Movatterモバイル変換


[0]ホーム

URL:


EP0985248B1 - Antenna for high frequency radio signal transmission - Google Patents

Antenna for high frequency radio signal transmission
Download PDF

Info

Publication number
EP0985248B1
EP0985248B1EP98916829AEP98916829AEP0985248B1EP 0985248 B1EP0985248 B1EP 0985248B1EP 98916829 AEP98916829 AEP 98916829AEP 98916829 AEP98916829 AEP 98916829AEP 0985248 B1EP0985248 B1EP 0985248B1
Authority
EP
European Patent Office
Prior art keywords
antenna
antenna according
waveguide
lens
outer shell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP98916829A
Other languages
German (de)
French (fr)
Other versions
EP0985248A1 (en
Inventor
Guido Villino
Friedrich Landstorfer
Marcus Maier
Hans-Oliver Ruoss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbHfiledCriticalRobert Bosch GmbH
Publication of EP0985248A1publicationCriticalpatent/EP0985248A1/en
Application grantedgrantedCritical
Publication of EP0985248B1publicationCriticalpatent/EP0985248B1/en
Anticipated expirationlegal-statusCritical
Expired - Lifetimelegal-statusCriticalCurrent

Links

Images

Classifications

Definitions

Landscapes

Description

Translated fromGerman
Stand der TechnikState of the art

Die Erfindung geht aus von einer Antenne zum Abstrahlen vonhochfrequenten Funksignalen nach der Gattung des Hauptanspruchs.Aus der Veröffentlichung Sven Zimmermann: "Investigations ofantennas for an indoor wideband communication System at 60GHz", IEEE Workshop Mobile Millimeter Communications (MMMCOM), Technische Universität Dresden, 12-13.5. 1997, Seiten 89-92, ist bekannt,Antennen für die Kommunikation zwischen einer Basisstationund mehreren Mobilstationen in einem geschlossenen Raum alsLinsenantenne auszubilden. Ziel dieser Antenne ist es, ineinem System zur hochbitratigen Datenübertragung imFrequenzbereich von 60 GHz Funkverbindungen von einer unterder Decke angebrachten Basisstation zu mehreren in einemgeschlossenen Raum befindlichen Mobilstationen aufzubauen.Das am Eingang einer Antenne anliegende hochfrequente Signalder Basisstation wird mit Hilfe der Antenne in den zuversorgenden Raum abgestrahlt. Die Strahlungscharakteristikder Antenne ermöglicht die gleichmäßige Versorgung dergesamten Raumfläche in einer definierten Arbeitshöhe. Unteranderem werden Mobilstationen in weiterer Entfernung mitmehr Sendeleistung versorgt, als Mobilstationen die sich inkurzen Entfernungen unterhalb der sendenden Antennebefinden. Das direkt senkrecht zum Boden gerichtete Signalbesitzt einen kleineren Leistungspegel, als das Signal, das gegen die Begrenzungswände des Raumes abgestrahlt wird. Beider Signalübertragung zwischen Basisstation und Mobilstationsollen Reflektionen durch Mehrwegeausbreitung vermiedenwerden. Ansonsten überlagern sich am Empfangsort einzelneWellen, so daß es je nach Phasenlage bis zur Auslöschungdurch Interferenzen der Gesamtfeldstärke kommt. Dievorgeschlagene Antenne für das Abstrahlen des hochfrequentenSignals der Basisstation besteht aus einer linsenförmigenPlexiglasform, die von einem Wellenleiter gespeist wird. DieGeometrie der äußeren Schale der Linse ist an dieGegebenheiten des Raumes angepaßt, der mit dem HochfrequenzSignal versorgt werden soll. Die abgestrahlten Funksignalesind linear polarisiert. Durch die Geometrie der äußerenSchale der Linse entstehen Reflektionsverluste im Übergangzwischen Linsenmaterial und Luft. Zudem müssen die Antennender mobilen Teilnehmer so ausgerichtet werden, daß sie dielinear polarisierten Signale geeignet empfangen.The invention is based on an antenna for radiatinghigh-frequency radio signals according to the genus of the main claim.From the publication Sven Zimmermann: "Investigations ofantennas for an indoor wideband communication system at 60GHz ", IEEE Workshop Mobile Millimeter Communications (MMMCOM), Technical University Dresden, May 12-13, 1997, pages 89-92, is knownAntennas for communication between a base stationand several mobile stations in a closed room asTraining lens antenna. The aim of this antenna is toa system for high bit rate data transmission inFrequency range of 60 GHz radio connections from one belowbase station attached to the ceiling to multiple in oneto set up enclosed mobile stations.The high-frequency signal at the input of an antennathe base station is connected to the antennaradiated supplying room. The radiation patternthe antenna enables uniform coverage of theentire room area at a defined working height. Underother mobile stations are further away withsupplies more transmission power than mobile stations inshort distances below the transmitting antennaare located. The signal directly perpendicular to the floorhas a lower power level than the signal thatis radiated against the boundary walls of the room. Atthe signal transmission between base station and mobile stationreflections caused by multipath propagation should be avoidedbecome. Otherwise, some overlap at the receiving locationWaves, so that depending on the phase position until extinctiondue to interference of the total field strength. Theproposed antenna for radiating the high frequencyBase station signal consists of a lenticularPlexiglass shape, which is fed by a waveguide. TheGeometry of the outer shell of the lens is attached to theAdapted to the conditions of the room with the high frequencySignal should be supplied. The radiated radio signalsare linearly polarized. Due to the geometry of the outerShell of the lens creates reflection losses in the transitionbetween lens material and air. In addition, the antennasof mobile subscribers are aligned so that they cansuitably receive linearly polarized signals.

Vorteile der ErfindungAdvantages of the invention

Die erfindungsgemäße Antenne mit den kennzeichnenden Merkmalendes Hauptanspruchs hat dem gegenüber den Vorteil, daßdie innere Schale der dielektrischen Linse eine an den Raumangepaßte Geometrie aufweist, während die äußere Schale auseiner Halbkugel besteht. Dadurch ist es einfacher möglicheine Antireflektionsschicht aufzubringen und Reflektionsverlustebeim Übergang von Linsenmaterial und Luft zuvermeiden.The antenna according to the invention with the characteristic featuresof the main claim has the advantage thatthe inner shell of the dielectric lens one to the roomhas adapted geometry, while the outer shella hemisphere. This makes it easier to doto apply an anti-reflective layer and reflection lossesat the transition from lens material to airavoid.

Durch die in den Unteransprüchen aufgeführten Maßnahmen isteine vorteilhafte Weiterbildung und Verbesserung der imHauptanspruch angegebenen Antenne möglich.By the measures listed in the subclaimsan advantageous training and improvement of theMain claim specified antenna possible.

Durch den Einsatz eines Primärstrahlers, der aus einem Hohlleitermit einer Helixantenne besteht, ist es möglich Linsen mit niedrigem εr in kleinen Abmessungen zu gestalten. Es istz.B. dadurch möglich, das Linsenmaterial aus Polyethylenherzustellen. Einen solchen Vorteil erreicht man auch wennman den Primärstrahler aus einem Hohlleiter mit einerPatchantenne ausbildet.By using a primary radiator, which consists of a waveguide with a helical antenna, it is possible to design lenses with a low εr in small dimensions. This makes it possible, for example, to manufacture the lens material from polyethylene. Such an advantage can also be achieved if the primary radiator is formed from a waveguide with a patch antenna.

Vorteilhafter Weise wird durch den Einsatz solcher Primärstrahlereine zirkulare Polarisation der Funksignaleerreicht. Dadurch ist es nicht mehr nötig, daß die Antennender mobilen Stationen eine bestimmte Ausrichtung aufweisen.Durch die Verwendung von Funksignalen mit zirkularer Polarisationwird auch der Effekte der Mehrwegeausbreitung entschärft.Es ist dadurch eine Minimierung von Interferenzeffektenerreichbar. Vorteilhafter Weise wird die elektrischeLinse durch geeignete Maßnahmen entspiegelt. Dazu wirdvorteilhafter Weise eine λ/4-Schicht aus einem geeignetenDielektrikum aufgebracht oder durch eine Rillung erzielt.The use of such primary radiators is advantageouscircular polarization of the radio signalsreached. This means that it is no longer necessary for the antennasof the mobile stations have a certain orientation.By using radio signals with circular polarizationthe effects of multipath propagation are also mitigated.This minimizes interference effectsreachable. The electrical is advantageouslyAnti-glare treatment by appropriate measures. This willadvantageously a λ / 4 layer from a suitableDielectric applied or achieved by scoring.

Zeichnungendrawings

Ein Ausführungsbeispiel ist in den Zeichnungen dargestelltund in der nachfolgenden Beschreibung näher erläutert. Eszeigt Figur 1 das Kommunikationssystem und Figur 2 dieerfindungsgemäße Antenne.An embodiment is shown in the drawingsand explained in more detail in the following description. ItFigure 1 shows the communication system and Figure 2 shows theantenna according to the invention.

Beschreibung des AusführungsbeispielsDescription of the embodiment

Figur 1 zeigt eine Basisstation 1 und mehrere Mobilstationen2, die über Funksignale miteinander kommunizieren. Diemobilen Stationen 2 befinden sich in einem geschlossenenRaum, der durch eine Wand 4 und eine Decke 3 begrenzt ist.Die von der Basisstation abgestrahlten Funksignale sind zueinem Abstrahlkegel 5 geformt.Figure 1 shows a base station 1 and severalmobile stations2, which communicate with each other via radio signals. Themobile stations 2 are in a closedSpace that is delimited by a wall 4 and aceiling 3.The radio signals emitted by the base station are closedaradiation cone 5 shaped.

Es ist zu erkennen, daß der Abstrahlkegel so geformt ist,daß möglichst Reflektionen an der Wand 4 vermieden werden.Die Sendeleistung ist innerhalb des Abstrahlkegels unterschiedlich,sie ist im Mantelbereich des Kegels höher, umweiter entfernte Mobilstationen mit Sendeleistung versorgenzu können und verringert sich in der Mitte des Abstrahlkegels.It can be seen that the radiation cone is shaped sothat possible reflections on the wall 4 are avoided.The transmission power is different within the radiation cone,it is higher in the mantle region of the coneProvide more distant mobile stations with transmission powerto be able to and decreases in the middle of the radiation cone.

Figur 2 zeigt die erfindungsgemäße Antenne 6, die aus einemPrimärstrahler 13 und einer dielektrischen Linse 12 besteht.Der Primärstrahler 13 besteht aus einem Hohlleiter 7, an demeine Helixantenne 8 angebracht ist. Der Primärstrahler ragtin die innere Schale der dielektrischen Linse 12 hinein. Dieäußere Schale 10 der dielektrischen Linse 12 ist halbkugelförmigausgebildet. Auf der halbkugelförmigen Oberfläche deräußeren Schale 10 befindet sich die Antireflektionsschicht11.FIG. 2 shows theantenna 6 according to the invention, which consists of aPrimary radiator 13 and adielectric lens 12 is made.Theprimary radiator 13 consists of a waveguide 7 on whicha helical antenna 8 is attached. The primary radiator protrudesinto the inner shell of thedielectric lens 12. TheOuter shell 10 ofdielectric lens 12 is hemisphericaleducated. On the hemispherical surface of theouter shell 10 is theanti-reflective layer11.

Die Antenne der Basisstation besteht aus einem Primärstrahlerund der dielektrischen Linse. Der Primärstrahler 13 wirddirekt durch den Hohlleiter erregt, wodurch keine Übergängeund zusätzliche Schnittstellen notwendig sind. Der Primärstrahlererzeugt ein 60° breites Strahlungsdiagramm mitzirkularer Polarisation, das durch die dielektrische Linse12 zum Solldiagramm geformt wird. Die Form derdielektrischen Linse richtet sich nach der räumlichenGeometrie und kann an jede Raumsituation angepaßt werden. Dazur Strahlformung die äußere und die innere Schale der Linsegenutzt werden kann, sind zwei Freiheitsgrade vorhanden. Umdie einfache Antireflektionsschicht realisieren zu können,ist es notwendig, daß die Wellenfronten desHochfrequenzsignals möglichst parallel zur Linsenoberflächeaus dem Material der äußeren Schale 10 austreten. Deshalbwird für die äußere Schale die halbkugelförmige Geometriegewählt. Die innere, rotationssymetrische Schale 9 kann an verschiedene Raumsituationen angepaßt werden. Die Linseselbst besteht aus einem dielektrischen Material, daseinfach zu bearbeiten ist. Beispielsweise wird Polyethylenmit einem εr = 2,14 verwendet. Als λ/4-Antireflektionsschichtfür den Übergang Dielektrikum-Luftwerden in das Material der Linse symmetrisch Nuteneingedreht. Diese Nuten müssen kleiner als die Wellenlängeim Substrat sein. Durch diese Nuten geeigneter Tiefe und ineinem geeigneten Tastverhältnis wird eine einfache Antireflexschichtohne zusätzliches Aufbringen einer Schichtungmöglich. Beispielsweise wird bei einem Tastverhältnis von1:1 Nuten von 0,5 mm Breite und 1 mm Tiefe in die Linsegeschnitten. Dadurch werden Reflektionsverluste vermiedenund der Wirkungsgrad der Antenne verbessert. Zudem wird dieStrahlungscharakteristik der Antenne geglättet.The antenna of the base station consists of a primary radiator and the dielectric lens. Theprimary radiator 13 is excited directly by the waveguide, so that no transitions and additional interfaces are necessary. The primary radiator generates a 60 ° wide radiation diagram with circular polarization, which is shaped by thedielectric lens 12 to form the target diagram. The shape of the dielectric lens depends on the spatial geometry and can be adapted to any room situation. Since the outer and inner shell of the lens can be used for beam shaping, there are two degrees of freedom. In order to be able to implement the simple anti-reflection layer, it is necessary that the wave fronts of the high-frequency signal emerge from the material of theouter shell 10 as parallel as possible to the lens surface. Therefore the hemispherical geometry is chosen for the outer shell. The inner, rotationally symmetrical shell 9 can be adapted to different spatial situations. The lens itself is made of a dielectric material that is easy to machine. For example, polyethylene with an εr = 2.14 is used. As a λ / 4 anti-reflection layer for the dielectric-air transition, grooves are screwed symmetrically into the material of the lens. These grooves must be smaller than the wavelength in the substrate. These grooves of suitable depth and in a suitable duty cycle make a simple anti-reflective layer possible without the additional application of a layer. For example, with a duty cycle of 1: 1, grooves 0.5 mm wide and 1 mm deep are cut into the lens. This avoids reflection losses and improves the efficiency of the antenna. In addition, the radiation characteristics of the antenna are smoothed.

Claims (8)

EP98916829A1997-05-301998-03-03Antenna for high frequency radio signal transmissionExpired - LifetimeEP0985248B1 (en)

Applications Claiming Priority (3)

Application NumberPriority DateFiling DateTitle
DE19722547ADE19722547A1 (en)1997-05-301997-05-30 Antenna for radiating high-frequency radio signals
DE197225471997-05-30
PCT/DE1998/000615WO1998054788A1 (en)1997-05-301998-03-03Antenna for high frequency radio signal transmission

Publications (2)

Publication NumberPublication Date
EP0985248A1 EP0985248A1 (en)2000-03-15
EP0985248B1true EP0985248B1 (en)2001-10-24

Family

ID=7830857

Family Applications (1)

Application NumberTitlePriority DateFiling Date
EP98916829AExpired - LifetimeEP0985248B1 (en)1997-05-301998-03-03Antenna for high frequency radio signal transmission

Country Status (8)

CountryLink
US (1)US6310587B1 (en)
EP (1)EP0985248B1 (en)
JP (1)JP2002500835A (en)
KR (1)KR100552258B1 (en)
DE (2)DE19722547A1 (en)
ES (1)ES2166599T3 (en)
TW (1)TW413965B (en)
WO (1)WO1998054788A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US7301504B2 (en)2004-07-142007-11-27Ems Technologies, Inc.Mechanical scanning feed assembly for a spherical lens antenna

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US7142812B1 (en)*2000-06-132006-11-28Sony Deutschland GmbhWireless transmission system
JP3613147B2 (en)*2000-06-222005-01-26日本電気株式会社 Antenna device
WO2004088793A1 (en)*2003-03-312004-10-14Bae Systems PlcLow-profile lens antenna
US6845279B1 (en)2004-02-062005-01-18Integrated Technologies, Inc.Error proofing system for portable tools
EP1657786A1 (en)*2004-11-162006-05-17BAE Systems PLCLens antenna
FR2896057A1 (en)*2006-01-122007-07-13St Microelectronics SaRandom number generating method for e.g. communication interface, involves generating oscillator signals at same median frequency and having distinct phase, and sampling state of each signal at appearance of binary signal
US8009113B2 (en)*2007-01-252011-08-30Cushcraft CorporationSystem and method for focusing antenna signal transmission
US20080180336A1 (en)*2007-01-312008-07-31Bauregger Frank NLensed antenna methods and systems for navigation or other signals
US7912449B2 (en)*2007-06-142011-03-22Broadcom CorporationMethod and system for 60 GHz location determination and coordination of WLAN/WPAN/GPS multimode devices
JP4862883B2 (en)2008-12-112012-01-25株式会社デンソー Dielectric loaded antenna
WO2012002162A1 (en)*2010-06-292012-01-05シャープ株式会社Electronic device, wireless power transmission device
DE102012003398B4 (en)*2012-02-232015-06-25Krohne Messtechnik Gmbh According to the radar principle working level gauge
WO2014125302A1 (en)*2013-02-182014-08-21Bae Systems PlcIntegrated lighting and network interface device
GB2510885B (en)*2013-02-182020-02-19Bae Systems PlcIntegrated lighting and network interface device
EP2768074A1 (en)*2013-02-182014-08-20BAE Systems PLCIntegrated lighting and network interface device
EP3616265A4 (en)*2017-04-242021-01-13Cohere Technologies, Inc.Multibeam antenna designs and operation
DE102019215718A1 (en)*2019-10-142021-04-15Airbus Defence and Space GmbH Antenna device for a vehicle and a vehicle with an antenna device
WO2024067990A1 (en)*2022-09-302024-04-04Huawei Technologies Co., Ltd.Reconfigurable mimo sensor antenna

Citations (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US3755815A (en)*1971-12-201973-08-28Sperry Rand CorpPhased array fed lens antenna
US4458249A (en)*1982-02-221984-07-03The United States Of America As Represented By The Secretary Of The NavyMulti-beam, multi-lens microwave antenna providing hemispheric coverage

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US2887684A (en)*1954-02-011959-05-19Hughes Aircraft CoDielectric lens for conical scanning
US3886561A (en)1972-12-151975-05-27Communications Satellite CorpCompensated zoned dielectric lens antenna
US3917773A (en)*1973-12-261975-11-04Us NavyMethod for fabricating a shaped dielectric antenna lens
US4179699A (en)*1977-07-051979-12-18The Boeing CompanyLow reflectivity radome
GB2029114B (en)1978-08-251982-12-01Plessey IncDielectric lens
GB2251519B (en)1985-05-031992-11-25British AerospaceMicrowave/millimetric waveband array receivers
US4755820A (en)*1985-08-081988-07-05The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern IrelandAntenna device
JPH0310407A (en)*1989-06-071991-01-18Nippondenso Co LtdRadome for planer antenna
US5017939A (en)*1989-09-261991-05-21Hughes Aircraft CompanyTwo layer matching dielectrics for radomes and lenses for wide angles of incidence
JPH03179805A (en)*1989-12-071991-08-05Murata Mfg Co LtdComposite material for dielectric lens antenna
US5162806A (en)*1990-02-051992-11-10Raytheon CompanyPlanar antenna with lens for controlling beam widths from two portions thereof at different frequencies
US5121129A (en)*1990-03-141992-06-09Space Systems/Loral, Inc.EHF omnidirectional antenna
ES2080501T3 (en)*1991-05-131996-02-01Thomson Multimedia Sa ANTENNA SYSTEM FOR RADIO WAVES.
DE19530065A1 (en)1995-07-011997-01-09Bosch Gmbh Robert Monostatic FMCW radar sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US3755815A (en)*1971-12-201973-08-28Sperry Rand CorpPhased array fed lens antenna
US4458249A (en)*1982-02-221984-07-03The United States Of America As Represented By The Secretary Of The NavyMulti-beam, multi-lens microwave antenna providing hemispheric coverage

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Fernandes, C.A.; Frances, P.O.; Barbosa, A.M.: "Shaped coverage of elongated cells at millimetrewaves using a dielectric lens antennas", Proceedings of the European Microwave Conference, GB, Swanley, Nexus Media, ISBN 1-899919-15-5, Vol.: Conf. 25, Veröffentlichungsdatum: 4.9.1995, Seiten 66-70, X*
Johnson, R.C.; Jasik, H.: Antenna Engineering Handbook, 2. Auflage, McGraw-Hill Book Company, 1984, Kapitel 16-9 "Dome Antennas", Seiten 16-23 bis 16-25*
Sven Zimmermann: "Investigations of Antennas for an Indoor Wideband Communication System at 60 GHz", IEEE Workshop Mobile Millimeter Communications (MMMCOM), Dresden University of Technology, Commuincatons Laboratory, D-01062 Dresden, 12.-13.5.1997, Seiten 89-92*

Cited By (1)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US7301504B2 (en)2004-07-142007-11-27Ems Technologies, Inc.Mechanical scanning feed assembly for a spherical lens antenna

Also Published As

Publication numberPublication date
WO1998054788A1 (en)1998-12-03
KR20010020361A (en)2001-03-15
DE19722547A1 (en)1998-12-03
DE59801877D1 (en)2001-11-29
US6310587B1 (en)2001-10-30
EP0985248A1 (en)2000-03-15
ES2166599T3 (en)2002-04-16
KR100552258B1 (en)2006-02-15
TW413965B (en)2000-12-01
JP2002500835A (en)2002-01-08

Similar Documents

PublicationPublication DateTitle
EP0985248B1 (en)Antenna for high frequency radio signal transmission
Kumar et al.Multiple‐input‐multiple‐output/diversity antenna with dual band‐notched characteristics for ultra‐wideband applications
EP3477771B1 (en)Printed dipole antenna, array antenna, and communications device
KR20160060421A (en)Reradiate repeater
CN107978858A (en)A kind of directional diagram reconstructable aerial for working in 60GHz frequency ranges
CN113206384B (en) High isolation transmit and receive simultaneous antenna in C-band
CN109888466A (en) A Novel Feeded Ultra-Low Profile Surface Wave Antenna
Khan et al.A dual-band quad-port circularly polarized MIMO antenna based on a modified Jerusalem-cross absorber for wireless communication systems
KR20190036231A (en)Antenna apparatus including phase shifter
Rahim et al.Design and analysis of ultra wide band planar monopole antenna
US11189939B2 (en)Dual-polarized wide-bandwidth antenna
US20070109211A1 (en)Antennas Supporting High Density of Wireless Users in Specific Directions
MXPA06001116A (en)Diversity reception slotted flat-plate antenna.
CN209804904U (en)Antenna system and mobile terminal suitable for 5G communication
Marantis et al.The pattern selection capability of a printed ESPAR antenna
US7158090B2 (en)Antenna for a wireless network
CN209766653U (en)broadband panel antenna with low sidelobe and no grating lobe
CN113161747A (en)Coverage self-adaptive wave width adjustable spotlight antenna
WO2008055526A1 (en)Antenna device, antenna system and method of operation
DE10150086A1 (en)Group antenna for military or civil radar device has array of openings in first conductive body and aligned recesses in opposing surface of second conductive body
OBIANIME et al.Radiation efficiency of multiband antenna for wireless communication for improved signal gain using Friis transmission technique
Erni et al.Design and implementation of a 3D beam steering antenna for cellular frequencies
Chou et al.Design of shaped reflector antennas for the applications of outdoor base station antennas in LTE mobile communications
Cella et al.Mm-wave short range outdoor links with phased arrays
CN112350055A (en)X-waveband shaped beam antenna

Legal Events

DateCodeTitleDescription
PUAIPublic reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text:ORIGINAL CODE: 0009012

17PRequest for examination filed

Effective date:19991230

AKDesignated contracting states

Kind code of ref document:A1

Designated state(s):CH DE ES FR GB IT LI SE

17QFirst examination report despatched

Effective date:20000804

GRAGDespatch of communication of intention to grant

Free format text:ORIGINAL CODE: EPIDOS AGRA

GRAGDespatch of communication of intention to grant

Free format text:ORIGINAL CODE: EPIDOS AGRA

GRAHDespatch of communication of intention to grant a patent

Free format text:ORIGINAL CODE: EPIDOS IGRA

GRAHDespatch of communication of intention to grant a patent

Free format text:ORIGINAL CODE: EPIDOS IGRA

GRAA(expected) grant

Free format text:ORIGINAL CODE: 0009210

AKDesignated contracting states

Kind code of ref document:B1

Designated state(s):CH DE ES FR GB IT LI SE

REGReference to a national code

Ref country code:CH

Ref legal event code:EP

REGReference to a national code

Ref country code:CH

Ref legal event code:NV

Representative=s name:SCINTILLA AG, DIREKTION

REFCorresponds to:

Ref document number:59801877

Country of ref document:DE

Date of ref document:20011129

REGReference to a national code

Ref country code:GB

Ref legal event code:IF02

ETFr: translation filed
GBTGb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date:20020122

REGReference to a national code

Ref country code:ES

Ref legal event code:FG2A

Ref document number:2166599

Country of ref document:ES

Kind code of ref document:T3

PLBENo opposition filed within time limit

Free format text:ORIGINAL CODE: 0009261

STAAInformation on the status of an ep patent application or granted ep patent

Free format text:STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26NNo opposition filed
PGFPAnnual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code:ES

Payment date:20090325

Year of fee payment:12

PGFPAnnual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code:GB

Payment date:20090324

Year of fee payment:12

Ref country code:CH

Payment date:20090325

Year of fee payment:12

PGFPAnnual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code:SE

Payment date:20090325

Year of fee payment:12

Ref country code:IT

Payment date:20090326

Year of fee payment:12

PGFPAnnual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code:FR

Payment date:20090318

Year of fee payment:12

PGFPAnnual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code:DE

Payment date:20090624

Year of fee payment:12

REGReference to a national code

Ref country code:CH

Ref legal event code:PL

EUGSe: european patent has lapsed
GBPCGb: european patent ceased through non-payment of renewal fee

Effective date:20100303

REGReference to a national code

Ref country code:FR

Ref legal event code:ST

Effective date:20101130

PG25Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code:FR

Free format text:LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date:20100331

PG25Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code:LI

Free format text:LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date:20100331

Ref country code:DE

Free format text:LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date:20101001

Ref country code:CH

Free format text:LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date:20100331

PG25Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code:GB

Free format text:LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date:20100303

Ref country code:IT

Free format text:LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date:20100303

REGReference to a national code

Ref country code:ES

Ref legal event code:FD2A

Effective date:20110419

PG25Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code:ES

Free format text:LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date:20110404

PG25Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code:ES

Free format text:LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date:20100304

PG25Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code:SE

Free format text:LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date:20100304


[8]ページ先頭

©2009-2025 Movatter.jp