
Die Erfindung betrifft einen Abgasturbolader mit einer Welle, die ein in einem Turbinengehäuse angeordnetes Turbinenrad und ein Verdichterrad verbindet, und mit einer dazwischen angeordneten Lagerung mit einem Lagergehäuse und darin angeordneten Lagern für die Welle.The invention relates to an exhaust gas turbocharger having a shaft which connects a turbine wheel arranged in a turbine housing and a compressor wheel, and having a bearing arranged therebetween with a bearing housing and bearings for the shaft arranged therein.
Abgasturbolader dienen der Verbesserung des Wirkungsgrades und damit der Leistungssteigerung von Verbrennungmotoren. Sie weisen eine Welle auf, die einerends mit einem Turbinenrad und anderenends mit einem Verdichterrad versehen ist. Das Turbinenrad wird von Abgasstrom des Verbrennermotors beaufschlagt, wobei im wesentlichen die thermische Energie des Abgases durch das Turbinenrad in eine Drehbewegung umgesetzt wird. Über die Welle wird das Verdichterrad angetrieben, das Frischluft ansaugt und mit Überdruck in die Einlaßkanäle des Verbrennungsmotors einströmen läßt und damit den Füllungsgrad verbessert.Exhaust gas turbochargers serve to improve the efficiency and thus the increase in performance of combustion engines. They have a shaft which is provided at one end with a turbine wheel and at the other end with a compressor wheel. The turbine wheel is acted upon by exhaust gas flow of the internal combustion engine, wherein substantially the thermal energy of the exhaust gas is converted by the turbine wheel in a rotational movement. About the shaft, the compressor is driven, the fresh air sucks and can flow with excess pressure in the intake ports of the engine and thus improves the degree of filling.
An die Lagerung der Welle von Abgasturboladern werden hohe Anforderungen gestellt. Zum einen erreicht die Welle hohe Drehzahlen von bis zu 300.000 U/min. Zum anderen wird der Abgasturbolader auf der Turbinenseite durch den Abgasstrom hohen Temperaturen ausgesetzt, die bei Ottomotoren mehr als 1.000° C erreichen können, während die Temperatur auf der Verdichterseite im allgemeinen nicht mehr als 150° C erreicht. Es versteht sich, daß hierdurch eine enorme thermische Belastung der Lager entsteht, die der Turbinenseite benachbart sind.At the storage of the shaft of exhaust gas turbochargers high demands are made. On the one hand, the shaft reaches high speeds of up to 300,000 rpm. On the other hand, the exhaust gas turbocharger on the turbine side is exposed to high temperatures by the exhaust gas flow, which can reach more than 1,000 ° C. in gasoline engines, while the temperature on the compressor side generally does not reach more than 150 ° C. It is understood that this creates an enormous thermal load on the bearings, which are adjacent to the turbine side.
Bei Gleit- oder Kugellagern ist vor allem der Ölkreislauf durch Temperaturen dieser Größenordnung gefährdet. Bei Überschreiten kritischer Temperaturen entstehen Ölrückstände in Form von Kohleablagerungen, die nach relativ kurzer Zeit zum Ausfall des Abgasturboladers durch Festfressen der Welle führen. Um die Aufheizung des Lagergehäuses in Grenzen zu halten, ist es bei Ottomotoren bekannt, das Lagergehäuse mit einem Wasserkühlmantel zu versehen. Dies verteuert den Abgasturbolader.In sliding or ball bearings, especially the oil circulation is endangered by temperatures of this magnitude. When critical temperatures are exceeded, oil residues occur in the form of carbon deposits, which after a relatively short time lead to failure of the exhaust gas turbocharger due to seizing of the shaft. In order to keep the heating of the bearing housing within limits, it is known in gasoline engines to provide the bearing housing with a water cooling jacket. This makes the exhaust gas turbocharger more expensive.
In neuerer Zeit sind Vorschläge gemacht worden, die bisherigen Lager, also Gleit- oder Wälzlager, durch Magnetlager zu ersetzen und damit die Welle berührungslos zu führen (vgl.
Der Erfindung liegt somit die Aufgabe zugrunde, einen Abgasturbolader der eingangs genannten Art so auszubilden, daß mit kostengünstigen Maßnahmen eine Erwärmung der Lager auf Temperaturen, die ihre Betriebssicherheit beeinträchtigen, vermieden wird.The invention is therefore the object of an exhaust gas turbocharger of the type mentioned in such a way that with cost-effective measures, a warming of the bearings to temperatures that affect their reliability, is avoided.
Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß die Flansche, über die Lagergehäuse und Turbinengehäuse miteinander gekoppelt sind, eine Wärmeisolierung aufweisen, deren Wärmedurchlässigkeit geringer ist als die der Flansche selbst. Auf diese Weise kann die durch Wärmeleitung über die Gehäuse bewirkte Wärmeübertragung reduziert werden.This object is achieved in that the flanges are coupled to each other via the bearing housing and turbine housing, have a thermal insulation, the heat transfer is less than that of the flanges themselves. In this way, caused by heat conduction through the housing heat transfer can be reduced.
Am einfachsten kann dies dadurch geschehen, daß die Wärmeisolierung eine Isolierschicht aufweist, deren Wärmeleitfähigkeit geringer ist als die des Materials der Flansche ansonsten und die zwischen den Flanschen angeordnet ist. Die Isolierschicht kann aus einem Metall, beispielsweise einer Nickel-Chrom-Legierung, wie sie unter den Marken INCONEL® oder INCOLOY® bekannt sind, oder einer Edelstahllegierung, bestehen. Es können jedoch auch andere, schlecht wärmeleitende Materialien, insbesondere Mineral- oder Keramikmaterialien, verwendet werden.The easiest way to do this is that the heat insulation has an insulating layer whose thermal conductivity is lower than that of the material of the flanges otherwise and which is arranged between the flanges. The insulating layer may consist of a metal, for example a nickel-chromium alloy, such as those known under the marks INCONEL® or INCOLOY®, or a stainless steel alloy. However, other, poorly heat-conductive materials, especially mineral or ceramic materials can be used.
Statt oder in Kombination mit einer Isolierschicht kann die Wärmeisolierung Isolierstege aufweisen, über die die Flansche der Flanschverbindung aneinander liegen. Dem liegt der Gedanke zugrunde, die Flächen, über die die beiden Flansche aneinander liegen, möglichst klein zu halten. Dabei besteht die Möglichkeit, die Isolierstege so auszubilden, daß sie einen Hohlraum einschließen, der mit einem Isoliermaterial gefüllt sein kann.Instead of or in combination with an insulating layer, the thermal insulation can have insulating webs over which the flanges of the flange connection abut each other. This is based on the idea of keeping the surfaces over which the two flanges lie together as small as possible. It is possible to form the insulating bars so that they include a cavity which may be filled with an insulating material.
Die der Erfindung zugrunde liegende Aufgabe kann alternativ zu oder auch in Kombination mit den vorgenannten Maßnahmen dadurch gelöst werden, daß die Welle zwischen Turbinenrad und Lagerung und/oder das Lagergehäuse zusätzliche Wärmeübergangsflächen aufweist bzw. aufweisen. Diese zusätzlichen Wärmeübergangsflächen verbessern die Wärmeabfuhr an die Umgebung. Die Wärmeübergangsflächen können beispielsweise als wenigstens eine auf der Welle sitzende Kühlscheibe ausgebildet sein.The object underlying the invention can be achieved alternatively or in combination with the aforementioned measures in that the shaft between the turbine wheel and bearing and / or the bearing housing has or have additional heat transfer surfaces. These additional heat transfer surfaces improve the heat dissipation to the environment. The heat transfer surfaces may be formed, for example, as at least one seated on the shaft cooling disk.
Eine weitere Maßnahme zur Lösung der gestellten Aufgabe besteht darin, daß das Turbinengehäuse und/oder das Lagergehäuse außenseitig wenigstens teilweise mit einer Beschichtung versehen ist bzw. sind, die die Wärmeabgabe an die Umgebung verbessert. Auch diese Maßnahme kann mit den vorbeschriebenen Maßnahmen kombiniert werden, um die Schutzwirkung gegen Wärmebeanspruchung der Lager zu verbessern. Die Beschichtung kann eine bessere Wärmeleitfähigkeit haben als das Material des Turbinengehäuses bzw. des Lagergehäuses. So kann die Oberfläche durch Flammspritzen mit Aluminium versehen werden. Alternativ oder in Kombination sollte die Beschichtung auch ein höheres Wärmeemissionsvermögen haben als das Material des Turbinengehäuses bzw. Lagergehäuses.Another measure to achieve the object is that the turbine housing and / or the bearing housing is provided on the outside at least partially with a coating or are that improves the heat transfer to the environment. Also, this measure can be combined with the measures described above to improve the protective effect against thermal stress of the bearings. The coating may have a better thermal conductivity than the material of the turbine housing or of the bearing housing. So can the surface by flame spraying be provided with aluminum. Alternatively or in combination, the coating should also have a higher heat emissivity than the material of the turbine housing or bearing housing.
Schließlich besteht eine letzte Maßnahme zur Lösung der gestellten Aufgabe darin, das Turbinengehäuse auf seiner Innenseite wenigstens teilweise mit einer Beschichtung zu versehen, die die Wärmeaufnahme des Turbinengehäuses verringert. Die Beschichtung sollte ein geringeres Wärmeabsorptionsvermögen haben als das Material des Turbinengehäuses. Auf diese Weise wird die Wärmeaufnahme des Gehäuses reduziert.Finally, a final measure to achieve the object is to provide the turbine housing on its inside at least partially with a coating that reduces the heat absorption of the turbine housing. The coating should have a lower heat absorption capacity than the material of the turbine housing. In this way, the heat absorption of the housing is reduced.
In der Zeichnung ist die Erfindung anhand von schematisch dargestellten Ausführungsbeispielen näher veranschaulicht. Es zeigen:
Der in Figur 1 dargestellte Turbolader 1 hat einen typischen Aufbau. Er hat eine Welle 2, auf der rechtsseitig ein Turbinenrad 3 und linksseitig ein Verdichterrad 4 sitzen. Die Welle 2 ist über hier nicht dargestellte Lager in einem rohrartigen Lagergehäuse 5 gelagert. Die Lager können als Magnetlager ausgebildet sein, wie dies beispielsweise in der
Das Turbinenrad 3 ist von einem Turbinengehäuse 6 umgeben, das eine hier nicht näher dargestellte radiale Einlaßöffnung hat. Das Verdichterrad 4 ist von einem Verdichtergehäuse 9 umgeben, das mit einer zentralen Einlaßöffnung 10 versehen ist. Über diese Einlaßöffnung 10 wird aufgrund der Drehbewegung des Verdichterrades 4 Luft angesaugt und in einen Ringraum 11 umgelenkt. Diese verdichtete Luft verläßt dann den Ringraum 11 über eine hier nicht näher dargestellte Aulaßöffnung in Richtung der Einlaßseite des Verbrennungsmotors.The
Das Turbinengehäuse 6 und das Verdichtergehäuse 9 sind mit dem Lagergehäuse 5 über jeweils zwei Flansche 12, 13 bzw. 14, 15 verbunden. Die Flansche 12, 13 bzw. 14, 15 sind über hier nicht dargestellte Schrauben in üblicher Weise miteinander verspannt.The
Figur 2 zeigt den oberen Teil des Lagergehäuses 5 und des angrenzenden Turbinengehäuses 6 ohne Welle 2 und ohne Turbinenrad 3. In dem Detail gemäß Figur 3 ist eine Variante der Flanschverbindung zwischen dem Lagergehäuse 5 und dem Turbinengehäuse 6 dargestellt. Zwischen den beiden Flanschen 12, 13 ist eine Isolierschicht 18 angeordnet, die die Wärmeleitübertragung vom Turbinengehäuse 6 zum Lagergehäuse 5 reduziert.Figure 2 shows the upper part of the bearing
Die Wärmeübertragung zwischen den Flanschen 12, 13 kann aber auch dadurch behindert werden, daß die gegenseitige Anlage der Flansche 12, 13 nur über Stege 19, 20 erfolgt, wie dies in dem Detail gemäß Figur 4 zu sehen ist. Die Stege 19, 20 erstrecken sich ringförmig über den gesamten Umfang der Flansche 12, 13 und schließen deshalb einen Hohlraum 21 ein. Die geringe Querschnittsfläche der Stege 19, 20 behindert die Wärmeleitung vom zum Turbinengehäuse 6 gehörenden Flansch 12 auf den zum Lagergehäuse 5 gehörenden Flansch 13.The heat transfer between the
In Figur 5 ist die Welle 2 mit dem Turbinenrad 3 und dem Verdichterrad 4 ohne jedes Gehäuse dargestellt. Auf der Welle 2 sitzt eine Kühlscheibe 22, die sich mit der Welle 2 dreht. Die Kühlscheibe 22 vergrößert die Wärmeübertragungsfläche an die Umgebung und sorgt durch ihre Drehbewegung für eine die Wärmeableitung fördernde Konvektionsströmung.In Figure 5, the
Im übrigen kann das Turbinengehäuse 6 an einer Außenseite mit einer Beschichtung versehen sein, die den Wärmeübergang an die Umgebung verbessert, also eine bessere Wärmeleitfähigkeit und/oder ein höheres Wärmeemissionsvermögen hat als das Material, aus dem das das Turbinengehäuse 6 besteht. Zusätzlich kann das Turbinengehäuse 6 auf seiner Innenseite mit einer die Wärmeaufnahme reduzierenden Beschichtung versehen sein.Moreover, the
| Application Number | Priority Date | Filing Date | Title | 
|---|---|---|---|
| DE102004025049ADE102004025049A1 (en) | 2004-05-18 | 2004-05-18 | turbocharger | 
| EP05009768AEP1598521A1 (en) | 2004-05-18 | 2005-05-04 | Exhaust gas turbocharger | 
| Application Number | Title | Priority Date | Filing Date | 
|---|---|---|---|
| EP05009768ADivisionEP1598521A1 (en) | 2004-05-18 | 2005-05-04 | Exhaust gas turbocharger | 
| Publication Number | Publication Date | 
|---|---|
| EP1795711A2true EP1795711A2 (en) | 2007-06-13 | 
| Application Number | Title | Priority Date | Filing Date | 
|---|---|---|---|
| EP05009768AWithdrawnEP1598521A1 (en) | 2004-05-18 | 2005-05-04 | Exhaust gas turbocharger | 
| EP07000729AWithdrawnEP1795711A2 (en) | 2004-05-18 | 2005-05-04 | Exhaust gas turbocharger | 
| Application Number | Title | Priority Date | Filing Date | 
|---|---|---|---|
| EP05009768AWithdrawnEP1598521A1 (en) | 2004-05-18 | 2005-05-04 | Exhaust gas turbocharger | 
| Country | Link | 
|---|---|
| US (2) | US20050257522A1 (en) | 
| EP (2) | EP1598521A1 (en) | 
| JP (1) | JP2005330968A (en) | 
| DE (1) | DE102004025049A1 (en) | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| EP2592230A1 (en)* | 2011-11-09 | 2013-05-15 | ISOLITE GmbH | Multi-section turbine casing for a turbo charger | 
| CN103946514A (en)* | 2011-12-09 | 2014-07-23 | 博格华纳公司 | Bearing housing of an exhaust-gas turbocharger | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| JP2008202544A (en)* | 2007-02-21 | 2008-09-04 | Mitsubishi Heavy Ind Ltd | Manufacturing method of rotor, and exhaust turbocharger having the rotor | 
| DE102008038007A1 (en)* | 2008-08-16 | 2010-02-18 | Bosch Mahle Turbo Systems Gmbh & Co. Kg | turbocharger | 
| DE102008058506A1 (en)* | 2008-11-21 | 2010-05-27 | Bosch Mahle Turbo Systems Gmbh & Co. Kg | Charging device, particularly exhaust gas turbocharger for motor vehicle, has compressor and turbine wheel, which has shaft | 
| DE102008058507A1 (en)* | 2008-11-21 | 2010-05-27 | Bosch Mahle Turbo Systems Gmbh & Co. Kg | loader | 
| DE102009014005A1 (en)* | 2009-03-19 | 2010-09-23 | Bosch Mahle Turbo Systems Gmbh & Co. Kg | Rotating fluid flow engine for exhaust turbocharger for internal combustion engine of motor vehicle, has rotor with compressor wheel and turbine wheel, where rotor is supported around rotational axis in fluid flow engine in pivoting manner | 
| WO2010135209A2 (en)* | 2009-05-19 | 2010-11-25 | Borgwarner Inc. | Turbocharger | 
| DE102009023891A1 (en)* | 2009-06-04 | 2011-03-31 | Continental Automotive Gmbh | Magnet-supported rotor shaft for exhaust-gas turbocharger that is used for petrol or diesel engines, has heat pipe provided in interior of rod-shaped shaft body, where longitudinal axis of pipe coincides with longitudinal axis of body | 
| DE102009058411A1 (en)* | 2009-12-16 | 2011-06-22 | BorgWarner Inc., Mich. | turbocharger | 
| DE102010011486A1 (en) | 2010-03-16 | 2011-09-22 | Bosch Mahle Turbo Systems Gmbh & Co. Kg | Rotor for a charging device | 
| US20110280716A1 (en)* | 2010-05-17 | 2011-11-17 | Douglas Gerard Konitzer | Gas turbine engine compressor components comprising thermal barriers, thermal barrier systems, and methods of using the same | 
| DE102010050913A1 (en) | 2010-11-11 | 2012-05-16 | Pierburg Gmbh | Supercharger for commercial vehicle engine, has compressor wheel arranged at end of shaft in compressor housing, flange members connected together by clamping member, and bearing housing and turbine housing provided with clamping surfaces | 
| KR101889358B1 (en)* | 2011-05-10 | 2018-08-17 | 보르그워너 인코퍼레이티드 | Exhaust-gas turbocharger | 
| US9850810B2 (en)* | 2011-11-23 | 2017-12-26 | Borgwarner Inc. | Exhaust-gas turbocharger | 
| DE112013001173T5 (en)* | 2012-03-27 | 2014-11-06 | Borgwarner Inc. | Systems and methods for protecting a turbocharger aluminum bearing housing | 
| TWM446226U (en)* | 2012-09-04 | 2013-02-01 | Tan Xin Technology Dev Inc | Housing of turbocharger | 
| US9032727B2 (en)* | 2012-11-28 | 2015-05-19 | Honeywell International Inc. | Suction sealing for turbocharger | 
| DE102014201732B4 (en) | 2013-02-28 | 2024-03-28 | Ford Global Technologies, Llc | Internal combustion engine with a liquid-cooled turbine | 
| DE102013111562A1 (en)* | 2013-10-21 | 2015-04-23 | Ihi Charging Systems International Gmbh | turbocharger | 
| DE102014201411A1 (en)* | 2014-01-27 | 2015-08-13 | Ford Global Technologies, Llc | Internal combustion engine with cooled turbine | 
| US10041400B2 (en)* | 2016-05-20 | 2018-08-07 | Borgwarner Inc. | Hollow filled turbocharger rotor shaft | 
| DE102016221639B4 (en)* | 2016-11-04 | 2021-11-25 | Ford Global Technologies, Llc | Supercharged internal combustion engine with a cooled compressor | 
| US10690136B2 (en) | 2016-11-04 | 2020-06-23 | Ford Global Technologies, Llc | Supercharged internal combustion engine with compressor | 
| US10487741B2 (en)* | 2018-02-27 | 2019-11-26 | GM Global Technology Operations LLC | Turbo vane and compressor for turbocharger | 
| JP7490508B2 (en)* | 2020-09-09 | 2024-05-27 | 日本電子株式会社 | 3D additive manufacturing equipment | 
| US20240392797A1 (en)* | 2021-10-01 | 2024-11-28 | Cryostar Sas | Monolithic shaft for cryogenic turbo machine, cryogenic turbo machine and method for manufacturing | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| US2008414A (en)* | 1931-12-04 | 1935-07-16 | Eugene H Fischer | Insulator | 
| US4083180A (en)* | 1976-10-01 | 1978-04-11 | Caterpillar Tractor Co. | Gas turbine engine internal insulation | 
| DE2829150A1 (en)* | 1978-07-03 | 1980-01-24 | Barmag Barmer Maschf | EXHAUST TURBOCHARGER | 
| JPS5939930A (en)* | 1982-08-27 | 1984-03-05 | Nissan Motor Co Ltd | Turbocharger | 
| JPS5949323A (en)* | 1982-09-10 | 1984-03-21 | Toyota Central Res & Dev Lab Inc | turbo machine | 
| JPS60101201A (en)* | 1983-11-08 | 1985-06-05 | Ngk Spark Plug Co Ltd | Joining structure in turbine shaft | 
| DE3413388A1 (en)* | 1984-04-10 | 1985-10-24 | Aktiengesellschaft Kühnle, Kopp & Kausch, 6710 Frankenthal | Exhaust turbo charger | 
| JPS60226464A (en)* | 1984-04-20 | 1985-11-11 | 日本特殊陶業株式会社 | Joint structure of ceramic and metal | 
| JPH0352987Y2 (en)* | 1984-10-04 | 1991-11-19 | ||
| JPS6267237A (en)* | 1985-09-18 | 1987-03-26 | Hitachi Ltd | Dual passage type exhaust drive turbocharger | 
| US4907952A (en)* | 1986-12-05 | 1990-03-13 | Honda Giken Kogyo Kabushiki Kaisha | Turbocharger | 
| DD255369A1 (en)* | 1986-12-22 | 1988-03-30 | Bannewitz Kompressorenbau | Thermal insulation for bearings of a waste gas cooler with uncooled hulls | 
| JP2747939B2 (en)* | 1990-08-22 | 1998-05-06 | 日本特殊陶業株式会社 | Supercharger | 
| JP2510041B2 (en)* | 1990-08-23 | 1996-06-26 | 日本特殊陶業株式会社 | Rotating joint | 
| JPH05155668A (en)* | 1991-12-09 | 1993-06-22 | Ngk Spark Plug Co Ltd | Combination of ceramic with metal | 
| DE19931150A1 (en)* | 1999-07-06 | 2001-01-11 | Volkswagen Ag | Exhaust gas turbocharger for vehicle engines has a turbine wheel with a catalytically active surface | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| EP2592230A1 (en)* | 2011-11-09 | 2013-05-15 | ISOLITE GmbH | Multi-section turbine casing for a turbo charger | 
| CN103946514A (en)* | 2011-12-09 | 2014-07-23 | 博格华纳公司 | Bearing housing of an exhaust-gas turbocharger | 
| CN103946514B (en)* | 2011-12-09 | 2016-09-14 | 博格华纳公司 | Bearing housing for exhaust turbocharger | 
| Publication number | Publication date | 
|---|---|
| JP2005330968A (en) | 2005-12-02 | 
| US20050257522A1 (en) | 2005-11-24 | 
| EP1598521A1 (en) | 2005-11-23 | 
| DE102004025049A1 (en) | 2005-12-15 | 
| US20070113552A1 (en) | 2007-05-24 | 
| Publication | Publication Date | Title | 
|---|---|---|
| EP1795711A2 (en) | Exhaust gas turbocharger | |
| DE3305170C2 (en) | Turbomachine housing | |
| DE3631130C2 (en) | ||
| DE60312293T2 (en) | Bearing arrangement for a torsion tube | |
| DE102009040196A1 (en) | Exhaust gas turbocharger for an internal combustion engine | |
| EP2413080A3 (en) | Cooling device for a combustion engine | |
| DE102010054939A1 (en) | Bearing arrangement for a turbocharger and turbocharger | |
| DE102016214018A1 (en) | Bearing arrangement, in particular for a turbomachine, and turbomachine with such a bearing assembly | |
| DE102010013702A1 (en) | Turbine for exhaust gas turbocharger, particularly for motor vehicle, has turbine housing and waste gate-valve which has waste gate-flap that controls flue gas volume passing through waste gate-valve | |
| DE102014108594A1 (en) | Turbocharger arrangement with directly mounted bearing housing | |
| DE102008038007A1 (en) | turbocharger | |
| WO2009092792A2 (en) | Exhaust gas turbocharger | |
| WO2006056394A2 (en) | Exhaust-gas turbo charger for an internal combustion engine | |
| DE19652754A1 (en) | Exhaust gas supercharger | |
| WO2009109430A1 (en) | Sealing arrangement and gas turbine | |
| DE112010002048T5 (en) | turbocharger | |
| DE19648641A1 (en) | Heat-protection device for turbine bearing | |
| DE2757668A1 (en) | INSULATING MULTIPLE PISTON FOR COMBUSTION ENGINES | |
| DE102013004499A1 (en) | storage system | |
| EP3159505A1 (en) | Module for a gas turbine | |
| DE102009009128A1 (en) | Bearing device for shaft of charging device, particularly exhaust gas turbocharger of internal combustion engine, has two angular contact ball bearings, which have one or multiple inner rings, and one or multiple outer rings | |
| EP1544416A2 (en) | Bearing assembly for a gas turbine rotor | |
| EP3260662A1 (en) | Storage element and turbo engine with a storage element | |
| EP1193375A1 (en) | Engine valve | |
| EP0046505B1 (en) | Cylinder for a reciprocating piston machine | 
| Date | Code | Title | Description | 
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase | Free format text:ORIGINAL CODE: 0009012 | |
| AC | Divisional application: reference to earlier application | Ref document number:1598521 Country of ref document:EP Kind code of ref document:P | |
| AK | Designated contracting states | Kind code of ref document:A2 Designated state(s):DE FR GB IT NL | |
| RIN1 | Information on inventor provided before grant (corrected) | Inventor name:STELZER, HERMANN, DR. Inventor name:FREMEREY, JOHAN K., DR. Inventor name:JAISLE, JENS-WOLF, DR. | |
| RIN1 | Information on inventor provided before grant (corrected) | Inventor name:STELZER, HERMANN, DR. Inventor name:FREMEREY, JOHAN K., DR. Inventor name:JAISLE, JENS-WOLF, DR. | |
| STAA | Information on the status of an ep patent application or granted ep patent | Free format text:STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN | |
| 18D | Application deemed to be withdrawn | Effective date:20091201 |