

La présente invention concerne les sources de puissance et plus précisémentl'exploitation de sources de puissance pour lesquelles la courbe de la puissancefournie en fonction de la tension aux bornes de la source présente un maximum.The present invention relates to power sources and more specificallythe operation of power sources for which the power curvesupplied as a function of the voltage across the source has a maximum.
Pour une telle source, la puissance fournie est maximale lorsque la tensionprésente une valeur donnée. Il est intéressant pour exploiter au mieux la source depuissance - en tirer une puissance maximale - que la tension aux bornes de lasource soit autant que possible égale à cette valeur donnée.For such a source, the power supplied is maximum when the voltagehas a given value. It is interesting to make the most of the source ofpower - derive maximum power - than the voltage across thesource is as much as possible equal to this given value.
Les générateurs solaires utilisés pour les satellites constituent un exempled'une telle source de puissance. La figure 1 montre un graphe du courant et de lapuissance en fonction de la tension aux bornes du générateur, dans l'exemple d'ungénérateur formé d'un montage série de 102 cellules Si BSR (Back Surface Reflector) ;de telles cellules sont disponibles dans l'industrie spatiale. On a porté le long de l'axedes ordonnées le courant fourni par le générateur solaire, en ampères, ainsi que lapuissance délivrée par le générateur, en watts; on a porté le long de l'axe desabscisses la tension aux bornes du générateur, en volts. Les courbes 1 et 2 sur lafigure 1 correspondent à un fonctionnement à une température de + 100°C; lescourbes 3 et 4 correspondent à un fonctionnement à une température de -100°C. Lacourbe 2 sur la figure 1 est un graphe du courant en fonction de la tension; ellemontre que le courant fourni par les cellules diminue lorsque la tension dépasse unevaleur de l'ordre de 35 V, ce qui s'explique par un phénomène de saturation descellules; la courbe 4 est similaire, à ceci près que la tension de saturation est del'ordre de 75 V. La courbe 1 sur la figure 1 est un graphe de la puissance fournie parle générateur solaire; elle montre que la puissance fournie présente un maximum,qui dans l'exemple présente une valeur de l'ordre de 100 W et est atteint pour unevaleur V0 de la tension qui est de l'ordre de 38 V. La courbe 3 est similaire à lacourbe 2, avec des valeurs de puissance maximale et de tension V0 respectivementde l'ordre de 200 W et 70V. Ces courbes ne constituent qu'un exemple particulier degénérateur dans lequel le graphe de la puissance fournie en fonction de la tension desortie présente un maximum.Solar generators used for satellites are an examplefrom such a source of power. Figure 1 shows a graph of the current and thepower as a function of the voltage across the generator, in the example of agenerator formed from a series assembly of 102 Si BSR cells (Back Surface Reflector);such cells are available in the space industry. We carried along the axisordinates the current supplied by the solar generator, in amperes, as well as thepower delivered by the generator, in watts; we carried along the axis ofabscissa the voltage across the generator, in volts.
Pour exploiter un tel générateur solaire ou plus généralement une tellesource de puissance, il est intéressant que la tension aux bornes de la source soitaussi proche que possible de la valeur V0 de la tension pour laquelle la sourcedélivre une puissance maximale. Ce problème se pose avec une acuité particulièredans le cas des générateurs solaires utilisés dans les satellites. En effet, pour cesgénérateurs solaires, la tension V0 pour laquelle la puissance fournie par legénérateur est maximale varie en fonction de la température à laquelle le générateurest soumis, comme représenté à la figure 1; cette tension V0 varie aussi en fonction
Pour un satellite, la température peut typiquement varier dans une plage de- 100°C à +100°C, dans l'exemple d'une orbite terrestre basse. Pour une orbiteMercure, la variation de température serait encore plus important et la températurepourrait varier dans une plage de - 150 °C à + 250 °C. L'intensité du rayonnementsolaire peut varier en fonction de l'éloignement du soleil; pour une mission depuis laTerre vers Mars, l'intensité du rayonnement solaire peut varier dans un rapport de 3 à1. Le vieillissement du générateur provoque la mise en court-circuit de certainescellules. Dans l'ensemble, la tension V0 peut typiquement varier dans un rapport de 1à 2, et pourrait par exemple varier de 40 à 80 V.For a satellite, the temperature can typically vary within a range of- 100 ° C to + 100 ° C, in the example of a low Earth orbit. For an orbitMercury, the temperature variation would be even more significant and the temperaturecould vary in the range of - 150 ° C to + 250 ° C. The intensity of the radiationsolar may vary depending on the distance from the sun; for a mission since theEarth to Mars, the intensity of solar radiation can vary in a ratio of 3 to1. The aging of the generator causes short-circuiting of certaincells. Overall, the voltage V0 can typically vary in a ratio of 1to 2, and could for example vary from 40 to 80 V.
Il a donc été proposé d'exploiter les générateurs solaires, pour en extraireune puissance maximale, en recherchant que la tension aux bornes du générateursoit proche de la tension V0. Ces techniques sont connues sous le nom de "MaximumPower Point Tracking" (suivi du point de puissance maximal en langue française).It has therefore been proposed to use the solar generators, to extract therefrommaximum power, finding that the voltage across the generatoris close to the voltage V0. These techniques are known as "MaximumPower Point Tracking "(tracking the maximum power point in French).
W. Denzinger,Electrical Power Subsystem of Globalstar, Proceedings of theEuropean Space Power Conference, Poitiers, France, 4-8 Septembre 1995, décrit lesous-système de puissance des satellites Globalstar. La recherche du point depuissance maximale s'effectue en considérant que le point de puissance maximale estatteint lorsque l'impédance dynamique du générateur est égale à l'impédancestatique, autrement dit lorsque
Ce document décrit un circuit utilisant un capteur de courant, un capteur de tension,deux circuits échantillonneurs, deux comparateurs, une bascule et un intégrateur.W. Denzinger,Electrical Power Subsystem of Globalstar , Proceedings of the European Space Power Conference, Poitiers, France, 4-8 September 1995, describes the power subsystem of Globalstar satellites. The maximum power point is sought by considering that the maximum power point is reached when the dynamic impedance of the generator is equal to the static impedance, in other words when
This document describes a circuit using a current sensor, a voltage sensor, two sampler circuits, two comparators, a rocker and an integrator.
Kevin Kyeong-ll Choi et Alphonse Barnaba,Application of the maximumpower point tracking (MPPT) to the on-board adaptative power supply subsystem,Note technique du CNES n°138, juillet 1998, décrit un sous-système d'alimentationélectrique pour les satellites de faible puissance. Pour le suivi du point de puissancemaximum, ce sous-système utilise un microcontrôleur associant une multiplicationnumérique du courant par l'intensité et un algorithme de poursuite de la puissance àpartir des valeurs calculées.Kevin Kyeong-ll Choi and Alphonse Barnaba,Application of the maximum power point tracking (MPPT) to the on-board adaptive power supply subsystem, CNES technical note n ° 138, July 1998, describes apower supply subsystem for low power satellites. For monitoring the maximum power point, this subsystem uses a microcontroller associating a digital multiplication of the current by the intensity and an algorithm for tracking the power from the calculated values.
Ces solutions sont complexes à mettre en oeuvre. Ceci conduit à centraliserle contrôle de suivi du point de puissance maximum des différents générateurssolaires ; cette centralisation affecte la fiabilité du sous-système d'alimentationélectrique et est incompatible de points de puissance maximum différents en tensiond'une section de générateur solaire à l'autre. En outre, ces solutions exploitent lescomposantes directes de courants et/ou tensions, lesquelles quantités n'étant pascaractéristiques du suivi de point de puissance maximum.These solutions are complex to implement. This leads to centralizingthe monitoring control of the maximum power point of the different generatorssolar; this centralization affects the reliability of the power subsystemelectric and is incompatible with different maximum power points in voltagefrom one section of solar generator to another. In addition, these solutions exploit thedirect components of currents and / or voltages, which quantities are notcharacteristics of maximum power point tracking.
Ce problème expliqué en référence aux générateurs solaires dans lesconditions des satellites se pose plus généralement pour toute source de puissancepour le graphe de la puissance fournie en fonction de la tension présente unmaximum.This problem explained with reference to solar generators insatellite conditions arise more generally for any power sourcefor the graph of the power supplied versus the voltage presents amaximum.
Il existe donc un besoin d'une solution permettant l'exploitation d'une sourcede puissance pour laquelle la courbe de la puissance fournie en fonction de latension aux bornes de la source présente un maximum. Une telle solution devrait,avec des moyens aussi simples et robustes que possible, assurer que la tension auxbornes de la source de puissance est dans la mesure du possible aussi proche quepossible de la tension pour laquelle la puissance débitée est maximale.There is therefore a need for a solution allowing the exploitation of a sourceof power for which the curve of the power supplied as a function of thevoltage across the source has a maximum. Such a solution should,with as simple and robust means as possible, ensure that the voltage atpower source terminals is as close as possiblepossible for the voltage for which the power output is maximum.
Dans un mode de réalisation, l'invention propose en conséquence un circuitde conditionnement d'une source de puissance pour laquelle le graphe de lapuissance fournie en fonction de la tension aux bornes de la source présente unmaximum, le circuit comprenant :
Avantageusement, la première et/ou la deuxième valeur seuil sont / estconstante. On peut alors prévoir que les première et deuxième valeur seuil sontopposées.Advantageously, the first and / or the second threshold value are / isconstant. We can then predict that the first and second threshold values areopposed.
Dans un mode de réalisation, la consigne de puissance croissante appliquéeau convertisseur est une consigne de dérivée constante et positive de la puissance parrapport au temps.In one embodiment, the increasing power setpoint appliedto the converter is a constant and positive derivative setpoint of the power byin relation to time.
Dans encore un mode de réalisation, la consigne de puissance décroissanteappliquée au convertisseur est une consigne de dérivée constante et négative de lapuissance par rapport au temps.In another embodiment, the decreasing power setpointapplied to the converter is a constant and negative derivative setpoint of thepower versus time.
On peut aussi prévoir que la dérivée constante et positive est inférieure àl'opposé de la dérivée constante et négative.We can also predict that the constant and positive derivative is less thanthe opposite of the constant and negative derivative.
L'invention propose aussi un générateur conditionné, comprenant un telcircuit et une source de puissance pour laquelle le graphe de la puissance fournie enfonction de la tension aux bornes de la source présente un maximum; la puissancefournie par la source est appliquée en entrée du convertisseur continu / continu.The invention also provides a conditioned generator, comprising such acircuit and a power source for which the graph of the power supplied infunction of the voltage across the source has a maximum; the powersupplied by the source is applied at the input of the DC / DC converter.
Dans un mode de réalisation, le générateur comprend une capacité enparallèle à la source de puissance. La source peut aussi présenter une capacitéintrinsèque. De préférence, la source de puissance est un générateur solaire.In one embodiment, the generator comprises a capacity inparallel to the power source. The source can also have a capacityintrinsic. Preferably, the power source is a solar generator.
L'invention propose enfin un procédé de conditionnement d'une source depuissance pour laquelle le graphe de la puissance fournie en fonction de la tensionaux bornes de la source présente un maximum, la puissance fournie par la source étant appliquée à un convertisseur continu /continu; le procédé comprendl'application au convertisseur d'une consigne de puissance d'entrée
On peut prévoir que la première valeur seuil est constante, et / ou encoreque la deuxième valeur seuil est constante. Il est alors possible que les première etdeuxième valeur seuil soient opposées.We can predict that the first threshold value is constant, and / orthat the second threshold value is constant. It is then possible that the first andsecond threshold value are opposite.
Avantageusement, la consigne de puissance croissante appliquée auconvertisseur est une consigne de dérivée constante et positive de la puissance parrapport au temps. ll est aussi possible que la consigne de puissance décroissanteappliquée au convertisseur soit une consigne de dérivée constante et négative de lapuissance par rapport au temps. Si tel est le cas, la dérivée constante et positive peutêtre inférieure à l'opposé de la dérivée constante et négative.Advantageously, the increasing power setpoint applied to theconverter is a constant and positive derivative setpoint of the power byin relation to time. It is also possible that the decreasing power setpointapplied to the converter be a constant and negative derivative setpoint of thepower versus time. If this is the case, the constant and positive derivative canbe less than the opposite of the constant and negative derivative.
D'autres caractéristiques et avantages de l'invention apparaítront à la lecturede la description qui suit de modes de réalisation, donnés à titre d'exemple et enréférence aux dessins, qui montrent :
On donne dans la suite de la description un exemple d'application del'invention au suivi du point de puissance maximum dans un générateur solaire.Comme expliqué ci-dessus, un tel générateur n'est qu'un exemple d'une source de puissance pour laquelle le graphe de la puissance fournie en fonction de la tensionaux bornes de la source présente un maximum.An example of the application ofthe invention to the monitoring of the maximum power point in a solar generator.As explained above, such a generator is only an example of a source ofpower for which the graph of the power supplied as a function of the voltageacross the source has a maximum.
La figure 2 est une représentation schématique d'un générateur conditionnéselon un mode de réalisation de l'invention, dans une application d'alimentation entension d'un bus de satellite. Le générateur conditionné présente d'une part ungénérateur solaire 10, et d'autre part un circuit de conditionnement. Ce circuit deconditionnement permet au générateur conditionné de délivrer une puissance sousune tension fixe, autrement dit de se comporter comme une source de tension, tantque la puissance délivrée est inférieure à la puissance maximale que peut fournir legénérateur solaire, alors que le générateur solaire n'est capable de fournir unepuissance variable, à concurrence du maximum de puissance disponible, qu'à destensions variables.Figure 2 is a schematic representation of a conditioned generatoraccording to one embodiment of the invention, in an application for supplyingvoltage from a satellite bus. The conditioned generator has on the one hand a
La figure montre le générateur solaire 10 - la source de puissance - qui estmonté en parallèle à une capacité 12. La tension Vin aux bornes du générateursolaire et de la capacité est appliquée en entrée d'un convertisseur continu / continu(ou convertisseur DC/DC) 14. Cette représentation de la source, de la capacité et duconvertisseur est schématique; de fait, un générateur solaire présente intrinsèquementune capacité; le convertisseur peut aussi en entrée présenter une capacité. Lacapacité 12 n'est pas nécessairement un composant distinct du générateur et duconvertisseur, mais peut être constituée par la capacité du générateur et/ou duconvertisseur. La capacité 12 peut aussi correspondre à la combinaison de lacapacité intrinsèque du générateur solaire, d'une capacité additionnelle et d'unecapacité prévue dans le convertisseur.The figure shows the solar generator 10 - the power source - which ismounted in parallel to a
La tension Vout en sortie du convertisseur 14 correspond au bus de tensiondu satellite 16; celui-ci comprend habituellement une batterie alimentant les charges,mais ceci est sans incidence sur le fonctionnement du circuit.The voltage Vout at the output of the
Le convertisseur 14 est commandé par un circuit de commande 18. Cecircuit de commande 18 reçoit en entrée la tension d'entrée Vin appliquée auconvertisseur ainsi que le courant lout en sortie du convertisseur; la figure montreschématiquement le capteur de tension 20 et le capteur de courant 22. Le circuit decommande fournit un signal de commande appliqué à l'entrée de commande duconvertisseur 14, comme représenté en 24 sur la figure.The
Comme expliqué plus haut, la puissance fournie par le générateur solaire10 est fonction de la tension Vin aux bornes du générateur; la tension pour laquellela puissance fournie est maximale peut varier dans une plage [V0min, V0max], dansl'exemple une plage de 40 à 80 V. Une solution courante est que le bus de tensiondu satellite fonctionne à une tension nominale de 28 V, qui varie entre 23 et 37 V enfonction de la charge et de l'alimentation du bus de tension. En pratique, la tensionnominale du bus est inférieure la borne inférieure V0min de la plage dans laquellevarie la tension pour laquelle la puissance fournie est maximale. Dans une telleconfiguration, le convertisseur 14 peut être un convertisseur PWM (à modulation de lalargeur d'impulsion) du type Buck. Ce convertisseur est particulièrement adapté àfonctionner avec une tension de sortie inférieure à la tension d'entrée. Le signald'entrée est dans un tel cas un signal représentatif du rapport cyclique de modulationde la largeur d'impulsion.As explained above, the power supplied by the
Le circuit de commande 18 contrôle le convertisseur 14, à partir desmesures de tension d'entrée Vin et de courant de sortie lout du convertisseur, parapplication de consigne de courant de sortie croissante ou décroissante. Cesconsignes de courant sont assimilables à des consignes de puissance au facteur deproportionnalité près que constitue la valeur en tension du bus. Plus spécifiquement,le circuit de commande applique au convertisseur une consigne de puissancecroissante tant que la dérivée par rapport au temps de la tension extraite dugénérateur solaire 10 et de la capacité 12 en entrée du convertisseur est supérieure àune première valeur seuil négative. Le circuit de commande applique auconvertisseur une consigne de puissance décroissante tant que la dérivée par rapportau temps de la tension extraite du générateur solaire 10 et de la capacité 12 enentrée du convertisseur est inférieure à une deuxième valeur seuil positive. Ainsi, leconvertisseur est piloté de sorte à assurer que
Dans les solutions de W. Denzinger et Kevin Kyeong-II Choi mentionnées ci-dessus,il est proposé d'exploiter les composantes directes de courants et/ou tensions.Or ces quantités ne sont pas caractéristiques du suivi de point de puissancemaximum. A l'inverse, la solution proposée par l'invention n'exploite par contre queles dérivées temporelles de ces quantités; ces dérivées sont bien caractéristiques dusuivi du point de puissance maximum, quelles que soient les valeurs des composantesdirectes.In the solutions of W. Denzinger and Kevin Kyeong-II Choi mentioned above,it is proposed to exploit the direct components of currents and / or voltages.However, these quantities are not characteristic of power point monitoringmaximum. Conversely, the solution proposed by the invention on the other hand only exploitsthe time derivatives of these quantities; these derivatives are very characteristic of themonitoring of the maximum power point, whatever the values of the componentsdirect.
La figure 3 montre un graphe de la puissance délivrée par le générateursolaire en fonction de la tension aux bornes de ce générateur. On a porté enordonnée la puissance fournie par le générateur solaire 10, et en abscisse la tensionaux bornes de ce générateur. La figure montre en traits fins la courbe de la puissancedélivrée par le générateur solaire 10 en fonction de la tension à ses bornes; cettecourbe présente un maximum noté MPP sur la figure; en ce point, pour une tensionVMPP, le générateur solaire délivre une puissance PMPP maximum. Cette courbe en traitsfins pourrait être qualifiée de courbe de puissance statique - dans la mesure où elleest représentative d'une caractéristique puissance /tension du générateur solaire isolé.La figure 3 montre en traits gras le cycle de puissance suivi lorsqu'est appliquée auconvertisseur la commande définie plus haut. La courbe en traits gras montre lapuissance extraite de l'ensemble générateur solaire 10 et capacité 12.FIG. 3 shows a graph of the power delivered by the solar generator as a function of the voltage across the terminals of this generator. The power supplied by the
Dans l'exemple considéré, on a
Les deux premières conditions sont choisies pour la simplicité del'explication; la troisième condition assure un fonctionnement autour du point depuissance maximum statique, comme expliqué plus bas. On a noté R et F sur lafigure les points du cycle correspondant aux puissances dynamiques maximale etminimale.The first two conditions are chosen for the simplicity ofthe explanation; the third condition ensures operation around the point ofmaximum static power, as explained below. We noted R and F on therepresents the points of the cycle corresponding to the maximum dynamic powers andminimal.
On suppose au départ que le générateur solaire fonctionne avec unepuissance légèrement inférieure à la puissance maximale PMPP et que la tension estsupérieure à la tension VMPP. On suppose aussi que la consigne appliquée auconvertisseur est une consigne de puissance croissante. Le convertisseur continu /continu assure donc que la puissance totale, extraite du générateur solaire 10 et ducondensateur 12, croít. Le point de fonctionnement du générateur solaire 10 sedéplace sur la courbe en traits fins, vers le maximum MPP ; la capacité 12 estdéchargée pour compléter la puissance fournie par le générateur solaire 10. Latension décroít lentement.It is assumed at the outset that the solar generator operates with a power slightly lower than the maximum power PMPP and that the voltage is greater than the voltage VMPP . It is also assumed that the setpoint applied to the converter is an increasing power setpoint. The DC / DC converter therefore ensures that the total power, extracted from the
Lorsque la puissance maximum du générateur solaire 10 est atteinte, legénérateur solaire ne 10 peut pas fournir de puissance supplémentaire : la capacité12 est alors déchargée plus rapidement pour fournir la puissance requise par leconvertisseur, sous la consigne de puissance croissante. Ceci accroít la vitesse dechute de la tension VlN; du fait de la chute de tension, la puissance fournie par legénérateur solaire 10 chute aussi, ce qui accentue encore la décharge de la capacité12. La dérivée de la tension VlN par rapport au temps chute de plus en plus vite.When the maximum power of the
Lorsque cette dérivée de la tension VlN atteint la valeur seuil négative V'f, lecircuit 18 applique au convertisseur 14 une consigne de puissance décroissante. Lebasculement correspond au point R de la courbe en traits gras.When this derivative of the voltage VlN reaches the negative threshold value V 'f , the
Le convertisseur reçoit alors une consigne de puissance d'entréedécroissante. Dans un premier temps, la tension décroít, avec une variation pluslente, la capacité 12 continuant à se décharger. Lorsque la puissance extraite de lasource et de la capacité continue à diminuer, il arrive un moment où la capacitécesse de se décharger, ce qui correspond sur la courbe en traits gras à l'intersectionde la partie gauche de la courbe avec la courbe en traits fins et au minimum de latension. La puissance extraite du générateur solaire 10 est alors suffisante pourfournir la puissance requise par le convertisseur 14. Comme la consigne appliquéeau convertisseur est encore une consigne de puissance décroissante, la capacité se recharge; la tension remonte; compte tenu de la consigne de puissance décroissanteappliquée au convertisseur, la puissance extraite par le convertisseur continue dedécroítre. Comme la tension remonte, la puissance fournie par le générateur solairetend à croítre, ce qui augmente encore la dérivée de la tension par rapport au temps.The converter then receives an input power setpointdecreasing. At first, the tension decreases, with a more variationslow, the
Lorsque la dérivée de la tension par rapport au temps dépasse la deuxièmevaleur seuil positive, le circuit de commande applique au convertisseur une consignede puissance croissante. On revient à l'état initial considéré plus haut.When the derivative of the voltage with respect to time exceeds the secondpositive threshold value, the control circuit applies a setpoint to the converterof increasing power. We return to the initial state considered above.
La stabilité de la commande est assurée, dans le cas où l'on applique uneconsigne de dérivée de puissance constante, par la condition
On notera que le fonctionnement décrit ci-dessus est indépendant que lavaleur de la consigne de puissance croissante ou décroissante appliquée auconvertisseur. Il est plus simple, comme le montre la figure 4, d'utiliser des valeurs deconsigne de puissance constantes, mais ceci n'a pas d'incidence sur le principe depilotage du convertisseur. Si les consignes de puissance proposées ne sont pasconstantes - autrement dit si les valeurs de dPlN/dt appliquées au convertisseur ne sont pas constant, la condition de stabilité peut alors s'exprimer en indiquant que letaux de variation de la puissance moyen lorsque la consigne est croissante estinférieur à l'opposé du taux de variation de la puissance moyen lorsque la consigneest croissante. Ceci revient à généraliser sur les intervalles temporels de consigne depuissance croissante et décroissante la condition instantanée kr < - kf.It will be noted that the operation described above is independent of the value of the increasing or decreasing power setpoint applied to the converter. It is simpler, as shown in Figure 4, to use constant power setpoints, but this does not affect the principle of driving the converter. If the proposed power setpoints are not constant - in other words if the values of dPlN / dt applied to the converter are not constant, the stability condition can then be expressed by indicating that the rate of change of the average power when the setpoint is increasing is less than the opposite of the rate of change of the average power when the setpoint is increasing. This amounts to generalizing the instantaneous condition kr <- kf over the increasing and decreasing power setpoint time intervals.
L'application des consignes proposées au convertisseur continu /continupermet ainsi de faire varier la tension autour de la valeur de tension pour laquelle lapuissance extraite du générateur solaire 10 est maximum. Le choix des valeurs deconsigne appliquées au convertisseur, comme des valeurs seuils, permet d'adapter lefonctionnement du circuit de conditionnement.Application of the instructions offered to the DC / DC converterthus makes it possible to vary the voltage around the voltage value for which thepower extracted from the
Plus spécifiquement, il est plus simple, du point de vue de l'implémentationdu circuit de commande d'avoir des valeurs de seuil V'r et V'f constantes. Ceci ne faitque faciliter la conception du circuit de commande. On pourrait toutefois faire varierces valeurs seuil en fonction du temps - par exemple pour tenir compte des variationsdu point MPP.More specifically, it is simpler, from the point of view of the implementation of the control circuit, to have constant threshold values V 'r and V'f . This only facilitates the design of the control circuit. However, these threshold values could be varied as a function of time - for example to take account of variations in the MPP point.
Le rapport des valeurs absolues des valeurs de seuil V'r et V'f permet dedéterminer le point du graphe de la puissance en fonction de la tension autourduquel on se déplace. Dans l'exemple considéré plus haut, des valeurs de seuilconstantes et opposées V'r et V'f correspondent à un déplacement autour du pointMPP de puissance maximum. Un rapport de valeurs absolues égal à 1 est doncavantageux. Toutefois, on peut aussi choisir d'autres valeurs, ce qui conduitsimplement à écarter le point de fonctionnement du point de puissance maximum.Ceci peut être avantageux en fonction de contraintes autres sur le circuit deconditionnement ou sur le générateur.The ratio of the absolute values of the threshold values V ′r and V ′f makes it possible to determine the point of the graph of the power as a function of the voltage around which one is moving. In the example considered above, constant and opposite threshold values V ′r and V ′f correspond to a displacement around the point MPP of maximum power. An absolute value ratio equal to 1 is therefore advantageous. However, other values can also be chosen, which simply means that the operating point is moved away from the maximum power point. This can be advantageous depending on other constraints on the conditioning circuit or on the generator.
La figure 4 montre un exemple du principe de réalisation du circuit decommande, dans le cas d'un convertisseur Buck. Le circuit 18 présente un dériveur 26qui reçoit la tension d'entrée du convertisseur et en fournit la dérivée. La dérivée de latension est appliquée à un comparateur 28. La sortie du comparateur fournit unsignal logique dont l'état dépend de la comparaison entre la valeur de la dérivée dela tension et les valeurs seuils V'r et V'f du comparateur. Le circuit présente un autredériveur 30 qui reçoit le signal de courant de sortie du convertisseur et en fournit ladérivée. Un additionneur 32 fournit un signal représentatif de la différence entre lesignal du comparateur 28 et le signal de dérivée fourni par le deuxième dériveur 30. Le signal fourni par l'additionneur est appliqué à un contrôleur 34 dont le rôle estd'annuler la consigne. Le signal de sortie du contrôleur forme le signal de sortie ducircuit de commande 18.Figure 4 shows an example of the principle of realization of the circuit ofcommand, in the case of a Buck converter.
Le fonctionnement du circuit de la figure 4 est le suivant. Le comparateurfournit en sortie un signal fonction de la position de la dérivée de la tension d'entréedu convertisseur par rapport aux valeurs seuil V'r et V'f. Ce signal est comparé à ladérivée du courant de sortie du convertisseur, après une mise à l'échelle non-représentéesur la figure. Cette dérivée du courant de sortie constitue une bonneapproximation de la dérivée de la puissance appliquée en entrée du convertisseur, dufait que :
Le montage de la figure 4 n'est qu'un exemple d'un circuit de commandeutilisable pour le convertisseur continu /continu. On peut aussi utiliser d'autres typesde circuits de commande pour comparer les dérivées des tensions et appliquer lesconsignes requises. On peut aussi prévoir d'autres capteurs que les capteurs 20, 22de la figure 2. Le montage des figures 2 et 4 présente néanmoins l'avantage de lasimplicité; ainsi, il n'est pas nécessaire de disposer d'un microcontrôleur; le nombrede composants est aussi plus restreint que dans la solution proposée dans l'article deW. Denzinger plus haut.The assembly of FIG. 4 is only one example of a control circuitusable for the DC / DC converter. We can also use other typescontrol circuits to compare the voltage derivatives and apply theinstructions required. It is also possible to provide other sensors than the
Bien entendu, l'invention n'est pas limitée aux exemples décrits plus haut.Ainsi, on a mentionné un convertisseur Buck, adapté au cas d'une tension de sortieinférieure à la tension d'entrée. On pourrait aussi utiliser d'autres types deconvertisseurs; par exemple, si la tension d'entrée est inférieure à la tension de sortie,on pourrait utiliser un convertisseur PWM du type Boost. D'autres topologies deconvertisseurs permettent aussi un fonctionnement lorsque le rapport entre la tensiond'entrée et la tension de sortie varie autour de 1. Le type de convertisseur utilisé nechange pas le principe de la commande décrit en référence à la figure 3.Of course, the invention is not limited to the examples described above.Thus, a Buck converter was mentioned, suitable for the case of an output voltagelower than the input voltage. We could also use other types ofconverters; for example, if the input voltage is lower than the output voltage,we could use a Boost type PWM converter. Other topologies ofconverters also allow operation when the ratio between voltageinput and output voltage varies around 1. The type of converter used does notnot change the principle of the control described with reference to Figure 3.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| FR0210140 | 2002-08-09 | ||
| FR0210140AFR2843464B1 (en) | 2002-08-09 | 2002-08-09 | CIRCUIT FOR CONDITIONING A SOURCE AT THE MAXIMUM POWER POINT |
| Publication Number | Publication Date |
|---|---|
| EP1388774A1true EP1388774A1 (en) | 2004-02-11 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP03291745AWithdrawnEP1388774A1 (en) | 2002-08-09 | 2003-07-15 | Source conditioning circuit at a maximum power point |
| Country | Link |
|---|---|
| US (1) | US6919714B2 (en) |
| EP (1) | EP1388774A1 (en) |
| JP (1) | JP4361328B2 (en) |
| FR (1) | FR2843464B1 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2006005125A1 (en)* | 2004-07-13 | 2006-01-19 | Central Queensland University | A device for distributed maximum power tracking for solar arrays |
| FR2895810A1 (en)* | 2006-01-03 | 2007-07-06 | Alcatel Sa | Solar generator conditioning circuit for satellite, has control circuit applying increasing power value to converter when derivative of current reaches positive threshold and decreasing power value when derivative reaches negative threshold |
| AU2005262278B2 (en)* | 2004-07-13 | 2009-03-26 | Tigo Energy, Inc. | A device for distributed maximum power tracking for solar arrays |
| US7807919B2 (en) | 2007-11-02 | 2010-10-05 | Tigo Energy, Inc. | Apparatuses and methods to reduce safety risks associated with photovoltaic systems |
| US7898112B2 (en) | 2007-12-06 | 2011-03-01 | Tigo Energy, Inc. | Apparatuses and methods to connect power sources to an electric power system |
| US8039730B2 (en) | 2009-06-18 | 2011-10-18 | Tigo Energy, Inc. | System and method for prevention of open loop damage during or immediately after manufacturing |
| US8058747B2 (en) | 2008-08-01 | 2011-11-15 | Tigo Energy, Inc. | Systems to connect multiple direct current energy sources to an alternating current system |
| US8102074B2 (en) | 2009-07-30 | 2012-01-24 | Tigo Energy, Inc. | Systems and method for limiting maximum voltage in solar photovoltaic power generation systems |
| WO2012032274A1 (en)* | 2010-09-10 | 2012-03-15 | Nexcis | Photovoltaic panel operation control |
| US8271599B2 (en) | 2010-01-08 | 2012-09-18 | Tigo Energy, Inc. | Systems and methods for an identification protocol between a local controller and a master controller in a photovoltaic power generation system |
| US8314375B2 (en) | 2009-08-21 | 2012-11-20 | Tigo Energy, Inc. | System and method for local string management unit |
| US8325059B2 (en) | 2008-11-12 | 2012-12-04 | Tigo Energy, Inc. | Method and system for cost-effective power line communications for sensor data collection |
| US8405349B2 (en) | 2009-06-25 | 2013-03-26 | Tigo Energy, Inc. | Enhanced battery storage and recovery energy systems |
| US8653689B2 (en) | 2008-11-12 | 2014-02-18 | Tigo Energy, Inc. | Method and system for current-mode power line communications |
| US8751053B2 (en) | 2006-10-19 | 2014-06-10 | Tigo Energy, Inc. | Method and system to provide a distributed local energy production system with high-voltage DC bus |
| US8773236B2 (en) | 2009-12-29 | 2014-07-08 | Tigo Energy, Inc. | Systems and methods for a communication protocol between a local controller and a master controller |
| US8823218B2 (en) | 2007-11-02 | 2014-09-02 | Tigo Energy, Inc. | System and method for enhanced watch dog in solar panel installations |
| US8841916B2 (en) | 2011-02-28 | 2014-09-23 | Tigo Energy, Inc. | System and method for flash bypass |
| US8853886B2 (en) | 2010-06-09 | 2014-10-07 | Tigo Energy, Inc. | System for use of static inverters in variable energy generation environments |
| US8854193B2 (en) | 2009-12-29 | 2014-10-07 | Tigo Energy, Inc. | Systems and methods for remote or local shut-off of a photovoltaic system |
| US8860241B2 (en) | 2008-11-26 | 2014-10-14 | Tigo Energy, Inc. | Systems and methods for using a power converter for transmission of data over the power feed |
| US8860246B2 (en) | 2008-11-26 | 2014-10-14 | Tigo Energy, Inc. | Systems and methods to balance solar panels in a multi-panel system |
| US8922061B2 (en) | 2010-03-22 | 2014-12-30 | Tigo Energy, Inc. | Systems and methods for detecting and correcting a suboptimal operation of one or more inverters in a multi-inverter system |
| US8933321B2 (en) | 2009-02-05 | 2015-01-13 | Tigo Energy, Inc. | Systems and methods for an enhanced watchdog in solar module installations |
| US8954203B2 (en) | 2009-06-24 | 2015-02-10 | Tigo Energy, Inc. | Systems and methods for distributed power factor correction and phase balancing |
| US8982591B2 (en) | 2011-10-18 | 2015-03-17 | Tigo Energy, Inc. | System and method for exchangeable capacitor modules for high power inverters and converters |
| US9007210B2 (en) | 2010-04-22 | 2015-04-14 | Tigo Energy, Inc. | Enhanced system and method for theft prevention in a solar power array during nonoperative periods |
| US9043039B2 (en) | 2011-02-24 | 2015-05-26 | Tigo Energy, Inc. | System and method for arc detection and intervention in solar energy systems |
| US9112379B2 (en) | 2006-12-06 | 2015-08-18 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
| US9130401B2 (en) | 2006-12-06 | 2015-09-08 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US9142965B2 (en) | 2011-07-28 | 2015-09-22 | Tigo Energy, Inc. | Systems and methods to combine strings of solar panels |
| US9143036B2 (en) | 2009-09-02 | 2015-09-22 | Tigo Energy, Inc. | Systems and methods for enhanced efficiency auxiliary power supply module |
| US9218013B2 (en) | 2007-11-14 | 2015-12-22 | Tigo Energy, Inc. | Method and system for connecting solar cells or slices in a panel system |
| US9235228B2 (en) | 2012-03-05 | 2016-01-12 | Solaredge Technologies Ltd. | Direct current link circuit |
| US9291696B2 (en) | 2007-12-05 | 2016-03-22 | Solaredge Technologies Ltd. | Photovoltaic system power tracking method |
| US9312399B2 (en) | 2010-04-02 | 2016-04-12 | Tigo Energy, Inc. | Systems and methods for mapping the connectivity topology of local management units in photovoltaic arrays |
| US9312697B2 (en) | 2009-07-30 | 2016-04-12 | Tigo Energy, Inc. | System and method for addressing solar energy production capacity loss due to field buildup between cells and glass and frame assembly |
| US9318974B2 (en) | 2014-03-26 | 2016-04-19 | Solaredge Technologies Ltd. | Multi-level inverter with flying capacitor topology |
| US9324885B2 (en) | 2009-10-02 | 2016-04-26 | Tigo Energy, Inc. | Systems and methods to provide enhanced diode bypass paths |
| US9362743B2 (en) | 2008-05-05 | 2016-06-07 | Solaredge Technologies Ltd. | Direct current power combiner |
| US9368964B2 (en) | 2006-12-06 | 2016-06-14 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
| US9368965B2 (en) | 2011-07-28 | 2016-06-14 | Tigo Energy, Inc. | Enhanced system and method for string-balancing |
| US9401439B2 (en) | 2009-03-25 | 2016-07-26 | Tigo Energy, Inc. | Enhanced systems and methods for using a power converter for balancing modules in single-string and multi-string configurations |
| US9401599B2 (en) | 2010-12-09 | 2016-07-26 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
| US9407161B2 (en) | 2007-12-05 | 2016-08-02 | Solaredge Technologies Ltd. | Parallel connected inverters |
| US9425783B2 (en) | 2010-03-15 | 2016-08-23 | Tigo Energy, Inc. | Systems and methods to provide enhanced diode bypass paths |
| US9431825B2 (en) | 2011-07-28 | 2016-08-30 | Tigo Energy, Inc. | Systems and methods to reduce the number and cost of management units of distributed power generators |
| US9537445B2 (en) | 2008-12-04 | 2017-01-03 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
| US9543889B2 (en) | 2006-12-06 | 2017-01-10 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US9548619B2 (en) | 2013-03-14 | 2017-01-17 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
| US9590526B2 (en) | 2006-12-06 | 2017-03-07 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
| US9647442B2 (en) | 2010-11-09 | 2017-05-09 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
| US9644993B2 (en) | 2006-12-06 | 2017-05-09 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
| US9673711B2 (en) | 2007-08-06 | 2017-06-06 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
| US9680304B2 (en) | 2006-12-06 | 2017-06-13 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
| US9812984B2 (en) | 2012-01-30 | 2017-11-07 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
| US9819178B2 (en) | 2013-03-15 | 2017-11-14 | Solaredge Technologies Ltd. | Bypass mechanism |
| US9831824B2 (en) | 2007-12-05 | 2017-11-28 | SolareEdge Technologies Ltd. | Current sensing on a MOSFET |
| US9853538B2 (en) | 2007-12-04 | 2017-12-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US9853565B2 (en) | 2012-01-30 | 2017-12-26 | Solaredge Technologies Ltd. | Maximized power in a photovoltaic distributed power system |
| US9866098B2 (en) | 2011-01-12 | 2018-01-09 | Solaredge Technologies Ltd. | Serially connected inverters |
| US9869701B2 (en) | 2009-05-26 | 2018-01-16 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
| US9876430B2 (en) | 2008-03-24 | 2018-01-23 | Solaredge Technologies Ltd. | Zero voltage switching |
| US9923516B2 (en) | 2012-01-30 | 2018-03-20 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
| US9941813B2 (en) | 2013-03-14 | 2018-04-10 | Solaredge Technologies Ltd. | High frequency multi-level inverter |
| US9960667B2 (en) | 2006-12-06 | 2018-05-01 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
| US9966766B2 (en) | 2006-12-06 | 2018-05-08 | Solaredge Technologies Ltd. | Battery power delivery module |
| US10115841B2 (en) | 2012-06-04 | 2018-10-30 | Solaredge Technologies Ltd. | Integrated photovoltaic panel circuitry |
| US10218307B2 (en) | 2014-12-02 | 2019-02-26 | Tigo Energy, Inc. | Solar panel junction boxes having integrated function modules |
| US10230310B2 (en) | 2016-04-05 | 2019-03-12 | Solaredge Technologies Ltd | Safety switch for photovoltaic systems |
| US10396662B2 (en) | 2011-09-12 | 2019-08-27 | Solaredge Technologies Ltd | Direct current link circuit |
| US10673222B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
| US10673229B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
| US10931119B2 (en) | 2012-01-11 | 2021-02-23 | Solaredge Technologies Ltd. | Photovoltaic module |
| US11018623B2 (en) | 2016-04-05 | 2021-05-25 | Solaredge Technologies Ltd. | Safety switch for photovoltaic systems |
| US11177663B2 (en) | 2016-04-05 | 2021-11-16 | Solaredge Technologies Ltd. | Chain of power devices |
| US11228278B2 (en) | 2007-11-02 | 2022-01-18 | Tigo Energy, Inc. | System and method for enhanced watch dog in solar panel installations |
| US11264947B2 (en) | 2007-12-05 | 2022-03-01 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
| US11296650B2 (en) | 2006-12-06 | 2022-04-05 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
| US11309832B2 (en) | 2006-12-06 | 2022-04-19 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11569659B2 (en) | 2006-12-06 | 2023-01-31 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11569660B2 (en) | 2006-12-06 | 2023-01-31 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11687112B2 (en) | 2006-12-06 | 2023-06-27 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11728768B2 (en) | 2006-12-06 | 2023-08-15 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
| US11735910B2 (en) | 2006-12-06 | 2023-08-22 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
| US11855231B2 (en) | 2006-12-06 | 2023-12-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11881814B2 (en) | 2005-12-05 | 2024-01-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
| US11888387B2 (en) | 2006-12-06 | 2024-01-30 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
| US12057807B2 (en) | 2016-04-05 | 2024-08-06 | Solaredge Technologies Ltd. | Chain of power devices |
| US12418177B2 (en) | 2009-10-24 | 2025-09-16 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2004107543A2 (en) | 2003-05-28 | 2004-12-09 | Beacon Power Corporation | Power converter for a solar panel |
| AU2005334695A1 (en)* | 2005-07-20 | 2007-01-25 | Ecosol Solar Technologies, Inc. | A photovoltaic power output-utilizing device |
| US7900361B2 (en) | 2006-12-06 | 2011-03-08 | Solaredge, Ltd. | Current bypass for distributed power harvesting systems using DC power sources |
| US20080144294A1 (en)* | 2006-12-06 | 2008-06-19 | Meir Adest | Removal component cartridge for increasing reliability in power harvesting systems |
| US7986122B2 (en)* | 2007-09-26 | 2011-07-26 | Enphase Energy, Inc. | Method and apparatus for power conversion with maximum power point tracking and burst mode capability |
| US7986539B2 (en)* | 2007-09-26 | 2011-07-26 | Enphase Energy, Inc. | Method and apparatus for maximum power point tracking in power conversion based on dual feedback loops and power ripples |
| EP2225778B1 (en) | 2007-12-05 | 2019-06-26 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
| US8630098B2 (en)* | 2008-06-12 | 2014-01-14 | Solaredge Technologies Ltd. | Switching circuit layout with heatsink |
| US8378656B2 (en)* | 2008-09-19 | 2013-02-19 | General Electric Company | Quasi-AC, photovoltaic module for unfolder photovoltaic inverter |
| US7768155B2 (en) | 2008-10-10 | 2010-08-03 | Enphase Energy, Inc. | Method and apparatus for improved burst mode during power conversion |
| US20100301670A1 (en)* | 2009-03-01 | 2010-12-02 | William Wilhelm | Dc peak power tracking devices, methods, and systems |
| US8303349B2 (en) | 2009-05-22 | 2012-11-06 | Solaredge Technologies Ltd. | Dual compressive connector |
| EP2602831B1 (en)* | 2009-05-22 | 2014-07-16 | Solaredge Technologies Ltd. | Electrically isolated heat dissipating junction box |
| US8690110B2 (en) | 2009-05-25 | 2014-04-08 | Solaredge Technologies Ltd. | Bracket for connection of a junction box to photovoltaic panels |
| US8710699B2 (en) | 2009-12-01 | 2014-04-29 | Solaredge Technologies Ltd. | Dual use photovoltaic system |
| US8766696B2 (en) | 2010-01-27 | 2014-07-01 | Solaredge Technologies Ltd. | Fast voltage level shifter circuit |
| US8450021B2 (en)* | 2010-03-15 | 2013-05-28 | GM Global Technology Operations LLC | Method for HV bus voltage control in fuel cell vehicles featuring HV lithium batteries |
| KR101727521B1 (en)* | 2010-10-01 | 2017-04-17 | 삼성전자 주식회사 | Power supply apparatus, power supply system and method of supplying power thereof |
| US8587972B2 (en)* | 2011-01-21 | 2013-11-19 | Qi Deng | Apparatus and system for transformer frequency control |
| JP2014239083A (en)* | 2011-09-29 | 2014-12-18 | 三洋電機株式会社 | Solar cell array |
| TWI438602B (en) | 2011-12-02 | 2014-05-21 | Ind Tech Res Inst | Maximum power point tracking controllers, maximum power point tracking systems and maximum power point tracking methods |
| EP3499695B1 (en) | 2012-05-25 | 2024-09-18 | Solaredge Technologies Ltd. | Circuit for interconnected direct current power sources |
| US10193347B2 (en) | 2013-03-29 | 2019-01-29 | Enphase Energy, Inc. | Method and apparatus for improved burst mode during power conversion |
| TWI470396B (en) | 2013-06-26 | 2015-01-21 | Ind Tech Res Inst | Power point tracking method and apparatus |
| US10599113B2 (en) | 2016-03-03 | 2020-03-24 | Solaredge Technologies Ltd. | Apparatus and method for determining an order of power devices in power generation systems |
| CN107153212B (en) | 2016-03-03 | 2023-07-28 | 太阳能安吉科技有限公司 | Method for mapping a power generation facility |
| US11081608B2 (en) | 2016-03-03 | 2021-08-03 | Solaredge Technologies Ltd. | Apparatus and method for determining an order of power devices in power generation systems |
| CN110908756B (en)* | 2019-11-18 | 2024-02-02 | 西安雷风电子科技有限公司 | Cloud desktop real-time fusion switching method and system |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0027405A1 (en)* | 1979-10-10 | 1981-04-22 | COMMISSARIAT A L'ENERGIE ATOMIQUE Etablissement de Caractère Scientifique Technique et Industriel | Control device for the maximum power output of a photovoltaic converter |
| FR2626689A1 (en)* | 1988-01-29 | 1989-08-04 | Centre Nat Etd Spatiales | System for regulating the operating point of a direct current power supply |
| US5530335A (en)* | 1993-05-11 | 1996-06-25 | Trw Inc. | Battery regulated bus spacecraft power control system |
| US5932994A (en)* | 1996-05-15 | 1999-08-03 | Samsung Electronics, Co., Ltd. | Solar cell power source device |
| FR2819653A1 (en)* | 2001-01-16 | 2002-07-19 | Centre Nat Rech Scient | CONTROL OF A POWER CONVERTER FOR AN AUTOMATIC SEARCH OF THE MAXIMUM POINT OF POWER |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US6204645B1 (en)* | 1998-09-11 | 2001-03-20 | Richard A. Cullen | Battery charging controller |
| JP3394996B2 (en)* | 2001-03-09 | 2003-04-07 | 独立行政法人産業技術総合研究所 | Maximum power operating point tracking method and device |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| EP0027405A1 (en)* | 1979-10-10 | 1981-04-22 | COMMISSARIAT A L'ENERGIE ATOMIQUE Etablissement de Caractère Scientifique Technique et Industriel | Control device for the maximum power output of a photovoltaic converter |
| FR2626689A1 (en)* | 1988-01-29 | 1989-08-04 | Centre Nat Etd Spatiales | System for regulating the operating point of a direct current power supply |
| US5530335A (en)* | 1993-05-11 | 1996-06-25 | Trw Inc. | Battery regulated bus spacecraft power control system |
| US5932994A (en)* | 1996-05-15 | 1999-08-03 | Samsung Electronics, Co., Ltd. | Solar cell power source device |
| FR2819653A1 (en)* | 2001-01-16 | 2002-07-19 | Centre Nat Rech Scient | CONTROL OF A POWER CONVERTER FOR AN AUTOMATIC SEARCH OF THE MAXIMUM POINT OF POWER |
| Title |
|---|
| CALDWELL D J ET AL: "ADVANCED SPACE POWER SYSTEM WITH OPTIMIZED PEAK POWER TRACKING", AEROSPACE POWER SYSTEMS, CONVERSION TECHNOLOGIES. BOSTON, AUG. 4 - 9, 1991, PROCEEDINGS OF THE INTERSOCIETY ENERGY CONVERSION ENGINEERING CONFERENCE, NEW YORK, ANS/IEEE, US, vol. 2 CONF. 26, 4 August 1991 (1991-08-04), pages 145 - 150, XP000280495, ISBN: 0-89448-163-0* |
| GOW J A ET AL: "A MODULAR DC-DC CONVERTER AND MAXIMUM POWER TRACKING CONTROLLER FORMEDIUM TO LARGE SCALE PHOTOVOLTAIC GENERATING PLANT", 8TH EUROPEAN CONFERENCE ON POWER ELECTRONICS AND APPLICATIONS. LAUSANNE, CH, SEPT. 7 - 9, 1999, EPE. EUROPEAN CONFERENCE ON POWER ELECTRONICS AND APPLICATIONS, BRUSSLS: EPE ASSOCIATION, BE, vol. CONF. 8, 7 September 1999 (1999-09-07), pages 1 - 8, XP000883026, ISBN: 90-75815-04-2* |
| HUA C ET AL: "CONTROL OF DC/DC CONVERTERS FOR SOLAR ENERGY SYSTEM WITH MAXIMUM POWER TRACKING", PROCEEDINGS OF THE IECON '97: 23RD. INTERNATIONAL CONFERENCE ON INDUSTRIAL ELECTRONICS, CONTROL, AND INSTRUMENTATION. NEW ORLEANS, NOV. 9 - 14, 1997, PROCEEDINGS OF IEEE IECON: INTERNATIONAL CONFERENCE ON INDUSTRIAL ELECTRONICS, CONTROL, AND INSTRUME, vol. 2, 9 November 1997 (1997-11-09), pages 827 - 832, XP000898581, ISBN: 0-7803-3933-9* |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US8093757B2 (en) | 2004-07-13 | 2012-01-10 | Tigo Energy, Inc. | Device for distributed maximum power tracking for solar arrays |
| AU2005262278B2 (en)* | 2004-07-13 | 2009-03-26 | Tigo Energy, Inc. | A device for distributed maximum power tracking for solar arrays |
| US9594392B2 (en) | 2004-07-13 | 2017-03-14 | Tigo Energy, Inc. | Device for distributed maximum power tracking for solar arrays |
| US7839022B2 (en) | 2004-07-13 | 2010-11-23 | Tigo Energy, Inc. | Device for distributed maximum power tracking for solar arrays |
| WO2006005125A1 (en)* | 2004-07-13 | 2006-01-19 | Central Queensland University | A device for distributed maximum power tracking for solar arrays |
| US8963518B2 (en) | 2004-07-13 | 2015-02-24 | Tigo Energy, Inc. | Device for distributed maximum power tracking for solar arrays |
| US11881814B2 (en) | 2005-12-05 | 2024-01-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
| FR2895810A1 (en)* | 2006-01-03 | 2007-07-06 | Alcatel Sa | Solar generator conditioning circuit for satellite, has control circuit applying increasing power value to converter when derivative of current reaches positive threshold and decreasing power value when derivative reaches negative threshold |
| WO2007077386A3 (en)* | 2006-01-03 | 2007-12-27 | Alcatel Lucent | Circuit for the current conditioning of a source at the maximum power point |
| US8751053B2 (en) | 2006-10-19 | 2014-06-10 | Tigo Energy, Inc. | Method and system to provide a distributed local energy production system with high-voltage DC bus |
| US11594882B2 (en) | 2006-12-06 | 2023-02-28 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11569660B2 (en) | 2006-12-06 | 2023-01-31 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US12276997B2 (en) | 2006-12-06 | 2025-04-15 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US12224706B2 (en) | 2006-12-06 | 2025-02-11 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
| US12107417B2 (en) | 2006-12-06 | 2024-10-01 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US9960667B2 (en) | 2006-12-06 | 2018-05-01 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
| US12068599B2 (en) | 2006-12-06 | 2024-08-20 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
| US12046940B2 (en) | 2006-12-06 | 2024-07-23 | Solaredge Technologies Ltd. | Battery power control |
| US12032080B2 (en) | 2006-12-06 | 2024-07-09 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
| US12027849B2 (en) | 2006-12-06 | 2024-07-02 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
| US12027970B2 (en) | 2006-12-06 | 2024-07-02 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
| US11962243B2 (en) | 2006-12-06 | 2024-04-16 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
| US11961922B2 (en) | 2006-12-06 | 2024-04-16 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US12316274B2 (en) | 2006-12-06 | 2025-05-27 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
| US11888387B2 (en) | 2006-12-06 | 2024-01-30 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
| US9960731B2 (en) | 2006-12-06 | 2018-05-01 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
| US9966766B2 (en) | 2006-12-06 | 2018-05-08 | Solaredge Technologies Ltd. | Battery power delivery module |
| US11855231B2 (en) | 2006-12-06 | 2023-12-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US9853490B2 (en) | 2006-12-06 | 2017-12-26 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
| US11735910B2 (en) | 2006-12-06 | 2023-08-22 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
| US11728768B2 (en) | 2006-12-06 | 2023-08-15 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
| US11687112B2 (en) | 2006-12-06 | 2023-06-27 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11682918B2 (en) | 2006-12-06 | 2023-06-20 | Solaredge Technologies Ltd. | Battery power delivery module |
| US11658482B2 (en) | 2006-12-06 | 2023-05-23 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US10097007B2 (en) | 2006-12-06 | 2018-10-09 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
| US12388492B2 (en) | 2006-12-06 | 2025-08-12 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
| US11598652B2 (en) | 2006-12-06 | 2023-03-07 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
| US11594881B2 (en) | 2006-12-06 | 2023-02-28 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11594880B2 (en) | 2006-12-06 | 2023-02-28 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US9112379B2 (en) | 2006-12-06 | 2015-08-18 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
| US10230245B2 (en) | 2006-12-06 | 2019-03-12 | Solaredge Technologies Ltd | Battery power delivery module |
| US9130401B2 (en) | 2006-12-06 | 2015-09-08 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US9948233B2 (en) | 2006-12-06 | 2018-04-17 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11579235B2 (en) | 2006-12-06 | 2023-02-14 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
| US9680304B2 (en) | 2006-12-06 | 2017-06-13 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
| US11575261B2 (en) | 2006-12-06 | 2023-02-07 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11575260B2 (en) | 2006-12-06 | 2023-02-07 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US12281919B2 (en) | 2006-12-06 | 2025-04-22 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
| US11569659B2 (en) | 2006-12-06 | 2023-01-31 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11476799B2 (en) | 2006-12-06 | 2022-10-18 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US9644993B2 (en) | 2006-12-06 | 2017-05-09 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
| US11309832B2 (en) | 2006-12-06 | 2022-04-19 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11296650B2 (en) | 2006-12-06 | 2022-04-05 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
| US9368964B2 (en) | 2006-12-06 | 2016-06-14 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
| US10447150B2 (en) | 2006-12-06 | 2019-10-15 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11183922B2 (en) | 2006-12-06 | 2021-11-23 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US9590526B2 (en) | 2006-12-06 | 2017-03-07 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
| US11073543B2 (en) | 2006-12-06 | 2021-07-27 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
| US11063440B2 (en) | 2006-12-06 | 2021-07-13 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
| US11043820B2 (en) | 2006-12-06 | 2021-06-22 | Solaredge Technologies Ltd. | Battery power delivery module |
| US11031861B2 (en) | 2006-12-06 | 2021-06-08 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
| US11002774B2 (en) | 2006-12-06 | 2021-05-11 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
| US10637393B2 (en) | 2006-12-06 | 2020-04-28 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US10673253B2 (en) | 2006-12-06 | 2020-06-02 | Solaredge Technologies Ltd. | Battery power delivery module |
| US9543889B2 (en) | 2006-12-06 | 2017-01-10 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US10116217B2 (en) | 2007-08-06 | 2018-10-30 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
| US10516336B2 (en) | 2007-08-06 | 2019-12-24 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
| US11594968B2 (en) | 2007-08-06 | 2023-02-28 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
| US9673711B2 (en) | 2007-08-06 | 2017-06-06 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
| US10256770B2 (en) | 2007-11-02 | 2019-04-09 | Tigo Energy, Inc. | System and method for enhanced watch dog in solar panel installations |
| US9397612B2 (en) | 2007-11-02 | 2016-07-19 | Tigo Energy, Inc. | System and method for enhanced watch dog in solar panel installations |
| US12088248B2 (en) | 2007-11-02 | 2024-09-10 | Tigo Energy, Inc. | System and method for enhanced watch dog in solar panel installations |
| US9813021B2 (en) | 2007-11-02 | 2017-11-07 | Tigo Energy, Inc. | System and method for enhanced watch dog in solar panel installations |
| US10686403B2 (en) | 2007-11-02 | 2020-06-16 | Tigo Energy, Inc. | System and method for enhanced watch dog in solar panel installations |
| US8823218B2 (en) | 2007-11-02 | 2014-09-02 | Tigo Energy, Inc. | System and method for enhanced watch dog in solar panel installations |
| US7807919B2 (en) | 2007-11-02 | 2010-10-05 | Tigo Energy, Inc. | Apparatuses and methods to reduce safety risks associated with photovoltaic systems |
| US11228278B2 (en) | 2007-11-02 | 2022-01-18 | Tigo Energy, Inc. | System and method for enhanced watch dog in solar panel installations |
| US7884278B2 (en) | 2007-11-02 | 2011-02-08 | Tigo Energy, Inc. | Apparatuses and methods to reduce safety risks associated with photovoltaic systems |
| US11646695B2 (en) | 2007-11-02 | 2023-05-09 | Tigo Energy, Inc. | System and method for enhanced watch dog in solar panel installations |
| US12323100B2 (en) | 2007-11-02 | 2025-06-03 | Tigo Energy, Inc. | System and method for enhanced watch dog in solar panel installations |
| US11855578B2 (en) | 2007-11-02 | 2023-12-26 | Tigo Energy, Inc. | System and method for enhanced watch dog in solar panel installations |
| US9218013B2 (en) | 2007-11-14 | 2015-12-22 | Tigo Energy, Inc. | Method and system for connecting solar cells or slices in a panel system |
| US11329599B2 (en) | 2007-11-14 | 2022-05-10 | Tigo Energy, Inc. | Method and system for connecting solar cells or slices in a panel system |
| US9853538B2 (en) | 2007-12-04 | 2017-12-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US10644589B2 (en) | 2007-12-05 | 2020-05-05 | Solaredge Technologies Ltd. | Parallel connected inverters |
| US11183969B2 (en) | 2007-12-05 | 2021-11-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
| US12055647B2 (en) | 2007-12-05 | 2024-08-06 | Solaredge Technologies Ltd. | Parallel connected inverters |
| US11693080B2 (en) | 2007-12-05 | 2023-07-04 | Solaredge Technologies Ltd. | Parallel connected inverters |
| US9831824B2 (en) | 2007-12-05 | 2017-11-28 | SolareEdge Technologies Ltd. | Current sensing on a MOSFET |
| US9291696B2 (en) | 2007-12-05 | 2016-03-22 | Solaredge Technologies Ltd. | Photovoltaic system power tracking method |
| US11894806B2 (en) | 2007-12-05 | 2024-02-06 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
| US11183923B2 (en) | 2007-12-05 | 2021-11-23 | Solaredge Technologies Ltd. | Parallel connected inverters |
| US10693415B2 (en) | 2007-12-05 | 2020-06-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
| US9407161B2 (en) | 2007-12-05 | 2016-08-02 | Solaredge Technologies Ltd. | Parallel connected inverters |
| US11264947B2 (en) | 2007-12-05 | 2022-03-01 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
| US9979280B2 (en) | 2007-12-05 | 2018-05-22 | Solaredge Technologies Ltd. | Parallel connected inverters |
| US7898112B2 (en) | 2007-12-06 | 2011-03-01 | Tigo Energy, Inc. | Apparatuses and methods to connect power sources to an electric power system |
| US9876430B2 (en) | 2008-03-24 | 2018-01-23 | Solaredge Technologies Ltd. | Zero voltage switching |
| US9362743B2 (en) | 2008-05-05 | 2016-06-07 | Solaredge Technologies Ltd. | Direct current power combiner |
| US11424616B2 (en) | 2008-05-05 | 2022-08-23 | Solaredge Technologies Ltd. | Direct current power combiner |
| US10468878B2 (en) | 2008-05-05 | 2019-11-05 | Solaredge Technologies Ltd. | Direct current power combiner |
| US12218498B2 (en) | 2008-05-05 | 2025-02-04 | Solaredge Technologies Ltd. | Direct current power combiner |
| US8098055B2 (en) | 2008-08-01 | 2012-01-17 | Tigo Energy, Inc. | Step-up converter systems and methods |
| US8058747B2 (en) | 2008-08-01 | 2011-11-15 | Tigo Energy, Inc. | Systems to connect multiple direct current energy sources to an alternating current system |
| US8325059B2 (en) | 2008-11-12 | 2012-12-04 | Tigo Energy, Inc. | Method and system for cost-effective power line communications for sensor data collection |
| US8653689B2 (en) | 2008-11-12 | 2014-02-18 | Tigo Energy, Inc. | Method and system for current-mode power line communications |
| US10110007B2 (en) | 2008-11-26 | 2018-10-23 | Tigo Energy, Inc. | Systems and methods to balance solar panels in a multi-panel system |
| US8860241B2 (en) | 2008-11-26 | 2014-10-14 | Tigo Energy, Inc. | Systems and methods for using a power converter for transmission of data over the power feed |
| US10615603B2 (en) | 2008-11-26 | 2020-04-07 | Tigo Energy, Inc. | Systems and methods to balance solar panels in a multi-panel system |
| US8860246B2 (en) | 2008-11-26 | 2014-10-14 | Tigo Energy, Inc. | Systems and methods to balance solar panels in a multi-panel system |
| US10461687B2 (en) | 2008-12-04 | 2019-10-29 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
| US9537445B2 (en) | 2008-12-04 | 2017-01-03 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
| US8933321B2 (en) | 2009-02-05 | 2015-01-13 | Tigo Energy, Inc. | Systems and methods for an enhanced watchdog in solar module installations |
| US9401439B2 (en) | 2009-03-25 | 2016-07-26 | Tigo Energy, Inc. | Enhanced systems and methods for using a power converter for balancing modules in single-string and multi-string configurations |
| US11867729B2 (en) | 2009-05-26 | 2024-01-09 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
| US12306215B2 (en) | 2009-05-26 | 2025-05-20 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
| US9869701B2 (en) | 2009-05-26 | 2018-01-16 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
| US10969412B2 (en) | 2009-05-26 | 2021-04-06 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
| US8039730B2 (en) | 2009-06-18 | 2011-10-18 | Tigo Energy, Inc. | System and method for prevention of open loop damage during or immediately after manufacturing |
| US8415552B2 (en) | 2009-06-18 | 2013-04-09 | Tigo Energy, Inc. | Systems and methods for prevention of open loop damage during or immediately after manufacturing |
| US8954203B2 (en) | 2009-06-24 | 2015-02-10 | Tigo Energy, Inc. | Systems and methods for distributed power factor correction and phase balancing |
| US8405349B2 (en) | 2009-06-25 | 2013-03-26 | Tigo Energy, Inc. | Enhanced battery storage and recovery energy systems |
| US9991842B2 (en) | 2009-07-30 | 2018-06-05 | Tigo Energy, Inc. | Systems and methods to reduce field buildup between cells and glass and frame assembly for solar energy production |
| US11239793B2 (en) | 2009-07-30 | 2022-02-01 | Tigo Energy, Inc. | Systems and methods to reduce field buildup between cells and glass and frame assembly for solar energy production |
| US9312697B2 (en) | 2009-07-30 | 2016-04-12 | Tigo Energy, Inc. | System and method for addressing solar energy production capacity loss due to field buildup between cells and glass and frame assembly |
| US8274172B2 (en) | 2009-07-30 | 2012-09-25 | Tigo Energy, Inc. | Systems and method for limiting maximum voltage in solar photovoltaic power generation systems |
| US8102074B2 (en) | 2009-07-30 | 2012-01-24 | Tigo Energy, Inc. | Systems and method for limiting maximum voltage in solar photovoltaic power generation systems |
| US10756545B2 (en) | 2009-08-10 | 2020-08-25 | Tigo Energy, Inc. | Enhanced systems and methods for using a power converter for balancing modules in single-string and multi-string configurations |
| US8314375B2 (en) | 2009-08-21 | 2012-11-20 | Tigo Energy, Inc. | System and method for local string management unit |
| US8686333B2 (en) | 2009-08-21 | 2014-04-01 | Tigo Energy, Inc. | System and method for local string management unit |
| US9584021B2 (en) | 2009-09-02 | 2017-02-28 | Tigo Energy, Inc. | Systems and methods for enhanced efficiency auxiliary power supply module |
| US9966848B2 (en) | 2009-09-02 | 2018-05-08 | Tigo Energy, Inc. | Systems and methods for enhanced efficiency auxiliary power supply module |
| US9143036B2 (en) | 2009-09-02 | 2015-09-22 | Tigo Energy, Inc. | Systems and methods for enhanced efficiency auxiliary power supply module |
| US10333405B2 (en) | 2009-09-02 | 2019-06-25 | Tigo Energy, Inc. | Systems and methods for enhanced efficiency auxiliary power supply module |
| US12143065B2 (en) | 2009-09-03 | 2024-11-12 | Tigo Energy, Inc. | Systems and methods for an enhanced watchdog in solar module installations |
| US11967930B2 (en) | 2009-09-03 | 2024-04-23 | Tigo Energy, Inc. | Systems and methods for an enhanced watchdog in solar module installations |
| US10128683B2 (en) | 2009-10-02 | 2018-11-13 | Tigo Energy, Inc. | Systems and methods to provide enhanced diode bypass paths |
| US11201494B2 (en) | 2009-10-02 | 2021-12-14 | Tigo Energy, Inc. | Systems and methods to provide enhanced diode bypass paths |
| US9324885B2 (en) | 2009-10-02 | 2016-04-26 | Tigo Energy, Inc. | Systems and methods to provide enhanced diode bypass paths |
| US12418177B2 (en) | 2009-10-24 | 2025-09-16 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
| US8854193B2 (en) | 2009-12-29 | 2014-10-07 | Tigo Energy, Inc. | Systems and methods for remote or local shut-off of a photovoltaic system |
| US10523013B2 (en) | 2009-12-29 | 2019-12-31 | Tigo Energy, Inc. | Systems and methods for remote or local shut-off of a photovoltaic system |
| US12433063B2 (en) | 2009-12-29 | 2025-09-30 | Tigo Energy, Inc. | Systems and methods for remote or local shut-off of a photovoltaic system |
| US8773236B2 (en) | 2009-12-29 | 2014-07-08 | Tigo Energy, Inc. | Systems and methods for a communication protocol between a local controller and a master controller |
| US10063056B2 (en) | 2009-12-29 | 2018-08-28 | Tigo Energy, Inc. | Systems and methods for remote or local shut-off of a photovoltaic system |
| US9377765B2 (en) | 2009-12-29 | 2016-06-28 | Tigo Energy, Inc. | Systems and methods for remote or local shut-off of a photovoltaic system |
| US11081889B2 (en) | 2009-12-29 | 2021-08-03 | Tigo Energy, Inc. | Systems and methods for remote or local shut-off of a photovoltaic system |
| US11728443B2 (en) | 2009-12-29 | 2023-08-15 | Tigo Energy, Inc. | Systems and methods for remote or local shut-off of a photovoltaic system |
| US10135385B2 (en) | 2010-01-08 | 2018-11-20 | Tigo Energy, Inc. | Identification protocol between a local controller of a solar module and a master controller |
| US10749457B2 (en) | 2010-01-08 | 2020-08-18 | Tigo Energy, Inc. | Systems and methods for an identification protocol between a local controller of a solar module and a master controller |
| US8271599B2 (en) | 2010-01-08 | 2012-09-18 | Tigo Energy, Inc. | Systems and methods for an identification protocol between a local controller and a master controller in a photovoltaic power generation system |
| US9124139B2 (en) | 2010-01-08 | 2015-09-01 | Tigo Energy, Inc. | Systems and methods for an identification protocol between a local controller coupled to control a solar module and a master controller |
| US10461570B2 (en) | 2010-03-15 | 2019-10-29 | Tigo Energy, Inc. | Systems and methods to provide enhanced diode bypass paths |
| US9425783B2 (en) | 2010-03-15 | 2016-08-23 | Tigo Energy, Inc. | Systems and methods to provide enhanced diode bypass paths |
| US8922061B2 (en) | 2010-03-22 | 2014-12-30 | Tigo Energy, Inc. | Systems and methods for detecting and correcting a suboptimal operation of one or more inverters in a multi-inverter system |
| US9312399B2 (en) | 2010-04-02 | 2016-04-12 | Tigo Energy, Inc. | Systems and methods for mapping the connectivity topology of local management units in photovoltaic arrays |
| US10355637B2 (en) | 2010-04-02 | 2019-07-16 | Tigo Energy, Inc. | Systems and methods for mapping the connectivity topology of local management units in photovoltaic arrays |
| US9007210B2 (en) | 2010-04-22 | 2015-04-14 | Tigo Energy, Inc. | Enhanced system and method for theft prevention in a solar power array during nonoperative periods |
| US9450414B2 (en) | 2010-06-09 | 2016-09-20 | Tigo Energy, Inc. | Method for use of static inverters in variable energy generation environments |
| US8853886B2 (en) | 2010-06-09 | 2014-10-07 | Tigo Energy, Inc. | System for use of static inverters in variable energy generation environments |
| US9882390B2 (en) | 2010-06-09 | 2018-01-30 | Tigo Energy, Inc. | Method for use of static inverters in variable energy generation environments |
| US8957544B2 (en) | 2010-06-09 | 2015-02-17 | Tigo Energy, Inc. | Systems and methods to optimize outputs of static inverters in variable energy generation environments |
| US9225261B2 (en) | 2010-06-09 | 2015-12-29 | Tigo Energy, Inc. | Method for use of static inverters in variable energy generation environments |
| US10454275B2 (en) | 2010-06-09 | 2019-10-22 | Tigo Energy, Inc. | Method for use of static inverters in variable energy generation environments |
| FR2964759A1 (en)* | 2010-09-10 | 2012-03-16 | Nexcis | CONTROL OF THE OPERATION OF A PHOTOVOLTAIC PANEL. |
| WO2012032274A1 (en)* | 2010-09-10 | 2012-03-15 | Nexcis | Photovoltaic panel operation control |
| US12407158B2 (en) | 2010-11-09 | 2025-09-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
| US11070051B2 (en) | 2010-11-09 | 2021-07-20 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
| US10931228B2 (en) | 2010-11-09 | 2021-02-23 | Solaredge Technologies Ftd. | Arc detection and prevention in a power generation system |
| US9647442B2 (en) | 2010-11-09 | 2017-05-09 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
| US11349432B2 (en) | 2010-11-09 | 2022-05-31 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
| US12003215B2 (en) | 2010-11-09 | 2024-06-04 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
| US10673222B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
| US11489330B2 (en) | 2010-11-09 | 2022-11-01 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
| US10673229B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
| US12295184B2 (en) | 2010-12-09 | 2025-05-06 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
| US11996488B2 (en) | 2010-12-09 | 2024-05-28 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
| US9401599B2 (en) | 2010-12-09 | 2016-07-26 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
| US11271394B2 (en) | 2010-12-09 | 2022-03-08 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
| US9935458B2 (en) | 2010-12-09 | 2018-04-03 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
| US12218505B2 (en) | 2011-01-12 | 2025-02-04 | Solaredge Technologies Ltd. | Serially connected inverters |
| US10666125B2 (en) | 2011-01-12 | 2020-05-26 | Solaredge Technologies Ltd. | Serially connected inverters |
| US9866098B2 (en) | 2011-01-12 | 2018-01-09 | Solaredge Technologies Ltd. | Serially connected inverters |
| US11205946B2 (en) | 2011-01-12 | 2021-12-21 | Solaredge Technologies Ltd. | Serially connected inverters |
| US10754365B2 (en) | 2011-02-24 | 2020-08-25 | Tigo Energy, Inc. | System and method for arc detection and intervention in solar energy systems |
| US9927822B2 (en) | 2011-02-24 | 2018-03-27 | Tigo Energy, Inc. | System and method for arc detection and intervention in solar energy systems |
| US11429123B2 (en) | 2011-02-24 | 2022-08-30 | Tigo Energy, Inc. | System and method for arc detection and intervention in solar energy systems |
| US9043039B2 (en) | 2011-02-24 | 2015-05-26 | Tigo Energy, Inc. | System and method for arc detection and intervention in solar energy systems |
| US11681310B2 (en) | 2011-02-24 | 2023-06-20 | Tigo Energy, Inc. | System and method for arc detection and intervention in solar energy systems |
| US12298791B2 (en) | 2011-02-24 | 2025-05-13 | Tigo Energy, Inc. | System and method for arc detection and intervention in solar energy systems |
| US8841916B2 (en) | 2011-02-28 | 2014-09-23 | Tigo Energy, Inc. | System and method for flash bypass |
| US9368965B2 (en) | 2011-07-28 | 2016-06-14 | Tigo Energy, Inc. | Enhanced system and method for string-balancing |
| US10819117B2 (en) | 2011-07-28 | 2020-10-27 | Tigo Energy, Inc. | Systems and methods to combine strings of solar panels |
| US9142965B2 (en) | 2011-07-28 | 2015-09-22 | Tigo Energy, Inc. | Systems and methods to combine strings of solar panels |
| US11728645B2 (en) | 2011-07-28 | 2023-08-15 | Tigo Energy, Inc. | Enhanced system and method for string balancing |
| US9431825B2 (en) | 2011-07-28 | 2016-08-30 | Tigo Energy, Inc. | Systems and methods to reduce the number and cost of management units of distributed power generators |
| US10673244B2 (en) | 2011-07-28 | 2020-06-02 | Tigo Energy, Inc. | Enhanced system and method for string balancing |
| US9847646B2 (en) | 2011-07-28 | 2017-12-19 | Tigo Energy, Inc. | Systems and methods to combine strings of solar panels |
| US10312692B2 (en) | 2011-07-28 | 2019-06-04 | Tigo Energy, Inc. | Systems and methods to reduce the number and cost of management units of distributed power generators |
| US10396662B2 (en) | 2011-09-12 | 2019-08-27 | Solaredge Technologies Ltd | Direct current link circuit |
| US8982591B2 (en) | 2011-10-18 | 2015-03-17 | Tigo Energy, Inc. | System and method for exchangeable capacitor modules for high power inverters and converters |
| US10931119B2 (en) | 2012-01-11 | 2021-02-23 | Solaredge Technologies Ltd. | Photovoltaic module |
| US11979037B2 (en) | 2012-01-11 | 2024-05-07 | Solaredge Technologies Ltd. | Photovoltaic module |
| US9853565B2 (en) | 2012-01-30 | 2017-12-26 | Solaredge Technologies Ltd. | Maximized power in a photovoltaic distributed power system |
| US12191668B2 (en) | 2012-01-30 | 2025-01-07 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
| US10381977B2 (en) | 2012-01-30 | 2019-08-13 | Solaredge Technologies Ltd | Photovoltaic panel circuitry |
| US11183968B2 (en) | 2012-01-30 | 2021-11-23 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
| US11620885B2 (en) | 2012-01-30 | 2023-04-04 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
| US11929620B2 (en) | 2012-01-30 | 2024-03-12 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
| US12094306B2 (en) | 2012-01-30 | 2024-09-17 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
| US10608553B2 (en) | 2012-01-30 | 2020-03-31 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
| US10992238B2 (en) | 2012-01-30 | 2021-04-27 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
| US9812984B2 (en) | 2012-01-30 | 2017-11-07 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
| US9923516B2 (en) | 2012-01-30 | 2018-03-20 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
| US10007288B2 (en) | 2012-03-05 | 2018-06-26 | Solaredge Technologies Ltd. | Direct current link circuit |
| US9639106B2 (en) | 2012-03-05 | 2017-05-02 | Solaredge Technologies Ltd. | Direct current link circuit |
| US9235228B2 (en) | 2012-03-05 | 2016-01-12 | Solaredge Technologies Ltd. | Direct current link circuit |
| US11177768B2 (en) | 2012-06-04 | 2021-11-16 | Solaredge Technologies Ltd. | Integrated photovoltaic panel circuitry |
| US12218628B2 (en) | 2012-06-04 | 2025-02-04 | Solaredge Technologies Ltd. | Integrated photovoltaic panel circuitry |
| US10115841B2 (en) | 2012-06-04 | 2018-10-30 | Solaredge Technologies Ltd. | Integrated photovoltaic panel circuitry |
| US10778025B2 (en) | 2013-03-14 | 2020-09-15 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
| US12003107B2 (en) | 2013-03-14 | 2024-06-04 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
| US12255457B2 (en) | 2013-03-14 | 2025-03-18 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
| US11742777B2 (en) | 2013-03-14 | 2023-08-29 | Solaredge Technologies Ltd. | High frequency multi-level inverter |
| US9941813B2 (en) | 2013-03-14 | 2018-04-10 | Solaredge Technologies Ltd. | High frequency multi-level inverter |
| US9548619B2 (en) | 2013-03-14 | 2017-01-17 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
| US12119758B2 (en) | 2013-03-14 | 2024-10-15 | Solaredge Technologies Ltd. | High frequency multi-level inverter |
| US11545912B2 (en) | 2013-03-14 | 2023-01-03 | Solaredge Technologies Ltd. | High frequency multi-level inverter |
| US11424617B2 (en) | 2013-03-15 | 2022-08-23 | Solaredge Technologies Ltd. | Bypass mechanism |
| US12132125B2 (en) | 2013-03-15 | 2024-10-29 | Solaredge Technologies Ltd. | Bypass mechanism |
| US10651647B2 (en) | 2013-03-15 | 2020-05-12 | Solaredge Technologies Ltd. | Bypass mechanism |
| US9819178B2 (en) | 2013-03-15 | 2017-11-14 | Solaredge Technologies Ltd. | Bypass mechanism |
| US10886831B2 (en) | 2014-03-26 | 2021-01-05 | Solaredge Technologies Ltd. | Multi-level inverter |
| US12136890B2 (en) | 2014-03-26 | 2024-11-05 | Solaredge Technologies Ltd. | Multi-level inverter |
| US10886832B2 (en) | 2014-03-26 | 2021-01-05 | Solaredge Technologies Ltd. | Multi-level inverter |
| US11296590B2 (en) | 2014-03-26 | 2022-04-05 | Solaredge Technologies Ltd. | Multi-level inverter |
| US11632058B2 (en) | 2014-03-26 | 2023-04-18 | Solaredge Technologies Ltd. | Multi-level inverter |
| US9318974B2 (en) | 2014-03-26 | 2016-04-19 | Solaredge Technologies Ltd. | Multi-level inverter with flying capacitor topology |
| US11855552B2 (en) | 2014-03-26 | 2023-12-26 | Solaredge Technologies Ltd. | Multi-level inverter |
| US11177769B2 (en) | 2014-12-02 | 2021-11-16 | Tigo Energy, Inc. | Solar panel junction boxes having integrated function modules |
| US10218307B2 (en) | 2014-12-02 | 2019-02-26 | Tigo Energy, Inc. | Solar panel junction boxes having integrated function modules |
| US10230310B2 (en) | 2016-04-05 | 2019-03-12 | Solaredge Technologies Ltd | Safety switch for photovoltaic systems |
| US11870250B2 (en) | 2016-04-05 | 2024-01-09 | Solaredge Technologies Ltd. | Chain of power devices |
| US12348182B2 (en) | 2016-04-05 | 2025-07-01 | Solaredge Technologies Ltd. | Safety switch for photovoltaic systems |
| US11201476B2 (en) | 2016-04-05 | 2021-12-14 | Solaredge Technologies Ltd. | Photovoltaic power device and wiring |
| US12057807B2 (en) | 2016-04-05 | 2024-08-06 | Solaredge Technologies Ltd. | Chain of power devices |
| US11177663B2 (en) | 2016-04-05 | 2021-11-16 | Solaredge Technologies Ltd. | Chain of power devices |
| US11018623B2 (en) | 2016-04-05 | 2021-05-25 | Solaredge Technologies Ltd. | Safety switch for photovoltaic systems |
| Publication number | Publication date |
|---|---|
| JP2004078950A (en) | 2004-03-11 |
| US6919714B2 (en) | 2005-07-19 |
| US20040124816A1 (en) | 2004-07-01 |
| FR2843464A1 (en) | 2004-02-13 |
| JP4361328B2 (en) | 2009-11-11 |
| FR2843464B1 (en) | 2006-09-08 |
| Publication | Publication Date | Title |
|---|---|---|
| EP1388774A1 (en) | Source conditioning circuit at a maximum power point | |
| EP2393193A1 (en) | Converter circuit and electronic system comprising such a circuit | |
| FR2819653A1 (en) | CONTROL OF A POWER CONVERTER FOR AN AUTOMATIC SEARCH OF THE MAXIMUM POINT OF POWER | |
| FR2885237A1 (en) | DEVICE FOR CONTROLLING CONTINUOUS VOLTAGE SWITCH CONVERTER AND USE THEREOF FOR MAXIMIZING THE POWER SUPPLIED BY A PHOTOVOLTAIC GENERATOR | |
| FR2910141A1 (en) | Electric energy generating system for e.g. Rosetta space probe, has regulator regulating transconductances of direct voltage intermediate and supplementary converters so as to maximize power generated by photovoltaic solar generators | |
| EP0847124B1 (en) | Emergency power system for providing temporary power in case of failure of a principal power source | |
| EP1400886A1 (en) | Maximum power conditioning circuit for a power source, solar generator and method for conditioning | |
| FR2832870A1 (en) | IMPROVEMENT FOR PHOTOVOLTAIC CHARGER | |
| EP1274106B1 (en) | Supercapacity balancing method and device | |
| FR2907618A1 (en) | METHOD AND SYSTEM FOR IMPROVING THE PRECISION OF A VOLTAGE REGULATOR IN VEHICLE ALTERNATORS | |
| EP2430738B1 (en) | Converter circuit and electronic system including such circuit | |
| EP2053720A1 (en) | Voltage-compensation interface device with low storage of energy in capacitive form and electrical network comprising this device | |
| EP0820139A2 (en) | Continuous power supply circuit controlled by a reversible converter | |
| FR2913828A1 (en) | DC / DC CONVERTER CONTROL BY PULSE WIDTH MODULATION, WITH HIGH OUTPUT AT LOW OUTPUT CURRENT | |
| EP1825557B1 (en) | Method for controlling a rechargeable battery and rechargeable battery for carrying out said method | |
| WO2007077386A2 (en) | Circuit for the current conditioning of a source at the maximum power point | |
| CA2748227C (en) | Electric power conversion system | |
| EP1774641B1 (en) | Monolithic miniature voltage converter with very low input voltage | |
| FR2686434A1 (en) | Device for tracking the point of maximum power of a solar generator supply for satellite | |
| EP1639667A2 (en) | Fuel cell protection | |
| FR2925783A1 (en) | Storage cell group charging/discharging system for e.g. electric traction motor vehicle, has charging/discharging applying current when condition is attained and stopping conditions are not attained such that intensity of current is limited | |
| FR2492182A1 (en) | Optimum current regulator for battery charged from solar panel - uses DC=DC converter under control of operational amplifier circuit to regulate flow of charging current to maximise power transfer | |
| EP3185389B1 (en) | Device and electrical apparatus for generating an electric voltage to an information processing unit, associated information processing electronic system | |
| WO2024132545A1 (en) | Photovoltaic panel solar installation | |
| FR2629957A1 (en) | Regulator of the charging voltage of a battery to the peak value of the alternator voltage |
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase | Free format text:ORIGINAL CODE: 0009012 | |
| AK | Designated contracting states | Kind code of ref document:A1 Designated state(s):AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR | |
| AX | Request for extension of the european patent | Extension state:AL LT LV MK | |
| 17P | Request for examination filed | Effective date:20040811 | |
| AKX | Designation fees paid | Designated state(s):AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR | |
| 17Q | First examination report despatched | Effective date:20060703 | |
| RAP1 | Party data changed (applicant data changed or rights of an application transferred) | Owner name:ALCATEL LUCENT | |
| RAP1 | Party data changed (applicant data changed or rights of an application transferred) | Owner name:ALCATEL LUCENT | |
| STAA | Information on the status of an ep patent application or granted ep patent | Free format text:STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN | |
| 18D | Application deemed to be withdrawn | Effective date:20130201 |