SOLARENERGIEERZEUGUNGSANLAGE SOLAR POWER GENERATION SYSTEM
B E S C H R E I B U N GDESCRIPTION
Die Erfindung bezieht sich auf eine Solarenergieerzeugungsanlage, welche aus einer oder mehreren parallelen Ketten (Strings) von Photovoltaik-(PV)- Modulen aufgebaut ist und über Wechselrichter in ein Niederspannungsnetz einspeist.The invention relates to a solar power plant, which is composed of one or more parallel strings of photovoltaic (PV) modules and feeds via inverters in a low-voltage grid.
In Solarstromanlagen werden photovoltaische Stromerzeuger (PV-Module) eingesetzt, die als Strahlungsenergiewandler auf der Basis des äußeren lichtelektrischen Effektes die direkte Umwandlung von Lichtenergie in Elektroenergie realisieren.In solar power plants photovoltaic power generators (PV modules) are used, which realize the direct conversion of light energy into electrical energy as a radiation energy converter based on the external photoelectric effect.
Es ist allgemein bekannt, einzelne PV-Module zu Generatoren zu verschalten, die dann Spannungen und Ströme liefern, die weitaus höhere Werte annehmen, als die eines einzelnen PV -Moduls. Die Abbildungen 1.1 bis 1.4 zeigen solche Generator-Schaltungen, wobei ein einzelnes PV-Modul den Kurzschlussstrom Dc und die Leerlaufspannung Uoc besitzt. Beispielsweise besitzt das einzelne PV- Modul eine Leerlaufspannung von 40VDC und einen Kurzschlussstrom von 5A.It is well known to connect individual PV modules to generators, which then deliver voltages and currents that are much higher than those of a single PV module. Figures 1.1 to 1.4 show such generator circuits, wherein a single PV module has the short-circuit current Dc and the open-circuit voltage Uoc. For example, the single PV module has an open circuit voltage of 40VDC and a short circuit current of 5A.
Abb. 1.1 zeigt ein einzelnes PV-Modul 1. Bei der Schaltung nach Abb. 1.2 werden 20 PV-Module 1 bis 20 zu einer Kette (String) in Serie geschaltet, wobei sich die Einzelspannungen der PV-Module zu 800 VDC addieren; der Kurzschlussstrom des Strings beträgt 5A wie der des einzelnen Moduls.Fig. 1.1 shows a single PV module 1. In the circuit according to Fig. 1.2, 20 PV modules 1 to 20 are connected in series to form a string (string), with the individual voltages of the PV modules adding up to 800 VDC; the short circuit current of the string is 5A as that of the single module.
Bei der Generatorschaltung nach Abb. 1.3 werden 20 PV-Module 1 bis 20 parallel geschaltet, wobei sich der Strom der PV-Module addiert und 100A beträgt, während die Gesamt-Spannung 40 VDC beträgt.In the generator circuit shown in Fig. 1.3, 20 PV modules 1 to 20 are connected in parallel, the current of the PV modules adding up to 100A while the total voltage is 40 VDC.
Eine häufige Verschattung in netzgekoppelten Solarstromanlagen zeigt Abb. 1.4. Hier werden die einzelnen PV-Module zunächst zu Strings 1-20 ,„ 381-400 in Serie verschaltet, anschließend werden die Strings 1-20 ... 381-400 parallel verschaltet. Die Gesamt-Spannung beträgt dann 800 VDC, der Gesamtstrom 100A.Frequent shading in grid-connected solar power systems is shown in Fig. 1.4. Here, the individual PV modules are first connected in series to strings 1-20, "381-400, then the strings 1-20 ... 381-400 connected in parallel. The total voltage is then 800 VDC, the total current 100A.
Diese beschriebenen Anordnungen von PV-Modulen für Solargeneratoren erzeugen diese Spannungen, sobald Licht auf sie trifft. Um die erzeugte Leistungen nutzen zu können, sind in der Regel nachgeschaltete elektrische Betriebsmittel wie Leitungen, Laderegler, Wechselrichter für Netz- oder Inselbetrieb erforderlich. Diese stehen bei Lichteinwirkung auf den Solargenerator zumindest teilweise unter Spannung, auch wenn kein Betrieb gewünscht wird, oder der Betrieb aufgrund einer Störung nicht möglich ist.These described arrangements of PV modules for solar generators generate these voltages as soon as light hits them. In order to use the generated power, usually downstream electrical equipment such as lines, charge controllers, inverters for grid or island operation are required. These are under the action of light on the solar generator at least partially under tension, even if no operation is desired, or the operation is not possible due to a fault.
Abb. 2 zeigt eine häufig realisierte Anordnung mit einer Generatorschaltung gemäß Abb. 1.4 und nachgeschaltetem Zentralwechselrichter ZR für Netzparallelbetrieb zum Zweck der Einspeisung in ein Versorgungsnetz N. Anstelle eines Zentralwechselrichters ist es auch möglich, sogenannte String- Wechselrichter vorzusehen, um jeden einzelnen String an einem zugeordneten Wechselrichter anzuschließen. Versagt der Wechselrichter ZR z.B. durch eine Netzstörung den Betrieb, bleibt trotzdem der Solargenerator und die nachgeschaltete Leitungsanlage bis zum Gleichstrom-Eingang des Wechselrichters ZR unter Spannung, solange der Solargenerator Licht ausgesetzt ist (bis Sonnenuntergang). Zwar können gemäß Abb. 3 zusätzliche DC-Freischalter FS in dem Gleichstrompfad an jederzeit zugänglicher Stelle angeordnet werden, um nachfolgende Betriebsmittel manuell spannungslos zu schalten, doch können diese Freischalter FS nicht verhindern, dass die PV-Module weiterhin Spannung liefern.Fig. 2 shows a frequently implemented arrangement with a generator circuit as shown in Fig. 1.4 and downstream central inverter ZR for grid parallel operation for the purpose of feeding into a supply network N. Instead of a central inverter, it is also possible to provide so-called string inverter to each string at a associated inverter to connect. The inverter fails ZR, for example, due to a power failure, the operation still remains the solar generator and the downstream line system to the DC input of the inverter ZR under tension as long as the solar generator is exposed to light (until sunset). Although, as shown in Fig. 3, additional DC cutouts FS may be placed in the DC path at any point accessible to manually de-energize subsequent resources, these circuit breakers FS can not prevent the PV modules from continuing to supply voltage.
Würde ein solcher Freischalter FS beispielsweise gemäß Abb. 3, angeordnet, bleibt generatorseitig trotzdem Spannung anstehen. Da häufig Solargeneratoren auf Gebäuden errichtet werden, steht nun das Problem, dass im Brandfalle kein spannungsloser Zustand der PV-Module mit zugehöriger Leitungsanlage erreicht werden kann, was dazu führt, dass Löschmaßnahmen nicht eingeleitet werden und Versicherungen aus diesem Grund den Schutz verweigern. Ein weiteres Problem besteht darin, dass bei Installations- oder Wartungsarbeiten am Solargenerator oder der Leitungsanlage ebenfalls kein spannungsloser Zustand erreicht werden kann, solange Licht auf den Solargenerator scheint. Dies ist aus Unfallverhütungsgründen kaum tragbar, so dass hier dringender Handlungsbedarf besteht.If such a circuit breaker FS, for example, as shown in Fig. 3, arranged, generator side still voltage remains pending. Since solar generators are often erected on buildings, the problem now is that, in the event of fire, no voltage-free state of the PV modules with associated line system can be achieved, which means that extinguishing measures are not initiated and insurance companies therefore refuse protection. Another problem is that during installation or maintenance work on the solar generator or the line system also does not reach a de-energized state can be as long as light shines on the solar generator. This is hardly tolerable for accident prevention reasons, so that there is an urgent need for action.
Die Aufgabe der Erfindung besteht darin, Maßnahmen vorzusehen, um jedes einzelne PV-Modul automatisch abzuschalten, so dass die PV- Module ström- und spannungslos werden.The object of the invention is to provide measures to switch off each individual PV module automatically, so that the PV modules are current and voltage-free.
Diese Aufgabe wird erfindungsgemäß durch die kennzeichnenden Merkmale des Patentanspruchs 1 gelöst.This object is achieved by the characterizing features of claim 1.
Vorteilhafte Ausgestaltungen und Weiterbildungen der erfindungsgemäßen Solaranlage ergeben sich aus den Unteransprüchen.Advantageous embodiments and further developments of the solar system according to the invention will become apparent from the dependent claims.
Die Erfindung beruht auf der Überlegung, die einzelnen PV-Module solange spannungslos zu schalten (entweder durch Kurzschließen oder durch Auftrennen der Ausgangsklemmen), solange von einem nachgeschalteten Betriebsmittel keine Freigabe für den Generatorbetrieb erfolgt. Die Freigabe kann vorzugsweise durch ein auf die Gleichstromleitungen auftnoduliertes Steuersignal für die einzelnen Klemmenschalter erfolgen.The invention is based on the consideration of switching the individual PV modules dead (as long as possible by short-circuiting or by disconnecting the output terminals) as long as there is no release for the generator operation from a downstream equipment. The release can preferably by a on the DC lines auftnoduliertes control signal for each terminal switch done.
Die Erfindung wird an Hand der Zeichnungen näher erläutert. Es zeigt:The invention will be explained in more detail with reference to the drawings. It shows:
Abb. 4 ein Schaltbild einer ersten Ausführungsform eines Solargenerators, dessen PV-Module über einen fernsteuerbaren Schalter kurzgeschlossen werden können;Fig. 4 is a circuit diagram of a first embodiment of a solar generator whose PV modules can be short-circuited via a remote-controlled switch;
Abb. 5.1 den Schaltzustand des Solargenerators nach Abb. 4 bei fehlendem Freigabesignal und damit spannungslosen PV- Modulen,Fig. 5.1 shows the switching state of the solar generator according to Fig. 4 in the absence of a release signal and thus de-energized PV modules,
Abb. 5.2 den Schaltzustand des Solargenerators nach Abb. 4 bei vorhandenem Freigabesignal und damit aktiven PV- Modulen,Fig. 5.2 shows the switching state of the solar generator according to Fig. 4 with the enable signal available and thus active PV modules,
Abb. 6 ein Schaltbild einer zweiten Ausführungsform eines Solargenerators, dessen PV-Module über einen fernsteuerbaren Schalter ausgangsseitig hochohmig geschaltet werden können,Fig. 6 is a circuit diagram of a second embodiment of a solar generator whose PV modules via a remote controllable switch can be switched on the output side high impedance,
Abb. 7.1 den Schaltzustand des Solargenerators nach Abb. 6 bei fehlendem Freigabesignal und damit spannungslosen PV- Modulen, undFig. 7.1 shows the switching state of the solar generator according to Fig. 6 in the absence of a release signal and thus de-energized PV modules, and
Abb. 7.2 den Schaltzustand des Solargenerators nach Abb. 6 bei vorhandenem Freigabesignal und damit aktiven PV- Modulen.Fig. 7.2 shows the switching state of the solar generator according to Fig. 6 with the enable signal available and thus active PV modules.
Die in Abb. 4 gezeigte erste Ausführungsform eines Solargenerators mit den erfindungsgemäßen Merkmalen weist gegenüber dem Stand der Technik nach Abb. 2 zwei zusätzliche Komponenten auf, nämlichThe first embodiment of a solar generator shown in Fig. 4 with the features of the invention has over the prior art according to Fig. 2, two additional components, namely
a) für jedes PV-Modul einen Modulschalter A mit Demodulator B, unda) for each PV module, a module switch A with demodulator B, and
b) einen Freigabebaustein C, D (Modulator) im oder am nachgeschalteten Betriebsmittel N, welcher über die Gleichspannungsleitung ein Freigabesignal für die Modulschalter überträgt Jeder Modulschalter A ist ohne Freigabesignal FG ständig geschlossen, wodurch das PV-Modul im Kurzschluss betrieben wird und an den Klemmen des PV-Moduls die Ausgangsspannung < IV anliegt. Wird das Freigabesignal FG durch das nachgeschaltete Betriebsmittel auf die Verbindungsleitung zum Modul bzw. zu den Modulen mittels des Freigabebausteins C, D aufmoduliert, schaltet der Demodulator B im PV- Modul den Modulschalter A in den hochohmigen Zustand, so dass das PV-Modul seine Betriebsspannung an den Ausgangsklemmen fuhrt.b) a release block C, D (modulator) in or on the downstream equipment N, which transmits an enable signal for the module switch via the DC voltage line Each module switch A is permanently closed without enable signal FG, whereby the PV module is operated in a short circuit and at the terminals of the PV module, the output voltage <IV is applied. If the enable signal FG is modulated onto the connection line to the module or to the modules by means of the enable module C, D, the demodulator B in the PV module switches the module switch A into the high-resistance state, so that the PV module has its operating voltage at the output terminals leads.
Abb. 5.1 zeigt den Zustand "Modul spannungslos" , Abb. 5.2 den Zustand "Modul aktiv".Fig. 5.1 shows the status "Module de-energized", Fig. 5.2 shows the status "Module active".
Die Erfindung sieht vor, in jedes PV-Modul vorzugsweise in die Anschlussdose einen Schalter (A) anzuordnen, der das PV-Modul in sich kurzschließt, so dass die Klemmspannung an den DC-Anschlüssen des PV-Moduls nahezu Null wird, wenn keine Freigabe vom nachgeordneten Betriebsmittel erfolgt. Für das PV-Modul ist dieser Kurzschluss ein Regelbetriebszustand. Der Schalter A kann z.B. als Halbleiter Gateelement (Logic Level Power Mosfet) oder als Bipolartransistor mit isolierter Gateelektrode ("Insulated Gate Bipolar Transistor") ausgeführt werden. Jeder Schalter A wird von einer zugeordneten Demodulationsschaltung B angesteuert, die bei Freigabe durch das nachgeschaltete Betriebsmittel den Schalter A in den hochohmigen Zustand überführt, so dass das PV-Modul Spannung liefern kann.The invention provides for arranging in each PV module, preferably in the junction box, a switch (A) which short-circuits the PV module so that the clamping voltage at the DC terminals of the PV module becomes almost zero when not enabled from the downstream resources. For the PV module, this short circuit is a control mode. The switch A can eg as a semiconductor gate element (Logic Level Power Mosfet) or as a bipolar transistor with insulated gate bipolar transistor ("Insulated Gate Bipolar Transistor"). Each switch A is driven by an associated demodulation circuit B, which when released by the downstream equipment, the switch A in the high-impedance state, so that the PV module can supply voltage.
Der zugeordnete Demodulator B ist auf die Trägerfrequenz des Freigabebausteines C, D abgeglichen und sorgt für die Ansteuerung des Modulschalters A.The associated demodulator B is adjusted to the carrier frequency of the enable block C, D and provides for the control of the module switch A.
Freigabebaustein (Modulator)Enable module (modulator)
Der Freigabebaustein C, D besteht vorzugsweise aus einem frequenzstabilen Taktgenerator C, der z.B. quarzstabil ausgebildet ist, mit nachgeschaltetem Leistungsverstärker mit Gegentaktausgang. Über einen Balun-Transformator D zur Impedanzwandlung und galvanischen Trennung wird das Trägersignal als Pilotton auf die Gleichstrom- Verbindungsleitung zu den PV-Modulen und deren Demodulatoren B eingekoppelt. Über einen Logik-Eingang des Taktgenerators kann das Trägersignal ein- bzw. ausgeschaltet werden. Bei stringweise arbeitenden Generatoren (Abb. 1.2) wird jedem String ein Freigabebaustein C, D zugeordnet. Bei Generatoren nach Abb. 1.3 und Abb. 1.4 genügt ein Freigabebaustein C, D für den gesamten Generator, es sei denn, es sollen mehrere Teilgeneratoren getrennt schaltbar sein (z.B. zur Fehlerdetektion).The enable module C, D preferably consists of a frequency-stable clock generator C, which is formed, for example quartz-stable, with downstream power amplifier with push-pull output. Via a balun transformer D for impedance conversion and galvanic isolation, the carrier signal is coupled as a pilot tone to the DC connection line to the PV modules and their demodulators B. The carrier signal can be switched on or off via a logic input of the clock generator. In the case of generators operating in string fashion (Fig. 1.2), a release block C, D is assigned to each string. For generators according to Fig. 1.3 and Fig. 1.4, a release block C, D is sufficient for the entire generator, unless several subgenerators should be separately switchable (eg for fault detection).
Da Solarmodule mit dem erfindungsgemäßen Mudulschalter ohne Freigabesignal bei der Ausführungsform nach Abb. 4 ständig kurzgeschlossen sind, ist eine elektrische Prüfung mittels Volt- und Amperemeter, bzw. Modulflasher nicht möglich. Deshalb sollte ein Prüfgerät während der Messung der elektrischen Größen das erforderliche Freigabesignal erzeugen, wodurch sowohl manuelle wie auch automatische Prüfungen möglich sind. Gleichzeitig kann die ordnungsgemäße Funktion des Modulschalters überprüft werden.Since solar modules are permanently short-circuited with the Mudulschalter invention without release signal in the embodiment of Fig. 4, an electrical test by means of voltmeter and ammeter, or Modulflasher is not possible. Therefore, a tester should generate the required enable signal during the measurement of electrical quantities, allowing both manual and automatic testing. At the same time, the proper operation of the module switch can be checked.
Bei der in den Abbildungen 6, 7.1 und 7.2 dargestellten zweiten Ausführungsform eines erfindungsgemäßen Solargenerators werden die PV-Module bei fehlendem Freigabesignal FG nicht - wie bei der ersten Ausfiiihrungsform nach Abb. 4 - in sich kurzgeschlossen, sondern durch die Modulschalter A ausgangsseitig hochohmig geschaltet. Hierzu sind die Modulschalter A in Reihe zu den Ausgangsklemmen der PV-Module 1 bis 400 angeordnet. Jeder Modulschalter A ist ohne Freigabesignal FG ständig geöffnet, wodurch die Klemmenspannung der PV-Module 1 bis 400 bei geöffneten Modulschaltern A Null Volt beträgt. Dieser spannungslose Zustand der PV-Module 1 bis 400 ist in Abb. 7.1 veranschaulicht. Wird die Freigabe erteilt, schalten die Modulschalter A die Spannung an den Modulklemmen durch, wodurch die PV-Module 1 bis 400 aktiv werden. Dieser aktive Zustand der PV-Module 1 bis 400 ist in Abb. 7.2 veranschaulicht.In the second embodiment of a solar generator according to the invention shown in Figures 6, 7.1 and 7.2, the PV modules are not in the absence of the enable signal FG - as in the first Form of execution according to Fig. 4 - short-circuited in itself, but switched on the output side by the module switch A high impedance. For this purpose, the module switches A are arranged in series with the output terminals of the PV modules 1 to 400. Each module switch A is constantly open without release signal FG, whereby the terminal voltage of the PV modules 1 to 400 with open module switches A is zero volts. This de-energized state of PV modules 1 to 400 is illustrated in Fig. 7.1. When the release is granted, the module switches A switch on the voltage at the module terminals, whereby the PV modules 1 to 400 become active. This active state of the PV modules 1 to 400 is illustrated in Fig. 7.2.
Der Vorteil der zweiten Ausfuhrungsform des erfindungsgemäßen Solargenerators gemäß den Abbildungen 6, 7.1 und 7.2 besteht darin, dass die Steuerenergie zum Ansteuern der Modulschalter A direkt aus dem aufmodulierten Steuersignal bezogen werden kann, was für die Prüfung der PV-Module nach erfolgter Fertigung günstig ist.The advantage of the second embodiment of the solar generator according to the invention according to Figures 6, 7.1 and 7.2 is that the control energy for driving the module switch A can be obtained directly from the modulated control signal, which is favorable for the testing of the PV modules after the production.
| Application Number | Priority Date | Filing Date | Title | 
|---|---|---|---|
| DE102006060815ADE102006060815B4 (en) | 2006-09-21 | 2006-12-21 | Solar power generation plant | 
| PCT/EP2007/010745WO2008077473A2 (en) | 2006-12-21 | 2007-12-10 | Solar power generation plant | 
| Publication Number | Publication Date | 
|---|---|
| EP2054944A2true EP2054944A2 (en) | 2009-05-06 | 
| Application Number | Title | Priority Date | Filing Date | 
|---|---|---|---|
| EP07856518AWithdrawnEP2054944A2 (en) | 2006-12-21 | 2007-12-10 | Solar power generation plant | 
| Country | Link | 
|---|---|
| EP (1) | EP2054944A2 (en) | 
| WO (1) | WO2008077473A2 (en) | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| US10673253B2 (en) | 2006-12-06 | 2020-06-02 | Solaredge Technologies Ltd. | Battery power delivery module | 
| US10778025B2 (en) | 2013-03-14 | 2020-09-15 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy | 
| US10931228B2 (en) | 2010-11-09 | 2021-02-23 | Solaredge Technologies Ftd. | Arc detection and prevention in a power generation system | 
| US10931119B2 (en) | 2012-01-11 | 2021-02-23 | Solaredge Technologies Ltd. | Photovoltaic module | 
| US10969412B2 (en) | 2009-05-26 | 2021-04-06 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system | 
| US10992238B2 (en) | 2012-01-30 | 2021-04-27 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system | 
| US11002774B2 (en) | 2006-12-06 | 2021-05-11 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources | 
| US11018623B2 (en) | 2016-04-05 | 2021-05-25 | Solaredge Technologies Ltd. | Safety switch for photovoltaic systems | 
| US11031861B2 (en) | 2006-12-06 | 2021-06-08 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations | 
| US11063440B2 (en) | 2006-12-06 | 2021-07-13 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources | 
| US11177663B2 (en) | 2016-04-05 | 2021-11-16 | Solaredge Technologies Ltd. | Chain of power devices | 
| US11183922B2 (en) | 2006-12-06 | 2021-11-23 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources | 
| US11183968B2 (en) | 2012-01-30 | 2021-11-23 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry | 
| US11205946B2 (en) | 2011-01-12 | 2021-12-21 | Solaredge Technologies Ltd. | Serially connected inverters | 
| US11296650B2 (en) | 2006-12-06 | 2022-04-05 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations | 
| US11309832B2 (en) | 2006-12-06 | 2022-04-19 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources | 
| US11424616B2 (en) | 2008-05-05 | 2022-08-23 | Solaredge Technologies Ltd. | Direct current power combiner | 
| US11476799B2 (en) | 2006-12-06 | 2022-10-18 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources | 
| US11489330B2 (en) | 2010-11-09 | 2022-11-01 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system | 
| US11569659B2 (en) | 2006-12-06 | 2023-01-31 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources | 
| US11569660B2 (en) | 2006-12-06 | 2023-01-31 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources | 
| US11579235B2 (en) | 2006-12-06 | 2023-02-14 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations | 
| US11594968B2 (en) | 2007-08-06 | 2023-02-28 | Solaredge Technologies Ltd. | Digital average input current control in power converter | 
| US11687112B2 (en) | 2006-12-06 | 2023-06-27 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources | 
| US11728768B2 (en) | 2006-12-06 | 2023-08-15 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system | 
| US11735910B2 (en) | 2006-12-06 | 2023-08-22 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources | 
| US11855231B2 (en) | 2006-12-06 | 2023-12-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources | 
| US11929620B2 (en) | 2012-01-30 | 2024-03-12 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system | 
| US12027970B2 (en) | 2006-12-06 | 2024-07-02 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations | 
| US12027849B2 (en) | 2006-12-06 | 2024-07-02 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources | 
| US12057807B2 (en) | 2016-04-05 | 2024-08-06 | Solaredge Technologies Ltd. | Chain of power devices | 
| US12418177B2 (en) | 2009-10-24 | 2025-09-16 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| US10693415B2 (en) | 2007-12-05 | 2020-06-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel | 
| US11881814B2 (en) | 2005-12-05 | 2024-01-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel | 
| US9130401B2 (en) | 2006-12-06 | 2015-09-08 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources | 
| US9112379B2 (en) | 2006-12-06 | 2015-08-18 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system | 
| US8823218B2 (en) | 2007-11-02 | 2014-09-02 | Tigo Energy, Inc. | System and method for enhanced watch dog in solar panel installations | 
| US11228278B2 (en) | 2007-11-02 | 2022-01-18 | Tigo Energy, Inc. | System and method for enhanced watch dog in solar panel installations | 
| US8933321B2 (en) | 2009-02-05 | 2015-01-13 | Tigo Energy, Inc. | Systems and methods for an enhanced watchdog in solar module installations | 
| WO2009072076A2 (en) | 2007-12-05 | 2009-06-11 | Solaredge Technologies Ltd. | Current sensing on a mosfet | 
| US9291696B2 (en) | 2007-12-05 | 2016-03-22 | Solaredge Technologies Ltd. | Photovoltaic system power tracking method | 
| US11264947B2 (en) | 2007-12-05 | 2022-03-01 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel | 
| WO2009073867A1 (en) | 2007-12-05 | 2009-06-11 | Solaredge, Ltd. | Parallel connected inverters | 
| US8111052B2 (en) | 2008-03-24 | 2012-02-07 | Solaredge Technologies Ltd. | Zero voltage switching | 
| IT1394746B1 (en)* | 2009-07-14 | 2012-07-13 | Infor System S R L | SYSTEM FOR THE INSTALLATION OF PHOTOVOLTAIC MODULES IN ELECTRICAL SAFETY CONDITIONS AND RELATED INSTALLATION METHOD. | 
| ITMI20091879A1 (en)* | 2009-10-29 | 2011-04-30 | Infor System S R L | ELECTRIC SAFETY DEVICE FOR SOLAR SYSTEMS WITH PHOTOVOLTAIC PANELS AND SOLAR SYSTEM THAT INCORPORATES THIS LIFELINK SOLAR DEVICE. | 
| US10673222B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system | 
| US10230310B2 (en) | 2016-04-05 | 2019-03-12 | Solaredge Technologies Ltd | Safety switch for photovoltaic systems | 
| EP2455977A1 (en)* | 2010-11-16 | 2012-05-23 | Siemens Aktiengesellschaft | Photovoltaic device | 
| DE102010052009A1 (en)* | 2010-11-19 | 2012-05-24 | Kostal Industrie Elektrik Gmbh | Photovoltaic system and photovoltaic module | 
| GB2486408A (en) | 2010-12-09 | 2012-06-20 | Solaredge Technologies Ltd | Disconnection of a string carrying direct current | 
| US8963375B2 (en) | 2011-06-30 | 2015-02-24 | Sunpower Corporation | Device and method for electrically decoupling a solar module from a solar system | 
| US8570005B2 (en) | 2011-09-12 | 2013-10-29 | Solaredge Technologies Ltd. | Direct current link circuit | 
| GB2499991A (en) | 2012-03-05 | 2013-09-11 | Solaredge Technologies Ltd | DC link circuit for photovoltaic array | 
| US10115841B2 (en) | 2012-06-04 | 2018-10-30 | Solaredge Technologies Ltd. | Integrated photovoltaic panel circuitry | 
| US20150180408A1 (en)* | 2012-07-09 | 2015-06-25 | Dow Global Technologies Llc | Systems and methods for detecting discontinuities in a solar array circuit and terminating current flow therein | 
| US9941813B2 (en) | 2013-03-14 | 2018-04-10 | Solaredge Technologies Ltd. | High frequency multi-level inverter | 
| EP3506370B1 (en) | 2013-03-15 | 2023-12-20 | Solaredge Technologies Ltd. | Bypass mechanism | 
| DE102013219855A1 (en) | 2013-10-01 | 2015-04-02 | Robert Bosch Gmbh | Method and module control unit for operating a solar module on a solar system and method and system control unit for operating a solar system | 
| US9318974B2 (en) | 2014-03-26 | 2016-04-19 | Solaredge Technologies Ltd. | Multi-level inverter with flying capacitor topology | 
| US10992255B2 (en) | 2014-10-28 | 2021-04-27 | Sunpower Corporation | Photovoltaic module or array shutdown | 
| DE102018102767A1 (en) | 2018-02-07 | 2019-08-08 | Sma Solar Technology Ag | METHOD FOR DETERMINING A PROPERTY OF AT LEAST ONE PV MODULE BY MEANS OF A UNIDIRECTIONALLY COMMUNICATION TO THE PV MODULE AND PV PLANT USING THE METHOD | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| DE118717C (en)* | ||||
| DE102006060815B4 (en) | 2006-09-21 | 2013-05-29 | Solarworld Innovations Gmbh | Solar power generation plant | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| JPH04217878A (en)* | 1990-08-27 | 1992-08-07 | Sanyo Electric Co Ltd | Composite input inverter device | 
| JPH05218481A (en)* | 1992-02-07 | 1993-08-27 | Kanegafuchi Chem Ind Co Ltd | Solar cell module | 
| ATE357766T1 (en)* | 2001-10-17 | 2007-04-15 | Bernhard Beck | SYSTEM FOR FEEDING ELECTRICITY FROM DC GENERATORS INTO THE AC NETWORK | 
| DE102005018173B4 (en)* | 2005-04-19 | 2009-05-14 | Swiontek, Karl, Dipl.-Ing. | Switching device for safe interruption of operation of photovoltaic systems | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| DE118717C (en)* | ||||
| DE102006060815B4 (en) | 2006-09-21 | 2013-05-29 | Solarworld Innovations Gmbh | Solar power generation plant | 
| Title | 
|---|
| See also references ofWO2008077473A2 | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| US11682918B2 (en) | 2006-12-06 | 2023-06-20 | Solaredge Technologies Ltd. | Battery power delivery module | 
| US12068599B2 (en) | 2006-12-06 | 2024-08-20 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations | 
| US12388492B2 (en) | 2006-12-06 | 2025-08-12 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations | 
| US12316274B2 (en) | 2006-12-06 | 2025-05-27 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system | 
| US12281919B2 (en) | 2006-12-06 | 2025-04-22 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources | 
| US12276997B2 (en) | 2006-12-06 | 2025-04-15 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources | 
| US11002774B2 (en) | 2006-12-06 | 2021-05-11 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources | 
| US12224706B2 (en) | 2006-12-06 | 2025-02-11 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system | 
| US11031861B2 (en) | 2006-12-06 | 2021-06-08 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations | 
| US11043820B2 (en) | 2006-12-06 | 2021-06-22 | Solaredge Technologies Ltd. | Battery power delivery module | 
| US11063440B2 (en) | 2006-12-06 | 2021-07-13 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources | 
| US11073543B2 (en) | 2006-12-06 | 2021-07-27 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources | 
| US11658482B2 (en) | 2006-12-06 | 2023-05-23 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources | 
| US11183922B2 (en) | 2006-12-06 | 2021-11-23 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources | 
| US12046940B2 (en) | 2006-12-06 | 2024-07-23 | Solaredge Technologies Ltd. | Battery power control | 
| US12032080B2 (en) | 2006-12-06 | 2024-07-09 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations | 
| US12027849B2 (en) | 2006-12-06 | 2024-07-02 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources | 
| US11296650B2 (en) | 2006-12-06 | 2022-04-05 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations | 
| US11309832B2 (en) | 2006-12-06 | 2022-04-19 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources | 
| US12027970B2 (en) | 2006-12-06 | 2024-07-02 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations | 
| US11961922B2 (en) | 2006-12-06 | 2024-04-16 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources | 
| US11476799B2 (en) | 2006-12-06 | 2022-10-18 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources | 
| US11962243B2 (en) | 2006-12-06 | 2024-04-16 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources | 
| US11569659B2 (en) | 2006-12-06 | 2023-01-31 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources | 
| US11569660B2 (en) | 2006-12-06 | 2023-01-31 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources | 
| US11575261B2 (en) | 2006-12-06 | 2023-02-07 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources | 
| US11575260B2 (en) | 2006-12-06 | 2023-02-07 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources | 
| US11579235B2 (en) | 2006-12-06 | 2023-02-14 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations | 
| US11594880B2 (en) | 2006-12-06 | 2023-02-28 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources | 
| US11855231B2 (en) | 2006-12-06 | 2023-12-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources | 
| US11594881B2 (en) | 2006-12-06 | 2023-02-28 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources | 
| US11594882B2 (en) | 2006-12-06 | 2023-02-28 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources | 
| US11598652B2 (en) | 2006-12-06 | 2023-03-07 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources | 
| US11687112B2 (en) | 2006-12-06 | 2023-06-27 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources | 
| US11735910B2 (en) | 2006-12-06 | 2023-08-22 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources | 
| US10673253B2 (en) | 2006-12-06 | 2020-06-02 | Solaredge Technologies Ltd. | Battery power delivery module | 
| US11728768B2 (en) | 2006-12-06 | 2023-08-15 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system | 
| US11594968B2 (en) | 2007-08-06 | 2023-02-28 | Solaredge Technologies Ltd. | Digital average input current control in power converter | 
| EP3496258B1 (en)* | 2007-12-05 | 2025-02-05 | Solaredge Technologies Ltd. | Safety mechanisms in distributed power installations | 
| US11424616B2 (en) | 2008-05-05 | 2022-08-23 | Solaredge Technologies Ltd. | Direct current power combiner | 
| US12218498B2 (en) | 2008-05-05 | 2025-02-04 | Solaredge Technologies Ltd. | Direct current power combiner | 
| US11867729B2 (en) | 2009-05-26 | 2024-01-09 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system | 
| US12306215B2 (en) | 2009-05-26 | 2025-05-20 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system | 
| US10969412B2 (en) | 2009-05-26 | 2021-04-06 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system | 
| US12418177B2 (en) | 2009-10-24 | 2025-09-16 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources | 
| US10931228B2 (en) | 2010-11-09 | 2021-02-23 | Solaredge Technologies Ftd. | Arc detection and prevention in a power generation system | 
| US11489330B2 (en) | 2010-11-09 | 2022-11-01 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system | 
| US12407158B2 (en) | 2010-11-09 | 2025-09-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system | 
| US12003215B2 (en) | 2010-11-09 | 2024-06-04 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system | 
| US11349432B2 (en) | 2010-11-09 | 2022-05-31 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system | 
| US11205946B2 (en) | 2011-01-12 | 2021-12-21 | Solaredge Technologies Ltd. | Serially connected inverters | 
| US12218505B2 (en) | 2011-01-12 | 2025-02-04 | Solaredge Technologies Ltd. | Serially connected inverters | 
| US10931119B2 (en) | 2012-01-11 | 2021-02-23 | Solaredge Technologies Ltd. | Photovoltaic module | 
| US11979037B2 (en) | 2012-01-11 | 2024-05-07 | Solaredge Technologies Ltd. | Photovoltaic module | 
| US10992238B2 (en) | 2012-01-30 | 2021-04-27 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system | 
| US12094306B2 (en) | 2012-01-30 | 2024-09-17 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry | 
| US11929620B2 (en) | 2012-01-30 | 2024-03-12 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system | 
| US11183968B2 (en) | 2012-01-30 | 2021-11-23 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry | 
| US11620885B2 (en) | 2012-01-30 | 2023-04-04 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry | 
| US12191668B2 (en) | 2012-01-30 | 2025-01-07 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system | 
| US12255457B2 (en) | 2013-03-14 | 2025-03-18 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy | 
| US12003107B2 (en) | 2013-03-14 | 2024-06-04 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy | 
| US10778025B2 (en) | 2013-03-14 | 2020-09-15 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy | 
| US11018623B2 (en) | 2016-04-05 | 2021-05-25 | Solaredge Technologies Ltd. | Safety switch for photovoltaic systems | 
| US11177663B2 (en) | 2016-04-05 | 2021-11-16 | Solaredge Technologies Ltd. | Chain of power devices | 
| US11201476B2 (en) | 2016-04-05 | 2021-12-14 | Solaredge Technologies Ltd. | Photovoltaic power device and wiring | 
| US12348182B2 (en) | 2016-04-05 | 2025-07-01 | Solaredge Technologies Ltd. | Safety switch for photovoltaic systems | 
| US12057807B2 (en) | 2016-04-05 | 2024-08-06 | Solaredge Technologies Ltd. | Chain of power devices | 
| US11870250B2 (en) | 2016-04-05 | 2024-01-09 | Solaredge Technologies Ltd. | Chain of power devices | 
| Publication number | Publication date | 
|---|---|
| WO2008077473A2 (en) | 2008-07-03 | 
| WO2008077473A3 (en) | 2009-03-26 | 
| Publication | Publication Date | Title | 
|---|---|---|
| DE102006060815B4 (en) | Solar power generation plant | |
| EP2054944A2 (en) | Solar power generation plant | |
| EP3345301B1 (en) | Safe photovoltaic system | |
| EP2369725B1 (en) | Short circuiting unit | |
| EP4200463B1 (en) | Photovoltaically supplied electrolysis | |
| DE102011055220B4 (en) | Connecting an inverter in a solar power plant with shifted potential center | |
| EP2671256A1 (en) | Protective device for a photovoltaic system | |
| DE102012109012B4 (en) | Circuit arrangement for a solar power plant with a DC voltage source for an offset voltage | |
| DE102013103753A1 (en) | PHOTOVOLIC POWER GENERATION PLANT AND METHOD FOR OPERATING A PV PLANT | |
| EP2282388A1 (en) | Device for feeding in electrical energy of a number of strings of photovoltaic modules in an electricity network | |
| DE102011110682A1 (en) | Junction box for a solar panel with a protection circuit | |
| EP3583695A1 (en) | Method for controlling a direct current switch, direct current switch, and dc voltage system | |
| EP2369356A2 (en) | Method and device for detecting weak power PV modules in a PV assembly by means of circuit breakers | |
| DE102008008505A1 (en) | Photo voltaic-sub generator-junction box for photo voltaic-system, has electronic control unit connected with electronic circuit element to activate and deactivate associated photo voltaic-strand lines | |
| DE102012104005A1 (en) | Photovoltaic system and method for operating a photovoltaic system for feeding electrical power into a medium-voltage network | |
| DE102010026778A1 (en) | Device for providing a DC input voltage for a Photovol taikkehrichter and photovoltaic system with this | |
| EP3552289A1 (en) | Low-voltage circuit breaker device | |
| DE102020129919A1 (en) | Power converters for transferring power between an AC side and a DC side and methods of power supply | |
| DE102010060463B4 (en) | Circuit arrangement for potential adjustment of a photovoltaic generator and photovoltaic system | |
| DE202006001063U1 (en) | Inverter for feeding electrical energy from a photovoltaic unit to a three phase mains has a DC converter with maximum power point tracking control and bridge circuit | |
| DE102011018229B4 (en) | Circuit arrangement and method for electrical isolation of an electrical device from the network | |
| DE102011000737B4 (en) | Protective device for a photovoltaic system, photovoltaic module with such a protective device and operating method for such a protective device | |
| EP2904677B1 (en) | Circuit configuration with an inverter | |
| DE102019121134A1 (en) | Method for the detection of switching states of a circuit breaker module in a converter | |
| DE102011075658B4 (en) | Method for generating energy by means of a photovoltaic system and photovoltaic system | 
| Date | Code | Title | Description | 
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase | Free format text:ORIGINAL CODE: 0009012 | |
| 17P | Request for examination filed | Effective date:20080623 | |
| AK | Designated contracting states | Kind code of ref document:A2 Designated state(s):AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR | |
| AX | Request for extension of the european patent | Extension state:AL BA HR MK RS | |
| RIN1 | Information on inventor provided before grant (corrected) | Inventor name:KOLM, HENDRIK | |
| 17Q | First examination report despatched | Effective date:20091117 | |
| RIN1 | Information on inventor provided before grant (corrected) | Inventor name:KOLM, HENDRIK | |
| DAX | Request for extension of the european patent (deleted) | ||
| 19U | Interruption of proceedings before grant | Effective date:20100412 | |
| 19W | Proceedings resumed before grant after interruption of proceedings | Effective date:20101102 | |
| RAP1 | Party data changed (applicant data changed or rights of an application transferred) | Owner name:SOLARWORLD INNOVATIONS GMBH | |
| TPAC | Observations filed by third parties | Free format text:ORIGINAL CODE: EPIDOSNTIPA | |
| STAA | Information on the status of an ep patent application or granted ep patent | Free format text:STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN | |
| 18D | Application deemed to be withdrawn | Effective date:20160503 |