Movatterモバイル変換


[0]ホーム

URL:


EP1388774A1 - Source conditioning circuit at a maximum power point - Google Patents

Source conditioning circuit at a maximum power point
Download PDF

Info

Publication number
EP1388774A1
EP1388774A1EP03291745AEP03291745AEP1388774A1EP 1388774 A1EP1388774 A1EP 1388774A1EP 03291745 AEP03291745 AEP 03291745AEP 03291745 AEP03291745 AEP 03291745AEP 1388774 A1EP1388774 A1EP 1388774A1
Authority
EP
European Patent Office
Prior art keywords
power
converter
voltage
setpoint
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03291745A
Other languages
German (de)
French (fr)
Inventor
Christophe Delepaut
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Lucent SAS
Original Assignee
Alcatel SA
Nokia Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel SA, Nokia IncfiledCriticalAlcatel SA
Publication of EP1388774A1publicationCriticalpatent/EP1388774A1/en
Withdrawnlegal-statusCriticalCurrent

Links

Images

Classifications

Definitions

Landscapes

Abstract

Translated fromFrench

Une source de puissance (10), comme un générateur solaire, présente un graphe de la puissance fournie en fonction de la tension à ses bornes avec un maximum. La source alimente un convertisseur continu / continu. Pour conditionner la source, on applique au convertisseur une consigne de puissance d'entrée croissante tant que la dérivée de la tension d'entrée du convertisseur par rapport au temps est supérieure à une première valeur seuil négative et décroissante tant que la dérivée de la tension d'entrée du convertisseur par rapport au temps est inférieure à une deuxième valeur seuil positive. Le taux de variation de la puissance moyen lorsque la consigne est croissante est choisi inférieur à l'opposé du taux de variation de la puissance moyen lorsque la consigne est décroissante. Ce conditionnement permet de faire débiter la source au point de puissance maximum et peut être implémenté simplement. <IMAGE>A power source (10), such as a solar generator, presents a graph of the power supplied as a function of the voltage at its terminals with a maximum. The source feeds a DC / DC converter. To condition the source, an increasing input power instruction is applied to the converter as long as the derivative of the converter input voltage with respect to time is greater than a first negative and decreasing threshold value as long as the derivative of the voltage input of the converter with respect to time is less than a second positive threshold value. The rate of change of the average power when the setpoint is increasing is chosen lower than the opposite of the rate of change of the average power when the setpoint is decreasing. This conditioning makes it possible to debit the source at the point of maximum power and can be implemented simply. <IMAGE>

Description

Translated fromFrench

La présente invention concerne les sources de puissance et plus précisémentl'exploitation de sources de puissance pour lesquelles la courbe de la puissancefournie en fonction de la tension aux bornes de la source présente un maximum.The present invention relates to power sources and more specificallythe operation of power sources for which the power curvesupplied as a function of the voltage across the source has a maximum.

Pour une telle source, la puissance fournie est maximale lorsque la tensionprésente une valeur donnée. Il est intéressant pour exploiter au mieux la source depuissance - en tirer une puissance maximale - que la tension aux bornes de lasource soit autant que possible égale à cette valeur donnée.For such a source, the power supplied is maximum when the voltagehas a given value. It is interesting to make the most of the source ofpower - derive maximum power - than the voltage across thesource is as much as possible equal to this given value.

Les générateurs solaires utilisés pour les satellites constituent un exempled'une telle source de puissance. La figure 1 montre un graphe du courant et de lapuissance en fonction de la tension aux bornes du générateur, dans l'exemple d'ungénérateur formé d'un montage série de 102 cellules Si BSR (Back Surface Reflector) ;de telles cellules sont disponibles dans l'industrie spatiale. On a porté le long de l'axedes ordonnées le courant fourni par le générateur solaire, en ampères, ainsi que lapuissance délivrée par le générateur, en watts; on a porté le long de l'axe desabscisses la tension aux bornes du générateur, en volts. Les courbes 1 et 2 sur lafigure 1 correspondent à un fonctionnement à une température de + 100°C; lescourbes 3 et 4 correspondent à un fonctionnement à une température de -100°C. Lacourbe 2 sur la figure 1 est un graphe du courant en fonction de la tension; ellemontre que le courant fourni par les cellules diminue lorsque la tension dépasse unevaleur de l'ordre de 35 V, ce qui s'explique par un phénomène de saturation descellules; la courbe 4 est similaire, à ceci près que la tension de saturation est del'ordre de 75 V. La courbe 1 sur la figure 1 est un graphe de la puissance fournie parle générateur solaire; elle montre que la puissance fournie présente un maximum,qui dans l'exemple présente une valeur de l'ordre de 100 W et est atteint pour unevaleur V0 de la tension qui est de l'ordre de 38 V. La courbe 3 est similaire à lacourbe 2, avec des valeurs de puissance maximale et de tension V0 respectivementde l'ordre de 200 W et 70V. Ces courbes ne constituent qu'un exemple particulier degénérateur dans lequel le graphe de la puissance fournie en fonction de la tension desortie présente un maximum.Solar generators used for satellites are an examplefrom such a source of power. Figure 1 shows a graph of the current and thepower as a function of the voltage across the generator, in the example of agenerator formed from a series assembly of 102 Si BSR cells (Back Surface Reflector);such cells are available in the space industry. We carried along the axisordinates the current supplied by the solar generator, in amperes, as well as thepower delivered by the generator, in watts; we carried along the axis ofabscissa the voltage across the generator, in volts.Curves 1 and 2 on theFigure 1 correspond to operation at a temperature of + 100 ° C; thecurves 3 and 4 correspond to operation at a temperature of -100 ° C. Thecurve 2 in FIG. 1 is a graph of the current as a function of the voltage; sheshows that the current supplied by the cells decreases when the voltage exceeds onevalue of around 35 V, which is explained by a phenomenon of saturation ofcells; curve 4 is similar, except that the saturation voltage isaround 75V. Curve 1 in Figure 1 is a graph of the power supplied bythe solar generator; it shows that the power supplied has a maximum,which in the example has a value of the order of 100 W and is reached for aV0 value of the voltage which is around 38V. Curve 3 is similar to thecurve 2, with maximum power and V0 voltage values respectivelyof the order of 200 W and 70V. These curves are just one particular example ofgenerator in which the graph of the power supplied versus the voltage ofoutput has a maximum.

Pour exploiter un tel générateur solaire ou plus généralement une tellesource de puissance, il est intéressant que la tension aux bornes de la source soitaussi proche que possible de la valeur V0 de la tension pour laquelle la sourcedélivre une puissance maximale. Ce problème se pose avec une acuité particulièredans le cas des générateurs solaires utilisés dans les satellites. En effet, pour cesgénérateurs solaires, la tension V0 pour laquelle la puissance fournie par legénérateur est maximale varie en fonction de la température à laquelle le générateurest soumis, comme représenté à la figure 1; cette tension V0 varie aussi en fonction

  • de l'intensité du rayonnement solaire auquel le générateur est exposé;
  • du vieillissement du générateur.
To use such a solar generator or more generally such a power source, it is advantageous for the voltage across the terminals of the source to be as close as possible to the value V0 of the voltage for which the source delivers maximum power. This problem is particularly acute in the case of solar generators used in satellites. Indeed, for these solar generators, the voltage V0 for which the power supplied by the generator is maximum varies as a function of the temperature to which the generator is subjected, as shown in FIG. 1; this voltage V0 also varies depending
  • the intensity of the solar radiation to which the generator is exposed;
  • generator aging.

Pour un satellite, la température peut typiquement varier dans une plage de- 100°C à +100°C, dans l'exemple d'une orbite terrestre basse. Pour une orbiteMercure, la variation de température serait encore plus important et la températurepourrait varier dans une plage de - 150 °C à + 250 °C. L'intensité du rayonnementsolaire peut varier en fonction de l'éloignement du soleil; pour une mission depuis laTerre vers Mars, l'intensité du rayonnement solaire peut varier dans un rapport de 3 à1. Le vieillissement du générateur provoque la mise en court-circuit de certainescellules. Dans l'ensemble, la tension V0 peut typiquement varier dans un rapport de 1à 2, et pourrait par exemple varier de 40 à 80 V.For a satellite, the temperature can typically vary within a range of- 100 ° C to + 100 ° C, in the example of a low Earth orbit. For an orbitMercury, the temperature variation would be even more significant and the temperaturecould vary in the range of - 150 ° C to + 250 ° C. The intensity of the radiationsolar may vary depending on the distance from the sun; for a mission since theEarth to Mars, the intensity of solar radiation can vary in a ratio of 3 to1. The aging of the generator causes short-circuiting of certaincells. Overall, the voltage V0 can typically vary in a ratio of 1to 2, and could for example vary from 40 to 80 V.

Il a donc été proposé d'exploiter les générateurs solaires, pour en extraireune puissance maximale, en recherchant que la tension aux bornes du générateursoit proche de la tension V0. Ces techniques sont connues sous le nom de "MaximumPower Point Tracking" (suivi du point de puissance maximal en langue française).It has therefore been proposed to use the solar generators, to extract therefrommaximum power, finding that the voltage across the generatoris close to the voltage V0. These techniques are known as "MaximumPower Point Tracking "(tracking the maximum power point in French).

W. Denzinger,Electrical Power Subsystem of Globalstar, Proceedings of theEuropean Space Power Conference, Poitiers, France, 4-8 Septembre 1995, décrit lesous-système de puissance des satellites Globalstar. La recherche du point depuissance maximale s'effectue en considérant que le point de puissance maximale estatteint lorsque l'impédance dynamique du générateur est égale à l'impédancestatique, autrement dit lorsqueV/l = dV/dlc'est-à-dire lorsquedl/l = dV/V En toute rigueur, Vl=max implique Vdl+ldV=0 et donc V/l=-dV/dl. Denzinger oubliele signe -.
Ce document décrit un circuit utilisant un capteur de courant, un capteur de tension,deux circuits échantillonneurs, deux comparateurs, une bascule et un intégrateur.
W. Denzinger,Electrical Power Subsystem of Globalstar , Proceedings of the European Space Power Conference, Poitiers, France, 4-8 September 1995, describes the power subsystem of Globalstar satellites. The maximum power point is sought by considering that the maximum power point is reached when the dynamic impedance of the generator is equal to the static impedance, in other words when V / l = dV / dl that is to say when dl / l = dV / V Strictly speaking, Vl = max implies Vdl + ldV = 0 and therefore V / l = -dV / dl. Denzinger forgets the sign -.
This document describes a circuit using a current sensor, a voltage sensor, two sampler circuits, two comparators, a rocker and an integrator.

Kevin Kyeong-ll Choi et Alphonse Barnaba,Application of the maximumpower point tracking (MPPT) to the on-board adaptative power supply subsystem,Note technique du CNES n°138, juillet 1998, décrit un sous-système d'alimentationélectrique pour les satellites de faible puissance. Pour le suivi du point de puissancemaximum, ce sous-système utilise un microcontrôleur associant une multiplicationnumérique du courant par l'intensité et un algorithme de poursuite de la puissance àpartir des valeurs calculées.Kevin Kyeong-ll Choi and Alphonse Barnaba,Application of the maximum power point tracking (MPPT) to the on-board adaptive power supply subsystem, CNES technical note n ° 138, July 1998, describes apower supply subsystem for low power satellites. For monitoring the maximum power point, this subsystem uses a microcontroller associating a digital multiplication of the current by the intensity and an algorithm for tracking the power from the calculated values.

Ces solutions sont complexes à mettre en oeuvre. Ceci conduit à centraliserle contrôle de suivi du point de puissance maximum des différents générateurssolaires ; cette centralisation affecte la fiabilité du sous-système d'alimentationélectrique et est incompatible de points de puissance maximum différents en tensiond'une section de générateur solaire à l'autre. En outre, ces solutions exploitent lescomposantes directes de courants et/ou tensions, lesquelles quantités n'étant pascaractéristiques du suivi de point de puissance maximum.These solutions are complex to implement. This leads to centralizingthe monitoring control of the maximum power point of the different generatorssolar; this centralization affects the reliability of the power subsystemelectric and is incompatible with different maximum power points in voltagefrom one section of solar generator to another. In addition, these solutions exploit thedirect components of currents and / or voltages, which quantities are notcharacteristics of maximum power point tracking.

Ce problème expliqué en référence aux générateurs solaires dans lesconditions des satellites se pose plus généralement pour toute source de puissancepour le graphe de la puissance fournie en fonction de la tension présente unmaximum.This problem explained with reference to solar generators insatellite conditions arise more generally for any power sourcefor the graph of the power supplied versus the voltage presents amaximum.

Il existe donc un besoin d'une solution permettant l'exploitation d'une sourcede puissance pour laquelle la courbe de la puissance fournie en fonction de latension aux bornes de la source présente un maximum. Une telle solution devrait,avec des moyens aussi simples et robustes que possible, assurer que la tension auxbornes de la source de puissance est dans la mesure du possible aussi proche quepossible de la tension pour laquelle la puissance débitée est maximale.There is therefore a need for a solution allowing the exploitation of a sourceof power for which the curve of the power supplied as a function of thevoltage across the source has a maximum. Such a solution should,with as simple and robust means as possible, ensure that the voltage atpower source terminals is as close as possiblepossible for the voltage for which the power output is maximum.

Dans un mode de réalisation, l'invention propose en conséquence un circuitde conditionnement d'une source de puissance pour laquelle le graphe de lapuissance fournie en fonction de la tension aux bornes de la source présente unmaximum, le circuit comprenant :

  • un convertisseur continu / continu avec une entrée pour l'alimentation par lasource de puissance et une sortie pour alimenter une charge;
  • un circuit de commande du convertisseur par une consigne de puissanceappliqué au convertisseur
  • croissante tant que la dérivée de la tension d'entrée du convertisseur parrapport au temps est supérieure à une première valeur seuil négative et
  • décroissante tant que la dérivée de la tension d'entrée du convertisseur parrapport au temps est inférieure à une deuxième valeur seuil positive,
le taux de variation de la puissance moyen lorsque la consigne est croissante étantinférieur à l'opposé du taux de variation de la puissance moyen lorsque la consigneest décroissante.In one embodiment, the invention therefore proposes a circuit for conditioning a power source for which the graph of the power supplied as a function of the voltage across the terminals of the source has a maximum, the circuit comprising:
  • a DC / DC converter with an input for supplying the power source and an output for supplying a load;
  • a converter control circuit by a power setpoint applied to the converter
  • increasing as long as the derivative of the input voltage of the converter with respect to time is greater than a first negative threshold value and
  • decreasing as long as the derivative of the input voltage of the converter with respect to time is less than a second positive threshold value,
the rate of change of the average power when the setpoint is increasing being less than the opposite of the rate of change of the average power when the setpoint is decreasing.

Avantageusement, la première et/ou la deuxième valeur seuil sont / estconstante. On peut alors prévoir que les première et deuxième valeur seuil sontopposées.Advantageously, the first and / or the second threshold value are / isconstant. We can then predict that the first and second threshold values areopposed.

Dans un mode de réalisation, la consigne de puissance croissante appliquéeau convertisseur est une consigne de dérivée constante et positive de la puissance parrapport au temps.In one embodiment, the increasing power setpoint appliedto the converter is a constant and positive derivative setpoint of the power byin relation to time.

Dans encore un mode de réalisation, la consigne de puissance décroissanteappliquée au convertisseur est une consigne de dérivée constante et négative de lapuissance par rapport au temps.In another embodiment, the decreasing power setpointapplied to the converter is a constant and negative derivative setpoint of thepower versus time.

On peut aussi prévoir que la dérivée constante et positive est inférieure àl'opposé de la dérivée constante et négative.We can also predict that the constant and positive derivative is less thanthe opposite of the constant and negative derivative.

L'invention propose aussi un générateur conditionné, comprenant un telcircuit et une source de puissance pour laquelle le graphe de la puissance fournie enfonction de la tension aux bornes de la source présente un maximum; la puissancefournie par la source est appliquée en entrée du convertisseur continu / continu.The invention also provides a conditioned generator, comprising such acircuit and a power source for which the graph of the power supplied infunction of the voltage across the source has a maximum; the powersupplied by the source is applied at the input of the DC / DC converter.

Dans un mode de réalisation, le générateur comprend une capacité enparallèle à la source de puissance. La source peut aussi présenter une capacitéintrinsèque. De préférence, la source de puissance est un générateur solaire.In one embodiment, the generator comprises a capacity inparallel to the power source. The source can also have a capacityintrinsic. Preferably, the power source is a solar generator.

L'invention propose enfin un procédé de conditionnement d'une source depuissance pour laquelle le graphe de la puissance fournie en fonction de la tensionaux bornes de la source présente un maximum, la puissance fournie par la source étant appliquée à un convertisseur continu /continu; le procédé comprendl'application au convertisseur d'une consigne de puissance d'entrée

  • croissante tant que la dérivée de la tension d'entrée du convertisseur par rapportau temps est supérieure à une première valeur seuil négative et
  • décroissante tant que la dérivée de la tension d'entrée du convertisseur parrapport au temps est inférieure à une deuxième valeur seuil positive,
le taux de variation de la puissance moyen lorsque la consigne est croissante étantinférieur à l'opposé du taux de variation de la puissance moyen lorsque la consigneest décroissante.The invention finally proposes a method for conditioning a power source for which the graph of the power supplied as a function of the voltage across the terminals of the source has a maximum, the power supplied by the source being applied to a DC converter / continued; the method includes applying an input power setpoint to the converter
  • increasing as long as the derivative of the input voltage of the converter with respect to time is greater than a first negative threshold value and
  • decreasing as long as the derivative of the input voltage of the converter with respect to time is less than a second positive threshold value,
the rate of change of the average power when the setpoint is increasing being less than the opposite of the rate of change of the average power when the setpoint is decreasing.

On peut prévoir que la première valeur seuil est constante, et / ou encoreque la deuxième valeur seuil est constante. Il est alors possible que les première etdeuxième valeur seuil soient opposées.We can predict that the first threshold value is constant, and / orthat the second threshold value is constant. It is then possible that the first andsecond threshold value are opposite.

Avantageusement, la consigne de puissance croissante appliquée auconvertisseur est une consigne de dérivée constante et positive de la puissance parrapport au temps. ll est aussi possible que la consigne de puissance décroissanteappliquée au convertisseur soit une consigne de dérivée constante et négative de lapuissance par rapport au temps. Si tel est le cas, la dérivée constante et positive peutêtre inférieure à l'opposé de la dérivée constante et négative.Advantageously, the increasing power setpoint applied to theconverter is a constant and positive derivative setpoint of the power byin relation to time. It is also possible that the decreasing power setpointapplied to the converter be a constant and negative derivative setpoint of thepower versus time. If this is the case, the constant and positive derivative canbe less than the opposite of the constant and negative derivative.

D'autres caractéristiques et avantages de l'invention apparaítront à la lecturede la description qui suit de modes de réalisation, donnés à titre d'exemple et enréférence aux dessins, qui montrent :

  • figure 1, un graphe du courant et de la puissance en fonction de la tension auxbornes d'une source de puissance à laquelle l'invention s'applique;
  • figure 2, une représentation schématique d'un générateur conditionné selon unmode de réalisation de l'invention;
  • figure 3, un graphe de la puissance délivrée par la source de puissance enfonction de la tension à ses bornes, dans le générateur conditionné de la figure2;
  • figure 4, une vue plus détaillée du circuit de commande du générateurconditionné de la figure 2.
Other characteristics and advantages of the invention will appear on reading the following description of embodiments, given by way of example and with reference to the drawings, which show:
  • FIG. 1, a graph of the current and of the power as a function of the voltage across the terminals of a power source to which the invention applies;
  • Figure 2, a schematic representation of a generator conditioned according to one embodiment of the invention;
  • FIG. 3, a graph of the power delivered by the power source as a function of the voltage across its terminals, in the conditioned generator of FIG. 2;
  • FIG. 4, a more detailed view of the control circuit of the generator conditioned in FIG. 2.

On donne dans la suite de la description un exemple d'application del'invention au suivi du point de puissance maximum dans un générateur solaire.Comme expliqué ci-dessus, un tel générateur n'est qu'un exemple d'une source de puissance pour laquelle le graphe de la puissance fournie en fonction de la tensionaux bornes de la source présente un maximum.An example of the application ofthe invention to the monitoring of the maximum power point in a solar generator.As explained above, such a generator is only an example of a source ofpower for which the graph of the power supplied as a function of the voltageacross the source has a maximum.

La figure 2 est une représentation schématique d'un générateur conditionnéselon un mode de réalisation de l'invention, dans une application d'alimentation entension d'un bus de satellite. Le générateur conditionné présente d'une part ungénérateur solaire 10, et d'autre part un circuit de conditionnement. Ce circuit deconditionnement permet au générateur conditionné de délivrer une puissance sousune tension fixe, autrement dit de se comporter comme une source de tension, tantque la puissance délivrée est inférieure à la puissance maximale que peut fournir legénérateur solaire, alors que le générateur solaire n'est capable de fournir unepuissance variable, à concurrence du maximum de puissance disponible, qu'à destensions variables.Figure 2 is a schematic representation of a conditioned generatoraccording to one embodiment of the invention, in an application for supplyingvoltage from a satellite bus. The conditioned generator has on the one hand asolar generator 10, and on the other hand a conditioning circuit. This circuit ofconditioning allows the conditioned generator to deliver power undera fixed voltage, in other words to behave as a source of tension, as longthat the power delivered is less than the maximum power that thesolar generator, while the solar generator is only able to providevariable power, up to the maximum available power, only atvariable voltages.

La figure montre le générateur solaire 10 - la source de puissance - qui estmonté en parallèle à une capacité 12. La tension Vin aux bornes du générateursolaire et de la capacité est appliquée en entrée d'un convertisseur continu / continu(ou convertisseur DC/DC) 14. Cette représentation de la source, de la capacité et duconvertisseur est schématique; de fait, un générateur solaire présente intrinsèquementune capacité; le convertisseur peut aussi en entrée présenter une capacité. Lacapacité 12 n'est pas nécessairement un composant distinct du générateur et duconvertisseur, mais peut être constituée par la capacité du générateur et/ou duconvertisseur. La capacité 12 peut aussi correspondre à la combinaison de lacapacité intrinsèque du générateur solaire, d'une capacité additionnelle et d'unecapacité prévue dans le convertisseur.The figure shows the solar generator 10 - the power source - which ismounted in parallel to acapacity 12. The voltage Vin across the generatorand capacity is applied at the input of a DC / DC converter(or DC / DC converter) 14. This representation of the source, the capacity and theconverter is schematic; in fact, a solar generator intrinsically presentsa capacity; the converter can also have an input capacity. Thecapacity 12 is not necessarily a separate component of the generator andconverter, but may consist of the capacity of the generator and / or theconverter. Thecapacity 12 can also correspond to the combination of theintrinsic capacity of the solar generator, an additional capacity and acapacity provided in the converter.

La tension Vout en sortie du convertisseur 14 correspond au bus de tensiondu satellite 16; celui-ci comprend habituellement une batterie alimentant les charges,mais ceci est sans incidence sur le fonctionnement du circuit.The voltage Vout at the output of theconverter 14 corresponds to thevoltage bussatellite 16; this usually includes a battery supplying the loads,but this does not affect the operation of the circuit.

Le convertisseur 14 est commandé par un circuit de commande 18. Cecircuit de commande 18 reçoit en entrée la tension d'entrée Vin appliquée auconvertisseur ainsi que le courant lout en sortie du convertisseur; la figure montreschématiquement le capteur de tension 20 et le capteur de courant 22. Le circuit decommande fournit un signal de commande appliqué à l'entrée de commande duconvertisseur 14, comme représenté en 24 sur la figure.Theconverter 14 is controlled by acontrol circuit 18. Thiscontrol circuit 18 receives as input the input voltage Vin applied to theconverter as well as the current lout at the output of the converter; the figure showsschematically thevoltage sensor 20 and thecurrent sensor 22. The circuitcommand provides a command signal applied to the command input of theconverter 14, as shown at 24 in the figure.

Comme expliqué plus haut, la puissance fournie par le générateur solaire10 est fonction de la tension Vin aux bornes du générateur; la tension pour laquellela puissance fournie est maximale peut varier dans une plage [V0min, V0max], dansl'exemple une plage de 40 à 80 V. Une solution courante est que le bus de tensiondu satellite fonctionne à une tension nominale de 28 V, qui varie entre 23 et 37 V enfonction de la charge et de l'alimentation du bus de tension. En pratique, la tensionnominale du bus est inférieure la borne inférieure V0min de la plage dans laquellevarie la tension pour laquelle la puissance fournie est maximale. Dans une telleconfiguration, le convertisseur 14 peut être un convertisseur PWM (à modulation de lalargeur d'impulsion) du type Buck. Ce convertisseur est particulièrement adapté àfonctionner avec une tension de sortie inférieure à la tension d'entrée. Le signald'entrée est dans un tel cas un signal représentatif du rapport cyclique de modulationde la largeur d'impulsion.As explained above, the power supplied by thesolar generator10 is a function of the voltage Vin across the generator; the voltage for whichthe maximum power supplied can vary within a range [V0min, V0max], inexample a range from 40 to 80 V. A common solution is that the voltage busof the satellite operates at a nominal voltage of 28 V, which varies between 23 and 37 V independent on the voltage bus load and supply. In practice, the tensionbus nominal value is lower the lower limit V0min of the range in whichvaries the voltage for which the power supplied is maximum. In suchconfiguration, theconverter 14 can be a PWM converter (modulation of thepulse width) of the Buck type. This converter is particularly suitable foroperate with an output voltage lower than the input voltage. The signalinput is in this case a signal representative of the modulation cyclic ratioof the pulse width.

Le circuit de commande 18 contrôle le convertisseur 14, à partir desmesures de tension d'entrée Vin et de courant de sortie lout du convertisseur, parapplication de consigne de courant de sortie croissante ou décroissante. Cesconsignes de courant sont assimilables à des consignes de puissance au facteur deproportionnalité près que constitue la valeur en tension du bus. Plus spécifiquement,le circuit de commande applique au convertisseur une consigne de puissancecroissante tant que la dérivée par rapport au temps de la tension extraite dugénérateur solaire 10 et de la capacité 12 en entrée du convertisseur est supérieure àune première valeur seuil négative. Le circuit de commande applique auconvertisseur une consigne de puissance décroissante tant que la dérivée par rapportau temps de la tension extraite du générateur solaire 10 et de la capacité 12 enentrée du convertisseur est inférieure à une deuxième valeur seuil positive. Ainsi, leconvertisseur est piloté de sorte à assurer quedPINdt > 0tant que

Figure 00070001
V'r constituant la première valeur seuil négative. Pin est la puissance extraite de lasource et de la capacité, autrement dit la puissance appliquée en entrée duconvertisseur. Le convertisseur est piloté de sorte à assurer quedPINdt < 0tant quedVINdt < V' fV'f constituant la deuxième valeur seuil positive.Thecontrol circuit 18 controls theconverter 14, on the basis of the input voltage Vin and output current measurements lout of the converter, by application of an increasing or decreasing output current setpoint. These current setpoints can be assimilated to power setpoints except for the proportionality factor constituted by the voltage value of the bus. More specifically, the control circuit applies an increasing power setpoint to the converter as long as the derivative with respect to time of the voltage extracted from thesolar generator 10 and of thecapacity 12 at the input of the converter is greater than a first negative threshold value. The control circuit applies a decreasing power setpoint to the converter as long as the derivative with respect to time of the voltage extracted from thesolar generator 10 and of thecapacity 12 at the input of the converter is less than a second positive threshold value. Thus, the converter is controlled so as to ensure that dP IN dt > 0 as long as
Figure 00070001
V 'r constituting the first negative threshold value. Pin is the power extracted from the source and from the capacity, in other words the power applied at the input of the converter. The converter is controlled to ensure that dP IN dt <0 as long as dV IN dt <V ' f V 'f constituting the second positive threshold value.

Dans les solutions de W. Denzinger et Kevin Kyeong-II Choi mentionnées ci-dessus,il est proposé d'exploiter les composantes directes de courants et/ou tensions.Or ces quantités ne sont pas caractéristiques du suivi de point de puissancemaximum. A l'inverse, la solution proposée par l'invention n'exploite par contre queles dérivées temporelles de ces quantités; ces dérivées sont bien caractéristiques dusuivi du point de puissance maximum, quelles que soient les valeurs des composantesdirectes.In the solutions of W. Denzinger and Kevin Kyeong-II Choi mentioned above,it is proposed to exploit the direct components of currents and / or voltages.However, these quantities are not characteristic of power point monitoringmaximum. Conversely, the solution proposed by the invention on the other hand only exploitsthe time derivatives of these quantities; these derivatives are very characteristic of themonitoring of the maximum power point, whatever the values of the componentsdirect.

La figure 3 montre un graphe de la puissance délivrée par le générateursolaire en fonction de la tension aux bornes de ce générateur. On a porté enordonnée la puissance fournie par le générateur solaire 10, et en abscisse la tensionaux bornes de ce générateur. La figure montre en traits fins la courbe de la puissancedélivrée par le générateur solaire 10 en fonction de la tension à ses bornes; cettecourbe présente un maximum noté MPP sur la figure; en ce point, pour une tensionVMPP, le générateur solaire délivre une puissance PMPP maximum. Cette courbe en traitsfins pourrait être qualifiée de courbe de puissance statique - dans la mesure où elleest représentative d'une caractéristique puissance /tension du générateur solaire isolé.La figure 3 montre en traits gras le cycle de puissance suivi lorsqu'est appliquée auconvertisseur la commande définie plus haut. La courbe en traits gras montre lapuissance extraite de l'ensemble générateur solaire 10 et capacité 12.FIG. 3 shows a graph of the power delivered by the solar generator as a function of the voltage across the terminals of this generator. The power supplied by thesolar generator 10 has been plotted on the ordinate, and the voltage at the terminals of this generator on the abscissa. The figure shows in fine lines the curve of the power delivered by thesolar generator 10 as a function of the voltage at its terminals; this curve has a maximum denoted MPP in the figure; at this point, for a voltage VMPP , the solar generator delivers a maximum power PMPP . This curve in fine lines could be qualified as a static power curve - insofar as it is representative of a power / voltage characteristic of the isolated solar generator. Figure 3 shows in bold lines the power cycle followed when the command defined above is applied to the converter. The curve in bold lines shows the power extracted from thesolar generator 10 andcapacity 12 assembly.

Dans l'exemple considéré, on a

  • une consigne de puissance croissante ayant une dérivée kr constante,
  • une consigne de puissance décroissante ayant une dérivée kf constante,
  • des valeurs de seuil V'r et V'f opposées.
In the example considered, we have
  • an increasing power setpoint having a constant derivative kr ,
  • a decreasing power setpoint having a constant derivative kf ,
  • opposite threshold values V 'r and V'f .

Les deux premières conditions sont choisies pour la simplicité del'explication; la troisième condition assure un fonctionnement autour du point depuissance maximum statique, comme expliqué plus bas. On a noté R et F sur lafigure les points du cycle correspondant aux puissances dynamiques maximale etminimale.The first two conditions are chosen for the simplicity ofthe explanation; the third condition ensures operation around the point ofmaximum static power, as explained below. We noted R and F on therepresents the points of the cycle corresponding to the maximum dynamic powers andminimal.

On suppose au départ que le générateur solaire fonctionne avec unepuissance légèrement inférieure à la puissance maximale PMPP et que la tension estsupérieure à la tension VMPP. On suppose aussi que la consigne appliquée auconvertisseur est une consigne de puissance croissante. Le convertisseur continu /continu assure donc que la puissance totale, extraite du générateur solaire 10 et ducondensateur 12, croít. Le point de fonctionnement du générateur solaire 10 sedéplace sur la courbe en traits fins, vers le maximum MPP ; la capacité 12 estdéchargée pour compléter la puissance fournie par le générateur solaire 10. Latension décroít lentement.It is assumed at the outset that the solar generator operates with a power slightly lower than the maximum power PMPP and that the voltage is greater than the voltage VMPP . It is also assumed that the setpoint applied to the converter is an increasing power setpoint. The DC / DC converter therefore ensures that the total power, extracted from thesolar generator 10 and thecapacitor 12, increases. The operating point of thesolar generator 10 moves on the curve in fine lines, towards the maximum MPP; thecapacity 12 is discharged to supplement the power supplied by thesolar generator 10. The voltage decreases slowly.

Lorsque la puissance maximum du générateur solaire 10 est atteinte, legénérateur solaire ne 10 peut pas fournir de puissance supplémentaire : la capacité12 est alors déchargée plus rapidement pour fournir la puissance requise par leconvertisseur, sous la consigne de puissance croissante. Ceci accroít la vitesse dechute de la tension VlN; du fait de la chute de tension, la puissance fournie par legénérateur solaire 10 chute aussi, ce qui accentue encore la décharge de la capacité12. La dérivée de la tension VlN par rapport au temps chute de plus en plus vite.When the maximum power of thesolar generator 10 is reached, thesolar generator 10 cannot supply additional power: thecapacity 12 is then discharged more quickly to supply the power required by the converter, under the increasing power setpoint. This increases the rate of fall of the voltage VlN ; due to the voltage drop, the power supplied by thesolar generator 10 also drops, which further accentuates the discharge of thecapacitor 12. The derivative of the voltage VlN with respect to time drops more and more quickly.

Lorsque cette dérivée de la tension VlN atteint la valeur seuil négative V'f, lecircuit 18 applique au convertisseur 14 une consigne de puissance décroissante. Lebasculement correspond au point R de la courbe en traits gras.When this derivative of the voltage VlN reaches the negative threshold value V 'f , thecircuit 18 applies to the converter 14 a decreasing power setpoint. The tilt corresponds to point R of the curve in bold lines.

Le convertisseur reçoit alors une consigne de puissance d'entréedécroissante. Dans un premier temps, la tension décroít, avec une variation pluslente, la capacité 12 continuant à se décharger. Lorsque la puissance extraite de lasource et de la capacité continue à diminuer, il arrive un moment où la capacitécesse de se décharger, ce qui correspond sur la courbe en traits gras à l'intersectionde la partie gauche de la courbe avec la courbe en traits fins et au minimum de latension. La puissance extraite du générateur solaire 10 est alors suffisante pourfournir la puissance requise par le convertisseur 14. Comme la consigne appliquéeau convertisseur est encore une consigne de puissance décroissante, la capacité se recharge; la tension remonte; compte tenu de la consigne de puissance décroissanteappliquée au convertisseur, la puissance extraite par le convertisseur continue dedécroítre. Comme la tension remonte, la puissance fournie par le générateur solairetend à croítre, ce qui augmente encore la dérivée de la tension par rapport au temps.The converter then receives an input power setpointdecreasing. At first, the tension decreases, with a more variationslow, thecapacity 12 continuing to discharge. When the power extracted from thesource and the capacity continues to decrease there comes a point when the capacitystops discharging, which corresponds on the curve in bold lines at the intersectionof the left part of the curve with the curve in thin lines and at least thevoltage. The power extracted from thesolar generator 10 is then sufficient tosupply the power required by theconverter 14. As the setpoint appliedat the converter is still a decreasing power setpoint, the capacitycharging; the tension rises; taking into account the decreasing power setpointapplied to the converter, the power extracted by the converter continues todecrease. As the voltage goes up, the power supplied by the solar generatortends to grow, which further increases the derivative of voltage over time.

Lorsque la dérivée de la tension par rapport au temps dépasse la deuxièmevaleur seuil positive, le circuit de commande applique au convertisseur une consignede puissance croissante. On revient à l'état initial considéré plus haut.When the derivative of the voltage with respect to time exceeds the secondpositive threshold value, the control circuit applies a setpoint to the converterof increasing power. We return to the initial state considered above.

La stabilité de la commande est assurée, dans le cas où l'on applique uneconsigne de dérivée de puissance constante, par la conditionkr < - kfIntuitivement, ceci revient à dire que le passage sur la courbe en gras de la figure 3du point R au point F est plus "rapide" que le passage du point F au point R.Autrement dit, il est expliqué plus haut que le seuil de dV/dt négatif est atteint avecune chute de plus en plus rapide de la tension; la condition kr < - kf signifie que l'onapplique une consigne de puissance "assez" croissante pour rapidement revenir versune situation stable. Un rapport de 1 entre les valeurs absolues correspond à la limitede stabilité. Le choix d'une valeur dépend essentiellement du convertisseur :rapprocher la valeur du rapport de 1 impose de disposer d'un convertisseur deperformances plus précises, et augmente le coût. Dans les applications à dessatellites, les variations de la courbe de puissance en fonction de la tension pour legénérateur solaire (le passage des courbes 1 et 2 aux courbes 3 et 4) sur la figure 1,comme les vitesses de variations des caractéristiques de la batterie appliquée commecharge du circuit conditionné sont lentes et ne sont donc pas généralementdimensionnantes. On peut typiquement sélectionner un rapport - kf/kr voisin de 2,avec par exemple

  • kr = 50 W/ms et
  • kf = -100 W/ms.
  • The stability of the control is ensured, in the case where a constant power derivative setpoint is applied, by the condition k r <- k f Intuitively, this amounts to saying that the passage on the bold curve of Figure 3 from point R to point F is "faster" than the passage from point F to point R. In other words, it is explained above the threshold negative dV / dt is reached with an increasingly rapid drop in voltage; the condition kr <- kf means that a setpoint of "enough" increasing power is applied to quickly return to a stable situation. A ratio of 1 between the absolute values corresponds to the stability limit. The choice of a value essentially depends on the converter: bringing the value of the ratio closer to 1 requires having a more precise performance converter, and increases the cost. In applications to satellites, the variations of the power curve as a function of the voltage for the solar generator (the passage fromcurves 1 and 2 tocurves 3 and 4) in FIG. 1, like the rates of variation of the characteristics of the battery applied as a charge of the conditioned circuit are slow and are therefore not generally dimensioning. We can typically select a ratio - kf / kr close to 2, with for example
  • kr = 50 W / ms and
  • kf = -100 W / ms.
  • On notera que le fonctionnement décrit ci-dessus est indépendant que lavaleur de la consigne de puissance croissante ou décroissante appliquée auconvertisseur. Il est plus simple, comme le montre la figure 4, d'utiliser des valeurs deconsigne de puissance constantes, mais ceci n'a pas d'incidence sur le principe depilotage du convertisseur. Si les consignes de puissance proposées ne sont pasconstantes - autrement dit si les valeurs de dPlN/dt appliquées au convertisseur ne sont pas constant, la condition de stabilité peut alors s'exprimer en indiquant que letaux de variation de la puissance moyen lorsque la consigne est croissante estinférieur à l'opposé du taux de variation de la puissance moyen lorsque la consigneest croissante. Ceci revient à généraliser sur les intervalles temporels de consigne depuissance croissante et décroissante la condition instantanée kr < - kf.It will be noted that the operation described above is independent of the value of the increasing or decreasing power setpoint applied to the converter. It is simpler, as shown in Figure 4, to use constant power setpoints, but this does not affect the principle of driving the converter. If the proposed power setpoints are not constant - in other words if the values of dPlN / dt applied to the converter are not constant, the stability condition can then be expressed by indicating that the rate of change of the average power when the setpoint is increasing is less than the opposite of the rate of change of the average power when the setpoint is increasing. This amounts to generalizing the instantaneous condition kr <- kf over the increasing and decreasing power setpoint time intervals.

    L'application des consignes proposées au convertisseur continu /continupermet ainsi de faire varier la tension autour de la valeur de tension pour laquelle lapuissance extraite du générateur solaire 10 est maximum. Le choix des valeurs deconsigne appliquées au convertisseur, comme des valeurs seuils, permet d'adapter lefonctionnement du circuit de conditionnement.Application of the instructions offered to the DC / DC converterthus makes it possible to vary the voltage around the voltage value for which thepower extracted from thesolar generator 10 is maximum. The choice of values ofsetpoint applied to the converter, such as threshold values, makes it possible to adapt theoperation of the conditioning circuit.

    Plus spécifiquement, il est plus simple, du point de vue de l'implémentationdu circuit de commande d'avoir des valeurs de seuil V'r et V'f constantes. Ceci ne faitque faciliter la conception du circuit de commande. On pourrait toutefois faire varierces valeurs seuil en fonction du temps - par exemple pour tenir compte des variationsdu point MPP.More specifically, it is simpler, from the point of view of the implementation of the control circuit, to have constant threshold values V 'r and V'f . This only facilitates the design of the control circuit. However, these threshold values could be varied as a function of time - for example to take account of variations in the MPP point.

    Le rapport des valeurs absolues des valeurs de seuil V'r et V'f permet dedéterminer le point du graphe de la puissance en fonction de la tension autourduquel on se déplace. Dans l'exemple considéré plus haut, des valeurs de seuilconstantes et opposées V'r et V'f correspondent à un déplacement autour du pointMPP de puissance maximum. Un rapport de valeurs absolues égal à 1 est doncavantageux. Toutefois, on peut aussi choisir d'autres valeurs, ce qui conduitsimplement à écarter le point de fonctionnement du point de puissance maximum.Ceci peut être avantageux en fonction de contraintes autres sur le circuit deconditionnement ou sur le générateur.The ratio of the absolute values of the threshold values V ′r and V ′f makes it possible to determine the point of the graph of the power as a function of the voltage around which one is moving. In the example considered above, constant and opposite threshold values V ′r and V ′f correspond to a displacement around the point MPP of maximum power. An absolute value ratio equal to 1 is therefore advantageous. However, other values can also be chosen, which simply means that the operating point is moved away from the maximum power point. This can be advantageous depending on other constraints on the conditioning circuit or on the generator.

    La figure 4 montre un exemple du principe de réalisation du circuit decommande, dans le cas d'un convertisseur Buck. Le circuit 18 présente un dériveur 26qui reçoit la tension d'entrée du convertisseur et en fournit la dérivée. La dérivée de latension est appliquée à un comparateur 28. La sortie du comparateur fournit unsignal logique dont l'état dépend de la comparaison entre la valeur de la dérivée dela tension et les valeurs seuils V'r et V'f du comparateur. Le circuit présente un autredériveur 30 qui reçoit le signal de courant de sortie du convertisseur et en fournit ladérivée. Un additionneur 32 fournit un signal représentatif de la différence entre lesignal du comparateur 28 et le signal de dérivée fourni par le deuxième dériveur 30. Le signal fourni par l'additionneur est appliqué à un contrôleur 34 dont le rôle estd'annuler la consigne. Le signal de sortie du contrôleur forme le signal de sortie ducircuit de commande 18.Figure 4 shows an example of the principle of realization of the circuit ofcommand, in the case of a Buck converter.Circuit 18 has adinghy 26which receives the input voltage from the converter and provides its derivative. The derivative of thevoltage is applied to acomparator 28. The comparator output provides alogic signal whose state depends on the comparison between the value of the derivative ofthe voltage and the threshold values V'r and V'f of the comparator. The circuit presents anotherdiverter 30 which receives the output current signal from the converter and provides thederivative. Anadder 32 provides a signal representative of the difference between thesignal fromcomparator 28 and the derivative signal supplied by thesecond diverter 30.The signal supplied by the adder is applied to acontroller 34 whose role isto cancel the deposit. The controller output signal forms the output signal of thecontrol circuit 18.

    Le fonctionnement du circuit de la figure 4 est le suivant. Le comparateurfournit en sortie un signal fonction de la position de la dérivée de la tension d'entréedu convertisseur par rapport aux valeurs seuil V'r et V'f. Ce signal est comparé à ladérivée du courant de sortie du convertisseur, après une mise à l'échelle non-représentéesur la figure. Cette dérivée du courant de sortie constitue une bonneapproximation de la dérivée de la puissance appliquée en entrée du convertisseur, dufait que :

    • la puissance consommée par le convertisseur continu / continu est faible;
    • la tension de sortie du convertisseur est sensiblement constante, dans la mesureoù le convertisseur est utilisé comme source de tension.
    Le contrôleur assure donc que
       dlout/dt < 0 ou > 0 (dans un rapport < - 1)
    en fonction du résultat de la comparaison de dVlN/dt avec les valeurs seuils. Avec VOUTsensiblement constante, on a bien la consigne requise.The operation of the circuit of FIG. 4 is as follows. The comparator outputs a signal which is a function of the position of the derivative of the input voltage of the converter with respect to the threshold values V 'r and V'f . This signal is compared with the derivative of the output current of the converter, after a scaling not shown in the figure. This derivative of the output current constitutes a good approximation of the derivative of the power applied at the input of the converter, since:
    • the power consumed by the DC / DC converter is low;
    • the output voltage of the converter is substantially constant, insofar as the converter is used as a voltage source.
    The controller therefore ensures that
    dlout / dt <0 or> 0 (in a ratio <- 1)
    as a function of the result of the comparison of dVlN / dt with the threshold values. With VOUT substantially constant, we have the required setpoint.

    Le montage de la figure 4 n'est qu'un exemple d'un circuit de commandeutilisable pour le convertisseur continu /continu. On peut aussi utiliser d'autres typesde circuits de commande pour comparer les dérivées des tensions et appliquer lesconsignes requises. On peut aussi prévoir d'autres capteurs que les capteurs 20, 22de la figure 2. Le montage des figures 2 et 4 présente néanmoins l'avantage de lasimplicité; ainsi, il n'est pas nécessaire de disposer d'un microcontrôleur; le nombrede composants est aussi plus restreint que dans la solution proposée dans l'article deW. Denzinger plus haut.The assembly of FIG. 4 is only one example of a control circuitusable for the DC / DC converter. We can also use other typescontrol circuits to compare the voltage derivatives and apply theinstructions required. It is also possible to provide other sensors than thesensors 20, 22of Figure 2. The assembly of Figures 2 and 4 nevertheless has the advantage ofsimplicity; thus, it is not necessary to have a microcontroller; the numberof components is also more restricted than in the solution proposed in the article byW. Denzinger above.

    Bien entendu, l'invention n'est pas limitée aux exemples décrits plus haut.Ainsi, on a mentionné un convertisseur Buck, adapté au cas d'une tension de sortieinférieure à la tension d'entrée. On pourrait aussi utiliser d'autres types deconvertisseurs; par exemple, si la tension d'entrée est inférieure à la tension de sortie,on pourrait utiliser un convertisseur PWM du type Boost. D'autres topologies deconvertisseurs permettent aussi un fonctionnement lorsque le rapport entre la tensiond'entrée et la tension de sortie varie autour de 1. Le type de convertisseur utilisé nechange pas le principe de la commande décrit en référence à la figure 3.Of course, the invention is not limited to the examples described above.Thus, a Buck converter was mentioned, suitable for the case of an output voltagelower than the input voltage. We could also use other types ofconverters; for example, if the input voltage is lower than the output voltage,we could use a Boost type PWM converter. Other topologies ofconverters also allow operation when the ratio between voltageinput and output voltage varies around 1. The type of converter used does notnot change the principle of the control described with reference to Figure 3.

    Claims (18)

    Translated fromFrench
    Un circuit de conditionnement d'une source de puissance (10) pour laquellele graphe de la puissance fournie en fonction de la tension aux bornes de lasource présente un maximum, le circuit comprenant :un convertisseur continu / continu (14) avec une entrée pour l'alimentationpar la source de puissance et une sortie pour alimenter une charge;un circuit de commande du convertisseur par une consigne de puissanceappliqué au convertisseur   croissante tant que la dérivée de la tension d'entrée duconvertisseur par rapport au temps est supérieure à une première valeurseuil négative et
       décroissante tant que la dérivée de la tension d'entrée duconvertisseur par rapport au temps est inférieure à une deuxième valeurseuil positive,
    le taux de variation de la puissance moyen lorsque la consigne est croissanteétant inférieur à l'opposé du taux de variation de la puissance moyenlorsque la consigne est décroissante.
    A circuit for conditioning a power source (10) for which the graph of the power supplied as a function of the voltage across the terminals of the source has a maximum, the circuit comprising: a DC / DC converter (14) with an input for supplying from the power source and an output for supplying a load; a converter control circuit by a power setpoint applied to the converter increasing as long as the derivative of the input voltage of the converter with respect to time is greater than a first negative threshold value and
    decreasing as long as the derivative of the input voltage of the converter with respect to time is less than a second positive threshold value,
    the rate of change of the average power when the setpoint is increasing being less than the opposite of the rate of change of the average power when the setpoint is decreasing.
    Le circuit de la revendication 1,caractérisé en ce que la première valeurseuil est constante.The circuit of claim 1,characterized in that the first threshold value is constant.Le circuit de la revendication 1 ou 2,caractérisé en ce que la deuxièmevaleur seuil est constante.The circuit of claim 1 or 2,characterized in that the second threshold value is constant.Le circuit des revendications 3 et 4,caractérisé en ce que les première etdeuxième valeur seuil sont opposées.The circuit of claims 3 and 4,characterized in that the first and second threshold values are opposite.Le circuit de l'une des revendications 1 à 4,caractérisé en ce que la consignede puissance croissante appliquée au convertisseur est une consigne dedérivée constante et positive de la puissance par rapport au temps.The circuit of one of claims 1 to 4,characterized in that the increasing power setpoint applied to the converter is a constant and positive derivative setpoint of the power with respect to time.Le circuit de l'une des revendications 1 à 5,caractérisé en ce que la consignede puissance décroissante appliquée au convertisseur est une consigne dedérivée constante et négative de la puissance par rapport au temps.The circuit of one of claims 1 to 5,characterized in that the decreasing power setpoint applied to the converter is a constant and negative derivative setpoint of the power with respect to time.Le circuit des revendications 5 et 6,caractérisé en ce que la dérivéeconstante et positive est inférieure à l'opposé de la dérivée constante etnégative.The circuit of claims 5 and 6,characterized in that the constant and positive derivative is less than the opposite of the constant and negative derivative.Un générateur conditionné, comprenant :un circuit selon l'une des revendications 1 à 7;une source de puissance (10) pour laquelle le graphe de la puissancefournie en fonction de la tension aux bornes de la source présente unmaximum, la puissance fournie par la source étant appliquée en entrée duconvertisseur continu / continu (14).A conditioned generator, comprising: a circuit according to one of claims 1 to 7; a power source (10) for which the graph of the power supplied as a function of the voltage across the terminals of the source has a maximum, the power supplied by the source being applied at the input of the DC / DC converter (14).Le générateur de la revendication 8,caractérisé par une capacité (12) enparallèle à la source de puissance.The generator of claim 8,characterized by a capacitance (12) parallel to the power source.Le générateur de la revendication 8,caractérisé en ce que la sourceprésente une capacité intrinsèque.The generator of claim 8,characterized in that the source has an intrinsic capacity.Le générateur de la revendication 8, 9 ou 10,caractérisé en ce que lasource de puissance est un générateur solaire.The generator of claim 8, 9 or 10,characterized in that the power source is a solar generator.Un procédé de conditionnement d'une source de puissance (10) pourlaquelle le graphe de la puissance fournie en fonction de la tension auxbornes de la source présente un maximum, la puissance fournie par lasource (10) étant appliquée à un convertisseur continu /continu (12), leprocédé comprenant l'application au convertisseur d'une consigne depuissance d'entréecroissante tant que la dérivée de la tension d'entrée du convertisseur parrapport au temps est supérieure à une première valeur seuil négative etdécroissante tant que la dérivée de la tension d'entrée du convertisseur par rapport au temps est inférieure à une deuxième valeur seuil positive,
    le taux de variation de la puissance moyen lorsque la consigne est croissanteétant inférieur à l'opposé du taux de variation de la puissance moyenlorsque la consigne est décroissante.
    A method for conditioning a power source (10) for which the graph of the power supplied as a function of the voltage across the terminals of the source has a maximum, the power supplied by the source (10) being applied to a DC converter / continuous (12), the method comprising applying an input power setpoint to the converter increasing as long as the derivative of the input voltage of the converter with respect to time is greater than a first negative threshold value and decreasing as long as the derivative of the input voltage of the converter with respect to time is less than a second positive threshold value,
    the rate of change of the average power when the setpoint is increasing being less than the opposite of the rate of change of the average power when the setpoint is decreasing.
    Le procédé de la revendication 12,caractérisé en ce que la première valeurseuil est constante.The method of claim 12,characterized in that the first threshold value is constant.Le procédé de la revendication 12 ou 13,caractérisé en ce que la deuxièmevaleur seuil est constante.The method of claim 12 or 13,characterized in that the second threshold value is constant.Le procédé des revendications 13 et 14,caractérisé en ce que les premièreet deuxième valeur seuil sont opposées.The method of claims 13 and 14,characterized in that the first and second threshold values are opposite.Le procédé de l'une des revendications 12 à 15,caractérisé en ce que laconsigne de puissance croissante appliquée au convertisseur est uneconsigne de dérivée constante et positive de la puissance par rapport autemps.The method of one of claims 12 to 15,characterized in that the increasing power setpoint applied to the converter is a constant and positive derivative setpoint of the power with respect to time.Le procédé de l'une des revendications 12 à 16,caractérisé en ce que laconsigne de puissance décroissante appliquée au convertisseur est uneconsigne de dérivée constante et négative de la puissance par rapport autemps.The method of one of claims 12 to 16,characterized in that the decreasing power setpoint applied to the converter is a constant and negative derivative setpoint of the power with respect to time.Le procédé des revendications 16 et 17,caractérisé en ce que la dérivéeconstante et positive est inférieure à l'opposé de la dérivée constante etnégative.The method of claims 16 and 17,characterized in that the constant and positive derivative is less than the opposite of the constant and negative derivative.
    EP03291745A2002-08-092003-07-15Source conditioning circuit at a maximum power pointWithdrawnEP1388774A1 (en)

    Applications Claiming Priority (2)

    Application NumberPriority DateFiling DateTitle
    FR02101402002-08-09
    FR0210140AFR2843464B1 (en)2002-08-092002-08-09 CIRCUIT FOR CONDITIONING A SOURCE AT THE MAXIMUM POWER POINT

    Publications (1)

    Publication NumberPublication Date
    EP1388774A1true EP1388774A1 (en)2004-02-11

    Family

    ID=30129728

    Family Applications (1)

    Application NumberTitlePriority DateFiling Date
    EP03291745AWithdrawnEP1388774A1 (en)2002-08-092003-07-15Source conditioning circuit at a maximum power point

    Country Status (4)

    CountryLink
    US (1)US6919714B2 (en)
    EP (1)EP1388774A1 (en)
    JP (1)JP4361328B2 (en)
    FR (1)FR2843464B1 (en)

    Cited By (90)

    * Cited by examiner, † Cited by third party
    Publication numberPriority datePublication dateAssigneeTitle
    WO2006005125A1 (en)*2004-07-132006-01-19Central Queensland UniversityA device for distributed maximum power tracking for solar arrays
    FR2895810A1 (en)*2006-01-032007-07-06Alcatel SaSolar generator conditioning circuit for satellite, has control circuit applying increasing power value to converter when derivative of current reaches positive threshold and decreasing power value when derivative reaches negative threshold
    AU2005262278B2 (en)*2004-07-132009-03-26Tigo Energy, Inc.A device for distributed maximum power tracking for solar arrays
    US7807919B2 (en)2007-11-022010-10-05Tigo Energy, Inc.Apparatuses and methods to reduce safety risks associated with photovoltaic systems
    US7898112B2 (en)2007-12-062011-03-01Tigo Energy, Inc.Apparatuses and methods to connect power sources to an electric power system
    US8039730B2 (en)2009-06-182011-10-18Tigo Energy, Inc.System and method for prevention of open loop damage during or immediately after manufacturing
    US8058747B2 (en)2008-08-012011-11-15Tigo Energy, Inc.Systems to connect multiple direct current energy sources to an alternating current system
    US8102074B2 (en)2009-07-302012-01-24Tigo Energy, Inc.Systems and method for limiting maximum voltage in solar photovoltaic power generation systems
    WO2012032274A1 (en)*2010-09-102012-03-15NexcisPhotovoltaic panel operation control
    US8271599B2 (en)2010-01-082012-09-18Tigo Energy, Inc.Systems and methods for an identification protocol between a local controller and a master controller in a photovoltaic power generation system
    US8314375B2 (en)2009-08-212012-11-20Tigo Energy, Inc.System and method for local string management unit
    US8325059B2 (en)2008-11-122012-12-04Tigo Energy, Inc.Method and system for cost-effective power line communications for sensor data collection
    US8405349B2 (en)2009-06-252013-03-26Tigo Energy, Inc.Enhanced battery storage and recovery energy systems
    US8653689B2 (en)2008-11-122014-02-18Tigo Energy, Inc.Method and system for current-mode power line communications
    US8751053B2 (en)2006-10-192014-06-10Tigo Energy, Inc.Method and system to provide a distributed local energy production system with high-voltage DC bus
    US8773236B2 (en)2009-12-292014-07-08Tigo Energy, Inc.Systems and methods for a communication protocol between a local controller and a master controller
    US8823218B2 (en)2007-11-022014-09-02Tigo Energy, Inc.System and method for enhanced watch dog in solar panel installations
    US8841916B2 (en)2011-02-282014-09-23Tigo Energy, Inc.System and method for flash bypass
    US8853886B2 (en)2010-06-092014-10-07Tigo Energy, Inc.System for use of static inverters in variable energy generation environments
    US8854193B2 (en)2009-12-292014-10-07Tigo Energy, Inc.Systems and methods for remote or local shut-off of a photovoltaic system
    US8860241B2 (en)2008-11-262014-10-14Tigo Energy, Inc.Systems and methods for using a power converter for transmission of data over the power feed
    US8860246B2 (en)2008-11-262014-10-14Tigo Energy, Inc.Systems and methods to balance solar panels in a multi-panel system
    US8922061B2 (en)2010-03-222014-12-30Tigo Energy, Inc.Systems and methods for detecting and correcting a suboptimal operation of one or more inverters in a multi-inverter system
    US8933321B2 (en)2009-02-052015-01-13Tigo Energy, Inc.Systems and methods for an enhanced watchdog in solar module installations
    US8954203B2 (en)2009-06-242015-02-10Tigo Energy, Inc.Systems and methods for distributed power factor correction and phase balancing
    US8982591B2 (en)2011-10-182015-03-17Tigo Energy, Inc.System and method for exchangeable capacitor modules for high power inverters and converters
    US9007210B2 (en)2010-04-222015-04-14Tigo Energy, Inc.Enhanced system and method for theft prevention in a solar power array during nonoperative periods
    US9043039B2 (en)2011-02-242015-05-26Tigo Energy, Inc.System and method for arc detection and intervention in solar energy systems
    US9112379B2 (en)2006-12-062015-08-18Solaredge Technologies Ltd.Pairing of components in a direct current distributed power generation system
    US9130401B2 (en)2006-12-062015-09-08Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
    US9142965B2 (en)2011-07-282015-09-22Tigo Energy, Inc.Systems and methods to combine strings of solar panels
    US9143036B2 (en)2009-09-022015-09-22Tigo Energy, Inc.Systems and methods for enhanced efficiency auxiliary power supply module
    US9218013B2 (en)2007-11-142015-12-22Tigo Energy, Inc.Method and system for connecting solar cells or slices in a panel system
    US9235228B2 (en)2012-03-052016-01-12Solaredge Technologies Ltd.Direct current link circuit
    US9291696B2 (en)2007-12-052016-03-22Solaredge Technologies Ltd.Photovoltaic system power tracking method
    US9312399B2 (en)2010-04-022016-04-12Tigo Energy, Inc.Systems and methods for mapping the connectivity topology of local management units in photovoltaic arrays
    US9312697B2 (en)2009-07-302016-04-12Tigo Energy, Inc.System and method for addressing solar energy production capacity loss due to field buildup between cells and glass and frame assembly
    US9318974B2 (en)2014-03-262016-04-19Solaredge Technologies Ltd.Multi-level inverter with flying capacitor topology
    US9324885B2 (en)2009-10-022016-04-26Tigo Energy, Inc.Systems and methods to provide enhanced diode bypass paths
    US9362743B2 (en)2008-05-052016-06-07Solaredge Technologies Ltd.Direct current power combiner
    US9368964B2 (en)2006-12-062016-06-14Solaredge Technologies Ltd.Distributed power system using direct current power sources
    US9368965B2 (en)2011-07-282016-06-14Tigo Energy, Inc.Enhanced system and method for string-balancing
    US9401439B2 (en)2009-03-252016-07-26Tigo Energy, Inc.Enhanced systems and methods for using a power converter for balancing modules in single-string and multi-string configurations
    US9401599B2 (en)2010-12-092016-07-26Solaredge Technologies Ltd.Disconnection of a string carrying direct current power
    US9407161B2 (en)2007-12-052016-08-02Solaredge Technologies Ltd.Parallel connected inverters
    US9425783B2 (en)2010-03-152016-08-23Tigo Energy, Inc.Systems and methods to provide enhanced diode bypass paths
    US9431825B2 (en)2011-07-282016-08-30Tigo Energy, Inc.Systems and methods to reduce the number and cost of management units of distributed power generators
    US9537445B2 (en)2008-12-042017-01-03Solaredge Technologies Ltd.Testing of a photovoltaic panel
    US9543889B2 (en)2006-12-062017-01-10Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
    US9548619B2 (en)2013-03-142017-01-17Solaredge Technologies Ltd.Method and apparatus for storing and depleting energy
    US9590526B2 (en)2006-12-062017-03-07Solaredge Technologies Ltd.Safety mechanisms, wake up and shutdown methods in distributed power installations
    US9647442B2 (en)2010-11-092017-05-09Solaredge Technologies Ltd.Arc detection and prevention in a power generation system
    US9644993B2 (en)2006-12-062017-05-09Solaredge Technologies Ltd.Monitoring of distributed power harvesting systems using DC power sources
    US9673711B2 (en)2007-08-062017-06-06Solaredge Technologies Ltd.Digital average input current control in power converter
    US9680304B2 (en)2006-12-062017-06-13Solaredge Technologies Ltd.Method for distributed power harvesting using DC power sources
    US9812984B2 (en)2012-01-302017-11-07Solaredge Technologies Ltd.Maximizing power in a photovoltaic distributed power system
    US9819178B2 (en)2013-03-152017-11-14Solaredge Technologies Ltd.Bypass mechanism
    US9831824B2 (en)2007-12-052017-11-28SolareEdge Technologies Ltd.Current sensing on a MOSFET
    US9853538B2 (en)2007-12-042017-12-26Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
    US9853565B2 (en)2012-01-302017-12-26Solaredge Technologies Ltd.Maximized power in a photovoltaic distributed power system
    US9866098B2 (en)2011-01-122018-01-09Solaredge Technologies Ltd.Serially connected inverters
    US9869701B2 (en)2009-05-262018-01-16Solaredge Technologies Ltd.Theft detection and prevention in a power generation system
    US9876430B2 (en)2008-03-242018-01-23Solaredge Technologies Ltd.Zero voltage switching
    US9923516B2 (en)2012-01-302018-03-20Solaredge Technologies Ltd.Photovoltaic panel circuitry
    US9941813B2 (en)2013-03-142018-04-10Solaredge Technologies Ltd.High frequency multi-level inverter
    US9960667B2 (en)2006-12-062018-05-01Solaredge Technologies Ltd.System and method for protection during inverter shutdown in distributed power installations
    US9966766B2 (en)2006-12-062018-05-08Solaredge Technologies Ltd.Battery power delivery module
    US10115841B2 (en)2012-06-042018-10-30Solaredge Technologies Ltd.Integrated photovoltaic panel circuitry
    US10218307B2 (en)2014-12-022019-02-26Tigo Energy, Inc.Solar panel junction boxes having integrated function modules
    US10230310B2 (en)2016-04-052019-03-12Solaredge Technologies LtdSafety switch for photovoltaic systems
    US10396662B2 (en)2011-09-122019-08-27Solaredge Technologies LtdDirect current link circuit
    US10673222B2 (en)2010-11-092020-06-02Solaredge Technologies Ltd.Arc detection and prevention in a power generation system
    US10673229B2 (en)2010-11-092020-06-02Solaredge Technologies Ltd.Arc detection and prevention in a power generation system
    US10931119B2 (en)2012-01-112021-02-23Solaredge Technologies Ltd.Photovoltaic module
    US11018623B2 (en)2016-04-052021-05-25Solaredge Technologies Ltd.Safety switch for photovoltaic systems
    US11177663B2 (en)2016-04-052021-11-16Solaredge Technologies Ltd.Chain of power devices
    US11228278B2 (en)2007-11-022022-01-18Tigo Energy, Inc.System and method for enhanced watch dog in solar panel installations
    US11264947B2 (en)2007-12-052022-03-01Solaredge Technologies Ltd.Testing of a photovoltaic panel
    US11296650B2 (en)2006-12-062022-04-05Solaredge Technologies Ltd.System and method for protection during inverter shutdown in distributed power installations
    US11309832B2 (en)2006-12-062022-04-19Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
    US11569659B2 (en)2006-12-062023-01-31Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
    US11569660B2 (en)2006-12-062023-01-31Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
    US11687112B2 (en)2006-12-062023-06-27Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
    US11728768B2 (en)2006-12-062023-08-15Solaredge Technologies Ltd.Pairing of components in a direct current distributed power generation system
    US11735910B2 (en)2006-12-062023-08-22Solaredge Technologies Ltd.Distributed power system using direct current power sources
    US11855231B2 (en)2006-12-062023-12-26Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
    US11881814B2 (en)2005-12-052024-01-23Solaredge Technologies Ltd.Testing of a photovoltaic panel
    US11888387B2 (en)2006-12-062024-01-30Solaredge Technologies Ltd.Safety mechanisms, wake up and shutdown methods in distributed power installations
    US12057807B2 (en)2016-04-052024-08-06Solaredge Technologies Ltd.Chain of power devices
    US12418177B2 (en)2009-10-242025-09-16Solaredge Technologies Ltd.Distributed power system using direct current power sources

    Families Citing this family (28)

    * Cited by examiner, † Cited by third party
    Publication numberPriority datePublication dateAssigneeTitle
    WO2004107543A2 (en)2003-05-282004-12-09Beacon Power CorporationPower converter for a solar panel
    AU2005334695A1 (en)*2005-07-202007-01-25Ecosol Solar Technologies, Inc.A photovoltaic power output-utilizing device
    US7900361B2 (en)2006-12-062011-03-08Solaredge, Ltd.Current bypass for distributed power harvesting systems using DC power sources
    US20080144294A1 (en)*2006-12-062008-06-19Meir AdestRemoval component cartridge for increasing reliability in power harvesting systems
    US7986122B2 (en)*2007-09-262011-07-26Enphase Energy, Inc.Method and apparatus for power conversion with maximum power point tracking and burst mode capability
    US7986539B2 (en)*2007-09-262011-07-26Enphase Energy, Inc.Method and apparatus for maximum power point tracking in power conversion based on dual feedback loops and power ripples
    EP2225778B1 (en)2007-12-052019-06-26Solaredge Technologies Ltd.Testing of a photovoltaic panel
    US8630098B2 (en)*2008-06-122014-01-14Solaredge Technologies Ltd.Switching circuit layout with heatsink
    US8378656B2 (en)*2008-09-192013-02-19General Electric CompanyQuasi-AC, photovoltaic module for unfolder photovoltaic inverter
    US7768155B2 (en)2008-10-102010-08-03Enphase Energy, Inc.Method and apparatus for improved burst mode during power conversion
    US20100301670A1 (en)*2009-03-012010-12-02William WilhelmDc peak power tracking devices, methods, and systems
    US8303349B2 (en)2009-05-222012-11-06Solaredge Technologies Ltd.Dual compressive connector
    EP2602831B1 (en)*2009-05-222014-07-16Solaredge Technologies Ltd.Electrically isolated heat dissipating junction box
    US8690110B2 (en)2009-05-252014-04-08Solaredge Technologies Ltd.Bracket for connection of a junction box to photovoltaic panels
    US8710699B2 (en)2009-12-012014-04-29Solaredge Technologies Ltd.Dual use photovoltaic system
    US8766696B2 (en)2010-01-272014-07-01Solaredge Technologies Ltd.Fast voltage level shifter circuit
    US8450021B2 (en)*2010-03-152013-05-28GM Global Technology Operations LLCMethod for HV bus voltage control in fuel cell vehicles featuring HV lithium batteries
    KR101727521B1 (en)*2010-10-012017-04-17삼성전자 주식회사Power supply apparatus, power supply system and method of supplying power thereof
    US8587972B2 (en)*2011-01-212013-11-19Qi DengApparatus and system for transformer frequency control
    JP2014239083A (en)*2011-09-292014-12-18三洋電機株式会社Solar cell array
    TWI438602B (en)2011-12-022014-05-21Ind Tech Res InstMaximum power point tracking controllers, maximum power point tracking systems and maximum power point tracking methods
    EP3499695B1 (en)2012-05-252024-09-18Solaredge Technologies Ltd.Circuit for interconnected direct current power sources
    US10193347B2 (en)2013-03-292019-01-29Enphase Energy, Inc.Method and apparatus for improved burst mode during power conversion
    TWI470396B (en)2013-06-262015-01-21Ind Tech Res InstPower point tracking method and apparatus
    US10599113B2 (en)2016-03-032020-03-24Solaredge Technologies Ltd.Apparatus and method for determining an order of power devices in power generation systems
    CN107153212B (en)2016-03-032023-07-28太阳能安吉科技有限公司Method for mapping a power generation facility
    US11081608B2 (en)2016-03-032021-08-03Solaredge Technologies Ltd.Apparatus and method for determining an order of power devices in power generation systems
    CN110908756B (en)*2019-11-182024-02-02西安雷风电子科技有限公司Cloud desktop real-time fusion switching method and system

    Citations (5)

    * Cited by examiner, † Cited by third party
    Publication numberPriority datePublication dateAssigneeTitle
    EP0027405A1 (en)*1979-10-101981-04-22COMMISSARIAT A L'ENERGIE ATOMIQUE Etablissement de Caractère Scientifique Technique et IndustrielControl device for the maximum power output of a photovoltaic converter
    FR2626689A1 (en)*1988-01-291989-08-04Centre Nat Etd SpatialesSystem for regulating the operating point of a direct current power supply
    US5530335A (en)*1993-05-111996-06-25Trw Inc.Battery regulated bus spacecraft power control system
    US5932994A (en)*1996-05-151999-08-03Samsung Electronics, Co., Ltd.Solar cell power source device
    FR2819653A1 (en)*2001-01-162002-07-19Centre Nat Rech Scient CONTROL OF A POWER CONVERTER FOR AN AUTOMATIC SEARCH OF THE MAXIMUM POINT OF POWER

    Family Cites Families (2)

    * Cited by examiner, † Cited by third party
    Publication numberPriority datePublication dateAssigneeTitle
    US6204645B1 (en)*1998-09-112001-03-20Richard A. CullenBattery charging controller
    JP3394996B2 (en)*2001-03-092003-04-07独立行政法人産業技術総合研究所 Maximum power operating point tracking method and device

    Patent Citations (5)

    * Cited by examiner, † Cited by third party
    Publication numberPriority datePublication dateAssigneeTitle
    EP0027405A1 (en)*1979-10-101981-04-22COMMISSARIAT A L'ENERGIE ATOMIQUE Etablissement de Caractère Scientifique Technique et IndustrielControl device for the maximum power output of a photovoltaic converter
    FR2626689A1 (en)*1988-01-291989-08-04Centre Nat Etd SpatialesSystem for regulating the operating point of a direct current power supply
    US5530335A (en)*1993-05-111996-06-25Trw Inc.Battery regulated bus spacecraft power control system
    US5932994A (en)*1996-05-151999-08-03Samsung Electronics, Co., Ltd.Solar cell power source device
    FR2819653A1 (en)*2001-01-162002-07-19Centre Nat Rech Scient CONTROL OF A POWER CONVERTER FOR AN AUTOMATIC SEARCH OF THE MAXIMUM POINT OF POWER

    Non-Patent Citations (3)

    * Cited by examiner, † Cited by third party
    Title
    CALDWELL D J ET AL: "ADVANCED SPACE POWER SYSTEM WITH OPTIMIZED PEAK POWER TRACKING", AEROSPACE POWER SYSTEMS, CONVERSION TECHNOLOGIES. BOSTON, AUG. 4 - 9, 1991, PROCEEDINGS OF THE INTERSOCIETY ENERGY CONVERSION ENGINEERING CONFERENCE, NEW YORK, ANS/IEEE, US, vol. 2 CONF. 26, 4 August 1991 (1991-08-04), pages 145 - 150, XP000280495, ISBN: 0-89448-163-0*
    GOW J A ET AL: "A MODULAR DC-DC CONVERTER AND MAXIMUM POWER TRACKING CONTROLLER FORMEDIUM TO LARGE SCALE PHOTOVOLTAIC GENERATING PLANT", 8TH EUROPEAN CONFERENCE ON POWER ELECTRONICS AND APPLICATIONS. LAUSANNE, CH, SEPT. 7 - 9, 1999, EPE. EUROPEAN CONFERENCE ON POWER ELECTRONICS AND APPLICATIONS, BRUSSLS: EPE ASSOCIATION, BE, vol. CONF. 8, 7 September 1999 (1999-09-07), pages 1 - 8, XP000883026, ISBN: 90-75815-04-2*
    HUA C ET AL: "CONTROL OF DC/DC CONVERTERS FOR SOLAR ENERGY SYSTEM WITH MAXIMUM POWER TRACKING", PROCEEDINGS OF THE IECON '97: 23RD. INTERNATIONAL CONFERENCE ON INDUSTRIAL ELECTRONICS, CONTROL, AND INSTRUMENTATION. NEW ORLEANS, NOV. 9 - 14, 1997, PROCEEDINGS OF IEEE IECON: INTERNATIONAL CONFERENCE ON INDUSTRIAL ELECTRONICS, CONTROL, AND INSTRUME, vol. 2, 9 November 1997 (1997-11-09), pages 827 - 832, XP000898581, ISBN: 0-7803-3933-9*

    Cited By (248)

    * Cited by examiner, † Cited by third party
    Publication numberPriority datePublication dateAssigneeTitle
    US8093757B2 (en)2004-07-132012-01-10Tigo Energy, Inc.Device for distributed maximum power tracking for solar arrays
    AU2005262278B2 (en)*2004-07-132009-03-26Tigo Energy, Inc.A device for distributed maximum power tracking for solar arrays
    US9594392B2 (en)2004-07-132017-03-14Tigo Energy, Inc.Device for distributed maximum power tracking for solar arrays
    US7839022B2 (en)2004-07-132010-11-23Tigo Energy, Inc.Device for distributed maximum power tracking for solar arrays
    WO2006005125A1 (en)*2004-07-132006-01-19Central Queensland UniversityA device for distributed maximum power tracking for solar arrays
    US8963518B2 (en)2004-07-132015-02-24Tigo Energy, Inc.Device for distributed maximum power tracking for solar arrays
    US11881814B2 (en)2005-12-052024-01-23Solaredge Technologies Ltd.Testing of a photovoltaic panel
    FR2895810A1 (en)*2006-01-032007-07-06Alcatel SaSolar generator conditioning circuit for satellite, has control circuit applying increasing power value to converter when derivative of current reaches positive threshold and decreasing power value when derivative reaches negative threshold
    WO2007077386A3 (en)*2006-01-032007-12-27Alcatel LucentCircuit for the current conditioning of a source at the maximum power point
    US8751053B2 (en)2006-10-192014-06-10Tigo Energy, Inc.Method and system to provide a distributed local energy production system with high-voltage DC bus
    US11594882B2 (en)2006-12-062023-02-28Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
    US11569660B2 (en)2006-12-062023-01-31Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
    US12276997B2 (en)2006-12-062025-04-15Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
    US12224706B2 (en)2006-12-062025-02-11Solaredge Technologies Ltd.Pairing of components in a direct current distributed power generation system
    US12107417B2 (en)2006-12-062024-10-01Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
    US9960667B2 (en)2006-12-062018-05-01Solaredge Technologies Ltd.System and method for protection during inverter shutdown in distributed power installations
    US12068599B2 (en)2006-12-062024-08-20Solaredge Technologies Ltd.System and method for protection during inverter shutdown in distributed power installations
    US12046940B2 (en)2006-12-062024-07-23Solaredge Technologies Ltd.Battery power control
    US12032080B2 (en)2006-12-062024-07-09Solaredge Technologies Ltd.Safety mechanisms, wake up and shutdown methods in distributed power installations
    US12027849B2 (en)2006-12-062024-07-02Solaredge Technologies Ltd.Distributed power system using direct current power sources
    US12027970B2 (en)2006-12-062024-07-02Solaredge Technologies Ltd.Safety mechanisms, wake up and shutdown methods in distributed power installations
    US11962243B2 (en)2006-12-062024-04-16Solaredge Technologies Ltd.Method for distributed power harvesting using DC power sources
    US11961922B2 (en)2006-12-062024-04-16Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
    US12316274B2 (en)2006-12-062025-05-27Solaredge Technologies Ltd.Pairing of components in a direct current distributed power generation system
    US11888387B2 (en)2006-12-062024-01-30Solaredge Technologies Ltd.Safety mechanisms, wake up and shutdown methods in distributed power installations
    US9960731B2 (en)2006-12-062018-05-01Solaredge Technologies Ltd.Pairing of components in a direct current distributed power generation system
    US9966766B2 (en)2006-12-062018-05-08Solaredge Technologies Ltd.Battery power delivery module
    US11855231B2 (en)2006-12-062023-12-26Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
    US9853490B2 (en)2006-12-062017-12-26Solaredge Technologies Ltd.Distributed power system using direct current power sources
    US11735910B2 (en)2006-12-062023-08-22Solaredge Technologies Ltd.Distributed power system using direct current power sources
    US11728768B2 (en)2006-12-062023-08-15Solaredge Technologies Ltd.Pairing of components in a direct current distributed power generation system
    US11687112B2 (en)2006-12-062023-06-27Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
    US11682918B2 (en)2006-12-062023-06-20Solaredge Technologies Ltd.Battery power delivery module
    US11658482B2 (en)2006-12-062023-05-23Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
    US10097007B2 (en)2006-12-062018-10-09Solaredge Technologies Ltd.Method for distributed power harvesting using DC power sources
    US12388492B2 (en)2006-12-062025-08-12Solaredge Technologies Ltd.Safety mechanisms, wake up and shutdown methods in distributed power installations
    US11598652B2 (en)2006-12-062023-03-07Solaredge Technologies Ltd.Monitoring of distributed power harvesting systems using DC power sources
    US11594881B2 (en)2006-12-062023-02-28Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
    US11594880B2 (en)2006-12-062023-02-28Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
    US9112379B2 (en)2006-12-062015-08-18Solaredge Technologies Ltd.Pairing of components in a direct current distributed power generation system
    US10230245B2 (en)2006-12-062019-03-12Solaredge Technologies LtdBattery power delivery module
    US9130401B2 (en)2006-12-062015-09-08Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
    US9948233B2 (en)2006-12-062018-04-17Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
    US11579235B2 (en)2006-12-062023-02-14Solaredge Technologies Ltd.Safety mechanisms, wake up and shutdown methods in distributed power installations
    US9680304B2 (en)2006-12-062017-06-13Solaredge Technologies Ltd.Method for distributed power harvesting using DC power sources
    US11575261B2 (en)2006-12-062023-02-07Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
    US11575260B2 (en)2006-12-062023-02-07Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
    US12281919B2 (en)2006-12-062025-04-22Solaredge Technologies Ltd.Monitoring of distributed power harvesting systems using DC power sources
    US11569659B2 (en)2006-12-062023-01-31Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
    US11476799B2 (en)2006-12-062022-10-18Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
    US9644993B2 (en)2006-12-062017-05-09Solaredge Technologies Ltd.Monitoring of distributed power harvesting systems using DC power sources
    US11309832B2 (en)2006-12-062022-04-19Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
    US11296650B2 (en)2006-12-062022-04-05Solaredge Technologies Ltd.System and method for protection during inverter shutdown in distributed power installations
    US9368964B2 (en)2006-12-062016-06-14Solaredge Technologies Ltd.Distributed power system using direct current power sources
    US10447150B2 (en)2006-12-062019-10-15Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
    US11183922B2 (en)2006-12-062021-11-23Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
    US9590526B2 (en)2006-12-062017-03-07Solaredge Technologies Ltd.Safety mechanisms, wake up and shutdown methods in distributed power installations
    US11073543B2 (en)2006-12-062021-07-27Solaredge Technologies Ltd.Monitoring of distributed power harvesting systems using DC power sources
    US11063440B2 (en)2006-12-062021-07-13Solaredge Technologies Ltd.Method for distributed power harvesting using DC power sources
    US11043820B2 (en)2006-12-062021-06-22Solaredge Technologies Ltd.Battery power delivery module
    US11031861B2 (en)2006-12-062021-06-08Solaredge Technologies Ltd.System and method for protection during inverter shutdown in distributed power installations
    US11002774B2 (en)2006-12-062021-05-11Solaredge Technologies Ltd.Monitoring of distributed power harvesting systems using DC power sources
    US10637393B2 (en)2006-12-062020-04-28Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
    US10673253B2 (en)2006-12-062020-06-02Solaredge Technologies Ltd.Battery power delivery module
    US9543889B2 (en)2006-12-062017-01-10Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
    US10116217B2 (en)2007-08-062018-10-30Solaredge Technologies Ltd.Digital average input current control in power converter
    US10516336B2 (en)2007-08-062019-12-24Solaredge Technologies Ltd.Digital average input current control in power converter
    US11594968B2 (en)2007-08-062023-02-28Solaredge Technologies Ltd.Digital average input current control in power converter
    US9673711B2 (en)2007-08-062017-06-06Solaredge Technologies Ltd.Digital average input current control in power converter
    US10256770B2 (en)2007-11-022019-04-09Tigo Energy, Inc.System and method for enhanced watch dog in solar panel installations
    US9397612B2 (en)2007-11-022016-07-19Tigo Energy, Inc.System and method for enhanced watch dog in solar panel installations
    US12088248B2 (en)2007-11-022024-09-10Tigo Energy, Inc.System and method for enhanced watch dog in solar panel installations
    US9813021B2 (en)2007-11-022017-11-07Tigo Energy, Inc.System and method for enhanced watch dog in solar panel installations
    US10686403B2 (en)2007-11-022020-06-16Tigo Energy, Inc.System and method for enhanced watch dog in solar panel installations
    US8823218B2 (en)2007-11-022014-09-02Tigo Energy, Inc.System and method for enhanced watch dog in solar panel installations
    US7807919B2 (en)2007-11-022010-10-05Tigo Energy, Inc.Apparatuses and methods to reduce safety risks associated with photovoltaic systems
    US11228278B2 (en)2007-11-022022-01-18Tigo Energy, Inc.System and method for enhanced watch dog in solar panel installations
    US7884278B2 (en)2007-11-022011-02-08Tigo Energy, Inc.Apparatuses and methods to reduce safety risks associated with photovoltaic systems
    US11646695B2 (en)2007-11-022023-05-09Tigo Energy, Inc.System and method for enhanced watch dog in solar panel installations
    US12323100B2 (en)2007-11-022025-06-03Tigo Energy, Inc.System and method for enhanced watch dog in solar panel installations
    US11855578B2 (en)2007-11-022023-12-26Tigo Energy, Inc.System and method for enhanced watch dog in solar panel installations
    US9218013B2 (en)2007-11-142015-12-22Tigo Energy, Inc.Method and system for connecting solar cells or slices in a panel system
    US11329599B2 (en)2007-11-142022-05-10Tigo Energy, Inc.Method and system for connecting solar cells or slices in a panel system
    US9853538B2 (en)2007-12-042017-12-26Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
    US10644589B2 (en)2007-12-052020-05-05Solaredge Technologies Ltd.Parallel connected inverters
    US11183969B2 (en)2007-12-052021-11-23Solaredge Technologies Ltd.Testing of a photovoltaic panel
    US12055647B2 (en)2007-12-052024-08-06Solaredge Technologies Ltd.Parallel connected inverters
    US11693080B2 (en)2007-12-052023-07-04Solaredge Technologies Ltd.Parallel connected inverters
    US9831824B2 (en)2007-12-052017-11-28SolareEdge Technologies Ltd.Current sensing on a MOSFET
    US9291696B2 (en)2007-12-052016-03-22Solaredge Technologies Ltd.Photovoltaic system power tracking method
    US11894806B2 (en)2007-12-052024-02-06Solaredge Technologies Ltd.Testing of a photovoltaic panel
    US11183923B2 (en)2007-12-052021-11-23Solaredge Technologies Ltd.Parallel connected inverters
    US10693415B2 (en)2007-12-052020-06-23Solaredge Technologies Ltd.Testing of a photovoltaic panel
    US9407161B2 (en)2007-12-052016-08-02Solaredge Technologies Ltd.Parallel connected inverters
    US11264947B2 (en)2007-12-052022-03-01Solaredge Technologies Ltd.Testing of a photovoltaic panel
    US9979280B2 (en)2007-12-052018-05-22Solaredge Technologies Ltd.Parallel connected inverters
    US7898112B2 (en)2007-12-062011-03-01Tigo Energy, Inc.Apparatuses and methods to connect power sources to an electric power system
    US9876430B2 (en)2008-03-242018-01-23Solaredge Technologies Ltd.Zero voltage switching
    US9362743B2 (en)2008-05-052016-06-07Solaredge Technologies Ltd.Direct current power combiner
    US11424616B2 (en)2008-05-052022-08-23Solaredge Technologies Ltd.Direct current power combiner
    US10468878B2 (en)2008-05-052019-11-05Solaredge Technologies Ltd.Direct current power combiner
    US12218498B2 (en)2008-05-052025-02-04Solaredge Technologies Ltd.Direct current power combiner
    US8098055B2 (en)2008-08-012012-01-17Tigo Energy, Inc.Step-up converter systems and methods
    US8058747B2 (en)2008-08-012011-11-15Tigo Energy, Inc.Systems to connect multiple direct current energy sources to an alternating current system
    US8325059B2 (en)2008-11-122012-12-04Tigo Energy, Inc.Method and system for cost-effective power line communications for sensor data collection
    US8653689B2 (en)2008-11-122014-02-18Tigo Energy, Inc.Method and system for current-mode power line communications
    US10110007B2 (en)2008-11-262018-10-23Tigo Energy, Inc.Systems and methods to balance solar panels in a multi-panel system
    US8860241B2 (en)2008-11-262014-10-14Tigo Energy, Inc.Systems and methods for using a power converter for transmission of data over the power feed
    US10615603B2 (en)2008-11-262020-04-07Tigo Energy, Inc.Systems and methods to balance solar panels in a multi-panel system
    US8860246B2 (en)2008-11-262014-10-14Tigo Energy, Inc.Systems and methods to balance solar panels in a multi-panel system
    US10461687B2 (en)2008-12-042019-10-29Solaredge Technologies Ltd.Testing of a photovoltaic panel
    US9537445B2 (en)2008-12-042017-01-03Solaredge Technologies Ltd.Testing of a photovoltaic panel
    US8933321B2 (en)2009-02-052015-01-13Tigo Energy, Inc.Systems and methods for an enhanced watchdog in solar module installations
    US9401439B2 (en)2009-03-252016-07-26Tigo Energy, Inc.Enhanced systems and methods for using a power converter for balancing modules in single-string and multi-string configurations
    US11867729B2 (en)2009-05-262024-01-09Solaredge Technologies Ltd.Theft detection and prevention in a power generation system
    US12306215B2 (en)2009-05-262025-05-20Solaredge Technologies Ltd.Theft detection and prevention in a power generation system
    US9869701B2 (en)2009-05-262018-01-16Solaredge Technologies Ltd.Theft detection and prevention in a power generation system
    US10969412B2 (en)2009-05-262021-04-06Solaredge Technologies Ltd.Theft detection and prevention in a power generation system
    US8039730B2 (en)2009-06-182011-10-18Tigo Energy, Inc.System and method for prevention of open loop damage during or immediately after manufacturing
    US8415552B2 (en)2009-06-182013-04-09Tigo Energy, Inc.Systems and methods for prevention of open loop damage during or immediately after manufacturing
    US8954203B2 (en)2009-06-242015-02-10Tigo Energy, Inc.Systems and methods for distributed power factor correction and phase balancing
    US8405349B2 (en)2009-06-252013-03-26Tigo Energy, Inc.Enhanced battery storage and recovery energy systems
    US9991842B2 (en)2009-07-302018-06-05Tigo Energy, Inc.Systems and methods to reduce field buildup between cells and glass and frame assembly for solar energy production
    US11239793B2 (en)2009-07-302022-02-01Tigo Energy, Inc.Systems and methods to reduce field buildup between cells and glass and frame assembly for solar energy production
    US9312697B2 (en)2009-07-302016-04-12Tigo Energy, Inc.System and method for addressing solar energy production capacity loss due to field buildup between cells and glass and frame assembly
    US8274172B2 (en)2009-07-302012-09-25Tigo Energy, Inc.Systems and method for limiting maximum voltage in solar photovoltaic power generation systems
    US8102074B2 (en)2009-07-302012-01-24Tigo Energy, Inc.Systems and method for limiting maximum voltage in solar photovoltaic power generation systems
    US10756545B2 (en)2009-08-102020-08-25Tigo Energy, Inc.Enhanced systems and methods for using a power converter for balancing modules in single-string and multi-string configurations
    US8314375B2 (en)2009-08-212012-11-20Tigo Energy, Inc.System and method for local string management unit
    US8686333B2 (en)2009-08-212014-04-01Tigo Energy, Inc.System and method for local string management unit
    US9584021B2 (en)2009-09-022017-02-28Tigo Energy, Inc.Systems and methods for enhanced efficiency auxiliary power supply module
    US9966848B2 (en)2009-09-022018-05-08Tigo Energy, Inc.Systems and methods for enhanced efficiency auxiliary power supply module
    US9143036B2 (en)2009-09-022015-09-22Tigo Energy, Inc.Systems and methods for enhanced efficiency auxiliary power supply module
    US10333405B2 (en)2009-09-022019-06-25Tigo Energy, Inc.Systems and methods for enhanced efficiency auxiliary power supply module
    US12143065B2 (en)2009-09-032024-11-12Tigo Energy, Inc.Systems and methods for an enhanced watchdog in solar module installations
    US11967930B2 (en)2009-09-032024-04-23Tigo Energy, Inc.Systems and methods for an enhanced watchdog in solar module installations
    US10128683B2 (en)2009-10-022018-11-13Tigo Energy, Inc.Systems and methods to provide enhanced diode bypass paths
    US11201494B2 (en)2009-10-022021-12-14Tigo Energy, Inc.Systems and methods to provide enhanced diode bypass paths
    US9324885B2 (en)2009-10-022016-04-26Tigo Energy, Inc.Systems and methods to provide enhanced diode bypass paths
    US12418177B2 (en)2009-10-242025-09-16Solaredge Technologies Ltd.Distributed power system using direct current power sources
    US8854193B2 (en)2009-12-292014-10-07Tigo Energy, Inc.Systems and methods for remote or local shut-off of a photovoltaic system
    US10523013B2 (en)2009-12-292019-12-31Tigo Energy, Inc.Systems and methods for remote or local shut-off of a photovoltaic system
    US12433063B2 (en)2009-12-292025-09-30Tigo Energy, Inc.Systems and methods for remote or local shut-off of a photovoltaic system
    US8773236B2 (en)2009-12-292014-07-08Tigo Energy, Inc.Systems and methods for a communication protocol between a local controller and a master controller
    US10063056B2 (en)2009-12-292018-08-28Tigo Energy, Inc.Systems and methods for remote or local shut-off of a photovoltaic system
    US9377765B2 (en)2009-12-292016-06-28Tigo Energy, Inc.Systems and methods for remote or local shut-off of a photovoltaic system
    US11081889B2 (en)2009-12-292021-08-03Tigo Energy, Inc.Systems and methods for remote or local shut-off of a photovoltaic system
    US11728443B2 (en)2009-12-292023-08-15Tigo Energy, Inc.Systems and methods for remote or local shut-off of a photovoltaic system
    US10135385B2 (en)2010-01-082018-11-20Tigo Energy, Inc.Identification protocol between a local controller of a solar module and a master controller
    US10749457B2 (en)2010-01-082020-08-18Tigo Energy, Inc.Systems and methods for an identification protocol between a local controller of a solar module and a master controller
    US8271599B2 (en)2010-01-082012-09-18Tigo Energy, Inc.Systems and methods for an identification protocol between a local controller and a master controller in a photovoltaic power generation system
    US9124139B2 (en)2010-01-082015-09-01Tigo Energy, Inc.Systems and methods for an identification protocol between a local controller coupled to control a solar module and a master controller
    US10461570B2 (en)2010-03-152019-10-29Tigo Energy, Inc.Systems and methods to provide enhanced diode bypass paths
    US9425783B2 (en)2010-03-152016-08-23Tigo Energy, Inc.Systems and methods to provide enhanced diode bypass paths
    US8922061B2 (en)2010-03-222014-12-30Tigo Energy, Inc.Systems and methods for detecting and correcting a suboptimal operation of one or more inverters in a multi-inverter system
    US9312399B2 (en)2010-04-022016-04-12Tigo Energy, Inc.Systems and methods for mapping the connectivity topology of local management units in photovoltaic arrays
    US10355637B2 (en)2010-04-022019-07-16Tigo Energy, Inc.Systems and methods for mapping the connectivity topology of local management units in photovoltaic arrays
    US9007210B2 (en)2010-04-222015-04-14Tigo Energy, Inc.Enhanced system and method for theft prevention in a solar power array during nonoperative periods
    US9450414B2 (en)2010-06-092016-09-20Tigo Energy, Inc.Method for use of static inverters in variable energy generation environments
    US8853886B2 (en)2010-06-092014-10-07Tigo Energy, Inc.System for use of static inverters in variable energy generation environments
    US9882390B2 (en)2010-06-092018-01-30Tigo Energy, Inc.Method for use of static inverters in variable energy generation environments
    US8957544B2 (en)2010-06-092015-02-17Tigo Energy, Inc.Systems and methods to optimize outputs of static inverters in variable energy generation environments
    US9225261B2 (en)2010-06-092015-12-29Tigo Energy, Inc.Method for use of static inverters in variable energy generation environments
    US10454275B2 (en)2010-06-092019-10-22Tigo Energy, Inc.Method for use of static inverters in variable energy generation environments
    FR2964759A1 (en)*2010-09-102012-03-16Nexcis CONTROL OF THE OPERATION OF A PHOTOVOLTAIC PANEL.
    WO2012032274A1 (en)*2010-09-102012-03-15NexcisPhotovoltaic panel operation control
    US12407158B2 (en)2010-11-092025-09-02Solaredge Technologies Ltd.Arc detection and prevention in a power generation system
    US11070051B2 (en)2010-11-092021-07-20Solaredge Technologies Ltd.Arc detection and prevention in a power generation system
    US10931228B2 (en)2010-11-092021-02-23Solaredge Technologies Ftd.Arc detection and prevention in a power generation system
    US9647442B2 (en)2010-11-092017-05-09Solaredge Technologies Ltd.Arc detection and prevention in a power generation system
    US11349432B2 (en)2010-11-092022-05-31Solaredge Technologies Ltd.Arc detection and prevention in a power generation system
    US12003215B2 (en)2010-11-092024-06-04Solaredge Technologies Ltd.Arc detection and prevention in a power generation system
    US10673222B2 (en)2010-11-092020-06-02Solaredge Technologies Ltd.Arc detection and prevention in a power generation system
    US11489330B2 (en)2010-11-092022-11-01Solaredge Technologies Ltd.Arc detection and prevention in a power generation system
    US10673229B2 (en)2010-11-092020-06-02Solaredge Technologies Ltd.Arc detection and prevention in a power generation system
    US12295184B2 (en)2010-12-092025-05-06Solaredge Technologies Ltd.Disconnection of a string carrying direct current power
    US11996488B2 (en)2010-12-092024-05-28Solaredge Technologies Ltd.Disconnection of a string carrying direct current power
    US9401599B2 (en)2010-12-092016-07-26Solaredge Technologies Ltd.Disconnection of a string carrying direct current power
    US11271394B2 (en)2010-12-092022-03-08Solaredge Technologies Ltd.Disconnection of a string carrying direct current power
    US9935458B2 (en)2010-12-092018-04-03Solaredge Technologies Ltd.Disconnection of a string carrying direct current power
    US12218505B2 (en)2011-01-122025-02-04Solaredge Technologies Ltd.Serially connected inverters
    US10666125B2 (en)2011-01-122020-05-26Solaredge Technologies Ltd.Serially connected inverters
    US9866098B2 (en)2011-01-122018-01-09Solaredge Technologies Ltd.Serially connected inverters
    US11205946B2 (en)2011-01-122021-12-21Solaredge Technologies Ltd.Serially connected inverters
    US10754365B2 (en)2011-02-242020-08-25Tigo Energy, Inc.System and method for arc detection and intervention in solar energy systems
    US9927822B2 (en)2011-02-242018-03-27Tigo Energy, Inc.System and method for arc detection and intervention in solar energy systems
    US11429123B2 (en)2011-02-242022-08-30Tigo Energy, Inc.System and method for arc detection and intervention in solar energy systems
    US9043039B2 (en)2011-02-242015-05-26Tigo Energy, Inc.System and method for arc detection and intervention in solar energy systems
    US11681310B2 (en)2011-02-242023-06-20Tigo Energy, Inc.System and method for arc detection and intervention in solar energy systems
    US12298791B2 (en)2011-02-242025-05-13Tigo Energy, Inc.System and method for arc detection and intervention in solar energy systems
    US8841916B2 (en)2011-02-282014-09-23Tigo Energy, Inc.System and method for flash bypass
    US9368965B2 (en)2011-07-282016-06-14Tigo Energy, Inc.Enhanced system and method for string-balancing
    US10819117B2 (en)2011-07-282020-10-27Tigo Energy, Inc.Systems and methods to combine strings of solar panels
    US9142965B2 (en)2011-07-282015-09-22Tigo Energy, Inc.Systems and methods to combine strings of solar panels
    US11728645B2 (en)2011-07-282023-08-15Tigo Energy, Inc.Enhanced system and method for string balancing
    US9431825B2 (en)2011-07-282016-08-30Tigo Energy, Inc.Systems and methods to reduce the number and cost of management units of distributed power generators
    US10673244B2 (en)2011-07-282020-06-02Tigo Energy, Inc.Enhanced system and method for string balancing
    US9847646B2 (en)2011-07-282017-12-19Tigo Energy, Inc.Systems and methods to combine strings of solar panels
    US10312692B2 (en)2011-07-282019-06-04Tigo Energy, Inc.Systems and methods to reduce the number and cost of management units of distributed power generators
    US10396662B2 (en)2011-09-122019-08-27Solaredge Technologies LtdDirect current link circuit
    US8982591B2 (en)2011-10-182015-03-17Tigo Energy, Inc.System and method for exchangeable capacitor modules for high power inverters and converters
    US10931119B2 (en)2012-01-112021-02-23Solaredge Technologies Ltd.Photovoltaic module
    US11979037B2 (en)2012-01-112024-05-07Solaredge Technologies Ltd.Photovoltaic module
    US9853565B2 (en)2012-01-302017-12-26Solaredge Technologies Ltd.Maximized power in a photovoltaic distributed power system
    US12191668B2 (en)2012-01-302025-01-07Solaredge Technologies Ltd.Maximizing power in a photovoltaic distributed power system
    US10381977B2 (en)2012-01-302019-08-13Solaredge Technologies LtdPhotovoltaic panel circuitry
    US11183968B2 (en)2012-01-302021-11-23Solaredge Technologies Ltd.Photovoltaic panel circuitry
    US11620885B2 (en)2012-01-302023-04-04Solaredge Technologies Ltd.Photovoltaic panel circuitry
    US11929620B2 (en)2012-01-302024-03-12Solaredge Technologies Ltd.Maximizing power in a photovoltaic distributed power system
    US12094306B2 (en)2012-01-302024-09-17Solaredge Technologies Ltd.Photovoltaic panel circuitry
    US10608553B2 (en)2012-01-302020-03-31Solaredge Technologies Ltd.Maximizing power in a photovoltaic distributed power system
    US10992238B2 (en)2012-01-302021-04-27Solaredge Technologies Ltd.Maximizing power in a photovoltaic distributed power system
    US9812984B2 (en)2012-01-302017-11-07Solaredge Technologies Ltd.Maximizing power in a photovoltaic distributed power system
    US9923516B2 (en)2012-01-302018-03-20Solaredge Technologies Ltd.Photovoltaic panel circuitry
    US10007288B2 (en)2012-03-052018-06-26Solaredge Technologies Ltd.Direct current link circuit
    US9639106B2 (en)2012-03-052017-05-02Solaredge Technologies Ltd.Direct current link circuit
    US9235228B2 (en)2012-03-052016-01-12Solaredge Technologies Ltd.Direct current link circuit
    US11177768B2 (en)2012-06-042021-11-16Solaredge Technologies Ltd.Integrated photovoltaic panel circuitry
    US12218628B2 (en)2012-06-042025-02-04Solaredge Technologies Ltd.Integrated photovoltaic panel circuitry
    US10115841B2 (en)2012-06-042018-10-30Solaredge Technologies Ltd.Integrated photovoltaic panel circuitry
    US10778025B2 (en)2013-03-142020-09-15Solaredge Technologies Ltd.Method and apparatus for storing and depleting energy
    US12003107B2 (en)2013-03-142024-06-04Solaredge Technologies Ltd.Method and apparatus for storing and depleting energy
    US12255457B2 (en)2013-03-142025-03-18Solaredge Technologies Ltd.Method and apparatus for storing and depleting energy
    US11742777B2 (en)2013-03-142023-08-29Solaredge Technologies Ltd.High frequency multi-level inverter
    US9941813B2 (en)2013-03-142018-04-10Solaredge Technologies Ltd.High frequency multi-level inverter
    US9548619B2 (en)2013-03-142017-01-17Solaredge Technologies Ltd.Method and apparatus for storing and depleting energy
    US12119758B2 (en)2013-03-142024-10-15Solaredge Technologies Ltd.High frequency multi-level inverter
    US11545912B2 (en)2013-03-142023-01-03Solaredge Technologies Ltd.High frequency multi-level inverter
    US11424617B2 (en)2013-03-152022-08-23Solaredge Technologies Ltd.Bypass mechanism
    US12132125B2 (en)2013-03-152024-10-29Solaredge Technologies Ltd.Bypass mechanism
    US10651647B2 (en)2013-03-152020-05-12Solaredge Technologies Ltd.Bypass mechanism
    US9819178B2 (en)2013-03-152017-11-14Solaredge Technologies Ltd.Bypass mechanism
    US10886831B2 (en)2014-03-262021-01-05Solaredge Technologies Ltd.Multi-level inverter
    US12136890B2 (en)2014-03-262024-11-05Solaredge Technologies Ltd.Multi-level inverter
    US10886832B2 (en)2014-03-262021-01-05Solaredge Technologies Ltd.Multi-level inverter
    US11296590B2 (en)2014-03-262022-04-05Solaredge Technologies Ltd.Multi-level inverter
    US11632058B2 (en)2014-03-262023-04-18Solaredge Technologies Ltd.Multi-level inverter
    US9318974B2 (en)2014-03-262016-04-19Solaredge Technologies Ltd.Multi-level inverter with flying capacitor topology
    US11855552B2 (en)2014-03-262023-12-26Solaredge Technologies Ltd.Multi-level inverter
    US11177769B2 (en)2014-12-022021-11-16Tigo Energy, Inc.Solar panel junction boxes having integrated function modules
    US10218307B2 (en)2014-12-022019-02-26Tigo Energy, Inc.Solar panel junction boxes having integrated function modules
    US10230310B2 (en)2016-04-052019-03-12Solaredge Technologies LtdSafety switch for photovoltaic systems
    US11870250B2 (en)2016-04-052024-01-09Solaredge Technologies Ltd.Chain of power devices
    US12348182B2 (en)2016-04-052025-07-01Solaredge Technologies Ltd.Safety switch for photovoltaic systems
    US11201476B2 (en)2016-04-052021-12-14Solaredge Technologies Ltd.Photovoltaic power device and wiring
    US12057807B2 (en)2016-04-052024-08-06Solaredge Technologies Ltd.Chain of power devices
    US11177663B2 (en)2016-04-052021-11-16Solaredge Technologies Ltd.Chain of power devices
    US11018623B2 (en)2016-04-052021-05-25Solaredge Technologies Ltd.Safety switch for photovoltaic systems

    Also Published As

    Publication numberPublication date
    JP2004078950A (en)2004-03-11
    US6919714B2 (en)2005-07-19
    US20040124816A1 (en)2004-07-01
    FR2843464A1 (en)2004-02-13
    JP4361328B2 (en)2009-11-11
    FR2843464B1 (en)2006-09-08

    Similar Documents

    PublicationPublication DateTitle
    EP1388774A1 (en)Source conditioning circuit at a maximum power point
    EP2393193A1 (en)Converter circuit and electronic system comprising such a circuit
    FR2819653A1 (en) CONTROL OF A POWER CONVERTER FOR AN AUTOMATIC SEARCH OF THE MAXIMUM POINT OF POWER
    FR2885237A1 (en) DEVICE FOR CONTROLLING CONTINUOUS VOLTAGE SWITCH CONVERTER AND USE THEREOF FOR MAXIMIZING THE POWER SUPPLIED BY A PHOTOVOLTAIC GENERATOR
    FR2910141A1 (en)Electric energy generating system for e.g. Rosetta space probe, has regulator regulating transconductances of direct voltage intermediate and supplementary converters so as to maximize power generated by photovoltaic solar generators
    EP0847124B1 (en)Emergency power system for providing temporary power in case of failure of a principal power source
    EP1400886A1 (en)Maximum power conditioning circuit for a power source, solar generator and method for conditioning
    FR2832870A1 (en) IMPROVEMENT FOR PHOTOVOLTAIC CHARGER
    EP1274106B1 (en)Supercapacity balancing method and device
    FR2907618A1 (en) METHOD AND SYSTEM FOR IMPROVING THE PRECISION OF A VOLTAGE REGULATOR IN VEHICLE ALTERNATORS
    EP2430738B1 (en)Converter circuit and electronic system including such circuit
    EP2053720A1 (en)Voltage-compensation interface device with low storage of energy in capacitive form and electrical network comprising this device
    EP0820139A2 (en)Continuous power supply circuit controlled by a reversible converter
    FR2913828A1 (en) DC / DC CONVERTER CONTROL BY PULSE WIDTH MODULATION, WITH HIGH OUTPUT AT LOW OUTPUT CURRENT
    EP1825557B1 (en)Method for controlling a rechargeable battery and rechargeable battery for carrying out said method
    WO2007077386A2 (en)Circuit for the current conditioning of a source at the maximum power point
    CA2748227C (en)Electric power conversion system
    EP1774641B1 (en)Monolithic miniature voltage converter with very low input voltage
    FR2686434A1 (en)Device for tracking the point of maximum power of a solar generator supply for satellite
    EP1639667A2 (en)Fuel cell protection
    FR2925783A1 (en)Storage cell group charging/discharging system for e.g. electric traction motor vehicle, has charging/discharging applying current when condition is attained and stopping conditions are not attained such that intensity of current is limited
    FR2492182A1 (en)Optimum current regulator for battery charged from solar panel - uses DC=DC converter under control of operational amplifier circuit to regulate flow of charging current to maximise power transfer
    EP3185389B1 (en)Device and electrical apparatus for generating an electric voltage to an information processing unit, associated information processing electronic system
    WO2024132545A1 (en)Photovoltaic panel solar installation
    FR2629957A1 (en)Regulator of the charging voltage of a battery to the peak value of the alternator voltage

    Legal Events

    DateCodeTitleDescription
    PUAIPublic reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text:ORIGINAL CODE: 0009012

    AKDesignated contracting states

    Kind code of ref document:A1

    Designated state(s):AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

    AXRequest for extension of the european patent

    Extension state:AL LT LV MK

    17PRequest for examination filed

    Effective date:20040811

    AKXDesignation fees paid

    Designated state(s):AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

    17QFirst examination report despatched

    Effective date:20060703

    RAP1Party data changed (applicant data changed or rights of an application transferred)

    Owner name:ALCATEL LUCENT

    RAP1Party data changed (applicant data changed or rights of an application transferred)

    Owner name:ALCATEL LUCENT

    STAAInformation on the status of an ep patent application or granted ep patent

    Free format text:STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

    18DApplication deemed to be withdrawn

    Effective date:20130201


    [8]ページ先頭

    ©2009-2025 Movatter.jp