
Die Erfindung geht aus von einer Antenne zum Abstrahlen vonhochfrequenten Funksignalen nach der Gattung des Hauptanspruchs.Aus der Veröffentlichung Sven Zimmermann: "Investigations ofantennas for an indoor wideband communication System at 60GHz", IEEE Workshop Mobile Millimeter Communications (MMMCOM), Technische Universität Dresden, 12-13.5. 1997, Seiten 89-92, ist bekannt,Antennen für die Kommunikation zwischen einer Basisstationund mehreren Mobilstationen in einem geschlossenen Raum alsLinsenantenne auszubilden. Ziel dieser Antenne ist es, ineinem System zur hochbitratigen Datenübertragung imFrequenzbereich von 60 GHz Funkverbindungen von einer unterder Decke angebrachten Basisstation zu mehreren in einemgeschlossenen Raum befindlichen Mobilstationen aufzubauen.Das am Eingang einer Antenne anliegende hochfrequente Signalder Basisstation wird mit Hilfe der Antenne in den zuversorgenden Raum abgestrahlt. Die Strahlungscharakteristikder Antenne ermöglicht die gleichmäßige Versorgung dergesamten Raumfläche in einer definierten Arbeitshöhe. Unteranderem werden Mobilstationen in weiterer Entfernung mitmehr Sendeleistung versorgt, als Mobilstationen die sich inkurzen Entfernungen unterhalb der sendenden Antennebefinden. Das direkt senkrecht zum Boden gerichtete Signalbesitzt einen kleineren Leistungspegel, als das Signal, das gegen die Begrenzungswände des Raumes abgestrahlt wird. Beider Signalübertragung zwischen Basisstation und Mobilstationsollen Reflektionen durch Mehrwegeausbreitung vermiedenwerden. Ansonsten überlagern sich am Empfangsort einzelneWellen, so daß es je nach Phasenlage bis zur Auslöschungdurch Interferenzen der Gesamtfeldstärke kommt. Dievorgeschlagene Antenne für das Abstrahlen des hochfrequentenSignals der Basisstation besteht aus einer linsenförmigenPlexiglasform, die von einem Wellenleiter gespeist wird. DieGeometrie der äußeren Schale der Linse ist an dieGegebenheiten des Raumes angepaßt, der mit dem HochfrequenzSignal versorgt werden soll. Die abgestrahlten Funksignalesind linear polarisiert. Durch die Geometrie der äußerenSchale der Linse entstehen Reflektionsverluste im Übergangzwischen Linsenmaterial und Luft. Zudem müssen die Antennender mobilen Teilnehmer so ausgerichtet werden, daß sie dielinear polarisierten Signale geeignet empfangen.The invention is based on an antenna for radiatinghigh-frequency radio signals according to the genus of the main claim.From the publication Sven Zimmermann: "Investigations ofantennas for an indoor wideband communication system at 60GHz ", IEEE Workshop Mobile Millimeter Communications (MMMCOM), Technical University Dresden, May 12-13, 1997, pages 89-92, is knownAntennas for communication between a base stationand several mobile stations in a closed room asTraining lens antenna. The aim of this antenna is toa system for high bit rate data transmission inFrequency range of 60 GHz radio connections from one belowbase station attached to the ceiling to multiple in oneto set up enclosed mobile stations.The high-frequency signal at the input of an antennathe base station is connected to the antennaradiated supplying room. The radiation patternthe antenna enables uniform coverage of theentire room area at a defined working height. Underother mobile stations are further away withsupplies more transmission power than mobile stations inshort distances below the transmitting antennaare located. The signal directly perpendicular to the floorhas a lower power level than the signal thatis radiated against the boundary walls of the room. Atthe signal transmission between base station and mobile stationreflections caused by multipath propagation should be avoidedbecome. Otherwise, some overlap at the receiving locationWaves, so that depending on the phase position until extinctiondue to interference of the total field strength. Theproposed antenna for radiating the high frequencyBase station signal consists of a lenticularPlexiglass shape, which is fed by a waveguide. TheGeometry of the outer shell of the lens is attached to theAdapted to the conditions of the room with the high frequencySignal should be supplied. The radiated radio signalsare linearly polarized. Due to the geometry of the outerShell of the lens creates reflection losses in the transitionbetween lens material and air. In addition, the antennasof mobile subscribers are aligned so that they cansuitably receive linearly polarized signals.
Die erfindungsgemäße Antenne mit den kennzeichnenden Merkmalendes Hauptanspruchs hat dem gegenüber den Vorteil, daßdie innere Schale der dielektrischen Linse eine an den Raumangepaßte Geometrie aufweist, während die äußere Schale auseiner Halbkugel besteht. Dadurch ist es einfacher möglicheine Antireflektionsschicht aufzubringen und Reflektionsverlustebeim Übergang von Linsenmaterial und Luft zuvermeiden.The antenna according to the invention with the characteristic featuresof the main claim has the advantage thatthe inner shell of the dielectric lens one to the roomhas adapted geometry, while the outer shella hemisphere. This makes it easier to doto apply an anti-reflective layer and reflection lossesat the transition from lens material to airavoid.
Durch die in den Unteransprüchen aufgeführten Maßnahmen isteine vorteilhafte Weiterbildung und Verbesserung der imHauptanspruch angegebenen Antenne möglich.By the measures listed in the subclaimsan advantageous training and improvement of theMain claim specified antenna possible.
Durch den Einsatz eines Primärstrahlers, der aus einem Hohlleitermit einer Helixantenne besteht, ist es möglich Linsen mit niedrigem εr in kleinen Abmessungen zu gestalten. Es istz.B. dadurch möglich, das Linsenmaterial aus Polyethylenherzustellen. Einen solchen Vorteil erreicht man auch wennman den Primärstrahler aus einem Hohlleiter mit einerPatchantenne ausbildet.By using a primary radiator, which consists of a waveguide with a helical antenna, it is possible to design lenses with a low εr in small dimensions. This makes it possible, for example, to manufacture the lens material from polyethylene. Such an advantage can also be achieved if the primary radiator is formed from a waveguide with a patch antenna.
Vorteilhafter Weise wird durch den Einsatz solcher Primärstrahlereine zirkulare Polarisation der Funksignaleerreicht. Dadurch ist es nicht mehr nötig, daß die Antennender mobilen Stationen eine bestimmte Ausrichtung aufweisen.Durch die Verwendung von Funksignalen mit zirkularer Polarisationwird auch der Effekte der Mehrwegeausbreitung entschärft.Es ist dadurch eine Minimierung von Interferenzeffektenerreichbar. Vorteilhafter Weise wird die elektrischeLinse durch geeignete Maßnahmen entspiegelt. Dazu wirdvorteilhafter Weise eine λ/4-Schicht aus einem geeignetenDielektrikum aufgebracht oder durch eine Rillung erzielt.The use of such primary radiators is advantageouscircular polarization of the radio signalsreached. This means that it is no longer necessary for the antennasof the mobile stations have a certain orientation.By using radio signals with circular polarizationthe effects of multipath propagation are also mitigated.This minimizes interference effectsreachable. The electrical is advantageouslyAnti-glare treatment by appropriate measures. This willadvantageously a λ / 4 layer from a suitableDielectric applied or achieved by scoring.
Ein Ausführungsbeispiel ist in den Zeichnungen dargestelltund in der nachfolgenden Beschreibung näher erläutert. Eszeigt Figur 1 das Kommunikationssystem und Figur 2 dieerfindungsgemäße Antenne.An embodiment is shown in the drawingsand explained in more detail in the following description. ItFigure 1 shows the communication system and Figure 2 shows theantenna according to the invention.
Figur 1 zeigt eine Basisstation 1 und mehrere Mobilstationen2, die über Funksignale miteinander kommunizieren. Diemobilen Stationen 2 befinden sich in einem geschlossenenRaum, der durch eine Wand 4 und eine Decke 3 begrenzt ist.Die von der Basisstation abgestrahlten Funksignale sind zueinem Abstrahlkegel 5 geformt.Figure 1 shows a base station 1 and several
Es ist zu erkennen, daß der Abstrahlkegel so geformt ist,daß möglichst Reflektionen an der Wand 4 vermieden werden.Die Sendeleistung ist innerhalb des Abstrahlkegels unterschiedlich,sie ist im Mantelbereich des Kegels höher, umweiter entfernte Mobilstationen mit Sendeleistung versorgenzu können und verringert sich in der Mitte des Abstrahlkegels.It can be seen that the radiation cone is shaped sothat possible reflections on the wall 4 are avoided.The transmission power is different within the radiation cone,it is higher in the mantle region of the coneProvide more distant mobile stations with transmission powerto be able to and decreases in the middle of the radiation cone.
Figur 2 zeigt die erfindungsgemäße Antenne 6, die aus einemPrimärstrahler 13 und einer dielektrischen Linse 12 besteht.Der Primärstrahler 13 besteht aus einem Hohlleiter 7, an demeine Helixantenne 8 angebracht ist. Der Primärstrahler ragtin die innere Schale der dielektrischen Linse 12 hinein. Dieäußere Schale 10 der dielektrischen Linse 12 ist halbkugelförmigausgebildet. Auf der halbkugelförmigen Oberfläche deräußeren Schale 10 befindet sich die Antireflektionsschicht11.FIG. 2 shows the
Die Antenne der Basisstation besteht aus einem Primärstrahlerund der dielektrischen Linse. Der Primärstrahler 13 wirddirekt durch den Hohlleiter erregt, wodurch keine Übergängeund zusätzliche Schnittstellen notwendig sind. Der Primärstrahlererzeugt ein 60° breites Strahlungsdiagramm mitzirkularer Polarisation, das durch die dielektrische Linse12 zum Solldiagramm geformt wird. Die Form derdielektrischen Linse richtet sich nach der räumlichenGeometrie und kann an jede Raumsituation angepaßt werden. Dazur Strahlformung die äußere und die innere Schale der Linsegenutzt werden kann, sind zwei Freiheitsgrade vorhanden. Umdie einfache Antireflektionsschicht realisieren zu können,ist es notwendig, daß die Wellenfronten desHochfrequenzsignals möglichst parallel zur Linsenoberflächeaus dem Material der äußeren Schale 10 austreten. Deshalbwird für die äußere Schale die halbkugelförmige Geometriegewählt. Die innere, rotationssymetrische Schale 9 kann an verschiedene Raumsituationen angepaßt werden. Die Linseselbst besteht aus einem dielektrischen Material, daseinfach zu bearbeiten ist. Beispielsweise wird Polyethylenmit einem εr = 2,14 verwendet. Als λ/4-Antireflektionsschichtfür den Übergang Dielektrikum-Luftwerden in das Material der Linse symmetrisch Nuteneingedreht. Diese Nuten müssen kleiner als die Wellenlängeim Substrat sein. Durch diese Nuten geeigneter Tiefe und ineinem geeigneten Tastverhältnis wird eine einfache Antireflexschichtohne zusätzliches Aufbringen einer Schichtungmöglich. Beispielsweise wird bei einem Tastverhältnis von1:1 Nuten von 0,5 mm Breite und 1 mm Tiefe in die Linsegeschnitten. Dadurch werden Reflektionsverluste vermiedenund der Wirkungsgrad der Antenne verbessert. Zudem wird dieStrahlungscharakteristik der Antenne geglättet.The antenna of the base station consists of a primary radiator and the dielectric lens. The
| Application Number | Priority Date | Filing Date | Title | 
|---|---|---|---|
| DE19722547ADE19722547A1 (en) | 1997-05-30 | 1997-05-30 | Antenna for radiating high-frequency radio signals | 
| DE19722547 | 1997-05-30 | ||
| PCT/DE1998/000615WO1998054788A1 (en) | 1997-05-30 | 1998-03-03 | Antenna for high frequency radio signal transmission | 
| Publication Number | Publication Date | 
|---|---|
| EP0985248A1 EP0985248A1 (en) | 2000-03-15 | 
| EP0985248B1true EP0985248B1 (en) | 2001-10-24 | 
| Application Number | Title | Priority Date | Filing Date | 
|---|---|---|---|
| EP98916829AExpired - LifetimeEP0985248B1 (en) | 1997-05-30 | 1998-03-03 | Antenna for high frequency radio signal transmission | 
| Country | Link | 
|---|---|
| US (1) | US6310587B1 (en) | 
| EP (1) | EP0985248B1 (en) | 
| JP (1) | JP2002500835A (en) | 
| KR (1) | KR100552258B1 (en) | 
| DE (2) | DE19722547A1 (en) | 
| ES (1) | ES2166599T3 (en) | 
| TW (1) | TW413965B (en) | 
| WO (1) | WO1998054788A1 (en) | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| US7301504B2 (en) | 2004-07-14 | 2007-11-27 | Ems Technologies, Inc. | Mechanical scanning feed assembly for a spherical lens antenna | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| US7142812B1 (en)* | 2000-06-13 | 2006-11-28 | Sony Deutschland Gmbh | Wireless transmission system | 
| JP3613147B2 (en)* | 2000-06-22 | 2005-01-26 | 日本電気株式会社 | Antenna device | 
| WO2004088793A1 (en)* | 2003-03-31 | 2004-10-14 | Bae Systems Plc | Low-profile lens antenna | 
| US6845279B1 (en) | 2004-02-06 | 2005-01-18 | Integrated Technologies, Inc. | Error proofing system for portable tools | 
| EP1657786A1 (en)* | 2004-11-16 | 2006-05-17 | BAE Systems PLC | Lens antenna | 
| FR2896057A1 (en)* | 2006-01-12 | 2007-07-13 | St Microelectronics Sa | Random number generating method for e.g. communication interface, involves generating oscillator signals at same median frequency and having distinct phase, and sampling state of each signal at appearance of binary signal | 
| US8009113B2 (en)* | 2007-01-25 | 2011-08-30 | Cushcraft Corporation | System and method for focusing antenna signal transmission | 
| US20080180336A1 (en)* | 2007-01-31 | 2008-07-31 | Bauregger Frank N | Lensed antenna methods and systems for navigation or other signals | 
| US7912449B2 (en)* | 2007-06-14 | 2011-03-22 | Broadcom Corporation | Method and system for 60 GHz location determination and coordination of WLAN/WPAN/GPS multimode devices | 
| JP4862883B2 (en) | 2008-12-11 | 2012-01-25 | 株式会社デンソー | Dielectric loaded antenna | 
| WO2012002162A1 (en)* | 2010-06-29 | 2012-01-05 | シャープ株式会社 | Electronic device, wireless power transmission device | 
| DE102012003398B4 (en)* | 2012-02-23 | 2015-06-25 | Krohne Messtechnik Gmbh | According to the radar principle working level gauge | 
| WO2014125302A1 (en)* | 2013-02-18 | 2014-08-21 | Bae Systems Plc | Integrated lighting and network interface device | 
| GB2510885B (en)* | 2013-02-18 | 2020-02-19 | Bae Systems Plc | Integrated lighting and network interface device | 
| EP2768074A1 (en)* | 2013-02-18 | 2014-08-20 | BAE Systems PLC | Integrated lighting and network interface device | 
| EP3616265A4 (en)* | 2017-04-24 | 2021-01-13 | Cohere Technologies, Inc. | Multibeam antenna designs and operation | 
| DE102019215718A1 (en)* | 2019-10-14 | 2021-04-15 | Airbus Defence and Space GmbH | Antenna device for a vehicle and a vehicle with an antenna device | 
| WO2024067990A1 (en)* | 2022-09-30 | 2024-04-04 | Huawei Technologies Co., Ltd. | Reconfigurable mimo sensor antenna | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| US3755815A (en)* | 1971-12-20 | 1973-08-28 | Sperry Rand Corp | Phased array fed lens antenna | 
| US4458249A (en)* | 1982-02-22 | 1984-07-03 | The United States Of America As Represented By The Secretary Of The Navy | Multi-beam, multi-lens microwave antenna providing hemispheric coverage | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| US2887684A (en)* | 1954-02-01 | 1959-05-19 | Hughes Aircraft Co | Dielectric lens for conical scanning | 
| US3886561A (en) | 1972-12-15 | 1975-05-27 | Communications Satellite Corp | Compensated zoned dielectric lens antenna | 
| US3917773A (en)* | 1973-12-26 | 1975-11-04 | Us Navy | Method for fabricating a shaped dielectric antenna lens | 
| US4179699A (en)* | 1977-07-05 | 1979-12-18 | The Boeing Company | Low reflectivity radome | 
| GB2029114B (en) | 1978-08-25 | 1982-12-01 | Plessey Inc | Dielectric lens | 
| GB2251519B (en) | 1985-05-03 | 1992-11-25 | British Aerospace | Microwave/millimetric waveband array receivers | 
| US4755820A (en)* | 1985-08-08 | 1988-07-05 | The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland | Antenna device | 
| JPH0310407A (en)* | 1989-06-07 | 1991-01-18 | Nippondenso Co Ltd | Radome for planer antenna | 
| US5017939A (en)* | 1989-09-26 | 1991-05-21 | Hughes Aircraft Company | Two layer matching dielectrics for radomes and lenses for wide angles of incidence | 
| JPH03179805A (en)* | 1989-12-07 | 1991-08-05 | Murata Mfg Co Ltd | Composite material for dielectric lens antenna | 
| US5162806A (en)* | 1990-02-05 | 1992-11-10 | Raytheon Company | Planar antenna with lens for controlling beam widths from two portions thereof at different frequencies | 
| US5121129A (en)* | 1990-03-14 | 1992-06-09 | Space Systems/Loral, Inc. | EHF omnidirectional antenna | 
| ES2080501T3 (en)* | 1991-05-13 | 1996-02-01 | Thomson Multimedia Sa | ANTENNA SYSTEM FOR RADIO WAVES. | 
| DE19530065A1 (en) | 1995-07-01 | 1997-01-09 | Bosch Gmbh Robert | Monostatic FMCW radar sensor | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| US3755815A (en)* | 1971-12-20 | 1973-08-28 | Sperry Rand Corp | Phased array fed lens antenna | 
| US4458249A (en)* | 1982-02-22 | 1984-07-03 | The United States Of America As Represented By The Secretary Of The Navy | Multi-beam, multi-lens microwave antenna providing hemispheric coverage | 
| Title | 
|---|
| Fernandes, C.A.; Frances, P.O.; Barbosa, A.M.: "Shaped coverage of elongated cells at millimetrewaves using a dielectric lens antennas", Proceedings of the European Microwave Conference, GB, Swanley, Nexus Media, ISBN 1-899919-15-5, Vol.: Conf. 25, Veröffentlichungsdatum: 4.9.1995, Seiten 66-70, X* | 
| Johnson, R.C.; Jasik, H.: Antenna Engineering Handbook, 2. Auflage, McGraw-Hill Book Company, 1984, Kapitel 16-9 "Dome Antennas", Seiten 16-23 bis 16-25* | 
| Sven Zimmermann: "Investigations of Antennas for an Indoor Wideband Communication System at 60 GHz", IEEE Workshop Mobile Millimeter Communications (MMMCOM), Dresden University of Technology, Commuincatons Laboratory, D-01062 Dresden, 12.-13.5.1997, Seiten 89-92* | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| US7301504B2 (en) | 2004-07-14 | 2007-11-27 | Ems Technologies, Inc. | Mechanical scanning feed assembly for a spherical lens antenna | 
| Publication number | Publication date | 
|---|---|
| WO1998054788A1 (en) | 1998-12-03 | 
| KR20010020361A (en) | 2001-03-15 | 
| DE19722547A1 (en) | 1998-12-03 | 
| DE59801877D1 (en) | 2001-11-29 | 
| US6310587B1 (en) | 2001-10-30 | 
| EP0985248A1 (en) | 2000-03-15 | 
| ES2166599T3 (en) | 2002-04-16 | 
| KR100552258B1 (en) | 2006-02-15 | 
| TW413965B (en) | 2000-12-01 | 
| JP2002500835A (en) | 2002-01-08 | 
| Publication | Publication Date | Title | 
|---|---|---|
| EP0985248B1 (en) | Antenna for high frequency radio signal transmission | |
| Kumar et al. | Multiple‐input‐multiple‐output/diversity antenna with dual band‐notched characteristics for ultra‐wideband applications | |
| EP3477771B1 (en) | Printed dipole antenna, array antenna, and communications device | |
| KR20160060421A (en) | Reradiate repeater | |
| CN107978858A (en) | A kind of directional diagram reconstructable aerial for working in 60GHz frequency ranges | |
| CN113206384B (en) | High isolation transmit and receive simultaneous antenna in C-band | |
| CN109888466A (en) | A Novel Feeded Ultra-Low Profile Surface Wave Antenna | |
| Khan et al. | A dual-band quad-port circularly polarized MIMO antenna based on a modified Jerusalem-cross absorber for wireless communication systems | |
| KR20190036231A (en) | Antenna apparatus including phase shifter | |
| Rahim et al. | Design and analysis of ultra wide band planar monopole antenna | |
| US11189939B2 (en) | Dual-polarized wide-bandwidth antenna | |
| US20070109211A1 (en) | Antennas Supporting High Density of Wireless Users in Specific Directions | |
| MXPA06001116A (en) | Diversity reception slotted flat-plate antenna. | |
| CN209804904U (en) | Antenna system and mobile terminal suitable for 5G communication | |
| Marantis et al. | The pattern selection capability of a printed ESPAR antenna | |
| US7158090B2 (en) | Antenna for a wireless network | |
| CN209766653U (en) | broadband panel antenna with low sidelobe and no grating lobe | |
| CN113161747A (en) | Coverage self-adaptive wave width adjustable spotlight antenna | |
| WO2008055526A1 (en) | Antenna device, antenna system and method of operation | |
| DE10150086A1 (en) | Group antenna for military or civil radar device has array of openings in first conductive body and aligned recesses in opposing surface of second conductive body | |
| OBIANIME et al. | Radiation efficiency of multiband antenna for wireless communication for improved signal gain using Friis transmission technique | |
| Erni et al. | Design and implementation of a 3D beam steering antenna for cellular frequencies | |
| Chou et al. | Design of shaped reflector antennas for the applications of outdoor base station antennas in LTE mobile communications | |
| Cella et al. | Mm-wave short range outdoor links with phased arrays | |
| CN112350055A (en) | X-waveband shaped beam antenna | 
| Date | Code | Title | Description | 
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase | Free format text:ORIGINAL CODE: 0009012 | |
| 17P | Request for examination filed | Effective date:19991230 | |
| AK | Designated contracting states | Kind code of ref document:A1 Designated state(s):CH DE ES FR GB IT LI SE | |
| 17Q | First examination report despatched | Effective date:20000804 | |
| GRAG | Despatch of communication of intention to grant | Free format text:ORIGINAL CODE: EPIDOS AGRA | |
| GRAG | Despatch of communication of intention to grant | Free format text:ORIGINAL CODE: EPIDOS AGRA | |
| GRAH | Despatch of communication of intention to grant a patent | Free format text:ORIGINAL CODE: EPIDOS IGRA | |
| GRAH | Despatch of communication of intention to grant a patent | Free format text:ORIGINAL CODE: EPIDOS IGRA | |
| GRAA | (expected) grant | Free format text:ORIGINAL CODE: 0009210 | |
| AK | Designated contracting states | Kind code of ref document:B1 Designated state(s):CH DE ES FR GB IT LI SE | |
| REG | Reference to a national code | Ref country code:CH Ref legal event code:EP | |
| REG | Reference to a national code | Ref country code:CH Ref legal event code:NV Representative=s name:SCINTILLA AG, DIREKTION | |
| REF | Corresponds to: | Ref document number:59801877 Country of ref document:DE Date of ref document:20011129 | |
| REG | Reference to a national code | Ref country code:GB Ref legal event code:IF02 | |
| ET | Fr: translation filed | ||
| GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | Effective date:20020122 | |
| REG | Reference to a national code | Ref country code:ES Ref legal event code:FG2A Ref document number:2166599 Country of ref document:ES Kind code of ref document:T3 | |
| PLBE | No opposition filed within time limit | Free format text:ORIGINAL CODE: 0009261 | |
| STAA | Information on the status of an ep patent application or granted ep patent | Free format text:STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT | |
| 26N | No opposition filed | ||
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] | Ref country code:ES Payment date:20090325 Year of fee payment:12 | |
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] | Ref country code:GB Payment date:20090324 Year of fee payment:12 Ref country code:CH Payment date:20090325 Year of fee payment:12 | |
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] | Ref country code:SE Payment date:20090325 Year of fee payment:12 Ref country code:IT Payment date:20090326 Year of fee payment:12 | |
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] | Ref country code:FR Payment date:20090318 Year of fee payment:12 | |
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] | Ref country code:DE Payment date:20090624 Year of fee payment:12 | |
| REG | Reference to a national code | Ref country code:CH Ref legal event code:PL | |
| EUG | Se: european patent has lapsed | ||
| GBPC | Gb: european patent ceased through non-payment of renewal fee | Effective date:20100303 | |
| REG | Reference to a national code | Ref country code:FR Ref legal event code:ST Effective date:20101130 | |
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] | Ref country code:FR Free format text:LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date:20100331 | |
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] | Ref country code:LI Free format text:LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date:20100331 Ref country code:DE Free format text:LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date:20101001 Ref country code:CH Free format text:LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date:20100331 | |
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] | Ref country code:GB Free format text:LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date:20100303 Ref country code:IT Free format text:LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date:20100303 | |
| REG | Reference to a national code | Ref country code:ES Ref legal event code:FD2A Effective date:20110419 | |
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] | Ref country code:ES Free format text:LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date:20110404 | |
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] | Ref country code:ES Free format text:LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date:20100304 | |
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] | Ref country code:SE Free format text:LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date:20100304 |