Die Erfindung betrifft eine Einrichtung zur Überwachung von hochfrequenten elektrischen Leckströmen, die während einer Hochfrequenzchirurgie von einem Körper in einen Operationstisch fließen.The invention relates to a device for monitoringhigh-frequency electrical leakage currents that occur during aHigh frequency surgery from a body to an operationflow table.
Die Hochfrequenzchirurgie wird zum Schneiden und/oder Koagulieren biologischer Gewebe mittels hochfrequenter elektrischer Wechselströme, im folgenden kurz HF-Ströme genannt, angewendet. Die Frequenz dieser HF-Ströme muß entsprechend DIN-IEC 601 Teil 2-2 mindestens 300 kHz betragen, weil tiefere Frequenzen Nerven und Muskeln reizen können. Der HF-Strom wird in Hochfrequenzgeneratoren generiert, deren Ausgangsleistung maximal 400 Watt betragen darf.High frequency surgery is used for cutting and / orCoagulate biological tissues using high frequencyelectrical alternating currents, in the following HF currentscalled, applied. The frequency of these HF currents mustaccording to DIN-IEC 601 part 2-2 at least 300 kHzwear because lower frequencies irritate nerves and musclescan. The RF current is ge in high frequency generatorsneriert, whose output power is a maximum of 400 wattsmay.
Zum Schneiden und/oder Koagulieren wird HF-Strom durch hierfür geeignete Schneide- und/oder Koagulationselektroden in das zu schneidende und/oder zu koagulierende biologische Gewebe des Patienten geleitet und über eine sogenannte neutrale Elektrode vom Patienten zum Hochfrequenzgenerator zurückgeleitet. Die Leitung des HF-Stromes vom Hochfrequenzgenerator zur Schneide- oder Koagulationselektrode hin und von der neutralen Elektrode zum Hochfrequenzgenerator zurück erfolgt durch Kabel, deren Länge in der Regel zwei bis fünf Meter beträgt. Um zu verhindern, daß der Patient während der Hochfrequenzchirurgie hochfrequente elektrische Spannung gegen Erdpotential führt, wird die neutrale Elektrode innerhalb des Hochfrequenz-Chirurgiegerätes entweder direkt oder durch einen Kondensator, dessen Kapazität so groß gewählt wird, daß dessen kapazitiver Widerstand bei der Nennfrequenz des Hochfrequenzgenerators vernachlässigbar klein ist, auf Erdpotential geschaltet.For cutting and / or coagulating, HF current is passed through herefor suitable cutting and / or coagulation electrodes inthe biological to be cut and / or coagulatedThe patient's tissue is guided and passed through a so-called newcentral electrode from the patient to the high-frequency generatorreturned. The conduction of the HF current from the radio frequencygenerator towards the cutting or coagulation electrodeand from the neutral electrode to the high frequency generatorback is done by cable, the length of which is usually two tois five meters. To prevent the patient fromhigh-frequency surgery high-frequency electrical voltageleads to earth potential, the neutral electrode becomes internalhalf of the high-frequency surgical device either directly orby a capacitor, the capacity of which is chosen to be so large,that its capacitive resistance at the nominal frequency of the highfrequency generator is negligibly small, to earth potentialswitched.
Aus dieser Schaltungstechnik resultiert jedoch für den Patienten eine Gefahr. Da Operationstische, und dies gilt auch für andere Steh-, Sitz- oder Liegeeinrichtungen, auf welchen Patienten operiert werden, in der Regel aus Metall bestehen und mit Erdpotential elektrisch leitfähig verbunden sind, kann HF-Strom statt durch die neutrale Elektrode auch durch den Operationstisch hindurch zum Hochfrequenzgenerator zurück fließen, wenn der Patient elektrisch leitfähige Teile des Operationstisches direkt oder indirekt durch andere elektrisch leitfähige Gegenstände, wie beispielsweise durch nasse Tücher, berührt. Hierdurch kann es am Patienten zu unbeabsichtigten thermischen Gewebeschädigungen kommen, wenn die HF-Stromdichte und die HF-Stromflußdauer zu groß sind. Dieser unbeabsichtigt durch den Operationstisch zum HF-Generator zurückfließende HF-Strom wird im folgenden HF-Fehlerstrom genannt.However, this circuit technology poses a risk to the patient.As operating tables, and this also applies to other standing, sitting or lying equipmentwhich patients are operated on, usually made of metalstand and are electrically conductively connected to earth potential, can HF currentinstead of through the neutral electrode and through the operating tableHigh frequency generator will flow back when the patient is electrically conductiveParts of the operating table directly or indirectly by other electrically conductivecapable objects such as wet cloths. Herebyunintended thermal tissue damage can occur on the patientmen if the HF current density and the HF current flow duration are too large. Thisunintentionally flowing back through the operating table to the HF generatorHF current is called HF fault current in the following.
Aus DE 36 10 393 A1 ist ein Verfahren und Auswerteteil zum Feststellen von hochfrequenten Fehlerströmen bekannt, mittels welchem der oben beschriebene Fehlerstrom festgestellt und beim Überschreiten eines Grundwertes ein Fehlerstrom-Signal abgegeben wird. Der Fehlerstrom wird hierbei mittels eines Auswerteteiles, welches über einen Wandler an einem erhöhten HF-Widerstand oder an einer isolierenden Unterbrechung am Fuß des Operationstisches angeschlossen ist, festgestellt. Dieses Verfahren ist in der Praxis kaum realisierbar, weil die Einbringung einer ausreichenden Teilisolierung oder gar vollständigen Isolierung in den Fuß des Operationstisches zu aufwendig ist und die Funktion des Fußes beeinflußt.DE 36 10 393 A1 describes a method and evaluationknown part for the detection of high-frequency fault currents, by means of whichthe fault current described above is determined and when a reason is exceededa fault current signal is given. The fault current is includedmeans of an evaluation part, which is connected to an elevated HFResistance or an isolating break at the base of the operating tableconnected. This method is hardly feasible in practicebar, because the introduction of sufficient partial insulation or even completeIsolation in the foot of the operating table is too complex and the function of theFoot affected.
Es ist Aufgabe der Erfindung, eine Einrichtung zur Überwachung und Anzeige des HF-Fehlerstromes, der durch den Operationstisch fließt, derart zu verbessern, daß eine genauere Feststellung des Pegels des Leckstromes möglichst unabhängig von der elektrischen Installation des Operationstisches möglich ist.It is an object of the invention to provide a device formonitoring and display of the HF fault current caused by theOperating table flows to improve such that amore precise determination of the level of the leakage currentas independent of the electrical installation of theOperating table is possible.
Die erfindungsgemäße Lösung dieser Aufgabe geht von der Erkenntnis aus, daß der Operationstisch in der Regel zwar elektrisch leitfähig geerdet ist, daß die Erdung jedoch mittels mehr oder weniger langer Leitungen erfolgt, bei deren Dimensionierung und Installation die HF-Fehlerströme der Hochfrequenzchirurgie nicht berücksichtigt werden. Diese Leitungen haben sowohl einen reellen als insbesondere auch einen induktiven elektrischen Widerstand, längs welchem der HF-Fehlerstrom eine dem HF-Fehlerstrom und dem komplexen elektrischen Widerstand dieser Leitung proportionale elektrische Spannung verursacht, welche der Operationstisch gegen Erdpotential führt. Da der komplexe elektrische Widerstand zumindest während jeder Operation ausreichend konstant ist, besteht zwischen der elektrischen Spannung, die der Operationstisch gegen Erdpotential führt und dem HF-Fehlerstrom eine ausreichende Proportionalität, so daß die Überwachung dieser Spannung einen Rückschluß auf die Intensität des HF-Fehlerstromes durch den Operationstisch zuläßt.The inventive solution to this problem is based on the knowledge thatthe operating table is usually grounded electrically conductive that theHowever, grounding is carried out by means of more or less long cablesSizing and installation of the HF fault currents of the highfrequency surgery is not taken into account. These lines have bothreal as well as in particular inductive electrical resistance,along which the HF fault current is one of the HF fault current and the complexelectrical resistance of this line causes proportional electrical voltagegently, which the operating table leads against earth potential. Because the complexelectrical resistance sufficiently constant at least during each operationis between the electrical voltage that the operating table opposesGround potential and the HF fault current has a sufficient proportionality,so that the monitoring of this voltage draws a conclusion on the intensity of theHF fault current through the operating table.
Die erfindungsgemäße Einrichtung besteht aus einer Überwachungsschaltung, welche die elektrische Spannung, die ein Operationstisch infolge des durch seine Erdungsleitung fließenden HF-Fehlerstromes und deren komplexen elektrischen Widerstandes gegen Erdpotential annimmt, überwacht, sowie aus Anzeige-, Warn- und/oder Schalteinrichtungen, welche bei Erreichen bestimmter Grenzwertpegel des HF-Fehlerstromes aktiviert werden.The device according to the invention consists of a monitoring circuit, whichthe electrical voltage generated by an operating table due to its groundingline flowing HF fault current and its complex electrical resistancewhich accepts against earth potential, monitors, as well as from display, warning and / orSwitching devices which, when certain limit levels of the HFFault current can be activated.
Das sowohl die Frequenz als auch die Kurvenform von HF-Fehlerströmen von HF-Generator zu HF-Generator verschieden sein können, ist es zweckmäßig, in diesem Zusammenhang den Effektivwert des HF-Fehlerstromes sowie den Effektivwert der hieraus resultierenden elektrischen Spannung zwischen Operationstisch und Erdpotential zu verwenden. Dies ist auch insofern zweckmäßig, als die thermische Wirkung elektrischen Stromes von dessen Effektivwert abhängig ist.That both the frequency and the waveform of HF fault currents from HFGenerator can be different from RF generator, it is useful in thisRelationship between the RMS value of the HF fault current and the RMS value of theresulting electrical voltage between the operating table and the ground floorpotential to use. This is also useful in that the thermalEffect of electric current depends on its effective value.
Da der komplexe elektrische Widerstand der Erdungsleitung von Operationstisch zu Operationstisch verschieden sein kann und außerdem auch von der Grundfrequenz und deren Oberschwingungen des jeweils verwendeten HF-Generators abhängig ist, muß die Überwachungsschaltung dem jeweils verwendeten Operationstisch und HF-Generator angepaßt sein bzw. justierbar sein. Dies kann beispielsweise in der Weise geschehen, daß ein definierter HF-Strom, z. B. 150 mAeff, aus dem jeweils für eine Operation vorgesehenen HF-Generator in den jeweils vorgesehenen Operationstisch eingeleitet wird und der hierbei zwischen Operationstisch und Erdpotential entstehende Effektivwert der elektrischen Spannung in eine Spannungs-Überwachungsschaltung als Grenzwertpegel übernommen wird.Since the complex electrical resistance of the ground line from the operating table to the operating table can be different and also depends on the frequency and the harmonics of the RF generator used, the monitoring circuit must be adapted to the operating table and RF generator used or adjustable be. This can be done, for example, in such a way that a defined RF current, e.g. B. 150 mAeff , from which the HF generator provided for an operation is introduced into the respectively provided operating table and the effective value of the electrical voltage which arises between the operating table and earth potential is adopted as a limit value level in a voltage monitoring circuit.
Hierbei ist es jedoch nicht erforderlich, die elektrische Spannung bzw. den Effektivwert der elektrischen Spannung des Operationstisches direkt und absolut gegen Erdpotential zu messen. Statt gegen absolutes Erdpotential kann auch gegen relatives Erdpotential gemessen werden, wie beispielsweise gegen Schutzleiter- oder gegen Potentialausgleichanschlüsse im jeweiligen Operationsraum.However, it is not necessary to use the electrical voltage or the effecttivwert of the electrical voltage of the operating table directly and absolutely againstEarth potential to measure. Instead of against absolute earth potential, relative earth potential are measured, such as against protective earth oragainst equipotential bonding connections in the respective operating room.
Eine weitere Ausgestaltung der erfindungsgemäßen Einrichtung besteht darin, daß mehrere verschiedene Grenzwertpegel definiert und jeweils wie oben beschrieben in die Überwachungsschaltung übernommen werden, bei deren Überschreiten nacheinander ein optisches Signal, ein akustisches Signal und die Abschaltung des HF-Generators ausgelöst werden. So kann beispielsweise das optische Signal aktiviert werden, wenn der HF-Fehlerstrom 50 mAeff erreicht, das akustische Signal aktiviert werden, wenn der HF-Fehlerstrom 100 mAeff überschreitet und der HF-Generator abgeschaltet werden, wenn der HF-Fehlerstrom 150 mAeff überschreitet.A further embodiment of the device according to the invention consists in the fact that several different limit values are defined and each are adopted in the monitoring circuit as described above, when they are exceeded an optical signal, an acoustic signal and the shutdown of the HF generator are triggered. For example, the optical signal can be activated when the HF fault current reaches 50 mAeff , the acoustic signal can be activated when the HF fault current exceeds 100 mAeff and the HF generator can be switched off when the HF fault current 150 mAeff exceeds.
Da die thermische Gefährdung biologischer Gewebe auch mit der Stromflußdauer zunimmt, können die Grenzwertpegel zusätzlich mit maximalen Stromflußdauern verknüpft werden, so daß das optische und/oder das akustische Signal und/oder das Abschalten des HF-Generators erst dann erfolgt, wenn die Überschreitung des jeweiligen Grenzwertpegels länger andauert als ohne Schaden für den Patienten zulässig, z. B. länger als 10 Sekunden.Because the thermal hazard to biological tissues also depends on the duration of the current flowincreases, the limit levels can additionally with maximum current flow timesare linked so that the optical and / or acoustic signal and / or the HF generator is only switched off when it is exceededof the respective limit level lasts longer than without damage to the papatients allowed, e.g. B. longer than 10 seconds.
Die erfindungsgemäße Einrichtung kann sowohl unabhängig vom HF-Generator als ein eigenständiges Gerät als vorzugsweise auch als integraler Bestandteil von HF-Generatoren bzw. HF-Chirurgiegeräten oder von Operationstischen sein.The device according to the invention can be used independently of the HF generatoran independent device, preferably also as an integral part of HFGenerators or HF surgical devices or from operating tables.
Die erfindungsgemäße Einrichtung zur Überwachung hochfrequenter elektrischer Fehlerströme während der Hochfrequenzchirurgie wird anhand der schematisch dargestellten Zeichnungen detaillierter beschrieben. Es zeigtThe inventive device for monitoring high-frequency electricalResidual currents during high frequency surgery is shown schematically using theillustrated drawings described in more detail. It shows
Fig. 1 den Weg des HF-Fehlerstromes vom Patienten bis zum Hochfrequenz-Chirurgiegerät,Fig. 1 shows the path of the RF-fault current from the patient to the high frequency surgical apparatus,
Fig. 2 die Installation der erfindungsgemäßen Einrichtung im Operationsraum,Fig. 2 shows the installation of the device according to the invention in the operating room,
Fig. 3 ein Ausführungsbeispiel einer erfindungsgemäßen Einrichtung.Fig. 3 shows an embodiment of a device according to the invention.
InFig. 1 ist der Weg des HF-Fehlerstromes schematisch dargestellt. Entsprechend VDE 0107 bzw. DIN 57 107 müssen Operationstische mittels Potentialausgleichleitungen an den Potentialausgleich und/oder Schutzleiter an das Schutzleitersystem des Operationsraumes angeschlossen sein. Alle Potentialausgleichleitungen müssen auf eine gemeinsame PotentialausgleichschienePAS geführt werden. Die PotentialausgleichschienePAS ist mittels einer Brücke17 elektrisch leitfähig mit einer SchutzleiterschieneSLS verbunden. Hochfrequenz-Chirurgiegeräte müssen entsprechend VDE 0750 Teil 202 bzw. DIN/IEC 601 Teil 2-2 in Schutzklasse I ausgeführt sein, d. h., deren berührbare elektrisch leitfähigen Teile müssen mit dem SchutzleiterSL elektrisch leitfähig verbunden sein. Außerdem muß das Hochfrequenz-Chirurgiegerät bei Anwendung in der Herzchirurgie an einer PotentialausgleichklammePAK angeschlossen sein. Auf diese Weise ist zwischen Operationstisch1 und Hochfrequenz-Chirurgiegerät11 eine elektrisch leitfähige Verbindung vorhanden.The path of the HF fault current is shown schematically inFIG. 1. According to VDE 0107 and DIN 57 107, operating tables must be connected to the potential equalization by means of equipotential bonding conductors and / or protective conductors to the protective conductor system of the operating room. All equipotential bonding lines must be routed to a commonPAS equipotential bondingrail . The equipotential bonding railPAS is electrically conductively connected to a protective conductor railSLS by means of a bridge17 . High-frequency surgical devices must be designed in accordance with VDE 0750 Part 202 or DIN / IEC 601 Part 2-2 in protection class I, ie their touchable, electrically conductive parts must be connected to the protective conductorSL in an electrically conductive manner. In addition, the high-frequency surgical device must be connected to a potential equalizationclamp PAK when used in cardiac surgery. In this way, an electrically conductive connection is present between the operating table1 and the high-frequency surgical device11 .
Hat der Patient15 während der Hochfrequenzchirurgie elektrisch leitfähigen Kontakt zum Operationstisch1, so kann ein mehr oder weniger großer Tei des von der aktiven ElektrodeAE in den Patienten15 hineinfließenden HF-StromesIHF als HF-FehlerstromIF durch den Operationstisch1, die PotentialausgleichleitungPAL1, die PotentialausgleichschienePAS und/oder die SchutzleiterschieneSLS sowie den SchutzleiterSL1 und das Netzkabel18 und/oder den PotentialausgleichleiterPAL3 und das Potentialausgleichkabel19 zum Hochfrequenz-Chirurgiegerät11 zurückfließen.If the patient15 has electrically conductive contact with the operating table1 during high-frequency surgery, a more or less large part of the HF currentIHF flowing from the active electrodeAE into the patient15 can be transmitted as an HF fault currentIF through the operating table1 Equipotential bonding linePAL1 , the equipotential bonding railPAS and / or the protective conductor railSLS and the protective conductorSL1 and the power cable18 and / or the equipotential bonding conductorPAL3 and the equipotential bonding cable19 flow back to the high-frequency surgical device11 .
Zur Erläuterung des Weges des HF-FehlerstromesIHF innerhalb des Hochfrequenz-Chirurgiegerätes11 sind die relevanten Details des HF-Ausgangskreises inFig. 1 ebenfalls dargestellt. Um zu verhindern, daß die neutrale ElektrodeNE und damit auch der Patient15 während der Hochfrequenzchirurgie hochfrequente elektrische Spannung gegen Erdpotential führt, ist der Anschluß14 für die neutrale ElektrodeNE innerhalb des Hochfrequenz-Chirurgiegerätes mittels einer Verbindung6 auf Erdpotential bezogen. Über diese Verbindung6 kann der hochfrequente LeckstromIF in die Sekundärwicklung13 des Ausgangstransformators12 des Hochfrequenz-Chirurgiegerätes11 fließen.To explain the path of the HF fault currentIHF within the high-frequency surgical device11 , the relevant details of the HF output circuit are also shown inFIG. 1. In order to prevent the neutral electrodeNE and thus also the patient15 from carrying high-frequency electrical voltage against earth potential during high-frequency surgery, the connection14 for the neutral electrodeNE within the high-frequency surgical device is related to earth potential by means of a connection6 . Via this connection6 , the high-frequency leakage currentIF can flow into the secondary winding13 of the output transformer12 of the high-frequency surgical device11 .
Fig. 2 zeigt schematisch dargestellt die Installation der erfindungsgemäßen Einrichtung20 zur Überwachung hochfrequenter elektrischer FehlerströmeIF im Operationsraum. Die Einrichtung20 kann sowohl als separates Gerät wie auch als Bestandteil des Hochfrequenz-Chirurgiegerätes11 ausgeführt sein. Erfindungsrelevant ist der Anschluß der Einrichtung20 an zwei Meßpunkten, zwischen denen infolge des HF-FehlerstromesIF eine reproduzierbar meßbare HF-Spannung entsteht. Derartige HF-Spannungen entstehen längs aller SchutzleitungenSL und PotentialausgleichleitungenPAL, durch welche HF-FehlerstromIF fließt. So kann inbesondere eine entsprechende HF-Spannung zwischen Operationstisch1 und dem SchutzleiteranschlußSL einer NetzsteckdoseNSD, z. B. NSD1 oderNSD2, oder zwischen Operationstisch1 und einer PotentialausgleichklemmePAK, z. B.PAK1 oderPAK2, abgegriffen werden, was z. B. mittels eines Meßkabels10 und dem Schutzleiterkontakt5 des Netzkabels16 der Einrichtung20 erfolgen kann.Fig. 2 shows schematically the installation of a device20 according to the invention for monitoring high-frequency electrical fault currentsIF in the operating room. The device20 can be designed both as a separate device and as a component of the high-frequency surgical device11 . Invention rele vant is the connection of the device20 at two measuring points, between which, as a result of the HF fault currentIF, a reproducibly measurable HF voltage is produced. Such HF voltages arise along all protective linesSL and equipotential bonding linesPAL , through which HF fault currentIF flows. So in particular a corresponding RF voltage between the operating table1 and the protective conductor connectionSL of a power outletNSD, z. B. NSD1 orNSD2 , or between the operating table1 and a potential equalizationterminal PAK, z. B.PAK1 orPAK2 , which z. B. by means of a measuring cable10 and the protective conductor clock5 of the power cord16 of the device20 can be done.
Ist die Einrichtung20 ein Bestandteil des Hochfrequenz-Chirurgiegerätes11, so kann eine entsprechende HF-Spannung zwischen Operationstisch1 einerseits und einer NetzsteckdoseNSD, z. B.NSD1 oderNSD2, oder einer PotentialausgleichklemmePAK, z. B.PAK1 oderPAK2, andererseits, mittels einer Meßleitung10 und dem Netzkabel18 oder der Potentialausgleichleitung19 des Hochfrequenz-Chirurgiegerätes11 erfolgen.If the device20 is a component of the high-frequency surgical device11 , a corresponding HF voltage between the operating table1 on the one hand and a mains socketNSD , for. B.NSD1 orNSD2 , or a potential equalization terminalPAK , z. B.PAK1 orPAK2 , on the other hand, by means of a measuring line10 and the power cord18 or the equipotential bonding line19 of the high-frequency surgical device11 .
InFig. 3 ist schematisch ein Ausführungsbeispiel einer erfindungsgemäßen Einrichtung20 dargestellt. Sie besteht aus einem Spannungswandler2, welcher die zwischen zwei Meßpunkten, z. B. Operationstisch1 und einer PotentialausgleichklemmePAK oder einem SchutzleiterkontaktSLK, vom HF-FehlerstromIF verursachte HF-SpannungUHF, vorzugsweise dem Effektivwert dieser HF-Spannung, in ein dieser HF-Spannung proportionales elektrisches Signala =f(UHF) wandelt, einem Grenzwertgeber3, welcher ein einstellbares elektrisches Signalb liefert, einem Spannungskomparator4, welchera mitb vergleicht und ein elektrisches Signalc liefert, wenna größer wird alsb. Das elektrische Signalc steuert ein optisches Signal7, ein akustisches Signal8 und/oder über eine Steuerleitung9 das Hochfrequenz-Chirurgiegerät11.InFig. 3 an embodiment of an inventive device20 is shown schematically. It consists of a voltage converter2 , which between two measuring points, for. B. operating table1 and a potential equalizationterminal PAK or a protective conductorcontact SLK , HF voltageUHF caused by the HF fault currentIF , preferably the effective value of this HF voltage, into an electrical signal proportional to this HF voltagea =f (UHF ) converts, a limit transmitter3 , which supplies an adjustable electrical signalb , a voltage comparator4 , which comparesa withb and supplies an electrical signalc , ifa is greater thanb . The electrical signalc controls an optical signal7 , an acoustic signal8 and / or via a control line9 the high-frequency surgical device11 .
In einer weiteren Ausgestaltung kann die Einrichtung20 mit einer Anzeigeeinrichtung21, welche den Pegel vona anzeigt und einer Anzeigeeinrichtung22, welche den Pegel vonb anzeigt, ausgestattet sein.In a further embodiment, the device20 can be equipped with a display device21 which displays the level ofa and a display device22 which displays the level ofb .
Da sowohl der HF-FehlerstromIF als auch die von ihm verursachte HF-SpannungUHF auf den Schutzleitern und Potentialausgleichleitern von verschiedenen Parametern abhängig ist, muß die Einrichtung20 justierbar sein. Die Justierung erfolgt in der Weise, daß aus dem jeweils verwendeten Hochfrequenz-Chirurgiegerät ein definierter HF-StromIHF mittels eines HF-Strom-Meßgerätes23 direkt in den Operationstisch1 eingespeist wird. Hierzu wird das HF-Strom-Meßgerät23 in die HF-Leitung24 zur aktiven ElektrodeAE eingeschaltet und der Pegel des HF-Stromes am Hochfrequenz-Chirurgiegerät11 auf den Wert eingestellt, der als maximaler Grenzwertpegel für den HF-LeckstromIF zugelassen werden soll. Das HF-Strom-Meßgerät sollte vorzugsweise den Effektivwert des HF-Stromes anzeigen. Dieser HF-StromIHF ergibt, je nachdem an welchen zwei Meßpunkten die vom HF-Strom verursachte HF-SpannungUHF abgegriffen wird, ein entsprechendes elektrisches Signala am Ausgang des Spannungswandlers2. Nun wird das elektrische Signalb des Grenzwertgebers3 so eingestellt, daß am Ausgang des Spannungskomparators4 gerade ein elektrisches SignalC entsteht.Since both the HF fault currentIF and the HF voltageUHF caused by it on the protective conductors and equipotential bonding conductors are dependent on different parameters, the device20 must be adjustable. The adjustment is carried out in such a way that a defined HF currentIHF is fed directly into the operating table1 from the high-frequency surgical device used by means of an HF current measuring device23 . For this purpose, the HF current measuring device23 is switched into the HF line24 to the active electrodeAE and the level of the HF current at the high-frequency surgical device11 is set to the value that is permitted as the maximum limit value for the HF leakage currentIF should. The HF current measuring device should preferably display the effective value of the HF current. This HF currentIHF results, depending on which two measuring points the HF voltageUHF caused by the HF current is tapped, a corresponding electrical signala at the output of the voltage converter2 . Now the electrical signalb of the limit transmitter3 is set so that an electrical signalC is just being produced at the output of the voltage comparator4 .
In weiterer Ausgestaltung der Erfindung kann die Einrichtung20 mit mehreren Grenzwertgebern und entsprechend vielen Spannungskomparatoren ausgestattet werden, so daß das optische Signal7, das akustische Signal8 und/oder ein Abschalten des Hochfrequenzgenerators des Hochfrequenz-Chirurgiegerätes11 über eine Steuerleitung9 bei unterschiedlichen Pegeln des HF-Fehlerstromes erfolgt.In a further embodiment of the invention, the device20 can be equipped with several limit switches and a corresponding number of voltage comparators, so that the optical signal7 , the acoustic signal8 and / or a shutdown of the high-frequency generator of the high-frequency surgical device11 via a control line9 at different levels of the HF fault current.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE19883824913DE3824913A1 (en) | 1988-07-22 | 1988-07-22 | Device for monitoring high-frequency (radio-frequency) electric leakage currents |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE19883824913DE3824913A1 (en) | 1988-07-22 | 1988-07-22 | Device for monitoring high-frequency (radio-frequency) electric leakage currents |
| Publication Number | Publication Date |
|---|---|
| DE3824913A1true DE3824913A1 (en) | 1990-02-01 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| DE19883824913CeasedDE3824913A1 (en) | 1988-07-22 | 1988-07-22 | Device for monitoring high-frequency (radio-frequency) electric leakage currents |
| Country | Link |
|---|---|
| DE (1) | DE3824913A1 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1993013718A1 (en)* | 1992-01-21 | 1993-07-22 | Valleylab, Inc. | Electrosurgical control for a trocar |
| DE4419070A1 (en)* | 1993-06-01 | 1994-12-08 | Conmed Corp | Current sensors for medical devices with constant monitoring |
| US5944715A (en) | 1996-06-20 | 1999-08-31 | Gyrus Medical Limited | Electrosurgical instrument |
| US6004319A (en) | 1995-06-23 | 1999-12-21 | Gyrus Medical Limited | Electrosurgical instrument |
| US6013076A (en) | 1996-01-09 | 2000-01-11 | Gyrus Medical Limited | Electrosurgical instrument |
| US6015406A (en) | 1996-01-09 | 2000-01-18 | Gyrus Medical Limited | Electrosurgical instrument |
| US6027501A (en) | 1995-06-23 | 2000-02-22 | Gyrus Medical Limited | Electrosurgical instrument |
| US6090106A (en) | 1996-01-09 | 2000-07-18 | Gyrus Medical Limited | Electrosurgical instrument |
| US6093186A (en) | 1996-12-20 | 2000-07-25 | Gyrus Medical Limited | Electrosurgical generator and system |
| US6210405B1 (en) | 1996-06-20 | 2001-04-03 | Gyrus Medical Limited | Under water treatment |
| US6261286B1 (en) | 1995-06-23 | 2001-07-17 | Gyrus Medical Limited | Electrosurgical generator and system |
| US6277114B1 (en) | 1998-04-03 | 2001-08-21 | Gyrus Medical Limited | Electrode assembly for an electrosurical instrument |
| US6565561B1 (en) | 1996-06-20 | 2003-05-20 | Cyrus Medical Limited | Electrosurgical instrument |
| US6780180B1 (en) | 1995-06-23 | 2004-08-24 | Gyrus Medical Limited | Electrosurgical instrument |
| EP2481369A1 (en)* | 2011-02-01 | 2012-08-01 | Biosense Webster (Israel), Ltd. | Prevention of safety hazards due to leakage current |
| EP3505118A1 (en)* | 2017-12-28 | 2019-07-03 | Ethicon LLC | Increasing radio frequency to create pad-less monopolar loop |
| WO2019130112A1 (en)* | 2017-12-28 | 2019-07-04 | Ethicon Llc | Increasing radio frequency to create pad-less monopolar loop |
| US10595887B2 (en) | 2017-12-28 | 2020-03-24 | Ethicon Llc | Systems for adjusting end effector parameters based on perioperative information |
| US10695081B2 (en) | 2017-12-28 | 2020-06-30 | Ethicon Llc | Controlling a surgical instrument according to sensed closure parameters |
| US10755813B2 (en) | 2017-12-28 | 2020-08-25 | Ethicon Llc | Communication of smoke evacuation system parameters to hub or cloud in smoke evacuation module for interactive surgical platform |
| US10758310B2 (en) | 2017-12-28 | 2020-09-01 | Ethicon Llc | Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices |
| US10772651B2 (en) | 2017-10-30 | 2020-09-15 | Ethicon Llc | Surgical instruments comprising a system for articulation and rotation compensation |
| US10849697B2 (en) | 2017-12-28 | 2020-12-01 | Ethicon Llc | Cloud interface for coupled surgical devices |
| US10892899B2 (en) | 2017-12-28 | 2021-01-12 | Ethicon Llc | Self describing data packets generated at an issuing instrument |
| US10892995B2 (en) | 2017-12-28 | 2021-01-12 | Ethicon Llc | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
| US10898622B2 (en) | 2017-12-28 | 2021-01-26 | Ethicon Llc | Surgical evacuation system with a communication circuit for communication between a filter and a smoke evacuation device |
| US10932872B2 (en) | 2017-12-28 | 2021-03-02 | Ethicon Llc | Cloud-based medical analytics for linking of local usage trends with the resource acquisition behaviors of larger data set |
| US10944728B2 (en) | 2017-12-28 | 2021-03-09 | Ethicon Llc | Interactive surgical systems with encrypted communication capabilities |
| US10943454B2 (en) | 2017-12-28 | 2021-03-09 | Ethicon Llc | Detection and escalation of security responses of surgical instruments to increasing severity threats |
| US10966791B2 (en) | 2017-12-28 | 2021-04-06 | Ethicon Llc | Cloud-based medical analytics for medical facility segmented individualization of instrument function |
| US10973520B2 (en) | 2018-03-28 | 2021-04-13 | Ethicon Llc | Surgical staple cartridge with firing member driven camming assembly that has an onboard tissue cutting feature |
| US10987178B2 (en) | 2017-12-28 | 2021-04-27 | Ethicon Llc | Surgical hub control arrangements |
| US11013563B2 (en) | 2017-12-28 | 2021-05-25 | Ethicon Llc | Drive arrangements for robot-assisted surgical platforms |
| US11026751B2 (en) | 2017-12-28 | 2021-06-08 | Cilag Gmbh International | Display of alignment of staple cartridge to prior linear staple line |
| US11026687B2 (en) | 2017-10-30 | 2021-06-08 | Cilag Gmbh International | Clip applier comprising clip advancing systems |
| US11051876B2 (en) | 2017-12-28 | 2021-07-06 | Cilag Gmbh International | Surgical evacuation flow paths |
| US11056244B2 (en) | 2017-12-28 | 2021-07-06 | Cilag Gmbh International | Automated data scaling, alignment, and organizing based on predefined parameters within surgical networks |
| US11058498B2 (en) | 2017-12-28 | 2021-07-13 | Cilag Gmbh International | Cooperative surgical actions for robot-assisted surgical platforms |
| US11069012B2 (en) | 2017-12-28 | 2021-07-20 | Cilag Gmbh International | Interactive surgical systems with condition handling of devices and data capabilities |
| US11076921B2 (en) | 2017-12-28 | 2021-08-03 | Cilag Gmbh International | Adaptive control program updates for surgical hubs |
| US11090047B2 (en) | 2018-03-28 | 2021-08-17 | Cilag Gmbh International | Surgical instrument comprising an adaptive control system |
| US11100631B2 (en) | 2017-12-28 | 2021-08-24 | Cilag Gmbh International | Use of laser light and red-green-blue coloration to determine properties of back scattered light |
| US11096693B2 (en) | 2017-12-28 | 2021-08-24 | Cilag Gmbh International | Adjustment of staple height of at least one row of staples based on the sensed tissue thickness or force in closing |
| US11096688B2 (en) | 2018-03-28 | 2021-08-24 | Cilag Gmbh International | Rotary driven firing members with different anvil and channel engagement features |
| US11109866B2 (en) | 2017-12-28 | 2021-09-07 | Cilag Gmbh International | Method for circular stapler control algorithm adjustment based on situational awareness |
| US11114195B2 (en) | 2017-12-28 | 2021-09-07 | Cilag Gmbh International | Surgical instrument with a tissue marking assembly |
| US11132462B2 (en) | 2017-12-28 | 2021-09-28 | Cilag Gmbh International | Data stripping method to interrogate patient records and create anonymized record |
| US11129611B2 (en) | 2018-03-28 | 2021-09-28 | Cilag Gmbh International | Surgical staplers with arrangements for maintaining a firing member thereof in a locked configuration unless a compatible cartridge has been installed therein |
| US11147607B2 (en) | 2017-12-28 | 2021-10-19 | Cilag Gmbh International | Bipolar combination device that automatically adjusts pressure based on energy modality |
| US11160605B2 (en) | 2017-12-28 | 2021-11-02 | Cilag Gmbh International | Surgical evacuation sensing and motor control |
| US11166772B2 (en) | 2017-12-28 | 2021-11-09 | Cilag Gmbh International | Surgical hub coordination of control and communication of operating room devices |
| US11179208B2 (en) | 2017-12-28 | 2021-11-23 | Cilag Gmbh International | Cloud-based medical analytics for security and authentication trends and reactive measures |
| US11179175B2 (en) | 2017-12-28 | 2021-11-23 | Cilag Gmbh International | Controlling an ultrasonic surgical instrument according to tissue location |
| US11202570B2 (en) | 2017-12-28 | 2021-12-21 | Cilag Gmbh International | Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems |
| US11207067B2 (en) | 2018-03-28 | 2021-12-28 | Cilag Gmbh International | Surgical stapling device with separate rotary driven closure and firing systems and firing member that engages both jaws while firing |
| US11219453B2 (en) | 2018-03-28 | 2022-01-11 | Cilag Gmbh International | Surgical stapling devices with cartridge compatible closure and firing lockout arrangements |
| US11229436B2 (en) | 2017-10-30 | 2022-01-25 | Cilag Gmbh International | Surgical system comprising a surgical tool and a surgical hub |
| US11234756B2 (en) | 2017-12-28 | 2022-02-01 | Cilag Gmbh International | Powered surgical tool with predefined adjustable control algorithm for controlling end effector parameter |
| US11257589B2 (en) | 2017-12-28 | 2022-02-22 | Cilag Gmbh International | Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes |
| US11259830B2 (en) | 2018-03-08 | 2022-03-01 | Cilag Gmbh International | Methods for controlling temperature in ultrasonic device |
| US11259807B2 (en) | 2019-02-19 | 2022-03-01 | Cilag Gmbh International | Staple cartridges with cam surfaces configured to engage primary and secondary portions of a lockout of a surgical stapling device |
| US11259806B2 (en) | 2018-03-28 | 2022-03-01 | Cilag Gmbh International | Surgical stapling devices with features for blocking advancement of a camming assembly of an incompatible cartridge installed therein |
| US11266468B2 (en) | 2017-12-28 | 2022-03-08 | Cilag Gmbh International | Cooperative utilization of data derived from secondary sources by intelligent surgical hubs |
| US11273001B2 (en) | 2017-12-28 | 2022-03-15 | Cilag Gmbh International | Surgical hub and modular device response adjustment based on situational awareness |
| US11278281B2 (en) | 2017-12-28 | 2022-03-22 | Cilag Gmbh International | Interactive surgical system |
| US11278280B2 (en) | 2018-03-28 | 2022-03-22 | Cilag Gmbh International | Surgical instrument comprising a jaw closure lockout |
| US11284936B2 (en) | 2017-12-28 | 2022-03-29 | Cilag Gmbh International | Surgical instrument having a flexible electrode |
| US11291495B2 (en) | 2017-12-28 | 2022-04-05 | Cilag Gmbh International | Interruption of energy due to inadvertent capacitive coupling |
| US11291510B2 (en) | 2017-10-30 | 2022-04-05 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
| US11298148B2 (en) | 2018-03-08 | 2022-04-12 | Cilag Gmbh International | Live time tissue classification using electrical parameters |
| US11304720B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Activation of energy devices |
| US11304745B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Surgical evacuation sensing and display |
| US11304699B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Method for adaptive control schemes for surgical network control and interaction |
| US11304763B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Image capturing of the areas outside the abdomen to improve placement and control of a surgical device in use |
| US11308075B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Surgical network, instrument, and cloud responses based on validation of received dataset and authentication of its source and integrity |
| US11311342B2 (en) | 2017-10-30 | 2022-04-26 | Cilag Gmbh International | Method for communicating with surgical instrument systems |
| US11311306B2 (en) | 2017-12-28 | 2022-04-26 | Cilag Gmbh International | Surgical systems for detecting end effector tissue distribution irregularities |
| US11317919B2 (en) | 2017-10-30 | 2022-05-03 | Cilag Gmbh International | Clip applier comprising a clip crimping system |
| USD950728S1 (en) | 2019-06-25 | 2022-05-03 | Cilag Gmbh International | Surgical staple cartridge |
| US11317915B2 (en) | 2019-02-19 | 2022-05-03 | Cilag Gmbh International | Universal cartridge based key feature that unlocks multiple lockout arrangements in different surgical staplers |
| US11317937B2 (en) | 2018-03-08 | 2022-05-03 | Cilag Gmbh International | Determining the state of an ultrasonic end effector |
| US11324557B2 (en) | 2017-12-28 | 2022-05-10 | Cilag Gmbh International | Surgical instrument with a sensing array |
| USD952144S1 (en) | 2019-06-25 | 2022-05-17 | Cilag Gmbh International | Surgical staple cartridge retainer with firing system authentication key |
| US11337746B2 (en) | 2018-03-08 | 2022-05-24 | Cilag Gmbh International | Smart blade and power pulsing |
| US11357503B2 (en) | 2019-02-19 | 2022-06-14 | Cilag Gmbh International | Staple cartridge retainers with frangible retention features and methods of using same |
| US11364075B2 (en) | 2017-12-28 | 2022-06-21 | Cilag Gmbh International | Radio frequency energy device for delivering combined electrical signals |
| US11369377B2 (en) | 2019-02-19 | 2022-06-28 | Cilag Gmbh International | Surgical stapling assembly with cartridge based retainer configured to unlock a firing lockout |
| US11376002B2 (en) | 2017-12-28 | 2022-07-05 | Cilag Gmbh International | Surgical instrument cartridge sensor assemblies |
| US20220221525A1 (en)* | 2021-01-08 | 2022-07-14 | Rosemount Aerospace Inc. | Detecting leakage currents in a powered electrical system |
| US11389164B2 (en) | 2017-12-28 | 2022-07-19 | Cilag Gmbh International | Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices |
| US11410259B2 (en) | 2017-12-28 | 2022-08-09 | Cilag Gmbh International | Adaptive control program updates for surgical devices |
| US11419667B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Ultrasonic energy device which varies pressure applied by clamp arm to provide threshold control pressure at a cut progression location |
| US11423007B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Adjustment of device control programs based on stratified contextual data in addition to the data |
| US11424027B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Method for operating surgical instrument systems |
| US11419630B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Surgical system distributed processing |
| US11432885B2 (en) | 2017-12-28 | 2022-09-06 | Cilag Gmbh International | Sensing arrangements for robot-assisted surgical platforms |
| US11446052B2 (en) | 2017-12-28 | 2022-09-20 | Cilag Gmbh International | Variation of radio frequency and ultrasonic power level in cooperation with varying clamp arm pressure to achieve predefined heat flux or power applied to tissue |
| USD964564S1 (en) | 2019-06-25 | 2022-09-20 | Cilag Gmbh International | Surgical staple cartridge retainer with a closure system authentication key |
| US11464511B2 (en) | 2019-02-19 | 2022-10-11 | Cilag Gmbh International | Surgical staple cartridges with movable authentication key arrangements |
| US11464535B2 (en) | 2017-12-28 | 2022-10-11 | Cilag Gmbh International | Detection of end effector emersion in liquid |
| US11464559B2 (en) | 2017-12-28 | 2022-10-11 | Cilag Gmbh International | Estimating state of ultrasonic end effector and control system therefor |
| US11471156B2 (en) | 2018-03-28 | 2022-10-18 | Cilag Gmbh International | Surgical stapling devices with improved rotary driven closure systems |
| US11504192B2 (en) | 2014-10-30 | 2022-11-22 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
| US11510741B2 (en) | 2017-10-30 | 2022-11-29 | Cilag Gmbh International | Method for producing a surgical instrument comprising a smart electrical system |
| US11529187B2 (en) | 2017-12-28 | 2022-12-20 | Cilag Gmbh International | Surgical evacuation sensor arrangements |
| US11540855B2 (en) | 2017-12-28 | 2023-01-03 | Cilag Gmbh International | Controlling activation of an ultrasonic surgical instrument according to the presence of tissue |
| US11559307B2 (en) | 2017-12-28 | 2023-01-24 | Cilag Gmbh International | Method of robotic hub communication, detection, and control |
| US11559308B2 (en) | 2017-12-28 | 2023-01-24 | Cilag Gmbh International | Method for smart energy device infrastructure |
| US11564756B2 (en) | 2017-10-30 | 2023-01-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
| US11571234B2 (en) | 2017-12-28 | 2023-02-07 | Cilag Gmbh International | Temperature control of ultrasonic end effector and control system therefor |
| US11576677B2 (en) | 2017-12-28 | 2023-02-14 | Cilag Gmbh International | Method of hub communication, processing, display, and cloud analytics |
| US11589888B2 (en) | 2017-12-28 | 2023-02-28 | Cilag Gmbh International | Method for controlling smart energy devices |
| US11589932B2 (en) | 2017-12-28 | 2023-02-28 | Cilag Gmbh International | Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures |
| US11596291B2 (en) | 2017-12-28 | 2023-03-07 | Cilag Gmbh International | Method of compressing tissue within a stapling device and simultaneously displaying of the location of the tissue within the jaws |
| US11602393B2 (en) | 2017-12-28 | 2023-03-14 | Cilag Gmbh International | Surgical evacuation sensing and generator control |
| US11612444B2 (en) | 2017-12-28 | 2023-03-28 | Cilag Gmbh International | Adjustment of a surgical device function based on situational awareness |
| US11659023B2 (en) | 2017-12-28 | 2023-05-23 | Cilag Gmbh International | Method of hub communication |
| US11666331B2 (en) | 2017-12-28 | 2023-06-06 | Cilag Gmbh International | Systems for detecting proximity of surgical end effector to cancerous tissue |
| US11744604B2 (en) | 2017-12-28 | 2023-09-05 | Cilag Gmbh International | Surgical instrument with a hardware-only control circuit |
| US11771487B2 (en) | 2017-12-28 | 2023-10-03 | Cilag Gmbh International | Mechanisms for controlling different electromechanical systems of an electrosurgical instrument |
| US11786245B2 (en) | 2017-12-28 | 2023-10-17 | Cilag Gmbh International | Surgical systems with prioritized data transmission capabilities |
| US11786251B2 (en) | 2017-12-28 | 2023-10-17 | Cilag Gmbh International | Method for adaptive control schemes for surgical network control and interaction |
| US11801098B2 (en) | 2017-10-30 | 2023-10-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
| US11818052B2 (en) | 2017-12-28 | 2023-11-14 | Cilag Gmbh International | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
| US11832899B2 (en) | 2017-12-28 | 2023-12-05 | Cilag Gmbh International | Surgical systems with autonomously adjustable control programs |
| US11832840B2 (en) | 2017-12-28 | 2023-12-05 | Cilag Gmbh International | Surgical instrument having a flexible circuit |
| CN117214482A (en)* | 2023-11-09 | 2023-12-12 | 忱芯电子(苏州)有限公司 | Semiconductor power module leakage current test circuit, method and system |
| US11857152B2 (en) | 2017-12-28 | 2024-01-02 | Cilag Gmbh International | Surgical hub spatial awareness to determine devices in operating theater |
| US11864728B2 (en) | 2017-12-28 | 2024-01-09 | Cilag Gmbh International | Characterization of tissue irregularities through the use of mono-chromatic light refractivity |
| US11871901B2 (en) | 2012-05-20 | 2024-01-16 | Cilag Gmbh International | Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage |
| US11896322B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub |
| US11896443B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Control of a surgical system through a surgical barrier |
| US11903601B2 (en) | 2017-12-28 | 2024-02-20 | Cilag Gmbh International | Surgical instrument comprising a plurality of drive systems |
| US11911045B2 (en) | 2017-10-30 | 2024-02-27 | Cllag GmbH International | Method for operating a powered articulating multi-clip applier |
| US11937769B2 (en) | 2017-12-28 | 2024-03-26 | Cilag Gmbh International | Method of hub communication, processing, storage and display |
| US11969216B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution |
| US11998193B2 (en) | 2017-12-28 | 2024-06-04 | Cilag Gmbh International | Method for usage of the shroud as an aspect of sensing or controlling a powered surgical device, and a control algorithm to adjust its default operation |
| US12029506B2 (en) | 2017-12-28 | 2024-07-09 | Cilag Gmbh International | Method of cloud based data analytics for use with the hub |
| US12035890B2 (en) | 2017-12-28 | 2024-07-16 | Cilag Gmbh International | Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub |
| US12062442B2 (en) | 2017-12-28 | 2024-08-13 | Cilag Gmbh International | Method for operating surgical instrument systems |
| US12127729B2 (en) | 2017-12-28 | 2024-10-29 | Cilag Gmbh International | Method for smoke evacuation for surgical hub |
| US12133773B2 (en) | 2017-12-28 | 2024-11-05 | Cilag Gmbh International | Surgical hub and modular device response adjustment based on situational awareness |
| US12226151B2 (en) | 2017-12-28 | 2025-02-18 | Cilag Gmbh International | Capacitive coupled return path pad with separable array elements |
| US12303159B2 (en) | 2018-03-08 | 2025-05-20 | Cilag Gmbh International | Methods for estimating and controlling state of ultrasonic end effector |
| US12318152B2 (en) | 2017-12-28 | 2025-06-03 | Cilag Gmbh International | Computer implemented interactive surgical systems |
| US12376855B2 (en) | 2017-12-28 | 2025-08-05 | Cilag Gmbh International | Safety systems for smart powered surgical stapling |
| US12396806B2 (en) | 2017-12-28 | 2025-08-26 | Cilag Gmbh International | Adjustment of a surgical device function based on situational awareness |
| US12433508B2 (en) | 2017-12-28 | 2025-10-07 | Cilag Gmbh International | Surgical system having a surgical instrument controlled based on comparison of sensor and database data |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE3610393A1 (en)* | 1985-04-29 | 1986-10-30 | Thomas 2000 Hamburg Hill | Method and evaluation component for determining high-frequency (radio-frequency) fault currents |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE3610393A1 (en)* | 1985-04-29 | 1986-10-30 | Thomas 2000 Hamburg Hill | Method and evaluation component for determining high-frequency (radio-frequency) fault currents |
| Title |
|---|
| PASSEN, A., BÖCKMANN, R.-D.: Hochfrequenz- Chirurgiegeräte, Teil 3. In: acta medico- technica, 1981, Nr. 5, S. 179-184* |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1993013718A1 (en)* | 1992-01-21 | 1993-07-22 | Valleylab, Inc. | Electrosurgical control for a trocar |
| US5423809A (en)* | 1992-01-21 | 1995-06-13 | Valleylab Inc. | Electrosurgical control for a trocar |
| DE4419070A1 (en)* | 1993-06-01 | 1994-12-08 | Conmed Corp | Current sensors for medical devices with constant monitoring |
| DE4419070C2 (en)* | 1993-06-01 | 1999-08-26 | Conmed Corp | Current sensors for medical devices with constant monitoring |
| US6416509B1 (en) | 1995-06-23 | 2002-07-09 | Gyrus Medical Limited | Electrosurgical generator and system |
| US6174308B1 (en) | 1995-06-23 | 2001-01-16 | Gyrus Medical Limited | Electrosurgical instrument |
| US6780180B1 (en) | 1995-06-23 | 2004-08-24 | Gyrus Medical Limited | Electrosurgical instrument |
| US6364877B1 (en) | 1995-06-23 | 2002-04-02 | Gyrus Medical Limited | Electrosurgical generator and system |
| US6027501A (en) | 1995-06-23 | 2000-02-22 | Gyrus Medical Limited | Electrosurgical instrument |
| US6056746A (en) | 1995-06-23 | 2000-05-02 | Gyrus Medical Limited | Electrosurgical instrument |
| US6004319A (en) | 1995-06-23 | 1999-12-21 | Gyrus Medical Limited | Electrosurgical instrument |
| US6261286B1 (en) | 1995-06-23 | 2001-07-17 | Gyrus Medical Limited | Electrosurgical generator and system |
| US6090106A (en) | 1996-01-09 | 2000-07-18 | Gyrus Medical Limited | Electrosurgical instrument |
| US6234178B1 (en) | 1996-01-09 | 2001-05-22 | Gyrus Medical Limited | Electrosurgical instrument |
| US6015406A (en) | 1996-01-09 | 2000-01-18 | Gyrus Medical Limited | Electrosurgical instrument |
| US6013076A (en) | 1996-01-09 | 2000-01-11 | Gyrus Medical Limited | Electrosurgical instrument |
| US6210405B1 (en) | 1996-06-20 | 2001-04-03 | Gyrus Medical Limited | Under water treatment |
| US6482202B1 (en) | 1996-06-20 | 2002-11-19 | Gyrus Medical Limited | Under water treatment |
| US6565561B1 (en) | 1996-06-20 | 2003-05-20 | Cyrus Medical Limited | Electrosurgical instrument |
| US5944715A (en) | 1996-06-20 | 1999-08-31 | Gyrus Medical Limited | Electrosurgical instrument |
| US6093186A (en) | 1996-12-20 | 2000-07-25 | Gyrus Medical Limited | Electrosurgical generator and system |
| US6277114B1 (en) | 1998-04-03 | 2001-08-21 | Gyrus Medical Limited | Electrode assembly for an electrosurical instrument |
| EP2481369A1 (en)* | 2011-02-01 | 2012-08-01 | Biosense Webster (Israel), Ltd. | Prevention of safety hazards due to leakage current |
| US11871901B2 (en) | 2012-05-20 | 2024-01-16 | Cilag Gmbh International | Method for situational awareness for surgical network or surgical network connected device capable of adjusting function based on a sensed situation or usage |
| US11504192B2 (en) | 2014-10-30 | 2022-11-22 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
| US11801098B2 (en) | 2017-10-30 | 2023-10-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
| US12121255B2 (en) | 2017-10-30 | 2024-10-22 | Cilag Gmbh International | Electrical power output control based on mechanical forces |
| US11925373B2 (en) | 2017-10-30 | 2024-03-12 | Cilag Gmbh International | Surgical suturing instrument comprising a non-circular needle |
| US11911045B2 (en) | 2017-10-30 | 2024-02-27 | Cllag GmbH International | Method for operating a powered articulating multi-clip applier |
| US12059218B2 (en) | 2017-10-30 | 2024-08-13 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
| US10772651B2 (en) | 2017-10-30 | 2020-09-15 | Ethicon Llc | Surgical instruments comprising a system for articulation and rotation compensation |
| US11819231B2 (en) | 2017-10-30 | 2023-11-21 | Cilag Gmbh International | Adaptive control programs for a surgical system comprising more than one type of cartridge |
| US11109878B2 (en) | 2017-10-30 | 2021-09-07 | Cilag Gmbh International | Surgical clip applier comprising an automatic clip feeding system |
| US11793537B2 (en) | 2017-10-30 | 2023-10-24 | Cilag Gmbh International | Surgical instrument comprising an adaptive electrical system |
| US11759224B2 (en) | 2017-10-30 | 2023-09-19 | Cilag Gmbh International | Surgical instrument systems comprising handle arrangements |
| US10932806B2 (en) | 2017-10-30 | 2021-03-02 | Ethicon Llc | Reactive algorithm for surgical system |
| US11696778B2 (en) | 2017-10-30 | 2023-07-11 | Cilag Gmbh International | Surgical dissectors configured to apply mechanical and electrical energy |
| US11648022B2 (en) | 2017-10-30 | 2023-05-16 | Cilag Gmbh International | Surgical instrument systems comprising battery arrangements |
| US11602366B2 (en) | 2017-10-30 | 2023-03-14 | Cilag Gmbh International | Surgical suturing instrument configured to manipulate tissue using mechanical and electrical power |
| US11564703B2 (en) | 2017-10-30 | 2023-01-31 | Cilag Gmbh International | Surgical suturing instrument comprising a capture width which is larger than trocar diameter |
| US10959744B2 (en) | 2017-10-30 | 2021-03-30 | Ethicon Llc | Surgical dissectors and manufacturing techniques |
| US11564756B2 (en) | 2017-10-30 | 2023-01-31 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
| US11510741B2 (en) | 2017-10-30 | 2022-11-29 | Cilag Gmbh International | Method for producing a surgical instrument comprising a smart electrical system |
| US10980560B2 (en) | 2017-10-30 | 2021-04-20 | Ethicon Llc | Surgical instrument systems comprising feedback mechanisms |
| US12035983B2 (en) | 2017-10-30 | 2024-07-16 | Cilag Gmbh International | Method for producing a surgical instrument comprising a smart electrical system |
| US12329467B2 (en) | 2017-10-30 | 2025-06-17 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
| US11413042B2 (en) | 2017-10-30 | 2022-08-16 | Cilag Gmbh International | Clip applier comprising a reciprocating clip advancing member |
| US11026712B2 (en) | 2017-10-30 | 2021-06-08 | Cilag Gmbh International | Surgical instruments comprising a shifting mechanism |
| US11026687B2 (en) | 2017-10-30 | 2021-06-08 | Cilag Gmbh International | Clip applier comprising clip advancing systems |
| US11026713B2 (en) | 2017-10-30 | 2021-06-08 | Cilag Gmbh International | Surgical clip applier configured to store clips in a stored state |
| US11045197B2 (en) | 2017-10-30 | 2021-06-29 | Cilag Gmbh International | Clip applier comprising a movable clip magazine |
| US11406390B2 (en) | 2017-10-30 | 2022-08-09 | Cilag Gmbh International | Clip applier comprising interchangeable clip reloads |
| US11051836B2 (en) | 2017-10-30 | 2021-07-06 | Cilag Gmbh International | Surgical clip applier comprising an empty clip cartridge lockout |
| US11317919B2 (en) | 2017-10-30 | 2022-05-03 | Cilag Gmbh International | Clip applier comprising a clip crimping system |
| US11311342B2 (en) | 2017-10-30 | 2022-04-26 | Cilag Gmbh International | Method for communicating with surgical instrument systems |
| US11291510B2 (en) | 2017-10-30 | 2022-04-05 | Cilag Gmbh International | Method of hub communication with surgical instrument systems |
| US11291465B2 (en) | 2017-10-30 | 2022-04-05 | Cilag Gmbh International | Surgical instruments comprising a lockable end effector socket |
| US11071560B2 (en) | 2017-10-30 | 2021-07-27 | Cilag Gmbh International | Surgical clip applier comprising adaptive control in response to a strain gauge circuit |
| US11229436B2 (en) | 2017-10-30 | 2022-01-25 | Cilag Gmbh International | Surgical system comprising a surgical tool and a surgical hub |
| US11207090B2 (en) | 2017-10-30 | 2021-12-28 | Cilag Gmbh International | Surgical instruments comprising a biased shifting mechanism |
| US11141160B2 (en) | 2017-10-30 | 2021-10-12 | Cilag Gmbh International | Clip applier comprising a motor controller |
| US11129636B2 (en) | 2017-10-30 | 2021-09-28 | Cilag Gmbh International | Surgical instruments comprising an articulation drive that provides for high articulation angles |
| US11123070B2 (en) | 2017-10-30 | 2021-09-21 | Cilag Gmbh International | Clip applier comprising a rotatable clip magazine |
| US11103268B2 (en) | 2017-10-30 | 2021-08-31 | Cilag Gmbh International | Surgical clip applier comprising adaptive firing control |
| US11419667B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Ultrasonic energy device which varies pressure applied by clamp arm to provide threshold control pressure at a cut progression location |
| US11903601B2 (en) | 2017-12-28 | 2024-02-20 | Cilag Gmbh International | Surgical instrument comprising a plurality of drive systems |
| US11109866B2 (en) | 2017-12-28 | 2021-09-07 | Cilag Gmbh International | Method for circular stapler control algorithm adjustment based on situational awareness |
| US12433508B2 (en) | 2017-12-28 | 2025-10-07 | Cilag Gmbh International | Surgical system having a surgical instrument controlled based on comparison of sensor and database data |
| US11132462B2 (en) | 2017-12-28 | 2021-09-28 | Cilag Gmbh International | Data stripping method to interrogate patient records and create anonymized record |
| US11096693B2 (en) | 2017-12-28 | 2021-08-24 | Cilag Gmbh International | Adjustment of staple height of at least one row of staples based on the sensed tissue thickness or force in closing |
| US12396806B2 (en) | 2017-12-28 | 2025-08-26 | Cilag Gmbh International | Adjustment of a surgical device function based on situational awareness |
| US11100631B2 (en) | 2017-12-28 | 2021-08-24 | Cilag Gmbh International | Use of laser light and red-green-blue coloration to determine properties of back scattered light |
| US11147607B2 (en) | 2017-12-28 | 2021-10-19 | Cilag Gmbh International | Bipolar combination device that automatically adjusts pressure based on energy modality |
| US11160605B2 (en) | 2017-12-28 | 2021-11-02 | Cilag Gmbh International | Surgical evacuation sensing and motor control |
| US11166772B2 (en) | 2017-12-28 | 2021-11-09 | Cilag Gmbh International | Surgical hub coordination of control and communication of operating room devices |
| US12383115B2 (en) | 2017-12-28 | 2025-08-12 | Cilag Gmbh International | Method for smart energy device infrastructure |
| US11179208B2 (en) | 2017-12-28 | 2021-11-23 | Cilag Gmbh International | Cloud-based medical analytics for security and authentication trends and reactive measures |
| US11179204B2 (en) | 2017-12-28 | 2021-11-23 | Cilag Gmbh International | Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices |
| US11179175B2 (en) | 2017-12-28 | 2021-11-23 | Cilag Gmbh International | Controlling an ultrasonic surgical instrument according to tissue location |
| US12376855B2 (en) | 2017-12-28 | 2025-08-05 | Cilag Gmbh International | Safety systems for smart powered surgical stapling |
| US11202570B2 (en) | 2017-12-28 | 2021-12-21 | Cilag Gmbh International | Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems |
| EP3505118A1 (en)* | 2017-12-28 | 2019-07-03 | Ethicon LLC | Increasing radio frequency to create pad-less monopolar loop |
| US12318152B2 (en) | 2017-12-28 | 2025-06-03 | Cilag Gmbh International | Computer implemented interactive surgical systems |
| US12310586B2 (en) | 2017-12-28 | 2025-05-27 | Cilag Gmbh International | Method for adaptive control schemes for surgical network control and interaction |
| US11213359B2 (en) | 2017-12-28 | 2022-01-04 | Cilag Gmbh International | Controllers for robot-assisted surgical platforms |
| US12295674B2 (en) | 2017-12-28 | 2025-05-13 | Cilag Gmbh International | Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures |
| US11076921B2 (en) | 2017-12-28 | 2021-08-03 | Cilag Gmbh International | Adaptive control program updates for surgical hubs |
| US11234756B2 (en) | 2017-12-28 | 2022-02-01 | Cilag Gmbh International | Powered surgical tool with predefined adjustable control algorithm for controlling end effector parameter |
| US11257589B2 (en) | 2017-12-28 | 2022-02-22 | Cilag Gmbh International | Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes |
| US11253315B2 (en) | 2017-12-28 | 2022-02-22 | Cilag Gmbh International | Increasing radio frequency to create pad-less monopolar loop |
| US12256995B2 (en) | 2017-12-28 | 2025-03-25 | Cilag Gmbh International | Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution |
| US12239320B2 (en) | 2017-12-28 | 2025-03-04 | Cilag Gmbh International | Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices |
| US12232729B2 (en) | 2017-12-28 | 2025-02-25 | Cilag Gmbh International | Systems for detecting proximity of surgical end effector to cancerous tissue |
| US11266468B2 (en) | 2017-12-28 | 2022-03-08 | Cilag Gmbh International | Cooperative utilization of data derived from secondary sources by intelligent surgical hubs |
| US12226151B2 (en) | 2017-12-28 | 2025-02-18 | Cilag Gmbh International | Capacitive coupled return path pad with separable array elements |
| US11273001B2 (en) | 2017-12-28 | 2022-03-15 | Cilag Gmbh International | Surgical hub and modular device response adjustment based on situational awareness |
| US11278281B2 (en) | 2017-12-28 | 2022-03-22 | Cilag Gmbh International | Interactive surgical system |
| US12226166B2 (en) | 2017-12-28 | 2025-02-18 | Cilag Gmbh International | Surgical instrument with a sensing array |
| US11284936B2 (en) | 2017-12-28 | 2022-03-29 | Cilag Gmbh International | Surgical instrument having a flexible electrode |
| US12207817B2 (en) | 2017-12-28 | 2025-01-28 | Cilag Gmbh International | Safety systems for smart powered surgical stapling |
| US12193636B2 (en) | 2017-12-28 | 2025-01-14 | Cilag Gmbh International | Characterization of tissue irregularities through the use of mono-chromatic light refractivity |
| US11291495B2 (en) | 2017-12-28 | 2022-04-05 | Cilag Gmbh International | Interruption of energy due to inadvertent capacitive coupling |
| US11069012B2 (en) | 2017-12-28 | 2021-07-20 | Cilag Gmbh International | Interactive surgical systems with condition handling of devices and data capabilities |
| US11058498B2 (en) | 2017-12-28 | 2021-07-13 | Cilag Gmbh International | Cooperative surgical actions for robot-assisted surgical platforms |
| US12193766B2 (en) | 2017-12-28 | 2025-01-14 | Cilag Gmbh International | Situationally aware surgical system configured for use during a surgical procedure |
| US12144518B2 (en) | 2017-12-28 | 2024-11-19 | Cilag Gmbh International | Surgical systems for detecting end effector tissue distribution irregularities |
| US12137991B2 (en) | 2017-12-28 | 2024-11-12 | Cilag Gmbh International | Display arrangements for robot-assisted surgical platforms |
| US11304720B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Activation of energy devices |
| US11304745B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Surgical evacuation sensing and display |
| US11304699B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Method for adaptive control schemes for surgical network control and interaction |
| US11304763B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Image capturing of the areas outside the abdomen to improve placement and control of a surgical device in use |
| US11308075B2 (en) | 2017-12-28 | 2022-04-19 | Cilag Gmbh International | Surgical network, instrument, and cloud responses based on validation of received dataset and authentication of its source and integrity |
| US11056244B2 (en) | 2017-12-28 | 2021-07-06 | Cilag Gmbh International | Automated data scaling, alignment, and organizing based on predefined parameters within surgical networks |
| US11311306B2 (en) | 2017-12-28 | 2022-04-26 | Cilag Gmbh International | Surgical systems for detecting end effector tissue distribution irregularities |
| US11051876B2 (en) | 2017-12-28 | 2021-07-06 | Cilag Gmbh International | Surgical evacuation flow paths |
| US12133709B2 (en) | 2017-12-28 | 2024-11-05 | Cilag Gmbh International | Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems |
| US12133773B2 (en) | 2017-12-28 | 2024-11-05 | Cilag Gmbh International | Surgical hub and modular device response adjustment based on situational awareness |
| US12133660B2 (en) | 2017-12-28 | 2024-11-05 | Cilag Gmbh International | Controlling a temperature of an ultrasonic electromechanical blade according to frequency |
| US11324557B2 (en) | 2017-12-28 | 2022-05-10 | Cilag Gmbh International | Surgical instrument with a sensing array |
| US12127729B2 (en) | 2017-12-28 | 2024-10-29 | Cilag Gmbh International | Method for smoke evacuation for surgical hub |
| WO2019130112A1 (en)* | 2017-12-28 | 2019-07-04 | Ethicon Llc | Increasing radio frequency to create pad-less monopolar loop |
| US12096985B2 (en) | 2017-12-28 | 2024-09-24 | Cilag Gmbh International | Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution |
| US12096916B2 (en) | 2017-12-28 | 2024-09-24 | Cilag Gmbh International | Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub |
| US12076010B2 (en) | 2017-12-28 | 2024-09-03 | Cilag Gmbh International | Surgical instrument cartridge sensor assemblies |
| US10595887B2 (en) | 2017-12-28 | 2020-03-24 | Ethicon Llc | Systems for adjusting end effector parameters based on perioperative information |
| US11364075B2 (en) | 2017-12-28 | 2022-06-21 | Cilag Gmbh International | Radio frequency energy device for delivering combined electrical signals |
| US12062442B2 (en) | 2017-12-28 | 2024-08-13 | Cilag Gmbh International | Method for operating surgical instrument systems |
| US11376002B2 (en) | 2017-12-28 | 2022-07-05 | Cilag Gmbh International | Surgical instrument cartridge sensor assemblies |
| US11382697B2 (en) | 2017-12-28 | 2022-07-12 | Cilag Gmbh International | Surgical instruments comprising button circuits |
| US12059124B2 (en) | 2017-12-28 | 2024-08-13 | Cilag Gmbh International | Surgical hub spatial awareness to determine devices in operating theater |
| US12059169B2 (en) | 2017-12-28 | 2024-08-13 | Cilag Gmbh International | Controlling an ultrasonic surgical instrument according to tissue location |
| US11389164B2 (en) | 2017-12-28 | 2022-07-19 | Cilag Gmbh International | Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices |
| US12053159B2 (en) | 2017-12-28 | 2024-08-06 | Cilag Gmbh International | Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub |
| US11045591B2 (en) | 2017-12-28 | 2021-06-29 | Cilag Gmbh International | Dual in-series large and small droplet filters |
| US11410259B2 (en) | 2017-12-28 | 2022-08-09 | Cilag Gmbh International | Adaptive control program updates for surgical devices |
| US12048496B2 (en) | 2017-12-28 | 2024-07-30 | Cilag Gmbh International | Adaptive control program updates for surgical hubs |
| US11026751B2 (en) | 2017-12-28 | 2021-06-08 | Cilag Gmbh International | Display of alignment of staple cartridge to prior linear staple line |
| US11013563B2 (en) | 2017-12-28 | 2021-05-25 | Ethicon Llc | Drive arrangements for robot-assisted surgical platforms |
| US11423007B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Adjustment of device control programs based on stratified contextual data in addition to the data |
| US11424027B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Method for operating surgical instrument systems |
| US11419630B2 (en) | 2017-12-28 | 2022-08-23 | Cilag Gmbh International | Surgical system distributed processing |
| US11432885B2 (en) | 2017-12-28 | 2022-09-06 | Cilag Gmbh International | Sensing arrangements for robot-assisted surgical platforms |
| US11446052B2 (en) | 2017-12-28 | 2022-09-20 | Cilag Gmbh International | Variation of radio frequency and ultrasonic power level in cooperation with varying clamp arm pressure to achieve predefined heat flux or power applied to tissue |
| US12042207B2 (en) | 2017-12-28 | 2024-07-23 | Cilag Gmbh International | Estimating state of ultrasonic end effector and control system therefor |
| US12035890B2 (en) | 2017-12-28 | 2024-07-16 | Cilag Gmbh International | Method of sensing particulate from smoke evacuated from a patient, adjusting the pump speed based on the sensed information, and communicating the functional parameters of the system to the hub |
| US10695081B2 (en) | 2017-12-28 | 2020-06-30 | Ethicon Llc | Controlling a surgical instrument according to sensed closure parameters |
| US11464535B2 (en) | 2017-12-28 | 2022-10-11 | Cilag Gmbh International | Detection of end effector emersion in liquid |
| US11464559B2 (en) | 2017-12-28 | 2022-10-11 | Cilag Gmbh International | Estimating state of ultrasonic end effector and control system therefor |
| US12029506B2 (en) | 2017-12-28 | 2024-07-09 | Cilag Gmbh International | Method of cloud based data analytics for use with the hub |
| US12009095B2 (en) | 2017-12-28 | 2024-06-11 | Cilag Gmbh International | Real-time analysis of comprehensive cost of all instrumentation used in surgery utilizing data fluidity to track instruments through stocking and in-house processes |
| US10987178B2 (en) | 2017-12-28 | 2021-04-27 | Ethicon Llc | Surgical hub control arrangements |
| US11998193B2 (en) | 2017-12-28 | 2024-06-04 | Cilag Gmbh International | Method for usage of the shroud as an aspect of sensing or controlling a powered surgical device, and a control algorithm to adjust its default operation |
| US11969142B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Method of compressing tissue within a stapling device and simultaneously displaying the location of the tissue within the jaws |
| US11529187B2 (en) | 2017-12-28 | 2022-12-20 | Cilag Gmbh International | Surgical evacuation sensor arrangements |
| US11969216B2 (en) | 2017-12-28 | 2024-04-30 | Cilag Gmbh International | Surgical network recommendations from real time analysis of procedure variables against a baseline highlighting differences from the optimal solution |
| US11540855B2 (en) | 2017-12-28 | 2023-01-03 | Cilag Gmbh International | Controlling activation of an ultrasonic surgical instrument according to the presence of tissue |
| US11559307B2 (en) | 2017-12-28 | 2023-01-24 | Cilag Gmbh International | Method of robotic hub communication, detection, and control |
| US11559308B2 (en) | 2017-12-28 | 2023-01-24 | Cilag Gmbh International | Method for smart energy device infrastructure |
| US10966791B2 (en) | 2017-12-28 | 2021-04-06 | Ethicon Llc | Cloud-based medical analytics for medical facility segmented individualization of instrument function |
| JP2021509325A (en)* | 2017-12-28 | 2021-03-25 | エシコン エルエルシーEthicon LLC | Increased radio frequency to generate padless unipolar loops |
| US11571234B2 (en) | 2017-12-28 | 2023-02-07 | Cilag Gmbh International | Temperature control of ultrasonic end effector and control system therefor |
| US11576677B2 (en) | 2017-12-28 | 2023-02-14 | Cilag Gmbh International | Method of hub communication, processing, display, and cloud analytics |
| US11937769B2 (en) | 2017-12-28 | 2024-03-26 | Cilag Gmbh International | Method of hub communication, processing, storage and display |
| US11931110B2 (en) | 2017-12-28 | 2024-03-19 | Cilag Gmbh International | Surgical instrument comprising a control system that uses input from a strain gage circuit |
| US11589888B2 (en) | 2017-12-28 | 2023-02-28 | Cilag Gmbh International | Method for controlling smart energy devices |
| US11589932B2 (en) | 2017-12-28 | 2023-02-28 | Cilag Gmbh International | Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures |
| US11596291B2 (en) | 2017-12-28 | 2023-03-07 | Cilag Gmbh International | Method of compressing tissue within a stapling device and simultaneously displaying of the location of the tissue within the jaws |
| US11601371B2 (en) | 2017-12-28 | 2023-03-07 | Cilag Gmbh International | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
| US11602393B2 (en) | 2017-12-28 | 2023-03-14 | Cilag Gmbh International | Surgical evacuation sensing and generator control |
| US10943454B2 (en) | 2017-12-28 | 2021-03-09 | Ethicon Llc | Detection and escalation of security responses of surgical instruments to increasing severity threats |
| US11612408B2 (en) | 2017-12-28 | 2023-03-28 | Cilag Gmbh International | Determining tissue composition via an ultrasonic system |
| US11612444B2 (en) | 2017-12-28 | 2023-03-28 | Cilag Gmbh International | Adjustment of a surgical device function based on situational awareness |
| CN111511300A (en)* | 2017-12-28 | 2020-08-07 | 爱惜康有限责任公司 | Adding radio frequencies to create a pad-less monopole loop |
| US11633237B2 (en) | 2017-12-28 | 2023-04-25 | Cilag Gmbh International | Usage and technique analysis of surgeon / staff performance against a baseline to optimize device utilization and performance for both current and future procedures |
| US10944728B2 (en) | 2017-12-28 | 2021-03-09 | Ethicon Llc | Interactive surgical systems with encrypted communication capabilities |
| US11659023B2 (en) | 2017-12-28 | 2023-05-23 | Cilag Gmbh International | Method of hub communication |
| US11666331B2 (en) | 2017-12-28 | 2023-06-06 | Cilag Gmbh International | Systems for detecting proximity of surgical end effector to cancerous tissue |
| US11672605B2 (en) | 2017-12-28 | 2023-06-13 | Cilag Gmbh International | Sterile field interactive control displays |
| US11918302B2 (en) | 2017-12-28 | 2024-03-05 | Cilag Gmbh International | Sterile field interactive control displays |
| US10755813B2 (en) | 2017-12-28 | 2020-08-25 | Ethicon Llc | Communication of smoke evacuation system parameters to hub or cloud in smoke evacuation module for interactive surgical platform |
| US11678881B2 (en) | 2017-12-28 | 2023-06-20 | Cilag Gmbh International | Spatial awareness of surgical hubs in operating rooms |
| US11696760B2 (en) | 2017-12-28 | 2023-07-11 | Cilag Gmbh International | Safety systems for smart powered surgical stapling |
| US10932872B2 (en) | 2017-12-28 | 2021-03-02 | Ethicon Llc | Cloud-based medical analytics for linking of local usage trends with the resource acquisition behaviors of larger data set |
| US11701185B2 (en) | 2017-12-28 | 2023-07-18 | Cilag Gmbh International | Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices |
| US11114195B2 (en) | 2017-12-28 | 2021-09-07 | Cilag Gmbh International | Surgical instrument with a tissue marking assembly |
| US11903587B2 (en) | 2017-12-28 | 2024-02-20 | Cilag Gmbh International | Adjustment to the surgical stapling control based on situational awareness |
| US11896443B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Control of a surgical system through a surgical barrier |
| US11712303B2 (en) | 2017-12-28 | 2023-08-01 | Cilag Gmbh International | Surgical instrument comprising a control circuit |
| US11737668B2 (en) | 2017-12-28 | 2023-08-29 | Cilag Gmbh International | Communication hub and storage device for storing parameters and status of a surgical device to be shared with cloud based analytics systems |
| US11744604B2 (en) | 2017-12-28 | 2023-09-05 | Cilag Gmbh International | Surgical instrument with a hardware-only control circuit |
| US11896322B2 (en) | 2017-12-28 | 2024-02-13 | Cilag Gmbh International | Sensing the patient position and contact utilizing the mono-polar return pad electrode to provide situational awareness to the hub |
| US11751958B2 (en) | 2017-12-28 | 2023-09-12 | Cilag Gmbh International | Surgical hub coordination of control and communication of operating room devices |
| US10898622B2 (en) | 2017-12-28 | 2021-01-26 | Ethicon Llc | Surgical evacuation system with a communication circuit for communication between a filter and a smoke evacuation device |
| US11771487B2 (en) | 2017-12-28 | 2023-10-03 | Cilag Gmbh International | Mechanisms for controlling different electromechanical systems of an electrosurgical instrument |
| US11775682B2 (en) | 2017-12-28 | 2023-10-03 | Cilag Gmbh International | Data stripping method to interrogate patient records and create anonymized record |
| US11779337B2 (en) | 2017-12-28 | 2023-10-10 | Cilag Gmbh International | Method of using reinforced flexible circuits with multiple sensors to optimize performance of radio frequency devices |
| US11786245B2 (en) | 2017-12-28 | 2023-10-17 | Cilag Gmbh International | Surgical systems with prioritized data transmission capabilities |
| US11786251B2 (en) | 2017-12-28 | 2023-10-17 | Cilag Gmbh International | Method for adaptive control schemes for surgical network control and interaction |
| US10892995B2 (en) | 2017-12-28 | 2021-01-12 | Ethicon Llc | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
| US10892899B2 (en) | 2017-12-28 | 2021-01-12 | Ethicon Llc | Self describing data packets generated at an issuing instrument |
| US11818052B2 (en) | 2017-12-28 | 2023-11-14 | Cilag Gmbh International | Surgical network determination of prioritization of communication, interaction, or processing based on system or device needs |
| US10849697B2 (en) | 2017-12-28 | 2020-12-01 | Ethicon Llc | Cloud interface for coupled surgical devices |
| US11832899B2 (en) | 2017-12-28 | 2023-12-05 | Cilag Gmbh International | Surgical systems with autonomously adjustable control programs |
| US11832840B2 (en) | 2017-12-28 | 2023-12-05 | Cilag Gmbh International | Surgical instrument having a flexible circuit |
| US11890065B2 (en) | 2017-12-28 | 2024-02-06 | Cilag Gmbh International | Surgical system to limit displacement |
| US10758310B2 (en) | 2017-12-28 | 2020-09-01 | Ethicon Llc | Wireless pairing of a surgical device with another device within a sterile surgical field based on the usage and situational awareness of devices |
| CN111511300B (en)* | 2017-12-28 | 2024-01-09 | 爱惜康有限责任公司 | Increasing radio frequency to create a non-pad monopole loop |
| US11844579B2 (en) | 2017-12-28 | 2023-12-19 | Cilag Gmbh International | Adjustments based on airborne particle properties |
| US11857152B2 (en) | 2017-12-28 | 2024-01-02 | Cilag Gmbh International | Surgical hub spatial awareness to determine devices in operating theater |
| US11864845B2 (en) | 2017-12-28 | 2024-01-09 | Cilag Gmbh International | Sterile field interactive control displays |
| US11864728B2 (en) | 2017-12-28 | 2024-01-09 | Cilag Gmbh International | Characterization of tissue irregularities through the use of mono-chromatic light refractivity |
| US11344326B2 (en) | 2018-03-08 | 2022-05-31 | Cilag Gmbh International | Smart blade technology to control blade instability |
| US11617597B2 (en) | 2018-03-08 | 2023-04-04 | Cilag Gmbh International | Application of smart ultrasonic blade technology |
| US11298148B2 (en) | 2018-03-08 | 2022-04-12 | Cilag Gmbh International | Live time tissue classification using electrical parameters |
| US12121256B2 (en) | 2018-03-08 | 2024-10-22 | Cilag Gmbh International | Methods for controlling temperature in ultrasonic device |
| US11337746B2 (en) | 2018-03-08 | 2022-05-24 | Cilag Gmbh International | Smart blade and power pulsing |
| US11707293B2 (en) | 2018-03-08 | 2023-07-25 | Cilag Gmbh International | Ultrasonic sealing algorithm with temperature control |
| US11701162B2 (en) | 2018-03-08 | 2023-07-18 | Cilag Gmbh International | Smart blade application for reusable and disposable devices |
| US11701139B2 (en) | 2018-03-08 | 2023-07-18 | Cilag Gmbh International | Methods for controlling temperature in ultrasonic device |
| US11678927B2 (en) | 2018-03-08 | 2023-06-20 | Cilag Gmbh International | Detection of large vessels during parenchymal dissection using a smart blade |
| US11259830B2 (en) | 2018-03-08 | 2022-03-01 | Cilag Gmbh International | Methods for controlling temperature in ultrasonic device |
| US11839396B2 (en) | 2018-03-08 | 2023-12-12 | Cilag Gmbh International | Fine dissection mode for tissue classification |
| US11464532B2 (en) | 2018-03-08 | 2022-10-11 | Cilag Gmbh International | Methods for estimating and controlling state of ultrasonic end effector |
| US11678901B2 (en) | 2018-03-08 | 2023-06-20 | Cilag Gmbh International | Vessel sensing for adaptive advanced hemostasis |
| US11844545B2 (en) | 2018-03-08 | 2023-12-19 | Cilag Gmbh International | Calcified vessel identification |
| US11389188B2 (en) | 2018-03-08 | 2022-07-19 | Cilag Gmbh International | Start temperature of blade |
| US11589915B2 (en) | 2018-03-08 | 2023-02-28 | Cilag Gmbh International | In-the-jaw classifier based on a model |
| US11534196B2 (en) | 2018-03-08 | 2022-12-27 | Cilag Gmbh International | Using spectroscopy to determine device use state in combo instrument |
| US11399858B2 (en) | 2018-03-08 | 2022-08-02 | Cilag Gmbh International | Application of smart blade technology |
| US11317937B2 (en) | 2018-03-08 | 2022-05-03 | Cilag Gmbh International | Determining the state of an ultrasonic end effector |
| US12303159B2 (en) | 2018-03-08 | 2025-05-20 | Cilag Gmbh International | Methods for estimating and controlling state of ultrasonic end effector |
| US11986233B2 (en) | 2018-03-08 | 2024-05-21 | Cilag Gmbh International | Adjustment of complex impedance to compensate for lost power in an articulating ultrasonic device |
| US11457944B2 (en) | 2018-03-08 | 2022-10-04 | Cilag Gmbh International | Adaptive advanced tissue treatment pad saver mode |
| US11207067B2 (en) | 2018-03-28 | 2021-12-28 | Cilag Gmbh International | Surgical stapling device with separate rotary driven closure and firing systems and firing member that engages both jaws while firing |
| US11471156B2 (en) | 2018-03-28 | 2022-10-18 | Cilag Gmbh International | Surgical stapling devices with improved rotary driven closure systems |
| US11213294B2 (en) | 2018-03-28 | 2022-01-04 | Cilag Gmbh International | Surgical instrument comprising co-operating lockout features |
| US10973520B2 (en) | 2018-03-28 | 2021-04-13 | Ethicon Llc | Surgical staple cartridge with firing member driven camming assembly that has an onboard tissue cutting feature |
| US11986185B2 (en) | 2018-03-28 | 2024-05-21 | Cilag Gmbh International | Methods for controlling a surgical stapler |
| US11406382B2 (en) | 2018-03-28 | 2022-08-09 | Cilag Gmbh International | Staple cartridge comprising a lockout key configured to lift a firing member |
| US11090047B2 (en) | 2018-03-28 | 2021-08-17 | Cilag Gmbh International | Surgical instrument comprising an adaptive control system |
| US11937817B2 (en) | 2018-03-28 | 2024-03-26 | Cilag Gmbh International | Surgical instruments with asymmetric jaw arrangements and separate closure and firing systems |
| US11219453B2 (en) | 2018-03-28 | 2022-01-11 | Cilag Gmbh International | Surgical stapling devices with cartridge compatible closure and firing lockout arrangements |
| US11931027B2 (en) | 2018-03-28 | 2024-03-19 | Cilag Gmbh Interntional | Surgical instrument comprising an adaptive control system |
| US11589865B2 (en) | 2018-03-28 | 2023-02-28 | Cilag Gmbh International | Methods for controlling a powered surgical stapler that has separate rotary closure and firing systems |
| US11197668B2 (en) | 2018-03-28 | 2021-12-14 | Cilag Gmbh International | Surgical stapling assembly comprising a lockout and an exterior access orifice to permit artificial unlocking of the lockout |
| US11166716B2 (en) | 2018-03-28 | 2021-11-09 | Cilag Gmbh International | Stapling instrument comprising a deactivatable lockout |
| US11259806B2 (en) | 2018-03-28 | 2022-03-01 | Cilag Gmbh International | Surgical stapling devices with features for blocking advancement of a camming assembly of an incompatible cartridge installed therein |
| US11278280B2 (en) | 2018-03-28 | 2022-03-22 | Cilag Gmbh International | Surgical instrument comprising a jaw closure lockout |
| US11129611B2 (en) | 2018-03-28 | 2021-09-28 | Cilag Gmbh International | Surgical staplers with arrangements for maintaining a firing member thereof in a locked configuration unless a compatible cartridge has been installed therein |
| US11096688B2 (en) | 2018-03-28 | 2021-08-24 | Cilag Gmbh International | Rotary driven firing members with different anvil and channel engagement features |
| US11369377B2 (en) | 2019-02-19 | 2022-06-28 | Cilag Gmbh International | Surgical stapling assembly with cartridge based retainer configured to unlock a firing lockout |
| US11259807B2 (en) | 2019-02-19 | 2022-03-01 | Cilag Gmbh International | Staple cartridges with cam surfaces configured to engage primary and secondary portions of a lockout of a surgical stapling device |
| US11751872B2 (en) | 2019-02-19 | 2023-09-12 | Cilag Gmbh International | Insertable deactivator element for surgical stapler lockouts |
| US11298130B2 (en) | 2019-02-19 | 2022-04-12 | Cilag Gmbh International | Staple cartridge retainer with frangible authentication key |
| US11925350B2 (en) | 2019-02-19 | 2024-03-12 | Cilag Gmbh International | Method for providing an authentication lockout in a surgical stapler with a replaceable cartridge |
| US11298129B2 (en) | 2019-02-19 | 2022-04-12 | Cilag Gmbh International | Method for providing an authentication lockout in a surgical stapler with a replaceable cartridge |
| US11291445B2 (en) | 2019-02-19 | 2022-04-05 | Cilag Gmbh International | Surgical staple cartridges with integral authentication keys |
| US11291444B2 (en) | 2019-02-19 | 2022-04-05 | Cilag Gmbh International | Surgical stapling assembly with cartridge based retainer configured to unlock a closure lockout |
| US11331101B2 (en) | 2019-02-19 | 2022-05-17 | Cilag Gmbh International | Deactivator element for defeating surgical stapling device lockouts |
| US11272931B2 (en) | 2019-02-19 | 2022-03-15 | Cilag Gmbh International | Dual cam cartridge based feature for unlocking a surgical stapler lockout |
| US11331100B2 (en) | 2019-02-19 | 2022-05-17 | Cilag Gmbh International | Staple cartridge retainer system with authentication keys |
| US11317915B2 (en) | 2019-02-19 | 2022-05-03 | Cilag Gmbh International | Universal cartridge based key feature that unlocks multiple lockout arrangements in different surgical staplers |
| US11357503B2 (en) | 2019-02-19 | 2022-06-14 | Cilag Gmbh International | Staple cartridge retainers with frangible retention features and methods of using same |
| US11517309B2 (en) | 2019-02-19 | 2022-12-06 | Cilag Gmbh International | Staple cartridge retainer with retractable authentication key |
| US11464511B2 (en) | 2019-02-19 | 2022-10-11 | Cilag Gmbh International | Surgical staple cartridges with movable authentication key arrangements |
| USD964564S1 (en) | 2019-06-25 | 2022-09-20 | Cilag Gmbh International | Surgical staple cartridge retainer with a closure system authentication key |
| USD952144S1 (en) | 2019-06-25 | 2022-05-17 | Cilag Gmbh International | Surgical staple cartridge retainer with firing system authentication key |
| USD950728S1 (en) | 2019-06-25 | 2022-05-03 | Cilag Gmbh International | Surgical staple cartridge |
| US11982721B2 (en)* | 2021-01-08 | 2024-05-14 | Rosemount Aerospace Inc. | Detecting leakage currents in a powered electrical system |
| US20220221525A1 (en)* | 2021-01-08 | 2022-07-14 | Rosemount Aerospace Inc. | Detecting leakage currents in a powered electrical system |
| CN117214482B (en)* | 2023-11-09 | 2024-02-09 | 忱芯电子(苏州)有限公司 | Semiconductor power module leakage current test circuit, method and system |
| CN117214482A (en)* | 2023-11-09 | 2023-12-12 | 忱芯电子(苏州)有限公司 | Semiconductor power module leakage current test circuit, method and system |
| Publication | Publication Date | Title |
|---|---|---|
| DE3824913A1 (en) | Device for monitoring high-frequency (radio-frequency) electric leakage currents | |
| DE3523871C3 (en) | High frequency surgical device | |
| DE3544443C2 (en) | HF surgery device | |
| DE3510586C2 (en) | ||
| DE102007056974B4 (en) | An RF surgical inspection device and method for identifying a patient-applied RF neutral electrode | |
| DE69633337T2 (en) | CABLE FOR ELECTRO-SURGICAL GENERATOR | |
| DE3942998C2 (en) | High frequency electrosurgical unit | |
| EP0390937B1 (en) | Device for the surveillance of the adherence of neutral electrodes in high-frequency surgery | |
| DE60309901T2 (en) | MULTIPLE RF NEUTRAL ELECTRODE CONTACT DETECTION SYSTEM | |
| DE69400287T2 (en) | Electrosurgical unit with a monitoring system for the safety status of electrodes | |
| DE112004002125T5 (en) | High frequency power supply | |
| DE3225237C2 (en) | ||
| DE60026191T2 (en) | Automatic activation of the bipolar output signal of an electrosurgical generator | |
| DE2901153A1 (en) | ELECTROSURGICAL GENERATOR | |
| DE9117217U1 (en) | High frequency surgical device | |
| EP2337516B1 (en) | Electrosurgical hf generator | |
| DE102022107422A1 (en) | Method for monitoring a high resistance condition on an electrosurgical generator, electrosurgical generator and electrosurgical generator system | |
| EP3011923A1 (en) | Device for metal detection when acting on biological tissue by means of a spark-forming electrosurgical instrument | |
| DE2535341C2 (en) | System for cutting and / or coagulating human tissue in surgery | |
| DE3610393C2 (en) | ||
| DE4237761C2 (en) | High-frequency surgery facility | |
| EP1511437A1 (en) | High frequency application device | |
| EP4193943B1 (en) | Electrosurgical generator with leakage current detection | |
| DE102008054351B4 (en) | Electrosurgical HF generator | |
| DE102023117342B3 (en) | High-frequency generator, system, method for generating a high-frequency square wave voltage and use of a high-frequency generator |
| Date | Code | Title | Description |
|---|---|---|---|
| 8127 | New person/name/address of the applicant | Owner name:HILL, THOMAS, 5090 LEVERKUSEN, DE | |
| 8110 | Request for examination paragraph 44 | ||
| 8120 | Willingness to grant licenses paragraph 23 | ||
| 8131 | Rejection |