce 25 encapsulée dans le module. Selon cette variante non représentée sur les figures, les étapes de réalisation de l'antenne et l'étape de lamination des couches entre elles sont les mêmes que pour le mode de réalisation décrit avec un module de circuit intégré. Cependant, la perforation 19 n'est pas nécessaire dans le cas d'une puce. Les perforations 26 et 39 sont réalisées de la même façon dans la couche 20 ; la perforation 39 étant centrée sur la puce . La connexion de la puce à 1 ' antenne est réalisée selon un procédé du type de celui décrit dans la demande FR2 826 153 de la demanderesse. De la matière diélectrique adhésive est déposée sur le support d'antenne 10 entre les plots de connexion 17, 18 de l'antenne et la puce est positionnée sur le support d'antenne de manière à ce que les contacts de la puce soient contre les plots de connexion de l'antenne. La matière adhésive subit ensuite un traitement thermique afin de la faire durcir.According to an alternative embodiment of the invention, the integrated circuit module is replaced by a bare chip of the type of the chip 25 encapsulated in the module. According to this variant not shown in the figures, the steps of producing the antenna and the step of laminating the layers together are the same as for the embodiment described with an integrated circuit module. However, the perforation 19 is not necessary in the case of a chip. The perforations 26 and 39 are made in the same way in the layer 20; the perforation 39 being centered on the chip. The connection of the chip to the antenna is carried out according to a method of the type described in FR2 826 153 of the Applicant. Adhesive dielectric material is deposited on the antenna support 10 between the connection pads 17, 18 of the antenna and the chip is positioned on the antenna support so that the contacts of the chip are against the connection pads of the antenna. The adhesive material is then heat-treated to cure.
Dans ce mode de réalisation, la pression exercée sur la puce lors de sa connexion sur 1 ' antenne permet aux contacts de la puce appelés communément « bumps » de pénétrer dans les plots de connexion de l'antenne qui se déforment et ainsi de garantir une meilleure connexion entre la puce et 1 ' antenne . In this embodiment, the pressure exerted on the chip when it is connected to the antenna enables the contacts of the chip, commonly known as "bumps", to penetrate into the connecting terminals of the antenna which deform and thus guarantee better connection between the chip and the antenna.
Le dispositif RFID selon l'invention forme un support plan qui peut être intégré à un document de sécurité tel qu'une carte d'identité, un livret d'identité, un permis de conduire, une carte d'accès, etc. The RFID device according to the invention forms a plan support that can be integrated into a security document such as an identity card, an identity book, a driver's license, an access card, etc.
Le dispositif RFID selon l'invention présente une épaisseur comprise entre 0,38 et 0,41 mm et a l'avantage de supporter la gravure laser. The RFID device according to the invention has a thickness of between 0.38 and 0.41 mm and has the advantage of supporting laser etching.