Movatterモバイル変換


[0]ホーム

URL:


EP2153518A1 - A multi-antenna beam-forming system for transmitting constant envelope signals decomposed from a variable envelope signal - Google Patents

A multi-antenna beam-forming system for transmitting constant envelope signals decomposed from a variable envelope signal

Info

Publication number
EP2153518A1
EP2153518A1EP08769633AEP08769633AEP2153518A1EP 2153518 A1EP2153518 A1EP 2153518A1EP 08769633 AEP08769633 AEP 08769633AEP 08769633 AEP08769633 AEP 08769633AEP 2153518 A1EP2153518 A1EP 2153518A1
Authority
EP
European Patent Office
Prior art keywords
signal
constant envelope
envelope signal
constant
variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP08769633A
Other languages
German (de)
French (fr)
Inventor
Abbas Komijani
Aliazam Abbasfar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rambus Inc
Original Assignee
Rambus Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rambus IncfiledCriticalRambus Inc
Publication of EP2153518A1publicationCriticalpatent/EP2153518A1/en
Withdrawnlegal-statusCriticalCurrent

Links

Classifications

Definitions

Landscapes

Abstract

Embodiments in the present disclosure pertain to a multi-antenna beam-forming system for transmitting constant envelope signals decomposed from a variable envelope signal. The variable envelope signal is decomposed into two constant envelope signals. Each of the constant envelope signals are separately amplified by power amplifiers and transmitted over separate antennas. Beam steering delays can be added to the transmit paths of the constant envelope signals to direct the beam to the location of a receiver. The transmitted constant envelope signals combine through spatial out-phasing such that a receiving antenna receives a variable envelope signal.

Description

A Multi-Antenna Beam-Forming System For Transmitting Constant Envelope Signals Decomposed from a Variable Envelope Signal
BACKGROUND
[0001] Constant envelope signals are a popular way for transmitting wireless or over-the-air radio frequency (RF) signals. For a constant envelope signal, the envelope of the carrier wave does not change in response to changes in the modulated signal. In other words, the maximum and minimum amplitude of a constant envelope signal is kept at a constant level. Constant envelope signaling schemes are advantageous in that they are efficient from a transmitted power standpoint. This is because constant envelope signals allow a transmitter's power amplifiers to operate at or near saturation levels, which correspond to the point whereby the power amplifiers operate at peak efficiency. Furthermore, due to the fact that the amplitude is maintained at a constant level, the power amplifiers only have to provide a steady amount of amplification. Consequently, there are less non- linearities and signal distortions associated with the amplification of constant envelope signals. [0002] In contrast, variable envelope signals have envelopes that change over time. Variable envelope signals can transmit a greater amount of data for the same occupied frequency bandwidth over a given amount of time as compared to constant envelope signals. This results in improved spectral efficiency. Unfortunately, power amplifiers for amplifying variable envelope signals operate at an average power level which is significantly less than their peak power. This means that the power amplifiers are mostly operating at a point which is less than ideal. This reduces the power efficiency of these variable envelope power amplifiers. Furthermore, power amplifiers for variable envelope signals change the signals' amplitudes by varying amounts, depending on the instantaneous amplitudes of the signals. The greater the degree that the amplitude of a signal varies, the more non-linear amplification is exhibited. This non-linear amplification produces distortions in the variable envelope signal and non-idealities in the channel. Such distortions and non-idealities could cause errors in the receiver. The received data could become corrupted, and the transmitted distorted signal will experience spectral regrowth. [0003] Thus, wireless communications designers face a dilemma. The designers can implement constant envelope signals, which are highly efficient from a power standpoint and are also less susceptible to distortions. However, the trade-off is that constant envelope signals cannot transmit data as fast as compared to variable envelope signals. Although variable envelope signals have better spectral efficiency, this comes at the expense of reduced power efficiency and increased susceptibility to signal distortions and non-idealities which could ultimately lead to receiver errors and unacceptable out-of-band spectral emissions.
BRIEF DESCRIPTION OF THE DRAWINGS
[0004] The accompanying drawings, that are incorporated in and form a part of this specification, illustrate embodiments discussed below, and, together with the description, serve to explain the principles of the disclosure:
[0005] Figure 1 shows an example of a system for transmitting a variable envelope signal as two constant envelope signals over two transmitter antennas.
[0006] Figure 2 shows a vector diagram used to illustrate the decomposition process used to perform spatial out-phasing.
[0007] Figure 3 shows constellations for transmitter antennas transmitting constant envelope signals and the constellation for a receiver antenna which receives an equivalent variable envelope signal.
[0008] Figure 4 shows a graph of output power and efficiency as functions of input power for a typical transmitter power amplifier.
[0009] Figure 5 shows a multi-antenna system having N number of transmitter antennas for transmitting N number of constant envelop signals, which represent an initial variable envelope signal. [00010] Figure 6 shows a phased array antenna system for transmitting constant envelope signals decomposed from a variable envelope system.
[00011] Figure 7 is a flowchart describing the steps for the multi-antenna beam forming process for transmitting constant envelope signals decomposed from a variable envelope signal.
[00012] Figure 8 shows a system diagram for an embodiment of a multi-antenna system for transmitting decomposed constant envelope signals.
DETAILED DESCRIPTION [00013] Embodiments in the present disclosure pertain to a multi-antenna beam- forming system. Initially, a variable envelope signal is decomposed into two constant envelope signals through a process known as out-phasing. The out-phasing process provides two signals of constant amplitude but of varying phase (e.g., "phasor fragments") to represent a single signal of varying phase and amplitude. Each of the two constant envelope signals is amplified by a power amplifier and then transmitted wirelessly as an RF signal by a transmitting antenna. Because the power amplifiers are amplifying constant envelope signals, transmit power efficiency is achieved while any non-linearities associated with the power amplifiers are minimized. The two constant envelope RF signals propagate over-the-air and are received by a one or more receiving antenna. The combination of the two constant envelope RF signals received by one or more receiving antennas produces a variable envelope signal which matches that of the initial variable envelope signal before it was decomposed. The received variable envelope signal results in superior spectral efficiency. Thereby, the benefits associated with constant envelope signals and with variable envelope signals schemes are realized, while their drawbacks are overcome. In one embodiment, a delay can be introduced in the transmit path of one or more antennas to help steer the transmit signal to the location of a designated receiver antenna. [00014] Referring now to Figure 1 , an example of a system for transmitting a variable envelope signal as two constant envelope signals over two transmitter antennas is shown. A variable envelope signal X(t) has changes in both amplitude and phase. The variable envelope signal X(t) is decomposed into two constant envelope signals Xci and Xc2- This is accomplished by inputting the variable envelope signal X(t) into two mixers 101 and 104. Mixer 101 changes the phase of the X(t) signal by φi to produce a constant envelope signal Xd . The constant envelope signal Xd has a constant amplitude, but its phase varies as a function of X(t). The constant envelope signal Xd is input to a power amplifier 102. Power amplifier 102 amplifies the constant envelope signal Xd , which is then transmitted by antenna 103 over-the-air as an RF signal to a receiver antenna 107. In similar fashion, mixer 104 changes the phase of the variable envelope signal X(t) by φ2 to produce the constant envelope signal Xc2. The constant envelope signal Xc2 has a constant amplitude, but its phase varies as a function of X(t). The constant envelope Xc2 signal is input to power amplifier 105. Power amplifier 105 amplifies the constant envelope signal Xc2, which is then transmitted by antenna 106 over-the-air as an RF signal to receiver antenna 107. The two RF signals being transmitted by transmitter antenna 103 and 106 combine through superposition over-the-air, and the receiver antenna 107 receives a variable envelope signal that corresponds to the original variable envelope signal X(t). This type of combining at least two constant envelope signals over-the-air to form a variable envelope signal is referred to herein as "spatial out-phasing." [00015] In this embodiment, there is no need to have a physical adder circuit to add the two constant envelope signals together before RF transmission. The constant envelope signals are separately amplified by separate power amplifiers, and each of the amplified constant envelope signals are transmitted wirelessly by their own dedicated antenna. In other embodiments, any number of different types and designs of phase delay circuits, mixers, amplifiers, converters, switches, and other components can be used to implement the decomposition process. Furthermore, from the receiver side, no changes or modifications are needed. This provides for a standard-blind solution, whereby the multi-antenna system for transmitting constant envelope signals decomposed from a variable envelope signal will work for virtually any conventional receiver system.
[00016] Figure 2 shows a vector diagram used to illustrate the decomposition process used to perform spatial out-phasing. Three vectors are shown. One vector represents the variable envelope signal X(t). The length of the X(t) vector represents the amplitude of the variable envelope signal. The angle of the X(t) vector represents the phase of the variable envelope signal. The amplitude and phase of the variable envelope signal may change. Consequently, the length and angle of the X(t) vector can change. The X(t) vector can be decomposed into two vectors Xd and Xc2. The Xd and Xc2 vectors represent constant envelope signals. For constant envelope signals, the amplitudes do not change. The amplitudes of the constant envelope signals are denoted by the lengths of the Xd and Xc2 vectors. Consequently, the lengths of the Xd and Xc2 vectors are kept constant. The angles of the Xd and Xc2 vectors represent their respective phases. By applying vector arithmetic, one can calculate the angles (φ1 andφ2) for the Xd and Xc2 vectors such that when the Xd vector is combined with the Xc2 vector, the result is the X(t) vector. Any change in the phase of the variable envelope signal is represented by a corresponding change in the angle of the X(t) vector. This means that the angles, φ1 and φ2, of the Xd and Xc2 vectors are changed (e.g., φ1 decreases while φ2 increases or φ1 decreases while φ2 increases) in response to the change in the angle of the X(t) vector. The lengths of the Xd and Xc2 vectors need not be changed and can be kept constant. Consequently, changes in phase of a variable envelope signal are represented by changing the phases of the two corresponding constant envelope signals. [00017] Any change in the amplitude of the variable envelope signal is represented by a corresponding change in the length of the X(t) vector. This, in turn, causes the angles of the constant envelope to change accordingly, as represented by the angles of the Xd and Xc2 vectors. For example, if the amplitude of the variable envelope signal were to decrease, this would be represented by a shorter X(t) vector. Decomposing a shorter X(t) vector entails changing the angles, φ1 and φ2, of the Xd and Xc2 vectors. In particular, the angles, φ1 and φ2, are increased when the length of the X(t) signal decreases. The lengths of the Xd and Xc2 vectors cannot be shortened because they represent constant envelop signals having constant amplitudes. Conversely, when the amplitude of the variable envelope signal increases, the angles, φ1 andφ2, of the constant envelope vectors Xd and Xc2 are decreased. Consequently, any changes in the amplitude of a variable envelope signal are represented by changing the phases of the two corresponding constant envelope signals. Therefore, changes in either amplitude or phase of a variable envelope signal are represented by changing the phases of the decomposed pair of constant envelope signals. Additional descriptions of decomposition and out- phasing can be found in Behzad Razavi, RF Microelectronics, Prentice Hall PTR, November 6, 1997 (see Section 9.5.4 relating to "linear amplification with nonlinear components" (LINC)).
[00018] Although the transmitter antennas are transmitting constant envelope signals, the receiver antenna receives a variable envelope signal. This is illustrated in Figure 3, which shows the constellations for the transmitter antennas and the constellation for the receiver antenna. The constellation for one of the two transmitter antennas is depicted as 301. The symbols are arranged equi-distant from the center, which indicates that a constant envelope signal having a constant amplitude is being transmitted. The phase of the constant envelope signal can vary, as indicated by the various symbols located along the same radius, R1 , of the constellation. The constellation for the other transmitter antenna is depicted as 302. Constellation 302 has a constant radius of R2. In one embodiment, R1 =R2. In other embodiments, R1 and R2 can be different. The symbols of constellation 302 are arranged equi-distant to the center by the radius R2. This indicates that a constant envelope signal having a constant amplitude, but varying phases, is being transmitted by the other transmitter antenna.
[00019] The constellation for the receiver antenna is depicted as 303. Constellation 403 has symbols arranged along circles with different radii (R3, R4, and R5). The different radii indicates that the amplitude of the received signal varies over time. Furthermore, the symbols are arranged along various points of the circles. This means that the phase of the received signal also varies over time. Consequently, constellation 303 shows a received variable envelope signal. The two transmitted signals having constellations 301 and 302 are combined over-the-air, through a process herein referred to as spatial out-phasing, and results in an antenna receiving a signal that corresponds to constellation 303, which characterizes a variable envelope signal. Thus, a higher rate of data (e.g., greater bits per second) is being received by the receiver antenna as compared to a receiver that simply receives a constant envelope signal. Furthermore, because the transmitter's power amplifiers are amplifying constant envelope signals instead of variable envelope signals, power amplifier nonlineahties are minimized. Thus, the receiver constellation 303 is uniform, and receiver errors are minimized. It should be noted that because the transmitter's power amplifiers are amplifying constant envelope signals (i.e., Xd and Xc2), these amplifiers can operate at or near their saturation level. This means that the transmitter's power amplifiers are operating at or near their peak efficiency. Figure 4 shows a graph of the output power and efficiency as functions of input power for a typical transmitter power amplifier. For constant envelope signals, the amplitude is constant. Consequently, the average power for constant envelope signals is approximately equal to its peak power. This corresponds to higher efficiency. Conversely, because the amplitude of the variable envelope signal varies over time, its average power is less than that of its peak power. Its average power is backed off from its peak. This results in a lower power efficiency. For a typical power amplifier, the efficiency for variable envelope signals can be 5%, whereas the typical efficiency for constant envelope signals can be 50%. Thus, by decomposing variable envelope signals into constant envelope signals, embodiments of the present disclosure can improve power amplifier efficiency by upwards of ten-fold. [00020] In other embodiments, more than two transmitter antennas are utilized. In one embodiment, the variable envelope signal is decomposed into three or more constant envelope signals, each of which is separately amplified by power amplifiers and sent over-the-air as RF signals by transmitter antennas. Figure 5 shows a multi- antenna system having N number of transmitter antennas for transmitting N number of constant envelop signals which represent an initial variable envelope signal. The initial variable envelope signal X(t) is simultaneously input to N number of mixers. The N number of mixers independently changes the phase by φi to φN. The outputs from the mixers are N number of constant envelope signals, Xci to XCN- Each of these N number of constant envelope signals are amplified by N number of power amplifiers, PAi to PAN, and then transmitted as RF signals by the N number of antennas. There may be cost, power, signal integrity, and/or bandwidth reasons for decomposing and out-phasing more than two constant envelope signals. [00021] The multi-antenna systems of the above embodiments are applicable to circumstances whereby the receiver antenna is located equi-distant from each of the transmitter antennas. If one or more of the transmitter antennas are located farther away from the receiver antenna than the other transmitter antenna, the constant envelope signal corresponding to the transmitter antenna(s) that are further away will take longer to reach the receiver antenna. This extra delay may cause errors in phase to occur. One solution is to introduce extra delay(s) in the transmit path(s) corresponding to the closer transmitter antenna(s) so that their constant envelope signal will synchronize and arrive "on time" with that of the constant envelope signal of the transmitter antenna that is further away. For example, if there are two transmitter antennas with one transmitter antenna driven by Xc-i(t), and the other transmitter antenna driven by XC2(t), then at the receiver antenna, the summation is correct if the delays from the two transmitter antennas are the same. This occurs at one angle. However, one can direct the transmitted signal towards any desired angle. This can be accomplished by adjusting the delay of one transmitted constant envelope signal. The delay can be adjusted by a feedback from the receiver to the transmitter. For instance, XC2(t) can be adjusted for phase, while keeping its amplitude constant. The phase adjustment can direct the transmitted signal to any desired angle by:
[00022] Xτxi(t) = Xci(t)
[00023] XTX2(t) = XC2(t-delay(θ))
[00024] XRX(t) = Xd (t) + Xcz(t) = X(t). [00025] In one embodiment, a phased array antenna system is used to transmit the decomposed, out-phased constant envelope signals. Typically, a phased array antenna system uses multiple antennas to transmit multiple RF signals. By incrementally adding delays to the individual transmit paths for each successive antenna, the phased array antenna system can point or steer a beam to the specific location of a receiver antenna. This beam forming functionality is desirable for security reasons. Furthermore, the directivity is advantageous because more RF power can be directed to the receiver antenna, which increases the distance by which data can be reliably transmitted. One can have such a transmitter with feedback from the receiver. The location information of the receiver is fedback to the transmitter so that the transmitter can adjust the delays to compensate for the location of that receiver. Feeding back the receiver location is performed for mobile or portable receiver applications. Alternatively, if the locations of the transmitter and receiver are fixed, the delays can be calculated based on the fixed locations and stored in the memory of the transmitter system. Location information can also be input from a user or downloaded from a network. Embodiments of the present disclosure can be applied to a phased array antenna system. [00026] For example, Figure 6 shows a phased array antenna system for transmitting constant envelope signals decomposed from a variable envelope system. The variable envelope signal X(t) is input to the constant envelope decomposition block 601. The constant envelope decomposition block 601 decomposes the variable envelope signal X(t) into two constant envelope signals, Xd and Xc2, according to the out-phasing decomposition process described in detail above. After constant envelope decomposition, beam steering delays are introduced into the XCi and XC2 signal paths before they are amplified by the power amplifiers. More specifically, one of the XCi signal paths 602 does not have any added beam steering delay. The Xci signal is input to power amplifier 606. Power amplifier 606 amplifies the Xci signal for RF transmission by transmitter antenna 610. The Xci signal is also transmitted over an additional N number of transmit paths in the phased array antenna system. For each of the N number of XCi paths, additional beam steering delays are added. The beam steering delays are incrementally larger for each successive Xci transmit path. The last transmit path 604 of the Xci signal has an added beam steering delay of ψ2N-2- The XCi signal with the added beam steering delay of φ2N-2 is amplified by power amplifier 608 and then transmitted as an RF signal by antenna 612. In one embodiment, the Δ delays are incorporated into the phases (e.g., φi - φ2N-2 )■
[00027] For the XC2 signal, one of the transmit paths 603 has an added beam steering delay of φ-i. The XC2 signal that has the added beam steering delay of φi is input to power amplifier 607 which amplifies the signal before being transmitted over- the-air by antenna 611. The Xc2 signal is also transmitted over an additional N number of transmit paths in the phased array antenna system. For each of the N number of Xc2 paths, additional beam steering delays are added. The beam steering delays are incrementally larger for each successive Xc2 transmit path. The last transmit path 605 of the Xc2 signal has an added beam steering delay of ψ2N-i- The Xc2 signal with the added beam steering delay of φ2N-i is amplified by power amplifier 609 and then transmitted as an RF signal by antenna 613.
[00028] The phased array antenna system can have many transmit paths, power amplifiers, and transmitter antennas for transmitting the constant envelope signals. However, for purposes of illustration and explanation, only four of the multiple transmitter paths, power amplifiers, and transmitter antennas are shown in detail in Figure 6. Increasing the number of transmit paths, power amplifiers, and transmitter antennas in the phased array antenna system increases its gain, thereby extending its transmit range. By selectively controlling the beam steering delays, the beam can be directed to any location corresponding to a receiver antenna. In other words, the beam can be electronically steered to a receiver antenna. [00029] Figure 7 is a flowchart describing the steps for the multi-antenna beam forming process for transmitting constant envelope signals decomposed from a variable envelope signal. Initially, in step 701 , the variable envelope signal is generated. This variable envelope signal is decomposed into at least two constant envelope signals, step 702. The amplitudes of the constant envelope signals are kept constant, but their phases varies as a function of the amplitude and phase of the variable envelope signal. In step 703, one or more delays can be added to one or more of the transmit signal paths corresponding to one or both of the constant envelope signals. Step 703 is optional and is used to steer the beam to the known location of a receiver antenna. For implementation in a phased array antenna system, the delays are successively staggered for successive antennas. Once the delays, if any, have been added, in step 704, each of the transmit paths associated with the constant envelope signals are amplified by separate power amplifiers. The amplified constant envelope signals are then transmitted as RF signals from separate antennas in step 705. Since the decomposition works correctly for one angle, the transmitter needs to know the location of the receiver and hence, pre- compensate for that location. Therefore, a feedback from the receiver to the transmitter is implemented. This feedback is shown in steps 706 and 707. In step 706, the receiver estimates the angle at which it is located with respect to the transmitter. In step 707, the receiver sends back the angle information to the transmitter. [00030] Figure 8 shows a system diagram for an embodiment of a multi-antenna system for transmitting decomposed constant envelope signals. The multi-antenna system 802 can send and receive data from a network 801 (e.g., the Internet) through an I/O interface 803. The I/O interface 803 is also coupled to a user interface 810 which enables users to input data and commands to the multi-antenna system 802 and also to obtain data for display from the multi-antenna system 802. Any data designated for transmission by transmitter 806 is initially processed as a variable envelop signal. The data can originate as input from a user through Ul 810, obtained through the network 801 , read from memory 805, or generated by processor 804. The variable envelope signal is then processed by out-phasing decomposition block 807 which outputs constant envelope signals. Delays are added in block 808 to certain ones of the constant envelope signals for purposes of bean steering. The constant envelope signals are then amplified by power amplifiers in block 809. The amplified constant envelope signals are steered and transmitted over-the-air to one or more receiving antennas. An example of a receiving system is shown as 811. The receiving system 811 has a receiver 812, which is designed to receive and demodulate variable envelope signals. A processor 813 processes the received data. The data can then be stored in memory 814 or sent out via I/O interface 815 for display or playback on user interface 817 or sent over a network 816. Furthermore, the processor 813 of receiving station 811 can send location information back to the transmitter 806 of multi-antenna system 802. This location information is used to adjust the delays of delay circuit 808 to compensate for the location of receiving system 811. This information can be sent back wirelessly, especially for mobile or portable receiver applications. Alternatively, the location information can be input by the user, stored in memory, or downloaded from a network or server.
[00031] In one embodiment, the multi-antenna system directly generates the constant envelope signals without having to actually generate any variable envelope signal. The constant envelope signals are modeled after an imaginary or virtual variable envelope signal. It should be noted that this system supports any type of point-to-point or multicast data communications. The distance between the transmitter and receiver can be as short as ten times the distance between the transmitter antennas and can be as far away as practically supported by the power amplifiers and number of antennas. Any type of variable envelope signals (e.g., Differential Quadrature Phase Shift Keying, spread spectrum signals, etc.) and any type of constant or near-constant envelope signals (e.g., Frequency Shift Keying, Orthogonal Frequency Division Multiplexing, etc.) can be used in various embodiments of the multi-antenna system. Furthermore, the multi-antenna system is not limited by frequency; it can work in any frequency range. In addition, the multi- antenna system can be used in a wide range of different applications (e.g., as a repeater, for transmitting television signals including high definition, high-speed digital data link, audio/voice/cellular communications, etc.). [0010] In conclusion, a multi-antenna beam forming system for transmitting constant envelope signals decomposed from a variable envelope signal is disclosed. In the foregoing specification, embodiments of the claimed subject matter have been described with reference to numerous specific details that can vary from implementation to implementation. Thus, the sole and exclusive indicator of what is, and is intended by the applicants to be the claimed subject matter is the set of claims that issue from this application, in the specific form in which such claims issue, including any subsequent correction. Hence, no limitation, element, property, feature, advantage or attribute that is not expressly recited in a claim should limit the scope of such claim in any way. The specification and drawings are, accordingly, to be regarded in an illustrative rather than a restrictive sense.

Claims

CLAIMSWhat is claimed is
1. A transmitter circuit comprising: a circuit for decomposing a variable envelope signal into at least a first constant envelope signal and a second constant envelope signal; a first amplifier coupled to the circuit for decomposing the variable envelope signal, wherein the first amplifier amplifies the first constant envelope signal; a first antenna coupled to the first amplifier that transmits an amplified first constant envelope signal; a second amplifier coupled to the circuit for decomposing the variable envelope signal, wherein the second amplifier amplifies the second constant envelope signal; a second antenna coupled to the second amplifier that transmits an amplified second constant envelope signal.
2. The transmitter circuit of Claim 1 further comprising at least one delay circuit that delays the second constant envelope signal by a specified amount of time such that a variable envelope signal results from the superposition of the first and second envelope signals at a location of a receiver antenna.
3. The transmitter circuit of Claim 2, wherein the delay circuit comprises at least one mixer which adds a phase delay to a transmit path of one of the first constant envelope signal and the second constant envelope signal.
4. The transmitter circuit of Claim 1 further comprising: at least three delay circuits for delaying the first constant envelope signal and the second constant envelope signal to steer a beam to a location of a receiver antenna; at least four amplifiers for amplifying the first constant envelope signal and the second constant envelope signal; at least four antennas for transmitting the first constant envelope signal and the second constant envelope signal.
5. The transmitter circuit of Claim 1 , wherein the first constant envelope signal and the second constant envelope signal have phases that when transmitted as RF signals, a receiving antenna receives the variable envelope signal.
6. The transmitter circuit of Claim 1 , wherein the first amplifier and the second amplifier comprise power amplifiers operating in saturation.
7. A method for transmitting RF signals comprising: generating a first signal having constant amplitude and varying phase; amplifying the first signal; transmitting the first signal wirelessly; generating a second signal having constant amplitude and varying phase; amplifying the second signal; transmitting the second signal wirelessly, wherein the first signal and the second signal are decomposed from a third signal that has variable amplitude and variable phase.
8. The method of Claim 7 further comprising: adding a delay to the second signal, wherein the delay is added to transmit the first signal and the second signal to a known location of a receiver.
9. The method of Claim 7 further comprising: adding a plurality of delays to a plurality of transmit paths for transmitting the first signal and the second signal in a phased array antenna system.
10. The method of Claim 7 further comprising: amplifying the first signal at saturation of a first power amplifier; amplifying the second signal at saturation of a second power amplifier.
11. The method of Claim 7 further comprising: spatially out-phasing the third signal, wherein the first signal and the second signal wirelessly combine so that a receiver receives a wireless signal with varying amplitude and varying phase.
12. A method for wirelessly transmitting a signal comprising: decomposing a variable envelope signal into a first constant envelope signal and a second constant envelope signal; amplifying the first constant envelope signal; transmitting an amplified first constant envelope signal wirelessly over a first antenna; amplifying the second constant envelope signal; transmitting an amplified second constant envelope signal wirelessly over a second antenna.
13. The method of Claim 12 further comprising: adding beam steering delays to direct a beam to a location of a receiver antenna.
14. The method of Claim 12 further comprising: spatially out-phasing the variable envelope signal, wherein the first constant envelope signal and the second constant envelope signal combine through superposition as RF signals in order to produce an RF signal corresponding to the variable envelope signal.
15. A multi-antenna system for transmitting constant envelope signals decomposed from a variable envelope signal comprising: a processor for generating the variable envelope signal having varying amplitudes and varying phases; an out-phasing decomposition circuit coupled to the processor that generates at least a first constant envelope signal and a second constant envelope signal, wherein the first constant envelope signal and the second constant envelope signal have constant amplitudes and varying phases which together represent the variable envelope signal; a first power amplifier coupled to the out-phasing decomposition circuit that amplifies the first constant envelope signal; a first antenna coupled to the first power amplifier for wireless transmission of the first constant envelope signal; a second power amplifier coupled to the out-phasing decomposition circuit that amplifies the second constant envelope signal; a second antenna coupled to the second power amplifier wireless transmission of the second constant envelope signal.
16. The multi-antenna system of Claim 15 further comprising: a plurality of delay circuits coupled to the out-phasing decomposition circuit for adding beam steering delays to transmit paths of the first constant envelope signal and the second constant envelope signal; a plurality of power amplifiers coupled to the plurality of delay circuits for amplifying delayed first constant envelope signals and delayed second constant envelope signals; a plurality of antennas for wireless transmission of amplified, delayed first constant envelope signals and second constant envelope signals.
17. The multi-antenna system of Claim 16, wherein the plurality of delay circuits include a plurality of adders for adding the delays to the first constant envelope signals and the second constant envelope signals.
18. The multi-antenna system of Claim 16, wherein the plurality of delay circuits, plurality of power amplifiers, and plurality of antennas comprise a phased- array antenna system that electronically steers a beam to a location of a receiver.
19. The multi-antenna system of Claim 15, wherein the wireless transmission of the first constant envelope signal and the wireless transmission of the second constant envelope signal combine as RF signals.
20. The multi-antenna system of Claim 15, wherein the wireless transmission of the first constant envelope signal and the wireless transmission of the second constant envelope signal is capable of being received by a variable envelope signal receiver.
21 . The multi-antenna system of Claim 15, wherein the wireless transmission of the first constant envelope signal and the wireless transmission of the second constant envelope signal establishes point-to-point communications with a receiver.
EP08769633A2007-05-252008-05-22A multi-antenna beam-forming system for transmitting constant envelope signals decomposed from a variable envelope signalWithdrawnEP2153518A1 (en)

Applications Claiming Priority (2)

Application NumberPriority DateFiling DateTitle
US93169907P2007-05-252007-05-25
PCT/US2008/064572WO2008147908A1 (en)2007-05-252008-05-22A multi-antenna beam-forming system for transmitting constant envelope signals decomposed from a variable envelope signal

Publications (1)

Publication NumberPublication Date
EP2153518A1true EP2153518A1 (en)2010-02-17

Family

ID=39684115

Family Applications (1)

Application NumberTitlePriority DateFiling Date
EP08769633AWithdrawnEP2153518A1 (en)2007-05-252008-05-22A multi-antenna beam-forming system for transmitting constant envelope signals decomposed from a variable envelope signal

Country Status (3)

CountryLink
EP (1)EP2153518A1 (en)
JP (1)JP2010530657A (en)
WO (1)WO2008147908A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
FR3080732A1 (en)*2018-04-272019-11-01Orange RECEIVING AND TRANSMITTING METHODS, AND RECEIVER AND TRANSMITTER DEVICES OF A WIRELESS COMMUNICATION SYSTEM
JP2020156022A (en)*2019-03-222020-09-24古河電気工業株式会社Amplification device
EP3876420B1 (en)2020-03-022025-06-18Nokia Solutions and Networks OyRadio frequency transmission

Citations (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US6233434B1 (en)*1998-08-282001-05-15Hitachi, Ltd.System for transmitting/receiving a signal having a carrier frequency band for a radio base station

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPH07162224A (en)*1993-12-021995-06-23Nippon Telegr & Teleph Corp <Ntt> Antenna synthesis circuit
DE60234724D1 (en)*2002-05-312010-01-21Fujitsu Ltd distortion compensator
JP4368592B2 (en)*2003-02-192009-11-18シャープ株式会社 Digital broadcast receiving tuner and receiving apparatus having the same
JP3747922B2 (en)*2003-07-032006-02-22三菱電機株式会社 Mobile communication device
JP2005151543A (en)*2003-10-202005-06-09Matsushita Electric Ind Co Ltd Amplifier circuit
US7327803B2 (en)*2004-10-222008-02-05Parkervision, Inc.Systems and methods for vector power amplification
JP2006129402A (en)*2004-11-012006-05-18Matsushita Electric Ind Co Ltd Amplifier circuit and transmitter

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US6233434B1 (en)*1998-08-282001-05-15Hitachi, Ltd.System for transmitting/receiving a signal having a carrier frequency band for a radio base station

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references ofWO2008147908A1*

Also Published As

Publication numberPublication date
WO2008147908A1 (en)2008-12-04
JP2010530657A (en)2010-09-09

Similar Documents

PublicationPublication DateTitle
US8482462B2 (en)Multi-antenna beam-forming system for transmitting constant envelope signals decomposed from a variable envelope signal
US10404334B2 (en)Predistortion for hybrid digital/analog precoders
US20030022634A1 (en)Split shift phase sweep transmit diversity
WO2007026699A1 (en)Wireless communication system, wireless communication apparatus, amplification rate deciding method, and storing medium
US8077799B2 (en)Apparatus and method to adjust a phase and frequency of a digital signal
CN101185200A (en)Multi-antenna system for cellular communication and broadcasting
US20100202565A1 (en)Communication using continuous-phase modulated signals
WO2001017130A1 (en)Communication terminal device and channel estimating method
US10069669B2 (en)High frequency multi-antenna transmitter(s)
US20180091195A1 (en)Transmission method with double directivity
EP1579572A1 (en)Peak power limitation in an amplifier pooling scenario
EP1175762B1 (en)Communication system with predistortion
CN1813423B (en)Method and apparatus for combining radio frequency signals from multiple antennas
WO2008147908A1 (en)A multi-antenna beam-forming system for transmitting constant envelope signals decomposed from a variable envelope signal
JPWO2007029727A1 (en) Multilevel modulation / demodulation method, multilevel modulation / demodulation device
US10142144B2 (en)Transmission method
US9548822B2 (en)Techniques for linearizing phase independently of amplitude in a communications system
JP4677590B2 (en) Phased array antenna
US7042955B2 (en)Space time spreading and phase sweep transmit diversity
JP2001102996A (en) Base station apparatus and wireless communication method
JP6219007B1 (en) Feed forward amplifier and antenna device
Lee et al.Beamforming system for 3G and 4G wireless LAN applications
WO2015065215A1 (en)Transmission method
CN101151767B (en)Antenna adaptation method, communication terminal, device, module and computer program product
JP2006108731A (en) Transmitting apparatus, receiving apparatus, base station apparatus, transmitting method and receiving method

Legal Events

DateCodeTitleDescription
PUAIPublic reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text:ORIGINAL CODE: 0009012

17PRequest for examination filed

Effective date:20091228

AKDesignated contracting states

Kind code of ref document:A1

Designated state(s):AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AXRequest for extension of the european patent

Extension state:AL BA MK RS

17QFirst examination report despatched

Effective date:20100719

DAXRequest for extension of the european patent (deleted)
RAP1Party data changed (applicant data changed or rights of an application transferred)

Owner name:RAMBUS INC.

STAAInformation on the status of an ep patent application or granted ep patent

Free format text:STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18DApplication deemed to be withdrawn

Effective date:20141201


[8]ページ先頭

©2009-2025 Movatter.jp