eßvorrichtung für medizinische Zwecke Die findung betrifft eine Vorrichtungzur Vermessung der Konturlinien eines Patienten für strahlentherapeutische Behandlungen. Eating device for medical purposes The invention relates to a devicefor measuring the contour lines of a patient for radiotherapy treatments.
Die Datenbasis für die Dosierung der Strahlungsmenge einer Strahlentherapiesind die Daten des Strahlungsfeldes sowie die Außenkontur des Patienten im Behandlungsbereich.In der Strahlentherapie besteht daher die Notwendigkeit, die Konturlinien des Patientengenau zu vermessen. Zugleich ist die Kontrolle der Patient enposit ion und der Patientenaußenkontureiner der schwächsten Punkte in der Strahlentherapie. Eine Bestrahlungsbehandlungkann aus mehreren einzelnen Bestrahlungen bestehen, die sich über einen Zeitraumvon mehreren Wochen erstrecken können, In diesem Zeitraum kann sich die Außenkonturmit dem Gewicht ändern, aber sie kann sich auch durch die Art und Weise ändern,wie der Patient bei den verschiedenen Bestrahlungen auf dem Behandlungstisch zuliegen kommt. Sowohl der Patient als auch die Bestrahlungseinrichtung müssen jedochåedes-mal in dieselbe Position zueinander gebracht werden. Daherwerden die notwendigen personenspezifischen Angaben manuell ermittelt und in einemPatientenprotokoll festgehalten. Die Ermittlung der Außenkontur erfolgt noch größtenteilsmit mechanischen Geräten. In den letzten Jahren werden hierfür auch vermehrt Computertomographie-Bilderverwendet, diese werden aber durch mechanische Messungen kontrolliert. Zur Kontrolleund Aufzeichnung der laschinendaten gibt es von dem jeweiligen Herstellern Dokumentationssysteme,die sämtlichen Anforderungen genügen.The database for the dosage of the amount of radiation in radiation therapyare the data of the radiation field and the outer contour of the patient in the treatment area.In radiation therapy there is therefore a need to trace the patient's contoursto be measured precisely. At the same time, it is possible to control the patient's position and the patient's outer contourone of the weakest points in radiation therapy. A radiation treatmentcan consist of several individual irradiations over a period of timecan extend from several weeks, during this period the outer contourchange with weight, but it can also change with the waylike the patient on the treatment table during the various treatmentscome to lie. However, both the patient and the radiation facility muståedes-times are brought into the same position to each other. Thereforethe necessary person-specific information is determined manually and in onePatient protocol recorded. The outer contour is still largely determinedwith mechanical devices. In recent years, more and more computer tomography images have been used for this purposeused, but these are checked by mechanical measurements. For controland recording of the machine data is available from the respective manufacturer documentation systems,which meet all requirements.
Der Erfindung liegt daher die Aufgabe zugrunde, die mechanischen Meßmittelzur Ermittlung der Außenkontur eines Patienten durch eine eßvorrichtung zu ersetzen,die die benötigten Daten in einer praxisgerechten Form ausgibt und durch eine Fortbildungdieser Vießvorrichtung eine leicht verifizierbare Lagerungskontrolle erreicht.The invention is therefore based on the object of the mechanical measuring meansreplace it with an eating device to determine the outer contour of a patient,which outputs the required data in a practical form and through advanced trainingThis Vießvorrichtung achieved an easily verifiable storage control.
Diese Aufgabe wird nach der Erfindung gelöst durch mindestens einenBeleuchtungskörper zur Erzeugung einer den Körper des Patienten schneidenden Lichtstrahlebene,mindestens einer Video-Kamera zur Vermessung der durch die Lichtstrahlebene aufdem Körper des Patienten erzeugten Konturlinie und zur Erfassung seiner Positionim Raum und einem Computer zur zahlenmäßigen Berechnung der Konturlinie.This object is achieved according to the invention by at least oneLighting fixtures for generating a light beam plane that intersects the patient's body,at least one video camera for measuring the through the light beam planethe contour line generated on the patient's body and for detecting its positionin space and a computer for numerical calculation of the contour line.
Diese kann dann auch ohne weiteres in Form von Zahlenwerten ausgedrucktoder durch einen Plotter gezeichnet werden.This can then easily be printed out in the form of numerical valuesor drawn by a plotter.
Vorzugsweise besteht der Beleuchtungskörper wegen der höheren Lichtstrahlschärfeaus einer Laserlichtquelle.The lighting fixture is preferably made because of the higher light beam sharpnessfrom a laser light source.
In Fortbildung der Erfindung wird mindestens eine Laser-Kamera-Kombinationverwendet. Hierbei sind Laserlichtquel-le und Video-Kainera definiertund mechanisch fest mit ein ander verbunden.In a further development of the invention, at least one laser-camera combinationused. Laser light sources arele and video Kainera definedand mechanically firmly connected to each other.
Gemäß einer zweiten Fortbildung der Erfindung ist mindestens eineLaser-Kamera-Kombination entlang der Körperachse verfahrbar, vorzugsweise motorischverfahrbar. Hierdurch ist es möglich, praktisch den gesamten Körper des Patientenauch in Längsrichtung zu vermessen.According to a second development of the invention, at least oneLaser-camera combination can be moved along the body axis, preferably by motormovable. This makes it possible to use practically the entire body of the patientcan also be measured lengthways.
Bei einer dritten Fortbildung der Erfindung besteht die Neßvorrichtungaus mindestens drei, normalerweise den Körper etwa im Querschnitt schneidender Lichtstrahlebenen,von denen eine, die mittlere Lichtstrahlebene vorzugsweise ortsfest und die aufbeiden Seiten der vorzugsweise ortsfesten Lichtstrahlebene in Anpassung an die jeweiligenKörperkonturen verschiebbar angeordnet sind und mindestens eine, normalerweise denKörper etwa in Längsrichtung schneidende Lichtstrahlebene, die auf den drei Lichtstrahlebenensenkrecht steht. Hierdurch werden drei Körperebenen des Patienten definiert unddamit ein-hoher Grad der Liege nauigkeit bei einer nächsten Behandlung erreicht,Es hat sich als vorteilhaft erwiesen, mehrere I,aserlichtquellen oberhalb der Körpermittelebene,vorzugsweise an Wand und Decke anzuordnen, Dieses ist notwendig, wenn das Bestrahlungsgerätfür die Bestrahlung verschwenkbar angeordnet ist.In a third development of the invention, there is the wetting devicefrom at least three light beam planes, usually about the cross-section of the body,of which one, the middle light beam level preferably stationary and the one onboth sides of the preferably stationary light beam plane in adaptation to the respectiveBody contours are slidably arranged and at least one, usually theBody roughly in the longitudinal direction intersecting light beam planes on the three light beam planesstands vertically. This defines three body levels of the patient andso that a high degree of lying accuracy is achieved during the next treatment,It has proven to be advantageous to have several light sources above the median plane of the body,to be arranged preferably on the wall and ceiling, this is necessary if the radiation deviceis arranged pivotably for the irradiation.
In den Zeichnungen sind Ausführungsbeispiele der Erz in dung wiedergegeben.Es zeigen Fig. 1 eine Meßvorrichtung mit einer Liege, an der zwei Lichtquellen undzwei Video-Kameras angeordnet sind, Fig. 2 ein Behandlungsraum mit einer Lichtstrahlebene,Fig. 3 ein Behandlungsraum mit einer Bestrahlungseinrichtung und beispielsweisevier Lichtstrahlebenen und Fig. 4 i:onitoren, die eine Darstellung der £tuellenKörperposition mit einem eingeblendeten Strahlenfeld wiedergeben.In the drawings, embodiments of the ore are shown in manure.1 shows a measuring device with a couch on which two light sources andtwo video cameras are arranged, Fig. 2 a treatment room with a light beam plane,3 shows a treatment room with an irradiation device and, for examplefour light beam planes and Fig. 4: monitors, which are a representation of the ualitiesShow body position with a superimposed radiation field.
In Figur 1 ist eine Vorrichtung 1 zur Vermessung der Konturlinien21 eines Patienten 2 wiedergegeben. Der Patient 2 liegt auf einer Liege 11. Aufbeiden Seiten der Liege 11 sind Laufschienen 12a, 12b angeordnet. An den Laufschienen12a 12b sind jeweils eine Lichtquelle 31, 32 sowie eine Video-Kamera 41, 42 verfahrbargelagert. Durch einen Stellmotor 5 können die Lichtquelle-Videokamera-Kombinationen31, 41 bzw. 32, 42 an den Laufschienen 12a, 12b parallel zum Körper des liegendenPatienten 2 verfahren werden. Die Beleuchtungskörper 31, 32 erzeugen eine den Körperdes Patienten 2 etwa senkrecht schneidende Lichtstrahlebene.In Figure 1 is a device 1 for measuring the contour lines21 of a patient 2 reproduced. The patient 2 lies on a couch 11. OnRunning rails 12a, 12b are arranged on both sides of the bed 11. On the rails12a, 12b are each a light source 31, 32 and a video camera 41, 42 movablestored. The light source-video camera combinations can be controlled by a servomotor 531, 41 and 32, 42 on the rails 12a, 12b parallel to the body of the lyingPatient 2 are proceeded. The lighting fixtures 31, 32 create a bodyof the patient 2 approximately perpendicular intersecting light beam plane.
Die Schnittlinie 21 ist als eine hell leuchtende Konturlinie sichtbar,die etwa einen Bildwinkel von 240° des Körperumfanges erfaßt . Um die Schnittlinie21 möglichst scharf zu halten, wird vorzugsweise eine Laserlichtquelle verwendet.The cutting line 21 is visible as a brightly shining contour line,which covers an angle of view of approximately 240 ° of the body circumference. Around the cutting lineTo keep 21 as sharp as possible, a laser light source is preferably used.
Die Schnitt- oder Konturlinie 21 wird von einem Bildverarbeitungssystem61 erfaßt, in ein Querschnittsbild gewan-delt und auf dem monitoreines Computers 62, beispielsweise eines rersonalcomputers, dargestellt. Die aufdem Bildschirm des Computers 62 wiedergegebene Linie 621 ist die Konturlinie 21des Patienten 2. Der Bediener entscheidet, welche Kontur er speichert und/oder welcheer auf einem Zeichner bzw. Plotter 63 zeichnen lassen will. Über eine mit dem jeweiligenhersteller des Therapieplanungssystems zu vereinbarende Schnittstelle kann die Konturinformationdirekt in das Therapieplanungssystem eingegeben werden.The cutting or contour line 21 is generated by an image processing system61 recorded, converted into a cross-sectional imagedelt and on the monitora computer 62, such as a personal computer. The onLine 621 displayed on the screen of computer 62 is contour line 21of the patient 2. The operator decides which contour to save and / or whichhe wants to draw on a draftsman or plotter 63. About one with the respectiveThe interface to be agreed upon by the manufacturer of the therapy planning system can provide the contour informationcan be entered directly into the therapy planning system.
In Figur 2 ist oben der Grundriß und darunter der senkrechte Schnittdurch einen Raum mit einem Patienten 2 wiedergegeben, der auf einem Tisch 13 liegt.In diesem Fall sind zwei Lichtquellen 33, 34 an den Raumwänden befestigt, die eineLichtstrahlebene L bilden. Die von der Lichtstrahlebene L auf dem Körper des Patienten2 erzeugten Konturlinie wird von den Video-Kameras 43, 44 aufgenommen, deren Bilderauch hier einem Computer 62 zugeführt und nach Wunsch durch einen Zeichner 63 gezeichnetwerden. Es ist zweckmäßig, die relative Lage von Patient 2 und LichtstrahlebeneL zueinander verändern zu können. Dieses kann durch eine Verschiebung der Lichtquellen33, 34 an der tand oder durch ein Verfahren des Srehandlungstisches 13 erfolgen.3s ist auch möglich, den Behandlungstisch 13 drehbar zu gestalten.In Figure 2 is the top plan and below the vertical sectionreproduced by a room with a patient 2 lying on a table 13.In this case, two light sources 33, 34 are attached to the walls of the room, oneForm light beam plane L. That from the light beam plane L on the patient's body2 generated contour line is recorded by the video cameras 43, 44, their imagesalso fed to a computer 62 here and drawn by a draftsman 63 if desiredwill. It is useful to check the relative position of patient 2 and the plane of the light beamL to be able to change each other. This can be done by shifting the light sources33, 34 take place at the stand or by a procedure of the negotiation table 13.3s it is also possible to make the treatment table 13 rotatable.
In Figur 3 ist wieder oben der Grundriß und darunter der senkrechteSchnitt durch einen zeiten Bestrahlungsraum wiedergegeben. In diesem behandlungsraumbefindet sich ein schwenkbares Bestrahlungsgerät 7. Zur räumlichen Kontrolle desPatienten 2 werden vier Lichtstrahlebenen B1, 12, L3 und I4 verwendet. Die LichtstrahlebenenL1, 12, L3 werden durch mehrere, beispielsweise vier Lichtquellen erzeugt.In FIG. 3, the plan is again at the top and the vertical one belowSection through a second irradiation room shown. In this treatment roomthere is a swiveling irradiation device 7. For spatial control of thePatient 2 uses four light beam planes B1, 12, L3 and I4. The light beam planesL1, 12, L3 are generated by several, for example four, light sources.
Die Lichtstrahlebene L1 wird dementsprechend durch vier Lichtquellen35a, 35b 35c, 35d erzeugt, von denen die Lichtquellen 35a, 35d an den gegenüberlie-gendenWänden und die Lichtquellen 35b, 35c an der Decke des Behandlungsraumes angebrachtsind. Entsprechendes gilt für die Lichtstrahlebenen 12, L3, Durch die vier Lichtquellenpro Lichtstrahlebene ist sichergestellt, daß jede Lichtstrahlebene unabhängig vonder Verschwenkstellung des Bestrahlungsgerätes 7 vollständig erhalten bleibt.The light beam plane L1 is formed accordingly by four light sources35a, 35b 35c, 35d generated, of which the light sources 35a, 35d at the oppositeendsWalls and the light sources 35b, 35c attached to the ceiling of the treatment roomare. The same applies to the light beam planes 12, L3, through the four light sourcesper light beam level it is ensured that each light beam level is independent ofthe pivoting position of the irradiation device 7 is completely retained.
Um die Lage des Patienten 2 genau fixieren zu können, ist es möglich,dieLage der drei Lichtstrahlebenen B1, 12, Iffi den Körperkonturen des Patienten 2anzupassen. Hierfür sind die beiden Lichtstrahlebenen L1 und L3 gegenüber der vorzugsweiseortsfesten mittleren Ebene I2 verschiebbar ausgebildet. Die Lichtstrahlebene L4schneidet den Körper in Längsrichtung und steht auf den Lichtstrahlebenen L1, L2,L3 senkrecht.In order to be able to fix the position of the patient 2 precisely, it is possible to use thePosition of the three light beam planes B1, 12, Iffi the body contours of the patient 2adapt. For this purpose, the two light beam planes L1 and L3 are preferred over thefixed middle plane I2 designed to be displaceable. The light beam level L4cuts the body in the longitudinal direction and stands on the light beam planes L1, L2,L3 vertical.
Ergänzend hierzu ist jedoch darauf hinzuweisen, daß es ohne weiteresmöglich ist, entsprechend den gegebenen Notwendigkeften mit mehr oder weniger Lichtstrahlebenenzu arbeiten, die entweder parallel zu den Ebenen ~(1, 12, L3 oder aber auch parallelzu der Ebene L4 liegen können.In addition to this, however, it should be pointed out that it is without further adois possible, according to the given requirements with more or less light beam planesto work that either parallel to the planes ~ (1, 12, L3 or also parallelcan lie to the plane L4.
Es ist auch hier wieder möglich, den Behandlungstisch drehbar zu gestalten.It is also possible here to make the treatment table rotatable.
Es versteht sich, daß auch in diesem Falle vorzugsweise Laserlichtquellenverwendet werden, um eine möglichst scharfe Konturlinie 21 auf dem Körper des Patienten2 zu erhalten. Zur Aufnahme der Konturlinien sind zwei Video-Kameras 45, 46 vorgesehen.It goes without saying that in this case too, laser light sources are preferredcan be used to create as sharp a contour line 21 as possible on the patient's body2 to get. Two video cameras 45, 46 are provided for recording the contour lines.
In Figur 4 ist der Computer 62 mit zwei Bilddarstellungen auf zweiNonitoren wiedergegeben. Und zwar zeigt der Bildschirm links den Querschnitt durchden Patienten 2 mit den drei Konturlinien 622, 623, 624, entsprechend den drei LichtstrahlebenenB 2, ID. Außerdem ist die Lageeines Bestrahlungsfeldes 626 eingeblendet.Auf dem rechten Monitor ist ein Längsschnitt 625, entsprechend der Konturlinie derLichtstrahlebene I4 durch den Patienten 2 zusammen mit dem Strahlungsfeld 626 wiedergegeben.Eine exakte kontollierbare Positionierung des Patienten 2 und des Strahlungsfeldes626 ist hierdurch gewährleistet.In Figure 4, the computer 62 is two image representations on twoNonitors reproduced. The screen on the left shows the cross-section throughthe patient 2 with the three contour lines 622, 623, 624, corresponding to the three light beam planesB 2, ID. Besides, the location isan irradiation field 626 is displayed.On the right monitor is a longitudinal section 625, corresponding to the contour line of FIGLight beam plane I4 reproduced by the patient 2 together with the radiation field 626.An exact, controllable positioning of the patient 2 and the radiation field626 is guaranteed.
Die Konturlinien 622, 623, 624, 625 gemäß Figur 3 werden von einemComputer 62 erfaßt, in den die Aufnahmedaten der Kameras 45, 46 eingegeben werden,die Positionsdaten eines Motors, wie z.B. des Motors 5, zum Verstellen der Lichtebenen,sowie über eine Schnittstelle 64 die Maschinenparameter der Bestrahlungseinrichtung.Durch den Zugriff auf gespeicherte Konturdaten im Archiv 65 ist in Bezug auf diePositionierung des Patienten 2 ein Sollzu#tand-Istzustand Vergleich der Konturdftendurch Überblendung auf die Monitoren oder den Bildschirm des Computers 62 möglich.Aktuelle Positionsdaten können im Archiv dokumentiert werden.The contour lines 622, 623, 624, 625 according to Figure 3 are from aComputer 62 detected, in which the recording data of the cameras 45, 46 are entered,the position data of a motor, e.g. motor 5, for adjusting the light levels,and the machine parameters of the irradiation device via an interface 64.By accessing the stored contour data in the archive 65 is in relation to thePositioning of the patient 2 a target condition-actual condition comparison of the contourspossible by fading onto the monitors or the screen of the computer 62.Current position data can be documented in the archive.
| Application Number | Priority Date | Filing Date | Title | 
|---|---|---|---|
| DE19853508730DE3508730A1 (en) | 1985-03-12 | 1985-03-12 | Measuring device for medical purposes | 
| Application Number | Priority Date | Filing Date | Title | 
|---|---|---|---|
| DE19853508730DE3508730A1 (en) | 1985-03-12 | 1985-03-12 | Measuring device for medical purposes | 
| Publication Number | Publication Date | 
|---|---|
| DE3508730A1true DE3508730A1 (en) | 1986-09-18 | 
| Application Number | Title | Priority Date | Filing Date | 
|---|---|---|---|
| DE19853508730WithdrawnDE3508730A1 (en) | 1985-03-12 | 1985-03-12 | Measuring device for medical purposes | 
| Country | Link | 
|---|---|
| DE (1) | DE3508730A1 (en) | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| US4779629A (en)* | 1985-10-04 | 1988-10-25 | Loughborough Consultants Limited | Making measurements on a body | 
| EP0480035A4 (en)* | 1989-06-30 | 1992-06-03 | Yokogawa Medical Systems, Ltd | Radiotherapic system | 
| FR2679327A1 (en)* | 1991-07-15 | 1993-01-22 | Cebelor | NON-CONTACT THREE-DIMENSIONAL MEASUREMENT METHOD OF THE ENVELOPE OF AN OBJECT, IN PARTICULAR A FOOT, AND MEASURING APPARATUS FOR CARRYING OUT THE METHOD. | 
| EP0553246A4 (en)* | 1990-10-19 | 1994-08-31 | St. Louis University | |
| WO1994018890A1 (en)* | 1993-02-26 | 1994-09-01 | Siemens Aktiengesellschaft | Combination of electrocardiogram and ultrasonic-image signals | 
| US5748767A (en)* | 1988-02-01 | 1998-05-05 | Faro Technology, Inc. | Computer-aided surgery apparatus | 
| US5800352A (en)* | 1994-09-15 | 1998-09-01 | Visualization Technology, Inc. | Registration system for use with position tracking and imaging system for use in medical applications | 
| US5829444A (en)* | 1994-09-15 | 1998-11-03 | Visualization Technology, Inc. | Position tracking and imaging system for use in medical applications | 
| US5871445A (en) | 1993-04-26 | 1999-02-16 | St. Louis University | System for indicating the position of a surgical probe within a head on an image of the head | 
| WO1999040846A1 (en)* | 1998-02-13 | 1999-08-19 | Mueller Reinhold G | Reproducible position or location identification of deformable bodies | 
| US6146390A (en) | 1992-04-21 | 2000-11-14 | Sofamor Danek Holdings, Inc. | Apparatus and method for photogrammetric surgical localization | 
| US6167295A (en) | 1991-01-28 | 2000-12-26 | Radionics, Inc. | Optical and computer graphic stereotactic localizer | 
| US6275725B1 (en) | 1991-01-28 | 2001-08-14 | Radionics, Inc. | Stereotactic optical navigation | 
| US6347240B1 (en) | 1990-10-19 | 2002-02-12 | St. Louis University | System and method for use in displaying images of a body part | 
| US6355049B1 (en) | 1987-12-02 | 2002-03-12 | Sherwood Services Ag | Head fixation apparatus | 
| US6370224B1 (en) | 1998-06-29 | 2002-04-09 | Sofamor Danek Group, Inc. | System and methods for the reduction and elimination of image artifacts in the calibration of x-ray imagers | 
| US6408107B1 (en) | 1996-07-10 | 2002-06-18 | Michael I. Miller | Rapid convolution based large deformation image matching via landmark and volume imagery | 
| US6490467B1 (en) | 1990-10-19 | 2002-12-03 | Surgical Navigation Technologies, Inc. | Surgical navigation systems including reference and localization frames | 
| US6633686B1 (en) | 1998-11-05 | 2003-10-14 | Washington University | Method and apparatus for image registration using large deformation diffeomorphisms on a sphere | 
| US6990368B2 (en) | 2002-04-04 | 2006-01-24 | Surgical Navigation Technologies, Inc. | Method and apparatus for virtual digital subtraction angiography | 
| US7217276B2 (en) | 1999-04-20 | 2007-05-15 | Surgical Navigational Technologies, Inc. | Instrument guidance method and system for image guided surgery | 
| US7313430B2 (en) | 2003-08-28 | 2007-12-25 | Medtronic Navigation, Inc. | Method and apparatus for performing stereotactic surgery | 
| US7366562B2 (en) | 2003-10-17 | 2008-04-29 | Medtronic Navigation, Inc. | Method and apparatus for surgical navigation | 
| US7542791B2 (en) | 2003-01-30 | 2009-06-02 | Medtronic Navigation, Inc. | Method and apparatus for preplanning a surgical procedure | 
| US7567834B2 (en) | 2004-05-03 | 2009-07-28 | Medtronic Navigation, Inc. | Method and apparatus for implantation between two vertebral bodies | 
| US7570791B2 (en) | 2003-04-25 | 2009-08-04 | Medtronic Navigation, Inc. | Method and apparatus for performing 2D to 3D registration | 
| US7599730B2 (en) | 2002-11-19 | 2009-10-06 | Medtronic Navigation, Inc. | Navigation system for cardiac therapies | 
| US7606613B2 (en) | 1999-03-23 | 2009-10-20 | Medtronic Navigation, Inc. | Navigational guidance via computer-assisted fluoroscopic imaging | 
| US7630753B2 (en) | 2002-02-28 | 2009-12-08 | Medtronic Navigation, Inc. | Method and apparatus for perspective inversion | 
| US7636595B2 (en) | 2004-10-28 | 2009-12-22 | Medtronic Navigation, Inc. | Method and apparatus for calibrating non-linear instruments | 
| US7657300B2 (en) | 1999-10-28 | 2010-02-02 | Medtronic Navigation, Inc. | Registration of human anatomy integrated for electromagnetic localization | 
| US7660623B2 (en) | 2003-01-30 | 2010-02-09 | Medtronic Navigation, Inc. | Six degree of freedom alignment display for medical procedures | 
| US7697972B2 (en) | 2002-11-19 | 2010-04-13 | Medtronic Navigation, Inc. | Navigation system for cardiac therapies | 
| US7763035B2 (en) | 1997-12-12 | 2010-07-27 | Medtronic Navigation, Inc. | Image guided spinal surgery guide, system and method for use thereof | 
| US7797032B2 (en) | 1999-10-28 | 2010-09-14 | Medtronic Navigation, Inc. | Method and system for navigating a catheter probe in the presence of field-influencing objects | 
| US7831082B2 (en) | 2000-06-14 | 2010-11-09 | Medtronic Navigation, Inc. | System and method for image based sensor calibration | 
| US7835784B2 (en) | 2005-09-21 | 2010-11-16 | Medtronic Navigation, Inc. | Method and apparatus for positioning a reference frame | 
| US7835778B2 (en) | 2003-10-16 | 2010-11-16 | Medtronic Navigation, Inc. | Method and apparatus for surgical navigation of a multiple piece construct for implantation | 
| US7840253B2 (en) | 2003-10-17 | 2010-11-23 | Medtronic Navigation, Inc. | Method and apparatus for surgical navigation | 
| US7853305B2 (en) | 2000-04-07 | 2010-12-14 | Medtronic Navigation, Inc. | Trajectory storage apparatus and method for surgical navigation systems | 
| US7881770B2 (en) | 2000-03-01 | 2011-02-01 | Medtronic Navigation, Inc. | Multiple cannula image guided tool for image guided procedures | 
| USRE42194E1 (en) | 1997-09-24 | 2011-03-01 | Medtronic Navigation, Inc. | Percutaneous registration apparatus and method for use in computer-assisted surgical navigation | 
| US7998062B2 (en) | 2004-03-29 | 2011-08-16 | Superdimension, Ltd. | Endoscope structures and techniques for navigating to a target in branched structure | 
| US8046053B2 (en) | 1994-10-07 | 2011-10-25 | Foley Kevin T | System and method for modifying images of a body part | 
| US8057407B2 (en) | 1999-10-28 | 2011-11-15 | Medtronic Navigation, Inc. | Surgical sensor | 
| US8074662B2 (en) | 1999-10-28 | 2011-12-13 | Medtronic Navigation, Inc. | Surgical communication and power system | 
| US8112292B2 (en) | 2006-04-21 | 2012-02-07 | Medtronic Navigation, Inc. | Method and apparatus for optimizing a therapy | 
| US8165658B2 (en) | 2008-09-26 | 2012-04-24 | Medtronic, Inc. | Method and apparatus for positioning a guide relative to a base | 
| USRE43328E1 (en) | 1997-11-20 | 2012-04-24 | Medtronic Navigation, Inc | Image guided awl/tap/screwdriver | 
| US8175681B2 (en) | 2008-12-16 | 2012-05-08 | Medtronic Navigation Inc. | Combination of electromagnetic and electropotential localization | 
| US8200314B2 (en) | 1992-08-14 | 2012-06-12 | British Telecommunications Public Limited Company | Surgical navigation | 
| US8239001B2 (en) | 2003-10-17 | 2012-08-07 | Medtronic Navigation, Inc. | Method and apparatus for surgical navigation | 
| USRE43952E1 (en) | 1989-10-05 | 2013-01-29 | Medtronic Navigation, Inc. | Interactive system for local intervention inside a non-homogeneous structure | 
| US8452068B2 (en) | 2008-06-06 | 2013-05-28 | Covidien Lp | Hybrid registration method | 
| US8473032B2 (en) | 2008-06-03 | 2013-06-25 | Superdimension, Ltd. | Feature-based registration method | 
| US8494613B2 (en) | 2009-08-31 | 2013-07-23 | Medtronic, Inc. | Combination localization system | 
| US8494614B2 (en) | 2009-08-31 | 2013-07-23 | Regents Of The University Of Minnesota | Combination localization system | 
| US8611984B2 (en) | 2009-04-08 | 2013-12-17 | Covidien Lp | Locatable catheter | 
| US8644907B2 (en) | 1999-10-28 | 2014-02-04 | Medtronic Navigaton, Inc. | Method and apparatus for surgical navigation | 
| US8660635B2 (en) | 2006-09-29 | 2014-02-25 | Medtronic, Inc. | Method and apparatus for optimizing a computer assisted surgical procedure | 
| US8663088B2 (en) | 2003-09-15 | 2014-03-04 | Covidien Lp | System of accessories for use with bronchoscopes | 
| US8768437B2 (en) | 1998-08-20 | 2014-07-01 | Sofamor Danek Holdings, Inc. | Fluoroscopic image guided surgery system with intraoperative registration | 
| US8764725B2 (en) | 2004-02-09 | 2014-07-01 | Covidien Lp | Directional anchoring mechanism, method and applications thereof | 
| US8905920B2 (en) | 2007-09-27 | 2014-12-09 | Covidien Lp | Bronchoscope adapter and method | 
| US8932207B2 (en) | 2008-07-10 | 2015-01-13 | Covidien Lp | Integrated multi-functional endoscopic tool | 
| US9055881B2 (en) | 2004-04-26 | 2015-06-16 | Super Dimension Ltd. | System and method for image-based alignment of an endoscope | 
| US9168102B2 (en) | 2006-01-18 | 2015-10-27 | Medtronic Navigation, Inc. | Method and apparatus for providing a container to a sterile environment | 
| US9575140B2 (en) | 2008-04-03 | 2017-02-21 | Covidien Lp | Magnetic interference detection system and method | 
| US9675424B2 (en) | 2001-06-04 | 2017-06-13 | Surgical Navigation Technologies, Inc. | Method for calibrating a navigation system | 
| US10418705B2 (en) | 2016-10-28 | 2019-09-17 | Covidien Lp | Electromagnetic navigation antenna assembly and electromagnetic navigation system including the same | 
| US10426555B2 (en) | 2015-06-03 | 2019-10-01 | Covidien Lp | Medical instrument with sensor for use in a system and method for electromagnetic navigation | 
| US10446931B2 (en) | 2016-10-28 | 2019-10-15 | Covidien Lp | Electromagnetic navigation antenna assembly and electromagnetic navigation system including the same | 
| US10478254B2 (en) | 2016-05-16 | 2019-11-19 | Covidien Lp | System and method to access lung tissue | 
| US10517505B2 (en) | 2016-10-28 | 2019-12-31 | Covidien Lp | Systems, methods, and computer-readable media for optimizing an electromagnetic navigation system | 
| US10582834B2 (en) | 2010-06-15 | 2020-03-10 | Covidien Lp | Locatable expandable working channel and method | 
| US10615500B2 (en) | 2016-10-28 | 2020-04-07 | Covidien Lp | System and method for designing electromagnetic navigation antenna assemblies | 
| US10638952B2 (en) | 2016-10-28 | 2020-05-05 | Covidien Lp | Methods, systems, and computer-readable media for calibrating an electromagnetic navigation system | 
| US10722311B2 (en) | 2016-10-28 | 2020-07-28 | Covidien Lp | System and method for identifying a location and/or an orientation of an electromagnetic sensor based on a map | 
| US10751126B2 (en) | 2016-10-28 | 2020-08-25 | Covidien Lp | System and method for generating a map for electromagnetic navigation | 
| US10792106B2 (en) | 2016-10-28 | 2020-10-06 | Covidien Lp | System for calibrating an electromagnetic navigation system | 
| US10952593B2 (en) | 2014-06-10 | 2021-03-23 | Covidien Lp | Bronchoscope adapter | 
| US11006914B2 (en) | 2015-10-28 | 2021-05-18 | Medtronic Navigation, Inc. | Apparatus and method for maintaining image quality while minimizing x-ray dosage of a patient | 
| US11219489B2 (en) | 2017-10-31 | 2022-01-11 | Covidien Lp | Devices and systems for providing sensors in parallel with medical tools | 
| US11331150B2 (en) | 1999-10-28 | 2022-05-17 | Medtronic Navigation, Inc. | Method and apparatus for surgical navigation | 
| US12089902B2 (en) | 2019-07-30 | 2024-09-17 | Coviden Lp | Cone beam and 3D fluoroscope lung navigation | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| EP0222498A3 (en)* | 1985-10-04 | 1989-11-15 | Loughborough Consultants Limited | Making measurements on a body | 
| US4779629A (en)* | 1985-10-04 | 1988-10-25 | Loughborough Consultants Limited | Making measurements on a body | 
| US6355049B1 (en) | 1987-12-02 | 2002-03-12 | Sherwood Services Ag | Head fixation apparatus | 
| US5748767A (en)* | 1988-02-01 | 1998-05-05 | Faro Technology, Inc. | Computer-aided surgery apparatus | 
| EP0480035A4 (en)* | 1989-06-30 | 1992-06-03 | Yokogawa Medical Systems, Ltd | Radiotherapic system | 
| USRE43952E1 (en) | 1989-10-05 | 2013-01-29 | Medtronic Navigation, Inc. | Interactive system for local intervention inside a non-homogeneous structure | 
| US6678545B2 (en) | 1990-10-19 | 2004-01-13 | Saint Louis University | System for determining the position in a scan image corresponding to the position of an imaging probe | 
| US5891034A (en) | 1990-10-19 | 1999-04-06 | St. Louis University | System for indicating the position of a surgical probe within a head on an image of the head | 
| US6463319B1 (en) | 1990-10-19 | 2002-10-08 | St. Louis University | System for indicating the position of a surgical probe within a head on an image of the head | 
| US6434415B1 (en) | 1990-10-19 | 2002-08-13 | St. Louis University | System for use in displaying images of a body part | 
| US6490467B1 (en) | 1990-10-19 | 2002-12-03 | Surgical Navigation Technologies, Inc. | Surgical navigation systems including reference and localization frames | 
| EP0553246A4 (en)* | 1990-10-19 | 1994-08-31 | St. Louis University | |
| US5851183A (en) | 1990-10-19 | 1998-12-22 | St. Louis University | System for indicating the position of a surgical probe within a head on an image of the head | 
| EP1210916A3 (en)* | 1990-10-19 | 2002-06-12 | ST. Louis University | System for indicating a location within a body of a patient | 
| US7072704B2 (en) | 1990-10-19 | 2006-07-04 | St. Louis University | System for indicating the position of a surgical probe within a head on an image of the head | 
| US6347240B1 (en) | 1990-10-19 | 2002-02-12 | St. Louis University | System and method for use in displaying images of a body part | 
| EP0931516A1 (en)* | 1990-10-19 | 1999-07-28 | St. Louis University | Surgical probe locating system for head use | 
| US6374135B1 (en) | 1990-10-19 | 2002-04-16 | Saint Louis University | System for indicating the position of a surgical probe within a head on an image of the head | 
| EP1690511A1 (en)* | 1990-10-19 | 2006-08-16 | St. Louis University | Surgical probe locating system for head use | 
| US5383454A (en)* | 1990-10-19 | 1995-01-24 | St. Louis University | System for indicating the position of a surgical probe within a head on an image of the head | 
| US6167295A (en) | 1991-01-28 | 2000-12-26 | Radionics, Inc. | Optical and computer graphic stereotactic localizer | 
| US6275725B1 (en) | 1991-01-28 | 2001-08-14 | Radionics, Inc. | Stereotactic optical navigation | 
| FR2679327A1 (en)* | 1991-07-15 | 1993-01-22 | Cebelor | NON-CONTACT THREE-DIMENSIONAL MEASUREMENT METHOD OF THE ENVELOPE OF AN OBJECT, IN PARTICULAR A FOOT, AND MEASURING APPARATUS FOR CARRYING OUT THE METHOD. | 
| WO1993002336A1 (en)* | 1991-07-15 | 1993-02-04 | Cebelor | Contact-free method for tridimensional measurement of the envelope of an object, particularly a foot, and measuring apparatus for implementing such method | 
| US5457325A (en)* | 1991-07-15 | 1995-10-10 | Stephane Huberty | Contact-free procedure for measuring the three dimensional shape of an object, particularly a human foot, by imaging the object and the indentation left by the object | 
| US6146390A (en) | 1992-04-21 | 2000-11-14 | Sofamor Danek Holdings, Inc. | Apparatus and method for photogrammetric surgical localization | 
| US6165181A (en) | 1992-04-21 | 2000-12-26 | Sofamor Danek Holdings, Inc. | Apparatus and method for photogrammetric surgical localization | 
| US6491702B2 (en) | 1992-04-21 | 2002-12-10 | Sofamor Danek Holdings, Inc. | Apparatus and method for photogrammetric surgical localization | 
| US8200314B2 (en) | 1992-08-14 | 2012-06-12 | British Telecommunications Public Limited Company | Surgical navigation | 
| WO1994018890A1 (en)* | 1993-02-26 | 1994-09-01 | Siemens Aktiengesellschaft | Combination of electrocardiogram and ultrasonic-image signals | 
| US7139601B2 (en) | 1993-04-26 | 2006-11-21 | Surgical Navigation Technologies, Inc. | Surgical navigation systems including reference and localization frames | 
| US5871445A (en) | 1993-04-26 | 1999-02-16 | St. Louis University | System for indicating the position of a surgical probe within a head on an image of the head | 
| US5967980A (en) | 1994-09-15 | 1999-10-19 | Visualization Technology, Inc. | Position tracking and imaging system for use in medical applications | 
| US5800352A (en)* | 1994-09-15 | 1998-09-01 | Visualization Technology, Inc. | Registration system for use with position tracking and imaging system for use in medical applications | 
| US6445943B1 (en) | 1994-09-15 | 2002-09-03 | Visualization Technology, Inc. | Position tracking and imaging system for use in medical applications | 
| US5829444A (en)* | 1994-09-15 | 1998-11-03 | Visualization Technology, Inc. | Position tracking and imaging system for use in medical applications | 
| US5873822A (en) | 1994-09-15 | 1999-02-23 | Visualization Technology, Inc. | Automatic registration system for use with position tracking and imaging system for use in medical applications | 
| US6341231B1 (en) | 1994-09-15 | 2002-01-22 | Visualization Technology, Inc. | Position tracking and imaging system for use in medical applications | 
| US6687531B1 (en) | 1994-09-15 | 2004-02-03 | Ge Medical Systems Global Technology Company, Llc | Position tracking and imaging system for use in medical applications | 
| US6694167B1 (en) | 1994-09-15 | 2004-02-17 | Ge Medical Systems Global Technology Company, Llc | System for monitoring a position of a medical instrument with respect to a patient's head | 
| US6738656B1 (en) | 1994-09-15 | 2004-05-18 | Ge Medical Systems Global Technology Company, Llc | Automatic registration system for use with position tracking an imaging system for use in medical applications | 
| US6934575B2 (en) | 1994-09-15 | 2005-08-23 | Ge Medical Systems Global Technology Company, Llc | Position tracking and imaging system for use in medical applications | 
| US6175756B1 (en) | 1994-09-15 | 2001-01-16 | Visualization Technology Inc. | Position tracking and imaging system for use in medical applications | 
| US8046053B2 (en) | 1994-10-07 | 2011-10-25 | Foley Kevin T | System and method for modifying images of a body part | 
| US6408107B1 (en) | 1996-07-10 | 2002-06-18 | Michael I. Miller | Rapid convolution based large deformation image matching via landmark and volume imagery | 
| USRE44305E1 (en) | 1997-09-24 | 2013-06-18 | Medtronic Navigation, Inc. | Percutaneous registration apparatus and method for use in computer-assisted surgical navigation | 
| USRE42226E1 (en) | 1997-09-24 | 2011-03-15 | Medtronic Navigation, Inc. | Percutaneous registration apparatus and method for use in computer-assisted surgical navigation | 
| USRE42194E1 (en) | 1997-09-24 | 2011-03-01 | Medtronic Navigation, Inc. | Percutaneous registration apparatus and method for use in computer-assisted surgical navigation | 
| USRE43328E1 (en) | 1997-11-20 | 2012-04-24 | Medtronic Navigation, Inc | Image guided awl/tap/screwdriver | 
| USRE46409E1 (en) | 1997-11-20 | 2017-05-23 | Medtronic Navigation, Inc. | Image guided awl/tap/screwdriver | 
| USRE46422E1 (en) | 1997-11-20 | 2017-06-06 | Medtronic Navigation, Inc. | Image guided awl/tap/screwdriver | 
| US7763035B2 (en) | 1997-12-12 | 2010-07-27 | Medtronic Navigation, Inc. | Image guided spinal surgery guide, system and method for use thereof | 
| US8105339B2 (en) | 1997-12-12 | 2012-01-31 | Sofamor Danek Holdings, Inc. | Image guided spinal surgery guide system and method for use thereof | 
| WO1999040846A1 (en)* | 1998-02-13 | 1999-08-19 | Mueller Reinhold G | Reproducible position or location identification of deformable bodies | 
| US6370224B1 (en) | 1998-06-29 | 2002-04-09 | Sofamor Danek Group, Inc. | System and methods for the reduction and elimination of image artifacts in the calibration of x-ray imagers | 
| US8768437B2 (en) | 1998-08-20 | 2014-07-01 | Sofamor Danek Holdings, Inc. | Fluoroscopic image guided surgery system with intraoperative registration | 
| US6633686B1 (en) | 1998-11-05 | 2003-10-14 | Washington University | Method and apparatus for image registration using large deformation diffeomorphisms on a sphere | 
| US7996064B2 (en) | 1999-03-23 | 2011-08-09 | Medtronic Navigation, Inc. | System and method for placing and determining an appropriately sized surgical implant | 
| US7606613B2 (en) | 1999-03-23 | 2009-10-20 | Medtronic Navigation, Inc. | Navigational guidance via computer-assisted fluoroscopic imaging | 
| US7217276B2 (en) | 1999-04-20 | 2007-05-15 | Surgical Navigational Technologies, Inc. | Instrument guidance method and system for image guided surgery | 
| US7797032B2 (en) | 1999-10-28 | 2010-09-14 | Medtronic Navigation, Inc. | Method and system for navigating a catheter probe in the presence of field-influencing objects | 
| US7657300B2 (en) | 1999-10-28 | 2010-02-02 | Medtronic Navigation, Inc. | Registration of human anatomy integrated for electromagnetic localization | 
| US8290572B2 (en) | 1999-10-28 | 2012-10-16 | Medtronic Navigation, Inc. | Method and system for navigating a catheter probe in the presence of field-influencing objects | 
| US11331150B2 (en) | 1999-10-28 | 2022-05-17 | Medtronic Navigation, Inc. | Method and apparatus for surgical navigation | 
| US8548565B2 (en) | 1999-10-28 | 2013-10-01 | Medtronic Navigation, Inc. | Registration of human anatomy integrated for electromagnetic localization | 
| US8074662B2 (en) | 1999-10-28 | 2011-12-13 | Medtronic Navigation, Inc. | Surgical communication and power system | 
| US8644907B2 (en) | 1999-10-28 | 2014-02-04 | Medtronic Navigaton, Inc. | Method and apparatus for surgical navigation | 
| US8057407B2 (en) | 1999-10-28 | 2011-11-15 | Medtronic Navigation, Inc. | Surgical sensor | 
| US9504530B2 (en) | 1999-10-28 | 2016-11-29 | Medtronic Navigation, Inc. | Method and apparatus for surgical navigation | 
| US10898153B2 (en) | 2000-03-01 | 2021-01-26 | Medtronic Navigation, Inc. | Multiple cannula image guided tool for image guided procedures | 
| US7881770B2 (en) | 2000-03-01 | 2011-02-01 | Medtronic Navigation, Inc. | Multiple cannula image guided tool for image guided procedures | 
| US7853305B2 (en) | 2000-04-07 | 2010-12-14 | Medtronic Navigation, Inc. | Trajectory storage apparatus and method for surgical navigation systems | 
| US8634897B2 (en) | 2000-04-07 | 2014-01-21 | Medtronic Navigation, Inc. | Trajectory storage apparatus and method for surgical navigation systems | 
| US8320653B2 (en) | 2000-06-14 | 2012-11-27 | Medtronic Navigation, Inc. | System and method for image based sensor calibration | 
| US7831082B2 (en) | 2000-06-14 | 2010-11-09 | Medtronic Navigation, Inc. | System and method for image based sensor calibration | 
| US9675424B2 (en) | 2001-06-04 | 2017-06-13 | Surgical Navigation Technologies, Inc. | Method for calibrating a navigation system | 
| US7630753B2 (en) | 2002-02-28 | 2009-12-08 | Medtronic Navigation, Inc. | Method and apparatus for perspective inversion | 
| US9757087B2 (en) | 2002-02-28 | 2017-09-12 | Medtronic Navigation, Inc. | Method and apparatus for perspective inversion | 
| US6990368B2 (en) | 2002-04-04 | 2006-01-24 | Surgical Navigation Technologies, Inc. | Method and apparatus for virtual digital subtraction angiography | 
| US8838199B2 (en) | 2002-04-04 | 2014-09-16 | Medtronic Navigation, Inc. | Method and apparatus for virtual digital subtraction angiography | 
| US10743748B2 (en) | 2002-04-17 | 2020-08-18 | Covidien Lp | Endoscope structures and techniques for navigating to a target in branched structure | 
| US8696685B2 (en) | 2002-04-17 | 2014-04-15 | Covidien Lp | Endoscope structures and techniques for navigating to a target in branched structure | 
| US9642514B2 (en) | 2002-04-17 | 2017-05-09 | Covidien Lp | Endoscope structures and techniques for navigating to a target in a branched structure | 
| US8696548B2 (en) | 2002-04-17 | 2014-04-15 | Covidien Lp | Endoscope structures and techniques for navigating to a target in branched structure | 
| US8467853B2 (en) | 2002-11-19 | 2013-06-18 | Medtronic Navigation, Inc. | Navigation system for cardiac therapies | 
| US8060185B2 (en) | 2002-11-19 | 2011-11-15 | Medtronic Navigation, Inc. | Navigation system for cardiac therapies | 
| US8401616B2 (en) | 2002-11-19 | 2013-03-19 | Medtronic Navigation, Inc. | Navigation system for cardiac therapies | 
| US8046052B2 (en) | 2002-11-19 | 2011-10-25 | Medtronic Navigation, Inc. | Navigation system for cardiac therapies | 
| US7697972B2 (en) | 2002-11-19 | 2010-04-13 | Medtronic Navigation, Inc. | Navigation system for cardiac therapies | 
| US7599730B2 (en) | 2002-11-19 | 2009-10-06 | Medtronic Navigation, Inc. | Navigation system for cardiac therapies | 
| US11684491B2 (en) | 2003-01-30 | 2023-06-27 | Medtronic Navigation, Inc. | Method and apparatus for post-operative tuning of a spinal implant | 
| US9867721B2 (en) | 2003-01-30 | 2018-01-16 | Medtronic Navigation, Inc. | Method and apparatus for post-operative tuning of a spinal implant | 
| US7974677B2 (en) | 2003-01-30 | 2011-07-05 | Medtronic Navigation, Inc. | Method and apparatus for preplanning a surgical procedure | 
| US7660623B2 (en) | 2003-01-30 | 2010-02-09 | Medtronic Navigation, Inc. | Six degree of freedom alignment display for medical procedures | 
| US11707363B2 (en) | 2003-01-30 | 2023-07-25 | Medtronic Navigation, Inc. | Method and apparatus for post-operative tuning of a spinal implant | 
| US7542791B2 (en) | 2003-01-30 | 2009-06-02 | Medtronic Navigation, Inc. | Method and apparatus for preplanning a surgical procedure | 
| US7570791B2 (en) | 2003-04-25 | 2009-08-04 | Medtronic Navigation, Inc. | Method and apparatus for performing 2D to 3D registration | 
| US7925328B2 (en) | 2003-08-28 | 2011-04-12 | Medtronic Navigation, Inc. | Method and apparatus for performing stereotactic surgery | 
| US7313430B2 (en) | 2003-08-28 | 2007-12-25 | Medtronic Navigation, Inc. | Method and apparatus for performing stereotactic surgery | 
| US9089261B2 (en) | 2003-09-15 | 2015-07-28 | Covidien Lp | System of accessories for use with bronchoscopes | 
| US10383509B2 (en) | 2003-09-15 | 2019-08-20 | Covidien Lp | System of accessories for use with bronchoscopes | 
| US8663088B2 (en) | 2003-09-15 | 2014-03-04 | Covidien Lp | System of accessories for use with bronchoscopes | 
| US7835778B2 (en) | 2003-10-16 | 2010-11-16 | Medtronic Navigation, Inc. | Method and apparatus for surgical navigation of a multiple piece construct for implantation | 
| US8706185B2 (en) | 2003-10-16 | 2014-04-22 | Medtronic Navigation, Inc. | Method and apparatus for surgical navigation of a multiple piece construct for implantation | 
| US7818044B2 (en) | 2003-10-17 | 2010-10-19 | Medtronic Navigation, Inc. | Method and apparatus for surgical navigation | 
| US7366562B2 (en) | 2003-10-17 | 2008-04-29 | Medtronic Navigation, Inc. | Method and apparatus for surgical navigation | 
| US8549732B2 (en) | 2003-10-17 | 2013-10-08 | Medtronic Navigation, Inc. | Method of forming an electromagnetic sensing coil in a medical instrument | 
| US8239001B2 (en) | 2003-10-17 | 2012-08-07 | Medtronic Navigation, Inc. | Method and apparatus for surgical navigation | 
| US8271069B2 (en) | 2003-10-17 | 2012-09-18 | Medtronic Navigation, Inc. | Method and apparatus for surgical navigation | 
| US7751865B2 (en) | 2003-10-17 | 2010-07-06 | Medtronic Navigation, Inc. | Method and apparatus for surgical navigation | 
| US7840253B2 (en) | 2003-10-17 | 2010-11-23 | Medtronic Navigation, Inc. | Method and apparatus for surgical navigation | 
| US7971341B2 (en) | 2003-10-17 | 2011-07-05 | Medtronic Navigation, Inc. | Method of forming an electromagnetic sensing coil in a medical instrument for a surgical navigation system | 
| US8359730B2 (en) | 2003-10-17 | 2013-01-29 | Medtronic Navigation, Inc. | Method of forming an electromagnetic sensing coil in a medical instrument | 
| US8764725B2 (en) | 2004-02-09 | 2014-07-01 | Covidien Lp | Directional anchoring mechanism, method and applications thereof | 
| US7998062B2 (en) | 2004-03-29 | 2011-08-16 | Superdimension, Ltd. | Endoscope structures and techniques for navigating to a target in branched structure | 
| US10321803B2 (en) | 2004-04-26 | 2019-06-18 | Covidien Lp | System and method for image-based alignment of an endoscope | 
| US9055881B2 (en) | 2004-04-26 | 2015-06-16 | Super Dimension Ltd. | System and method for image-based alignment of an endoscope | 
| US7953471B2 (en) | 2004-05-03 | 2011-05-31 | Medtronic Navigation, Inc. | Method and apparatus for implantation between two vertebral bodies | 
| US7567834B2 (en) | 2004-05-03 | 2009-07-28 | Medtronic Navigation, Inc. | Method and apparatus for implantation between two vertebral bodies | 
| US7636595B2 (en) | 2004-10-28 | 2009-12-22 | Medtronic Navigation, Inc. | Method and apparatus for calibrating non-linear instruments | 
| US8467851B2 (en) | 2005-09-21 | 2013-06-18 | Medtronic Navigation, Inc. | Method and apparatus for positioning a reference frame | 
| US7835784B2 (en) | 2005-09-21 | 2010-11-16 | Medtronic Navigation, Inc. | Method and apparatus for positioning a reference frame | 
| US10597178B2 (en) | 2006-01-18 | 2020-03-24 | Medtronic Navigation, Inc. | Method and apparatus for providing a container to a sterile environment | 
| US9168102B2 (en) | 2006-01-18 | 2015-10-27 | Medtronic Navigation, Inc. | Method and apparatus for providing a container to a sterile environment | 
| US8112292B2 (en) | 2006-04-21 | 2012-02-07 | Medtronic Navigation, Inc. | Method and apparatus for optimizing a therapy | 
| US9597154B2 (en) | 2006-09-29 | 2017-03-21 | Medtronic, Inc. | Method and apparatus for optimizing a computer assisted surgical procedure | 
| US8660635B2 (en) | 2006-09-29 | 2014-02-25 | Medtronic, Inc. | Method and apparatus for optimizing a computer assisted surgical procedure | 
| US9668639B2 (en) | 2007-09-27 | 2017-06-06 | Covidien Lp | Bronchoscope adapter and method | 
| US10980400B2 (en) | 2007-09-27 | 2021-04-20 | Covidien Lp | Bronchoscope adapter and method | 
| US8905920B2 (en) | 2007-09-27 | 2014-12-09 | Covidien Lp | Bronchoscope adapter and method | 
| US9986895B2 (en) | 2007-09-27 | 2018-06-05 | Covidien Lp | Bronchoscope adapter and method | 
| US10390686B2 (en) | 2007-09-27 | 2019-08-27 | Covidien Lp | Bronchoscope adapter and method | 
| US9575140B2 (en) | 2008-04-03 | 2017-02-21 | Covidien Lp | Magnetic interference detection system and method | 
| US9659374B2 (en) | 2008-06-03 | 2017-05-23 | Covidien Lp | Feature-based registration method | 
| US11783498B2 (en) | 2008-06-03 | 2023-10-10 | Covidien Lp | Feature-based registration method | 
| US9117258B2 (en) | 2008-06-03 | 2015-08-25 | Covidien Lp | Feature-based registration method | 
| US8473032B2 (en) | 2008-06-03 | 2013-06-25 | Superdimension, Ltd. | Feature-based registration method | 
| US11074702B2 (en) | 2008-06-03 | 2021-07-27 | Covidien Lp | Feature-based registration method | 
| US10096126B2 (en) | 2008-06-03 | 2018-10-09 | Covidien Lp | Feature-based registration method | 
| US8467589B2 (en) | 2008-06-06 | 2013-06-18 | Covidien Lp | Hybrid registration method | 
| US8452068B2 (en) | 2008-06-06 | 2013-05-28 | Covidien Lp | Hybrid registration method | 
| US10674936B2 (en) | 2008-06-06 | 2020-06-09 | Covidien Lp | Hybrid registration method | 
| US10285623B2 (en) | 2008-06-06 | 2019-05-14 | Covidien Lp | Hybrid registration method | 
| US9271803B2 (en) | 2008-06-06 | 2016-03-01 | Covidien Lp | Hybrid registration method | 
| US11931141B2 (en) | 2008-06-06 | 2024-03-19 | Covidien Lp | Hybrid registration method | 
| US10478092B2 (en) | 2008-06-06 | 2019-11-19 | Covidien Lp | Hybrid registration method | 
| US10070801B2 (en) | 2008-07-10 | 2018-09-11 | Covidien Lp | Integrated multi-functional endoscopic tool | 
| US11241164B2 (en) | 2008-07-10 | 2022-02-08 | Covidien Lp | Integrated multi-functional endoscopic tool | 
| US11234611B2 (en) | 2008-07-10 | 2022-02-01 | Covidien Lp | Integrated multi-functional endoscopic tool | 
| US10912487B2 (en) | 2008-07-10 | 2021-02-09 | Covidien Lp | Integrated multi-function endoscopic tool | 
| US8932207B2 (en) | 2008-07-10 | 2015-01-13 | Covidien Lp | Integrated multi-functional endoscopic tool | 
| US8165658B2 (en) | 2008-09-26 | 2012-04-24 | Medtronic, Inc. | Method and apparatus for positioning a guide relative to a base | 
| US8731641B2 (en) | 2008-12-16 | 2014-05-20 | Medtronic Navigation, Inc. | Combination of electromagnetic and electropotential localization | 
| US8175681B2 (en) | 2008-12-16 | 2012-05-08 | Medtronic Navigation Inc. | Combination of electromagnetic and electropotential localization | 
| US8611984B2 (en) | 2009-04-08 | 2013-12-17 | Covidien Lp | Locatable catheter | 
| US9113813B2 (en) | 2009-04-08 | 2015-08-25 | Covidien Lp | Locatable catheter | 
| US10154798B2 (en) | 2009-04-08 | 2018-12-18 | Covidien Lp | Locatable catheter | 
| US8494613B2 (en) | 2009-08-31 | 2013-07-23 | Medtronic, Inc. | Combination localization system | 
| US8494614B2 (en) | 2009-08-31 | 2013-07-23 | Regents Of The University Of Minnesota | Combination localization system | 
| US10582834B2 (en) | 2010-06-15 | 2020-03-10 | Covidien Lp | Locatable expandable working channel and method | 
| US10952593B2 (en) | 2014-06-10 | 2021-03-23 | Covidien Lp | Bronchoscope adapter | 
| US10426555B2 (en) | 2015-06-03 | 2019-10-01 | Covidien Lp | Medical instrument with sensor for use in a system and method for electromagnetic navigation | 
| US11801024B2 (en) | 2015-10-28 | 2023-10-31 | Medtronic Navigation, Inc. | Apparatus and method for maintaining image quality while minimizing x-ray dosage of a patient | 
| US11006914B2 (en) | 2015-10-28 | 2021-05-18 | Medtronic Navigation, Inc. | Apparatus and method for maintaining image quality while minimizing x-ray dosage of a patient | 
| US10478254B2 (en) | 2016-05-16 | 2019-11-19 | Covidien Lp | System and method to access lung tissue | 
| US11786317B2 (en) | 2016-05-16 | 2023-10-17 | Covidien Lp | System and method to access lung tissue | 
| US11160617B2 (en) | 2016-05-16 | 2021-11-02 | Covidien Lp | System and method to access lung tissue | 
| US11672604B2 (en) | 2016-10-28 | 2023-06-13 | Covidien Lp | System and method for generating a map for electromagnetic navigation | 
| US10615500B2 (en) | 2016-10-28 | 2020-04-07 | Covidien Lp | System and method for designing electromagnetic navigation antenna assemblies | 
| US10517505B2 (en) | 2016-10-28 | 2019-12-31 | Covidien Lp | Systems, methods, and computer-readable media for optimizing an electromagnetic navigation system | 
| US10792106B2 (en) | 2016-10-28 | 2020-10-06 | Covidien Lp | System for calibrating an electromagnetic navigation system | 
| US10638952B2 (en) | 2016-10-28 | 2020-05-05 | Covidien Lp | Methods, systems, and computer-readable media for calibrating an electromagnetic navigation system | 
| US10446931B2 (en) | 2016-10-28 | 2019-10-15 | Covidien Lp | Electromagnetic navigation antenna assembly and electromagnetic navigation system including the same | 
| US11759264B2 (en) | 2016-10-28 | 2023-09-19 | Covidien Lp | System and method for identifying a location and/or an orientation of an electromagnetic sensor based on a map | 
| US11786314B2 (en) | 2016-10-28 | 2023-10-17 | Covidien Lp | System for calibrating an electromagnetic navigation system | 
| US10722311B2 (en) | 2016-10-28 | 2020-07-28 | Covidien Lp | System and method for identifying a location and/or an orientation of an electromagnetic sensor based on a map | 
| US10751126B2 (en) | 2016-10-28 | 2020-08-25 | Covidien Lp | System and method for generating a map for electromagnetic navigation | 
| US10418705B2 (en) | 2016-10-28 | 2019-09-17 | Covidien Lp | Electromagnetic navigation antenna assembly and electromagnetic navigation system including the same | 
| US11219489B2 (en) | 2017-10-31 | 2022-01-11 | Covidien Lp | Devices and systems for providing sensors in parallel with medical tools | 
| US12089902B2 (en) | 2019-07-30 | 2024-09-17 | Coviden Lp | Cone beam and 3D fluoroscope lung navigation | 
| Publication | Publication Date | Title | 
|---|---|---|
| DE3508730A1 (en) | Measuring device for medical purposes | |
| DE19842798C1 (en) | Calibration device | |
| DE69319769T2 (en) | Stereotactic X-ray therapy system with computer-controlled tomographic scanning | |
| EP0687443B1 (en) | Means for positioning and marking of a patient on diagnostic equipments before and after x-ray examination in a computer tomograph | |
| DE19524951C2 (en) | Device for marking an area of a patient to be irradiated | |
| DE69322885T2 (en) | COLLISION-FREE CONTROL SYSTEM FOR A MULTI-AXIS CONTROLLED MANIPULATOR | |
| EP0687444A2 (en) | Means for positioning and marking of a patient for diagnostic apparatus e.g. before and after an X-ray examination with a computer tomograph | |
| DE3436444A1 (en) | Method and device for the reproducible, three-dimensional positioning of a patient, especially for irradiation | |
| DE19736192C2 (en) | Irradiation system with several radiation sources aligned to a center | |
| DE3904595C1 (en) | Device for determining the spatial coordinates of stereotactic target points by means of X-ray pictures | |
| DE8490019U1 (en) | Device for determining the desired center line of a cylindrical object, e.g. a block of wood | |
| EP2123327A1 (en) | Device and method for marking an irradiation field on the surface of a patient's body | |
| DE102005030285A1 (en) | Computer tomography device has marking arrangement associated with rotary frame and arranged directly in recording plane of recording system | |
| DE2831311C2 (en) | Device for determining internal body structures by means of scattered radiation | |
| EP2919654B1 (en) | Radiology workstation | |
| EP2926734A1 (en) | Method for setting up a patient irradiation device and method for positioning a patient on a patient irradiation device | |
| EP1000408B1 (en) | Computer tomagraphy method with helical scanning of an examination area | |
| DE102011083414B4 (en) | Dose normalization in radiotherapy with adaptation of isolines or isosurfaces | |
| DE2604662A1 (en) | RADIOGRAPHIC DEVICE | |
| EP1764039A1 (en) | Method and apparatus for examination and treatment of a patient | |
| DE68913494T2 (en) | Patient table for examinations on scintigraphy arrangements. | |
| DE102008026607B4 (en) | X-ray phantom and method of using the X-ray phantom to measure and / or adjust an X-ray machine | |
| DE29923561U1 (en) | Device for therapy with sound | |
| DE19508228B4 (en) | Method for irradiating a target point located in a target object | |
| DE3123526C2 (en) | Method for one to three-dimensional measurement of jaw and jaw joint movements and arrangement for carrying out the method | 
| Date | Code | Title | Description | 
|---|---|---|---|
| 8127 | New person/name/address of the applicant | Owner name:SCHUSTER, GUENTER, 8521 LANGENSENDELBACH, DE | |
| 8141 | Disposal/no request for examination |