
Die Erfindung bezieht sich auf ein Verfahren zur Kompensation der Luftfeuchtigkeit in einem optischen Rauchmelder, der von einem Streulichtmelder mit einer optischen Meßkammer und einem Lichtsender und -empfänger gebildet ist, wobei das Licht des Lichtsenders von in die Meßkammer eingedrungenen Rauchpartikeln gestreut wird und auf den Lichtempfänger fällt, dessen Ausgangssignal einen Meßwert für die Brandkenngröße Rauchdichte bildet, welches zur Alarmbildung dient, in einer Brandmeldeanlage mit einer Zentrale und Meldeprimärleitungen, an die die Streulichtmelder angeschlossen sind, und auf eine Vorrichtung zur Durchführung des Verfahrens.The invention relates to a method for compensating the air humidity in an optical smoke detector, which is formed by a scattered light detector with an optical measuring chamber and a light transmitter and receiver, the light of the light transmitter being scattered by smoke particles that have penetrated into the measuring chamber and onto the light receiver falls, whose output signal forms a measured value for the fire parameter smoke density, which is used for alarm generation, in a fire alarm system with a control center and primary alarm lines to which the scattered light detectors are connected, and to a device for carrying out the method.
Die heute verwendeten optischen Rauchmelder, z.B. rückwärts streuende Rauchmelder, sind hervorragende Frühwarnmelder bei Bränden mit Rauchentwicklung, wie z.B. Schwelbrände. Aber beim Einsatz in Räumen mit hoher Luftfeuchtigkeit kommt es jedoch wegen Betauung im Melder zu unerwünscht hohen Fehlalarmraten. Obwohl die rückwärts streuenden optischen Rauchmelder sehr gute Detektionseigenschaften haben, reagieren sie in nachteiliger Weise genauso gut auf Wasserdampf bzw. kleine Wassertröpfchen, denn die Streulichtmelder können in die Meßkammer eingedrungenen Wasserdampf, z.B. Nebel oder Betauung, nicht vom Rauch unterscheiden.The optical smoke detectors used today, e.g. backward scattering smoke detectors are excellent early warning devices for fires with smoke development, e.g. Smoldering fires. But when used in rooms with high humidity, undesirable high false alarm rates occur due to condensation in the detector. Although the backward scattering optical smoke detectors have very good detection properties, they also react disadvantageously to water vapor or small water droplets, because the scattered light detectors can penetrate water vapor, e.g. Fog or condensation, no distinction from smoke.
Streulichtrauchmelder in Büros und Labors können z.B. durch Wasserkochen (Kaffeemaschine) getäuscht werden. Insbesondere werden Streulichtrauchmelder in Tiefgaragen durch klimatische Einflüsse, wie Wetterumschwung, Nebel, schneebedeckte Fahrzeuge und Starten von Autos (Wasserdampf) getäuscht.Scattered light smoke detectors in offices and laboratories can be fooled, for example, by boiling water (coffee machine). In particular, scattered-light smoke detectors in underground garages are deceived by climatic influences such as changes in weather, fog, snow-covered vehicles and starting cars (water vapor).
Bisher wurde dieses Problem dadurch gelöst, daß bei der Projektierung von Brandmeldeanlagen in Räumen mit betriebsbedingter hoher relativer Luftfeuchtigkeit keine optischen Rauchmelder eingesetzt wurden. Es wurden stattdessen Ionisationsrauchmelder oder Wärmemelder verwendet. Die Ionionsrauchmelder sind wegen ihres radioaktiven Präparates problematisch und werden heutzutage nicht mehr sehr gerne verwendet. Die Wärmemelder sind nicht geeignet, um Brände in der Entstehungsphase, z.B. Schwelbände, rechtzeitig zu detektieren.So far, this problem has been solved by the fact that no optical smoke detectors were used in the planning of fire alarm systems in rooms with high relative air humidity due to operation. Ionization smoke detectors or heat detectors were used instead. The ionic smoke detectors are problematic because of their radioactive preparation and are no longer very popular today. The heat detectors are not suitable to prevent fires in the development phase, e.g. Smoldering volumes to be detected in time.
Aufgabe der Erfindung ist es, mit optischen Rauchmeldern, insbesondere mit Streulichtrauchmeldern, Schadensfeuer so frühzeitig wie bisher zu erkennen, jedoch Fehlalarme aufgrund von Betauung zu vermeiden, um die Alarmsicherheit zu erhöhen.The object of the invention is to use optical smoke detectors, in particular with scattered-light smoke detectors, to detect damage fire as early as before, but to avoid false alarms due to condensation in order to increase alarm security.
Diese Aufgabe wird mit dem erfindungsgemäßen Verfahren dadurch gelöst, daß zusätzlich zur Brandkenngröße Rauchdichte die Umgebungskenngröße relative Luftfeuchtigkeit mit einem in der Meßkammer angeordneten Feuchtesensor gemessen wird, daß aus der gemessenen relativen Luftfeuchtigkeit mittels einer Meßgrößen-Linearisierungseinrichtung ein Feuchtemeßwert ermittelt wird, daß oberhalb eines bestimmten Meßwerts für die relative Luftfeuchtigkeit der Rauchdichtemeßwert mit dem Feuchtemeßwert kompensiert wird, und daß der kompensierte Rauchdichtemeßwert zur Bildung von Alarmkriterien weiterverarbeitet wird.This object is achieved with the method according to the invention in that, in addition to the smoke density fire parameter, the ambient parameter relative air humidity is measured with a humidity sensor arranged in the measuring chamber, and a moisture measurement value is determined from the measured relative humidity by means of a linearized measuring device that is above a certain measured value for the relative air humidity, the smoke density measurement value is compensated with the moisture measurement value, and that the compensated smoke density measurement value is further processed to form alarm criteria.
Bei diesem Verfahren erfaßt eine intelligente mikroprozessorgestützte Multisensorschaltung periodisch die Brandkenngröße Rauch bzw. Rauchdichte und die Umgebungskenngröße relative Luftfeuchtigkeit. Dabei wird die Rauchdichte mit einem Streulichtmelder nach dem Prinzip der optischen Rückwärtsstreuung gemessen. Die relative Luftfeuchtigkeit wird mit einem Feuchtesensor, der in der Meßkammer des Streulichtmelders angebracht ist, gemessen. Aus dieser gemessenen relativen Luftfeuchtigkeit wird mittels einer Linearisierungseinrichtung ein Feuchte meßwert ermittelt, der oberhalb eines bestimmten Meßwerts für die relative Luftfeuchtigkeit zur Kompensation des Rauchdichtemeßwertes herangezogen wird. Der kompensierte Rauchdichtemeßwert wird zur Bildung von Alarmkriterien weiterverarbeitet.With this method, an intelligent microprocessor-based multi-sensor circuit periodically records the fire parameter smoke or smoke density and the ambient parameter relative air humidity. The smoke density is measured using a scattered light detector based on the principle of optical backscattering. The relative air humidity is measured with a humidity sensor, which is installed in the measuring chamber of the scattered light detector. Using a linearization device, this measured relative humidity becomes a humidity Measured value determined, which is used above a certain measured value for the relative air humidity to compensate for the smoke density measured value. The compensated smoke density measured value is processed further to form alarm criteria.
Dabei kann der Rauchdichtemeßwert und der Feuchtemeßwert über die angeschlossene Meldeprimärleitung periodisch zur Brandmeldezentrale gesendet werden, so daß die Feuchtekompensation des Rauchdichtemeßwerts in der Zentrale durchgeführt wird. Es kann auch die Feuchtekompensation der Rauchmeßgröße im Streulichtmelder selbst erfolgen. Der Melder gibt dann über die angeschlossene Meldeprimärleitung den kompensierten Rauchdichtemeßwert an die Brandmeldezentrale ab. Für die Übertragung der Meßwerte kann das bekannte Pulsmeldeverfahren nach dem Prinzip der Kettensynchronisation zugrunde gelegt werden.The smoke density measurement value and the moisture measurement value can be sent periodically to the fire control center via the connected primary signal line, so that the moisture compensation of the smoke density measurement value is carried out in the control center. It is also possible to compensate for the moisture of the smoke quantity in the scattered light detector itself. The detector then sends the compensated smoke density measurement to the fire alarm control panel via the connected primary signal line. The known pulse reporting method based on the principle of chain synchronization can be used as a basis for the transmission of the measured values.
Da der Einfluß der relativen Luftfeuchtigkeit auf den Rauchdichtemeßwert eines Streulichtrauchmelders für alle optischen Rauchmelder gleich ist, wird dieser Einfluß einmal in einer Klimakammer für einen Streulichtrauchmelder erfaßt. Zweckmäßigerweise erfolgt die Linearisierung der relativen Luftfeuchtigkeit mittels einer Umrechnungstabelle. Dabei werden die Werte für die Umrechnungstabelle für den Streulichtmelder in einer Klimakammer unter definiertem Einfluß der Luftfeuchtigkeit ermittelt und in einem Festwertspeicher gespeichert.Since the influence of the relative air humidity on the smoke density measured value of a scattered light smoke detector is the same for all optical smoke detectors, this influence is recorded once in a climatic chamber for a scattered light smoke detector. The linearization of the relative air humidity is expediently carried out by means of a conversion table. The values for the conversion table for the scattered light detector are determined in a climatic chamber under the defined influence of air humidity and stored in a read-only memory.
Zweckmäßigerweise ist für die Meßwerterfassung, verarbeitung und -übertragung im Streulichtrauchmelder ein Mikrorechner vorgesehen.A microcomputer is expediently provided for the measurement value acquisition, processing and transmission in the scattered light smoke detector.
Die Erfindung wird bezüglich der Vorrichtung zur Durchführung des Verfahrens dadurch gelöst, daß der Streulichtmelder eine Sendeschaltung, die den Lichtsender steuert, eine Empfangsschaltung, die den Empfängerstrom des Lichtempfängers in eine Frequenzänderung umsetzt, eine Oszillatorschaltung, die die Meßsignale des Feuchtesensors in frequenzanaloge Signale umsetzt, und einen Mikrorechner aufweist, welcher während einer quarzstabilen Torzeit die Frequenzänderung des Lichtempfängers mißt und als Rauchdichtemeßsignal abspeichert, und die frequenzanalogen Signale des Feuchtesensors mißt und daraus über eine Linearisierungstabelle im Festwertspeicher den Wert der relativen Luftfeuchtigkeit ermittelt und als Feuchtemeßwert abspeichert, und welcher die Senderschaltung ansteuert, und daß der Mikrorechner den Rauchdichtemeßwert mit dem Feuchtemeßwert kompensiert und den kompensierten Rauchdichtemeßwert auf die Meldeprimärleitung gibt.The invention is achieved with respect to the device for carrying out the method in that the stray light detector has a transmitter circuit which controls the light transmitter, a receiver circuit which converts the receiver current of the light receiver into a frequency change, and an oscillator circuit which Converts measurement signals of the moisture sensor into frequency-analog signals, and has a microcomputer, which measures the frequency change of the light receiver during a quartz-stable gate time and stores it as a smoke density measurement signal, and measures the frequency-analog signals of the moisture sensor and uses this to determine the value of the relative air humidity via a linearization table in the read-only memory and as a Stores measured moisture value, and which controls the transmitter circuit, and that the microcomputer compensates the measured smoke density value with the measured moisture value and outputs the compensated measured smoke density value to the primary signal line.
Anhand einer Zeichnung wird die Erfindung kurz erläutert. Die einzige Figur zeigt das Prinzip eines feuchtekompensierten Streulichtrauchmelders.The invention is briefly explained using a drawing. The only figure shows the principle of a moisture-compensated scattered light smoke detector.
In der Zeichnung ist ein Streulichtrauchmelder SM angedeutet, der eine optische Meßkammer MK (Labyrinth) aufweist. In diese Meßkammer MK strahlt das Licht, das von einem Lichtsender LS, z.B. einer IR-LED, abgegeben wird. Treten in die Meßkammer MK Rauchpartikeln RP oder auch Wassertröpfchen WT ein, so wird das Licht des Lichtsenders LS (rückwärts) gestreut und der Lichtempfänger LE, z.B. eine Fotodiode, empfängt das gestreute Licht. Erfindungsgemäß ist in der Meßkammer MK ein Feuchtesensor FS, der von einer variablen Kapazität gebildet sein kann, angeordnet. Der Streulichtmelder SM ist über eine Meldeprimärleitung ML (zweiadrig: a,b) an der Zentrale Z angeschlossen. Der Streulichtmelder SM weist einen Mikrorechner µR auf, der die Meßwerterfassung, Meßwertaufbereitung und Meßwertverarbeitung vornimmt. Der Mikrorechner µR steuert über eine Sendeschaltung S-Sch den Lichtsender LS. Die Rauchdichte wird mit dem Streulichtmelder nach dem Prinzip der optischen Rückwärtsstreuung gemessen. Dazu dient die bereits genannte infrarotemittierende Halbleiterdiode, die gepulst betrieben wird. Die Fotodiode empfängt das gestreute Licht und gibt einen Strom, der der Rauchdichte entspricht, an die Empfängerschaltung ESch, die die Empfängerstromänderung in eine Frequenzänderung umsetzt, die von dem Mikrorechner µR während einer quarzstabilen Torzeit gemessen und als Rauchdichtemeßwert MWR gespeichert wird. Der Feuchtesensor FS dient zur Erfassung der relativen Luftfeuchtigkeit F und ist von einer Kapazität gebildet, die mit Hilfe einer Oszillatorschaltung OSZ ein frequenzanaloges Signal erzeugt. Der Mikrorechner µR mißt diese Frequenz ebenfalls während einer quarzstabilen Torzeit und ermittelt daraus über eine Linearisierungstabelle die in einem Festwertspeicher gespeichert ist, den Wert der relativen Luftfeuchtigkeit und speichert ihn als Feuchtemeßwert MWF ab.In the drawing, a scattered light smoke detector SM is indicated, which has an optical measuring chamber MK (labyrinth). The light emitted by a light transmitter LS, for example an IR LED, radiates into this measuring chamber MK. If smoke particles RP or water droplets WT enter the measuring chamber MK, the light from the light transmitter LS is scattered (backwards) and the light receiver LE, for example a photodiode, receives the scattered light. According to the invention, a moisture sensor FS, which can be formed by a variable capacitance, is arranged in the measuring chamber MK. The scattered light detector SM is connected to the central station Z via a primary signal line ML (two-wire: a, b). The scattered light detector SM has a microcomputer µR, which carries out the measured value acquisition, measured value preparation and measured value processing. The microcomputer µR controls the light transmitter LS via a transmission circuit S-Sch. The smoke density is measured with the scattered light detector based on the principle of optical backscattering. The already mentioned infrared-emitting semiconductor diode, which is operated in a pulsed manner, serves this purpose. The photodiode receives the scattered light and gives a current, which corresponds to the smoke density, to the receiver circuit ESch, which changes the receiver current into one Frequency change implemented, which is measured by the microcomputer µR during a quartz-stable gate time and stored as smoke density measurement MWR. The moisture sensor FS is used to detect the relative air humidity F and is formed by a capacitance that generates a frequency-analog signal with the aid of an oscillator circuit OSZ. The microcomputer µR also measures this frequency during a quartz-stable gate time and uses it to determine the value of the relative air humidity from a linearization table that is stored in a read-only memory and stores it as a moisture measurement value MWF.
Der Rauchdichtemeßwert und der Feuchtemeßwert können über die angeschlossene Melderprimärleitung ML periodisch zur Brandmeldezentrale Z gesendet werden. Dort kann die Feuchtekompensation des Rauchmeßwerts MWR durchgeführt werden. Bei diesem Ausführungsbeispiel erfolgt die Feuchtekompensation der Rauchmeßgröße im Streulichtmelder SM selbst. Der Streulichtmelder gibt dann über die angeschlossene Meldeprimärleitung den kompensierten Rauchdichtemeßwert KMWR an die Brandmeldezentrale Z ab.The smoke density measurement value and the moisture measurement value can be sent periodically to the fire alarm center Z via the connected primary detector line ML. There the moisture compensation of the smoke measurement MWR can be carried out. In this exemplary embodiment, the moisture compensation of the smoke measurement variable takes place in the scattered light detector SM itself. The scattered light detector then outputs the compensated smoke density measurement value KMWR to the fire control center Z via the connected primary signal line.
Wie bereits erwähnt, ist der Einfluß der relativen Luftfeuchtigkeit auf den Rauchdichtemeßwert eines optischen Streulichtmelders für alle optischen Rauchmelder gleich und wird daher nur einmal in einer Klimakammer erfaßt. Die Kompensationsvorschrift liegt dann entweder als Algorithmus oder bevorzugt in Tabellenform vor und wird als Umrechnungstabelle in einem Festwertspeicher (z.B.EPROM) gespeichert.As already mentioned, the influence of the relative air humidity on the smoke density measurement value of an optical scattered light detector is the same for all optical smoke detectors and is therefore only recorded once in a climatic chamber. The compensation specification is then either available as an algorithm or preferably in tabular form and is stored as a conversion table in a read-only memory (e.g. EPROM).
Messungen an Streulichtmeldern in der Klimakammer haben gezeigt, daß im Feuchtebereich 0 % rF bis etwa 85 % rF ein annähernd linearer Zusammenhang zwischen der relativen Luftfeuchtigkeit und dem Meßwert des Rauchmelders besteht. Der Rauchmeldermeßwert nimmt in diesem Feuchtebereich mit -0,16 Promille pro Feuchteprozent ab. Oberhalb etwa 85 % rF verringert beginnende Betauung (Wassertröpfchen WT) in der Meßkammer MK den Rauchmeldermeßwert MWR nicht linear. Mit weiter steigender relativen Luftfeuchte F kommt es an den Wassertröpfchen WT zur vermehrter Reflexion des Infrarotlichtes, die den Rauchmeldermeßwert MWR weiter verringert bis in den Alarmbereich. Das heißt, wenn der Rauchmeldermeßwert durch die störende Betauung (Wassertröpfen WT) verringert wird, wird aufgrund der Betauung ein falscher Alarm gegeben. Mit dem erfindungsgemäßen Verfahren und der entsprechenden Vorrichtung hierfür wird dieses in vorteilhafter Weise verhindert. Dabei berücksichtigt die Vorschrift zur Feuchtekompensation den oben geschilderten Zusammenhang zwischen der relativen Luftfeuchtigkeit und dem unkompensierten Rauchmeldermeßwert in der Weise, daß die Bildung von Wassertröpfchen erkannt wird und die daraus resultierende Lichtreflexion nicht zur Verringerung des Rauchmeldermeßwertes führt. Mit dem erfindungsgemäßen Verfahren wird der Rauchdichtemeßwert kompensiert und der kompensierte Rauchdichtemeßwert wird für die Alarmbildung weiterverarbeitet.Measurements on scattered light detectors in the climatic chamber have shown that in the humidity range 0% RH to about 85% RH there is an almost linear relationship between the relative humidity and the measured value of the smoke detector. The smoke detector measured value decreases in this humidity range with -0.16 per mille per humidity percentage. Above about 85% RH, the beginning of condensation (water droplets WT) in the Measuring chamber MK the smoke detector measured value MWR is not linear. As the relative air humidity F continues to rise, the water droplets WT cause increased reflection of the infrared light, which further reduces the smoke detector measured value MWR down to the alarm range. This means that if the smoke detector measured value is reduced by the disturbing condensation (water droplets WT), a false alarm is given due to the condensation. With the method according to the invention and the corresponding device for this, this is advantageously prevented. The regulation on moisture compensation takes into account the relationship between the relative air humidity and the uncompensated smoke detector measured value described above in such a way that the formation of water droplets is recognized and the resulting light reflection does not lead to a reduction in the smoke detector measured value. With the method according to the invention, the measured smoke density value is compensated and the compensated measured smoke density value is further processed for alarm generation.
Durch das erfindungsgemäße Verfahren der Feuchtekompensation ist gewährleistet, daß der optische Rauchmelder eingedrungene Rauchpartikel auch bei hoher relativer Luftfeuchtigkeit mit gleichbleibender Empfindlichkeit detektiert.The method of moisture compensation according to the invention ensures that the optical smoke detector detects smoke particles that have penetrated even with high relative atmospheric humidity with constant sensitivity.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE58908329TDE58908329D1 (en) | 1989-09-19 | 1989-09-19 | Method and device for compensating for air humidity in an optical smoke detector. |
| AT89117328TATE111246T1 (en) | 1989-09-19 | 1989-09-19 | METHOD AND DEVICE FOR COMPENSATION OF HUMIDITY IN AN OPTICAL SMOKE DETECTOR. |
| EP89117328AEP0418410B1 (en) | 1989-09-19 | 1989-09-19 | Method and device for compensating the air humidity in an optical smoke alarm |
| ES89117328TES2061859T3 (en) | 1989-09-19 | 1989-09-19 | PROCEDURE AND DEVICE FOR COMPENSATION OF AIR MOISTURE IN AN OPTICAL SMOKE ALARM. |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| EP89117328AEP0418410B1 (en) | 1989-09-19 | 1989-09-19 | Method and device for compensating the air humidity in an optical smoke alarm |
| Publication Number | Publication Date |
|---|---|
| EP0418410A1true EP0418410A1 (en) | 1991-03-27 |
| EP0418410B1 EP0418410B1 (en) | 1994-09-07 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP89117328AExpired - LifetimeEP0418410B1 (en) | 1989-09-19 | 1989-09-19 | Method and device for compensating the air humidity in an optical smoke alarm |
| Country | Link |
|---|---|
| EP (1) | EP0418410B1 (en) |
| AT (1) | ATE111246T1 (en) |
| DE (1) | DE58908329D1 (en) |
| ES (1) | ES2061859T3 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE4307585C1 (en)* | 1993-03-10 | 1994-03-10 | Siemens Ag | Compensating for air humidity in stray light signal unit for fire alarm system - contg. first light transmitter with associated optic and light receiver with associated optic with its output signal representing measured value of smoke density |
| EP0911774A3 (en)* | 1997-10-21 | 1999-12-15 | Siemens Aktiengesellschaft | Space monitoring sensor |
| EP1732049A1 (en)* | 2005-06-10 | 2006-12-13 | Siemens S.A.S. | Fire or smoke detector with high false alarm rejection performance |
| EP1540615A4 (en)* | 2002-09-19 | 2009-08-05 | Honeywell Int Inc | Detector with ambient photon sensor and other sensors |
| US7642924B2 (en) | 2007-03-02 | 2010-01-05 | Walter Kidde Portable Equipment, Inc. | Alarm with CO and smoke sensors |
| CN111540159A (en)* | 2020-05-27 | 2020-08-14 | 深圳市泛海三江电子股份有限公司 | Smoke alarm capable of directionally eliminating interference of condensation and use method |
| CN111540158A (en)* | 2020-05-27 | 2020-08-14 | 深圳市泛海三江电子股份有限公司 | Smoke alarm with condensation recognition function and use method |
| CN111564019A (en)* | 2020-05-27 | 2020-08-21 | 深圳市泛海三江电子股份有限公司 | Anti-condensation interference smoke fire detector and use method thereof |
| CN111627182A (en)* | 2020-05-27 | 2020-09-04 | 深圳市泛海三江电子股份有限公司 | Smoke inductor with independent condensation recognition bin and use method |
| CN112907884A (en)* | 2021-04-20 | 2021-06-04 | 无锡商业职业技术学院 | Smoke detection method with low false alarm rate |
| CN120126271A (en)* | 2025-05-15 | 2025-06-10 | 赛特威尔电子股份有限公司 | A smoke sensor maze optimization design and dust pollution resistance method |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102004020489B4 (en)* | 2004-04-26 | 2007-06-28 | Minimax Gmbh & Co. Kg | Fire detector for use in outdoor atmosphere |
| DE102004032294B4 (en)* | 2004-07-03 | 2012-02-09 | Minimax Gmbh & Co. Kg | Heated fire alarm |
| EP3704679B1 (en) | 2017-10-30 | 2024-10-23 | Carrier Corporation | Compensator in a detector device |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE3244878A1 (en)* | 1981-12-09 | 1983-06-16 | The Bendix Corp., 48076 Southfield, Mich. | DETECTING DEVICE FOR FLAMMABLE GASES |
| EP0125485A1 (en)* | 1983-04-12 | 1984-11-21 | Siemens Aktiengesellschaft | Signal suppression circuit for optical smoke detectors |
| DE3507344A1 (en)* | 1984-03-05 | 1985-09-12 | Hochiki Corp., Tokio/Tokyo | PHOTOELECTRIC SMOKE SENSOR |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE3244878A1 (en)* | 1981-12-09 | 1983-06-16 | The Bendix Corp., 48076 Southfield, Mich. | DETECTING DEVICE FOR FLAMMABLE GASES |
| EP0125485A1 (en)* | 1983-04-12 | 1984-11-21 | Siemens Aktiengesellschaft | Signal suppression circuit for optical smoke detectors |
| DE3507344A1 (en)* | 1984-03-05 | 1985-09-12 | Hochiki Corp., Tokio/Tokyo | PHOTOELECTRIC SMOKE SENSOR |
| Title |
|---|
| PATENT ABSTRACTS OF JAPAN, Band 6, Nr. 237 (P-157), 25. November 1982; & JP-A-57 136 155 (MATSUSHITA DENKI SANGYO K.K.) 23-08-1982* |
| PATENT ABSTRACTS OF JAPAN, Band 8, Nr. 051 (P-259), 8. März 1984; & JP-A-58 201 051 (MITSUBISHI JUKOGYO K.K.) 22-11-1983* |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE4307585C1 (en)* | 1993-03-10 | 1994-03-10 | Siemens Ag | Compensating for air humidity in stray light signal unit for fire alarm system - contg. first light transmitter with associated optic and light receiver with associated optic with its output signal representing measured value of smoke density |
| EP0615218A1 (en)* | 1993-03-10 | 1994-09-14 | Siemens Aktiengesellschaft | Method and device for compensation of the moisture in a light scattering detector |
| EP0911774A3 (en)* | 1997-10-21 | 1999-12-15 | Siemens Aktiengesellschaft | Space monitoring sensor |
| EP1540615A4 (en)* | 2002-09-19 | 2009-08-05 | Honeywell Int Inc | Detector with ambient photon sensor and other sensors |
| EP1732049A1 (en)* | 2005-06-10 | 2006-12-13 | Siemens S.A.S. | Fire or smoke detector with high false alarm rejection performance |
| WO2006131204A1 (en)* | 2005-06-10 | 2006-12-14 | Siemens S.A.S. | Fire or smoke detector with high false alarm rejection performance |
| US7760102B2 (en) | 2005-06-10 | 2010-07-20 | Siemens Ag | Fire or smoke detector with high false alarm rejection performance |
| US7642924B2 (en) | 2007-03-02 | 2010-01-05 | Walter Kidde Portable Equipment, Inc. | Alarm with CO and smoke sensors |
| CN111540159A (en)* | 2020-05-27 | 2020-08-14 | 深圳市泛海三江电子股份有限公司 | Smoke alarm capable of directionally eliminating interference of condensation and use method |
| CN111540158A (en)* | 2020-05-27 | 2020-08-14 | 深圳市泛海三江电子股份有限公司 | Smoke alarm with condensation recognition function and use method |
| CN111564019A (en)* | 2020-05-27 | 2020-08-21 | 深圳市泛海三江电子股份有限公司 | Anti-condensation interference smoke fire detector and use method thereof |
| CN111627182A (en)* | 2020-05-27 | 2020-09-04 | 深圳市泛海三江电子股份有限公司 | Smoke inductor with independent condensation recognition bin and use method |
| CN111627182B (en)* | 2020-05-27 | 2023-07-18 | 深圳市高新投三江电子股份有限公司 | Smoke sensor with independent condensation identification bin and use method |
| CN111540159B (en)* | 2020-05-27 | 2023-07-25 | 深圳市高新投三江电子股份有限公司 | Smoke alarm capable of directionally eliminating condensation interference and use method |
| CN111540158B (en)* | 2020-05-27 | 2023-08-15 | 深圳市高新投三江电子股份有限公司 | Smoke alarm with condensation identification function and use method |
| CN111564019B (en)* | 2020-05-27 | 2023-09-12 | 深圳市高新投三江电子股份有限公司 | Smoke-sensitive fire detector capable of resisting exposure interference and use method |
| CN112907884A (en)* | 2021-04-20 | 2021-06-04 | 无锡商业职业技术学院 | Smoke detection method with low false alarm rate |
| CN120126271A (en)* | 2025-05-15 | 2025-06-10 | 赛特威尔电子股份有限公司 | A smoke sensor maze optimization design and dust pollution resistance method |
| Publication number | Publication date |
|---|---|
| EP0418410B1 (en) | 1994-09-07 |
| ES2061859T3 (en) | 1994-12-16 |
| ATE111246T1 (en) | 1994-09-15 |
| DE58908329D1 (en) | 1994-10-13 |
| Publication | Publication Date | Title |
|---|---|---|
| EP0418410B1 (en) | Method and device for compensating the air humidity in an optical smoke alarm | |
| DE69118277T2 (en) | Fire detection method and device | |
| DE102014108713B3 (en) | Smoke and fire detectors | |
| EP1022700B1 (en) | Light scattering fire detector | |
| DE4403221A1 (en) | Arrangement for measuring or detecting a change in a back-scattering element | |
| EP0530723A1 (en) | Optical smoke detector with active monitoring | |
| WO1995001561A1 (en) | Arrangement for measuring or detecting a change in a retro-reflective component | |
| EP2043069B1 (en) | Device for monitoring a fire alarm and configuration method and fire alarm | |
| EP1224641B2 (en) | Device for detecting smoke | |
| EP0418409B1 (en) | Method and device to avoid prevailing weather effects on automatic fire alarms | |
| WO1995033248A1 (en) | Active ir intrusion detector | |
| DE3506956C2 (en) | SMOKE DETECTOR | |
| DE1907587A1 (en) | Method and device for suppressing false alarms in an electrical protection system | |
| EP0158022A1 (en) | Method and circuit arrangement for monitoring the operation of ultrasonic alarm systems | |
| DE3045217A1 (en) | METHOD AND DEVICE FOR THE OPTICAL MONITORING AND SECURING OF SPACES AGAINST INTRUDERS | |
| DE60312865T2 (en) | DEVICE FOR DETECTING THE BREAK OF A BODY INTO A SWIMMING POOL | |
| EP0615218B1 (en) | Method and device for compensation of the moisture in a light scattering detector | |
| DE2833635C2 (en) | Method for measuring the contamination of optical interfaces in optical receivers and device for carrying out the method | |
| EP0596231B1 (en) | Method and device for turbidity measurement in aqueous media | |
| EP0631265B1 (en) | Circuit arrangement of an optical detector for environmental monitoring and indication of a disturbing medium | |
| WO2014180773A1 (en) | Fire alarm | |
| DE2105917A1 (en) | Smoke indicator | |
| DE102006023971B4 (en) | Optical sensor and method for detecting persons, animals or objects | |
| EP0849714B1 (en) | Method for evaluating a signal of a motion detector | |
| DE1623422A1 (en) | Photoelectric measuring method |
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase | Free format text:ORIGINAL CODE: 0009012 | |
| 17P | Request for examination filed | Effective date:19901220 | |
| AK | Designated contracting states | Kind code of ref document:A1 Designated state(s):AT BE CH DE ES FR GB GR IT LI LU NL SE | |
| 17Q | First examination report despatched | Effective date:19940208 | |
| GRAA | (expected) grant | Free format text:ORIGINAL CODE: 0009210 | |
| AK | Designated contracting states | Kind code of ref document:B1 Designated state(s):AT BE CH DE ES FR GB GR IT LI LU NL SE | |
| REF | Corresponds to: | Ref document number:111246 Country of ref document:AT Date of ref document:19940915 Kind code of ref document:T | |
| REF | Corresponds to: | Ref document number:58908329 Country of ref document:DE Date of ref document:19941013 | |
| REG | Reference to a national code | Ref country code:GR Ref legal event code:FG4A Free format text:3013369 | |
| ITF | It: translation for a ep patent filed | ||
| GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) | Effective date:19941111 | |
| REG | Reference to a national code | Ref country code:ES Ref legal event code:FG2A Ref document number:2061859 Country of ref document:ES Kind code of ref document:T3 | |
| ET | Fr: translation filed | ||
| EAL | Se: european patent in force in sweden | Ref document number:89117328.8 | |
| PLBE | No opposition filed within time limit | Free format text:ORIGINAL CODE: 0009261 | |
| STAA | Information on the status of an ep patent application or granted ep patent | Free format text:STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT | |
| 26N | No opposition filed | ||
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] | Ref country code:GR Payment date:19970829 Year of fee payment:9 | |
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] | Ref country code:LU Payment date:19970924 Year of fee payment:9 | |
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] | Ref country code:LU Free format text:LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date:19980919 | |
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] | Ref country code:GR Free format text:LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date:19980930 | |
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] | Ref country code:GB Payment date:20000911 Year of fee payment:12 | |
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] | Ref country code:NL Payment date:20000914 Year of fee payment:12 | |
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] | Ref country code:SE Payment date:20000915 Year of fee payment:12 | |
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] | Ref country code:BE Payment date:20000920 Year of fee payment:12 | |
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] | Ref country code:ES Payment date:20000928 Year of fee payment:12 | |
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] | Ref country code:FR Payment date:20000929 Year of fee payment:12 | |
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] | Ref country code:DE Payment date:20001120 Year of fee payment:12 | |
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] | Ref country code:CH Payment date:20001214 Year of fee payment:12 | |
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] | Ref country code:AT Payment date:20010816 Year of fee payment:13 | |
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] | Ref country code:GB Free format text:LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date:20010919 | |
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] | Ref country code:SE Free format text:LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date:20010920 Ref country code:ES Free format text:LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date:20010920 | |
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] | Ref country code:LI Free format text:LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date:20010930 Ref country code:CH Free format text:LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date:20010930 Ref country code:BE Free format text:LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date:20010930 | |
| REG | Reference to a national code | Ref country code:GB Ref legal event code:IF02 | |
| BERE | Be: lapsed | Owner name:SIEMENS A.G. Effective date:20010930 | |
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] | Ref country code:NL Free format text:LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date:20020401 | |
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] | Ref country code:DE Free format text:LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date:20020501 | |
| EUG | Se: european patent has lapsed | Ref document number:89117328.8 | |
| GBPC | Gb: european patent ceased through non-payment of renewal fee | Effective date:20010919 | |
| REG | Reference to a national code | Ref country code:CH Ref legal event code:PL | |
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] | Ref country code:FR Free format text:LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date:20020531 | |
| NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | Effective date:20020401 | |
| REG | Reference to a national code | Ref country code:FR Ref legal event code:ST | |
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] | Ref country code:AT Free format text:LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date:20020919 | |
| NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee | Effective date:20020401 | |
| REG | Reference to a national code | Ref country code:ES Ref legal event code:FD2A Effective date:20021011 | |
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] | Ref country code:IT Free format text:LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED. Effective date:20050919 |