Vorrichtung zum Programmieren der Bahnkurve einer Device for programming the trajectory of a
Roboterhand Die Erfindung betrifft eine Vorrichtung zum Programmierender Bahnkurve einer Roboterhand in mehreren Raumkoordinaten mit einem Bahnführerund einem die Roboterhand umgebenden Lehrgerüst mit einem Führungsgriff, wobei zwischenLehrgerüst und Roboterhand Schalter angeordnet sind, die auf am Führungsgriff wirkendeKräfte ansprechen und die Motoren steuern, die die Bewegung der Roboterhand längsder Bahnkurve bestimmen und diese Steuerbewegung in einem Programmsteuergerät gespeichertwerden. Robot hand The invention relates to a device for programmingthe trajectory of a robot hand in several spatial coordinates with a path operatorand a falsework surrounding the robot hand with a guide handle, with betweenFalsework and robot hand switches are arranged, which act on the guide handleAddress forces and control the motors that move the robot hand lengthwaysdetermine the trajectory and store this control movement in a program control devicewill.
U-nter Industrierobotern sind Geräte zu verstehen, die durch veränderbareProgramme steuerbare Handreichungen von Werkzeugen oder Werkstücken ausführen. Siebestehen aus mehreren, meistens drei Grundachsen zum Positionieren des Roboterarmsim Raum und mehreren, meistens drei Handachsen zum Ausrichten des vom Roboterarmgehaltenen Werkzeugs oder Werkstücks.U-nter industrial robots are devices to be understood by changeableExecute programmable handouts of tools or workpieces. sheconsist of several, mostly three basic axes for positioning the robot armin space and several, usually three, hand axes for aligning the robot armheld tool or workpiece.
Es sind bereits Verfahren zur Steuerung von Robotern bekannt, dieaber an Präzision erheblich zu wünschen übrig lassen. So werden bei kleinen undleichten Geräten die Antriebe ausgekuppelt, damit von einem Handgriff aus, der zweckmäßigerweiseam Roboterhandaggregatsitzt, das werkzeug oder Werkstück auf derzur Verrichtung der betreffenden Arbeit erforderlichen Bahn geführt werden kann.Während des Führens zeichnen Sensoren die Wegänderungen an den einzelnen Antriebsachsenauf. Dieses Verfahren besitzt den Nachteil, daß der Roboter und das Werkzeug bzw.-stückklein und leicht sein müssen, da die menschliche Muskelkraft, die das Gerät haltenund lenken muß, sonst überlastet wäre. Durch die Antriebe in den verschiedenen Achsenbedingte Spiele werden bei der Programmierung der Steuerwege nicht erfasst.There are already known methods for controlling robots thatbut leave a lot to be desired in terms of precision. So with small andlight devices, the drives are disengaged, so from a handle, the expedienton the handheld robot unitthe tool or workpiece sits on thethe path required to perform the work in question can be guided.During guidance, sensors record the path changes on the individual drive axeson. This method has the disadvantage that the robot and the tool or pieceMust be small and light, given the human muscle power that can hold the deviceand has to steer, otherwise it would be overloaded. Through the drives in the various axesConditional play is not recorded when programming the control paths.
Ein weiteres bekanntgewordenes Verfahren besteht darin, von einemexternen Kommandogerät aus den Roboter in die gewünschte Position zu manövrieren,d.h. in max. sechs Achsen, in denen punktartig die Programmaufnahme erfolgt. Durchentsprechend enges Setzen der Positionspunkte entsteht eine mehr oder weniger genaueRaumkurve.Another known method is to use aexternal command device to maneuver the robot into the desired position,i.e. in a maximum of six axes in which the program is recorded at points. Bycorrespondingly narrow setting of the position points results in a more or less precise oneSpace curve.
Die Raumkurve besteht aus einzelnen Verbindungsgeraden benachbarterPositionspunkte. Dieses Verfahren ist zeitraubend und ungenau. Es entstehen sogenannteZappelkurven.The space curve consists of individual straight lines connecting neighboring onesPosition points. This process is time consuming and inaccurate. So-calledFidget curves.
Mit der OS 24 35 156 ist ein Verfahren bekannt geworden, das dem ganzenRobotergerät ein bewegliches Lehrgerüst zuordnet, mit an geeigneten Stellen angebrachtenWegmeßsystemen. Die durch Bewegungen an einem an diesem Lehrgerüst angebrachtenFührungsgriff entstehenden Lageabweichungen zwischen Robotergerät und Lehrgerüstwerden in Motorbewegungen umgewandelt, die diese Lageabweichung kompensieren. DiesesVerfahren hat einmal den Nachteil, daß als Folge der vorhandenen Lageabweichungzwischen Lehrgerüst und Robotergerät die Bahn des Führungsgriffs der Bahn des zuführenden Werkzeugs bzw. Werkstücks nicht fest zugeordnet ist.With the OS 24 35 156 a method has become known that the wholeRobot device assigns a movable falsework, with attached in suitable placesMeasuring systems. The ones attached to this falsework by movementsPosition deviations between the robot device and the falseworkare converted into motor movements that compensate for this positional deviation. ThisThe method has the disadvantage that as a result of the existing positional deviationbetween the falsework and the robot device, the path of the guide handle corresponds to the path of the toleading tool or workpiece is not permanently assigned.
Am Griff summieren sich die Lageabweichungen aller .sechs Achsen zumindestens +/- 10 mm, was zwangsläufig zu Zappelkurven fUhrt, ähnlich wie bei dereingangs beschriebenen Programmiermethode. Zum anderen hat das Verfahren den Nachteil,daß wiederum als Folge der Lageabweichung allen Robotergliedern ein Lehrgerüst beigeordnetsein muß, was konstruktiv auf erhebliche Schwierigkeiten stößt. Die daran befestigtenWegmeßgeräte müssen erst die richtige We-gkomponente herausfiltern, was ebenfallszu ungewünschten Spielen führt und damit auch zu Zapp.elkurven.At the handle, the positional deviations of all six axes add upat least +/- 10 mm, which inevitably leads to fidgeting curves, similar to theprogramming method described at the beginning. On the other hand, the process has the disadvantagethat in turn, as a result of the positional deviation, all robot members are assigned a falseworkmust be, which constructively encounters considerable difficulties. The ones attached to itDistance measuring devices first have to filter out the correct path component, which alsoleads to unwanted games and thus to fidgeting curves.
Gelöst wird diese Aufgabe mit den Merkmalen des Anspruches 1. VorteilhafteAusgestaltungen sind den UnteransprUchen entnehmbar.This object is achieved with the features of claim 1. AdvantageousRefinements can be found in the subclaims.
Ein Ausführungsbeispiel zeigt die Zeichnung, bei der in Fig. 1 derRotober in Seitenansicht und in Fig. 2 der Antrieb der Grundachse gezeigt ist.An embodiment is shown in the drawing, in which in Fig. 1 ofRotober is shown in side view and in Fig. 2 the drive of the basic axis.
Der Erfindung liegt die Aufgabe zugrunde, eine Programmiereinrichtungzu schaffen, bei der die einprogrammierte Raumkurve von der Roboterhand exakt undspielfrei nachvollzogen wird.The invention is based on the object of a programming deviceto create in which the programmed space curve of the robot hand exactly andis reproduced without play.
Das Roboterhandaggregat 14 wird von einer auf Druckmeßdosen 13a-nabgestützten starren, nur die Roboterhanddrehbewegungen zulassenden Schale 12 umgeben,die an geeigneter Stelle einen Führungsgriff 11 besitzt. Die die Schale 12 abstützendenDruckmeßdosen 13a-n sind so angeordnet, daß deren Signale bei auf den Führungsgriffwirkenden Bahnführungskräften zu sinnvollen Nachführ -bewegungen der Achsmotoreund damit des Robotergestellsführt. Da die Druckmeßdosen 13a-nnur Drücke und keine Wege benötigen, sind damit die störenden Lageabweichungen,die Herausfilterung der Wegkomponenten und das das ganze Robotergestell betreffendeLe hrgerüst entsprechend vermieden und die Ursache der Zappelkurven behoben.The handheld robot unit 14 is controlled by a pressure cell 13a-nsupported rigid shell 12, which only allows the robot hand rotations,which has a guide handle 11 at a suitable point. The shell 12 supportingPressure cells 13a-n are arranged so that their signals on the guide handleeffective path guiding forces for meaningful tracking movements of the axis motorsand thus the robot frameleads. Since the pressure cells 13a-nonly need pressures and no distances are the disturbing positional deviations,the filtering out of the path components and that affecting the entire robot frameAccordingly, scaffolding avoided and the cause of the fidgeting curves eliminated.
Weil nun die Schale 12 ein eigenes Gewicht besitzt, das den Druckmeßdosen13 eine Vorspannung gibt, die besonders bei Beginn der Programmierarbeit zu Ruckenin der Bahnkurve führen kann, besitzt der Führungsgriff 11 einen Schalter 17 beidessen Betätigung einmal die Nachführsteuerung eingeschaltet wird und zum anderender Momentan-Druckwert der Druckmeßdosen 13 als neuer Null-Ausgangswert gespeichertwird. Damit wird absolut ruckfreies Anfahren erreicht.Because now the shell 12 has its own weight that the pressure cells13 gives a bias that jerks especially at the beginning of the programming workcan lead in the trajectory, the guide handle 11 has a switch 17 atwhose actuation once the tracking control is switched on and on the other handthe instantaneous pressure value of the pressure cells 13 is stored as a new zero output valuewill. This enables absolutely jerk-free start-up.
Die Programmierperson wäre überfordert, wenn sie zur Programmierungeiner Bahn z.B. zum Zwecke des Lichtbogenschweißens die der späteren Schweißarbeitentsprechende Bahn mit konstanter Geschwindigkeit abfahren sollte. Die Erfindungsieht daher eine Einrichtung zur geschwindigkeitsneutralen Aufnahme der zu programmierendenBahn vor. Dazu ist an dem am Handendglied des Roboters befindliche Bahnführer 21ein berührungslos arbeitendes Geschwindigkeit- oder Wegmeßgerät 25 angebracht, etwaals Lasergerät, das an untersich gleichen Wegabschnitten als Wegtaktgeber- Vorrichtugdie Bahnprogrammdaten in die Steuerung eingehen läßt. Diese Wegmeßdaten sind voneinem auf gleiche Zeitabstände einstellbaren Taktgeber abrufbar. Damit wird einegeschwi nd i gkei tsneutrale programmierbare Handreichung vom Gerät bei seiner Handreichungmit konstanter Geschwindigkeit ausführbar.The programmer would be overwhelmed when they started programminga track e.g. for the purpose of arc welding that of the later welding workcorresponding path should travel at constant speed. The inventiontherefore sees a device for the speed-neutral recording of the program to be programmedWeb forward. For this purpose, the track guide 21 located on the hand end link of the robota non-contact speed or distance measuring device 25 attached, for exampleas a laser device, which is used as a path clock device on different sections of the pathallows the path program data to enter the control. These measuring data are froma clock that can be set to equal time intervals can be called up. This becomes aSpeed-neutral, programmable handout from the device when handing it outexecutable at constant speed.
Das in Fig. 1 dargestellte Robotergerät hat bei I seine senkrechteGrundachse, die bei 2 in einem Kugeldrehkranz gelagert ist undvon dem Motor 3 und Getriebe 4 über Kettenrad 5 und Kette 6 sich am Zylinder 7 desGrundgestells abstützt. Bei 8 ist die Kette 6 befestigt. Das Federpaket 9 hält denKettentrieb spielfrei. Nichtgezeichnete Antriebsmotoren mit ihren Spindeln treibend-ie Achsen II und III. Die Motoren der Handachsen IV, V und VI sind ebenfalls nichtgezeichnet.The robot device shown in Fig. 1 has its vertical at IBasic axis at 2 in a slewing ringis stored andfrom the engine 3 and transmission 4 via sprocket 5 and chain 6 to the cylinder 7 of theBase frame is supported. At 8 the chain 6 is attached. The spring package 9 holds theBacklash-free chain drive. Drive motors, not shown, with their spindlesthe axes II and III. The motors of the wrist axes IV, V and VI are also notdrawn.
Der Handgriff 11 ist mit der Schale 12 verbunden. Diese ist über dieDruckmeßdosen 13a-n am Roboterhandaggregat 14 fest abgestützt. Die Schale 12 besitztdie Kugellager 16. Zwischen dem Roboterhandaggregat 14 und dem Kugellagerring 16befinden sich Druckmeßdosen 13f+g so angeordnet, daß der durch den Griff 11 eingeleiteteDruck an den Druckmeßdosen ein Signal für den Antriebsmotor der entsprechenden Achsegeben. Für die Achsen V und VI gilt das Gleiche. Die übrigen Druckmeßdosen sindzwischen dem Roboterarm 18 und der Schale 12 so angeordnet, daß die von Handgriff11 herkommenden Druckkräfte entsprechende Signale für die Motoren der Achsen I,II,IIIentstehen. Z.B. liefern die Druckmeßdosen 13m+n Signale für den Motor 3. Die Druckmeßdosen13b+c Signale für den Motor der Achse III. Die Druckmeßdosen 13a+e Signale für denMotor der Grundachse II.The handle 11 is connected to the shell 12. This is about thatPressure measuring cells 13a-n are firmly supported on the handheld robot unit 14. The shell 12 hasthe ball bearings 16 between the handheld robot unit 14 and the ball bearing ring 16there are pressure cells 13f + g arranged so that the introduced by the handle 11Pressure at the pressure cells a signal for the drive motor of the corresponding axisgive. The same applies to axes V and VI. The remaining pressure cells arearranged between the robot arm 18 and the shell 12 so that the handle11 signals for the motors of axes I, II, III corresponding to the compressive forcesdevelop. E.g. the pressure cells supply 13m + n signals for the motor 3. The pressure cells13b + c signals for the motor of axis III. The pressure cells 13a + e signals for theMotor of the basic axis II.
Das berührungslose Geschwindigkeits- oder Wegmeßgerät 25 dient wiebeschrieben und ist am Bahnführer 21 befestigt.The non-contact speed or distance measuring device 25 is used asand is attached to the rail guide 21.
24 stellt die zu programmierende Kurve dar.24 represents the curve to be programmed.
Soll die Roboterhand eine Drehung um die Achse VI ausführen, wirdder Griff entsprechend gedreht, wodurch die Druckmeßdosen 13k+l ein Signal erzeugen,das den entsprechenden Antriebsmotor steuert, wobei gleichzeitig diese Steuerphaseaufgezeichnet wird in einer Programmsteuerschaltung.Gleiches giltbei einer Drehung um die Achse V bezüglich der Druckmeßdosen 13j+h. Zwischen demSchalenteil -mit dem Griff 11 und dem Schalenteil 12a ist ein Kugellager 16a koaxialzur Achse VI vorgesehen.If the robot hand is to perform a rotation around the axis VI,the handle rotated accordingly, whereby the pressure cells 13k + l generate a signal,that controls the corresponding drive motor, while this control phaseis recorded in a program control circuit.same forwith a rotation about the axis V with respect to the pressure cells 13j + h. Between theShell part -with the handle 11 and the shell part 12a, a ball bearing 16a is coaxialprovided for axis VI.
Entsprechendes gilt bei einer Drehung um die Achse IV bezüglich derDruckmeßdosen 13f+g. Zwischen dem Schalenteil 12a und dem Schalenteil 12b ist einKugellager 16b koaxial zur Achse V angeordnet.The same applies to a rotation about the axis IV with respect to thePressure cells 13f + g. Between the shell part 12a and the shell part 12b is aBall bearings 16b arranged coaxially to the V axis.
Soll eine Bewegung des Kopfes 14 um die Achse III nach oben oder untenausgeführt werden, wird der Griff 11 nach oben oder unten gedrückt, wodurch dieDosen 13b+c Signale erzeugen. Für eine Bewegung um die Achse II gilt entsprechendesfür die Dosen 13a+e und für die Achse I entsprechendes für die Dosen 13m+n. Zwischenden Schalenteilen 12b und 12c ist ein zur Achse IV koaxiales Kugellager 16c vorgesehen.Should a movement of the head 14 about the axis III up or downare performed, the handle 11 is pushed up or down, whereby theDoses 13b + c generate signals. The same applies to a movement around axis IIfor the cans 13a + e and for the axis I the same for the cans 13m + n. Betweenthe shell parts 12b and 12c are provided with a ball bearing 16c coaxial with the axis IV.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE19782833638DE2833638A1 (en) | 1978-08-01 | 1978-08-01 | Robot hand programming system - uses frame with guide handle mounted on hand via force sensors |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE19782833638DE2833638A1 (en) | 1978-08-01 | 1978-08-01 | Robot hand programming system - uses frame with guide handle mounted on hand via force sensors |
| Publication Number | Publication Date |
|---|---|
| DE2833638A1true DE2833638A1 (en) | 1980-02-28 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| DE19782833638WithdrawnDE2833638A1 (en) | 1978-08-01 | 1978-08-01 | Robot hand programming system - uses frame with guide handle mounted on hand via force sensors |
| Country | Link |
|---|---|
| DE (1) | DE2833638A1 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2505716A1 (en)* | 1981-05-15 | 1982-11-19 | Dea Spa | MANIPULATOR ARM ASSEMBLY CONTROLLED BY A CALCULATOR SYSTEM |
| FR2505718A1 (en)* | 1981-05-15 | 1982-11-19 | Dea Spa | INDUSTRIAL PRODUCTION SYSTEM SERVICED BY A MULTIPLICITY OF MANIPULATOR ARMS AND CONTROLLED BY A CALCULATOR SYSTEM |
| DE3730873A1 (en)* | 1986-09-17 | 1988-04-07 | Tokico Ltd | ELECTRIC ROBOT |
| US8569646B2 (en) | 2009-11-13 | 2013-10-29 | Lincoln Global, Inc. | Systems, methods, and apparatuses for monitoring weld quality |
| US8747116B2 (en) | 2008-08-21 | 2014-06-10 | Lincoln Global, Inc. | System and method providing arc welding training in a real-time simulated virtual reality environment using real-time weld puddle feedback |
| US8834168B2 (en) | 2008-08-21 | 2014-09-16 | Lincoln Global, Inc. | System and method providing combined virtual reality arc welding and three-dimensional (3D) viewing |
| US8851896B2 (en) | 2008-08-21 | 2014-10-07 | Lincoln Global, Inc. | Virtual reality GTAW and pipe welding simulator and setup |
| US8884177B2 (en) | 2009-11-13 | 2014-11-11 | Lincoln Global, Inc. | Systems, methods, and apparatuses for monitoring weld quality |
| US8911237B2 (en) | 2008-08-21 | 2014-12-16 | Lincoln Global, Inc. | Virtual reality pipe welding simulator and setup |
| US8915740B2 (en) | 2008-08-21 | 2014-12-23 | Lincoln Global, Inc. | Virtual reality pipe welding simulator |
| USRE45398E1 (en) | 2009-03-09 | 2015-03-03 | Lincoln Global, Inc. | System for tracking and analyzing welding activity |
| US9011154B2 (en) | 2009-07-10 | 2015-04-21 | Lincoln Global, Inc. | Virtual welding system |
| US9196169B2 (en) | 2008-08-21 | 2015-11-24 | Lincoln Global, Inc. | Importing and analyzing external data using a virtual reality welding system |
| US9221117B2 (en) | 2009-07-08 | 2015-12-29 | Lincoln Global, Inc. | System for characterizing manual welding operations |
| US9230449B2 (en) | 2009-07-08 | 2016-01-05 | Lincoln Global, Inc. | Welding training system |
| US9280913B2 (en) | 2009-07-10 | 2016-03-08 | Lincoln Global, Inc. | Systems and methods providing enhanced education and training in a virtual reality environment |
| US9318026B2 (en) | 2008-08-21 | 2016-04-19 | Lincoln Global, Inc. | Systems and methods providing an enhanced user experience in a real-time simulated virtual reality welding environment |
| US9330575B2 (en) | 2008-08-21 | 2016-05-03 | Lincoln Global, Inc. | Tablet-based welding simulator |
| US9468988B2 (en) | 2009-11-13 | 2016-10-18 | Lincoln Global, Inc. | Systems, methods, and apparatuses for monitoring weld quality |
| US9483959B2 (en) | 2008-08-21 | 2016-11-01 | Lincoln Global, Inc. | Welding simulator |
| US9685099B2 (en) | 2009-07-08 | 2017-06-20 | Lincoln Global, Inc. | System for characterizing manual welding operations |
| US9767712B2 (en) | 2012-07-10 | 2017-09-19 | Lincoln Global, Inc. | Virtual reality pipe welding simulator and setup |
| US9773429B2 (en) | 2009-07-08 | 2017-09-26 | Lincoln Global, Inc. | System and method for manual welder training |
| US9836987B2 (en) | 2014-02-14 | 2017-12-05 | Lincoln Global, Inc. | Virtual reality pipe welding simulator and setup |
| US9895267B2 (en) | 2009-10-13 | 2018-02-20 | Lincoln Global, Inc. | Welding helmet with integral user interface |
| US10083627B2 (en) | 2013-11-05 | 2018-09-25 | Lincoln Global, Inc. | Virtual reality and real welding training system and method |
| US10198962B2 (en) | 2013-09-11 | 2019-02-05 | Lincoln Global, Inc. | Learning management system for a real-time simulated virtual reality welding training environment |
| US10373524B2 (en) | 2009-07-10 | 2019-08-06 | Lincoln Global, Inc. | Systems and methods providing a computerized eyewear device to aid in welding |
| US10475353B2 (en) | 2014-09-26 | 2019-11-12 | Lincoln Global, Inc. | System for characterizing manual welding operations on pipe and other curved structures |
| US10473447B2 (en) | 2016-11-04 | 2019-11-12 | Lincoln Global, Inc. | Magnetic frequency selection for electromagnetic position tracking |
| US10496080B2 (en) | 2006-12-20 | 2019-12-03 | Lincoln Global, Inc. | Welding job sequencer |
| US10878591B2 (en) | 2016-11-07 | 2020-12-29 | Lincoln Global, Inc. | Welding trainer utilizing a head up display to display simulated and real-world objects |
| US10913125B2 (en) | 2016-11-07 | 2021-02-09 | Lincoln Global, Inc. | Welding system providing visual and audio cues to a welding helmet with a display |
| US10930174B2 (en) | 2013-05-24 | 2021-02-23 | Lincoln Global, Inc. | Systems and methods providing a computerized eyewear device to aid in welding |
| US10940555B2 (en) | 2006-12-20 | 2021-03-09 | Lincoln Global, Inc. | System for a welding sequencer |
| US10994358B2 (en) | 2006-12-20 | 2021-05-04 | Lincoln Global, Inc. | System and method for creating or modifying a welding sequence based on non-real world weld data |
| US11475792B2 (en) | 2018-04-19 | 2022-10-18 | Lincoln Global, Inc. | Welding simulator with dual-user configuration |
| US11557223B2 (en) | 2018-04-19 | 2023-01-17 | Lincoln Global, Inc. | Modular and reconfigurable chassis for simulated welding training |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| FR2505718A1 (en)* | 1981-05-15 | 1982-11-19 | Dea Spa | INDUSTRIAL PRODUCTION SYSTEM SERVICED BY A MULTIPLICITY OF MANIPULATOR ARMS AND CONTROLLED BY A CALCULATOR SYSTEM |
| FR2505716A1 (en)* | 1981-05-15 | 1982-11-19 | Dea Spa | MANIPULATOR ARM ASSEMBLY CONTROLLED BY A CALCULATOR SYSTEM |
| DE3730873A1 (en)* | 1986-09-17 | 1988-04-07 | Tokico Ltd | ELECTRIC ROBOT |
| US11980976B2 (en) | 2006-12-20 | 2024-05-14 | Lincoln Global, Inc. | Method for a welding sequencer |
| US10496080B2 (en) | 2006-12-20 | 2019-12-03 | Lincoln Global, Inc. | Welding job sequencer |
| US10940555B2 (en) | 2006-12-20 | 2021-03-09 | Lincoln Global, Inc. | System for a welding sequencer |
| US10994358B2 (en) | 2006-12-20 | 2021-05-04 | Lincoln Global, Inc. | System and method for creating or modifying a welding sequence based on non-real world weld data |
| US9318026B2 (en) | 2008-08-21 | 2016-04-19 | Lincoln Global, Inc. | Systems and methods providing an enhanced user experience in a real-time simulated virtual reality welding environment |
| US9818311B2 (en) | 2008-08-21 | 2017-11-14 | Lincoln Global, Inc. | Importing and analyzing external data using a virtual reality welding system |
| US8915740B2 (en) | 2008-08-21 | 2014-12-23 | Lincoln Global, Inc. | Virtual reality pipe welding simulator |
| US10056011B2 (en) | 2008-08-21 | 2018-08-21 | Lincoln Global, Inc. | Importing and analyzing external data using a virtual reality welding system |
| US11715388B2 (en) | 2008-08-21 | 2023-08-01 | Lincoln Global, Inc. | Importing and analyzing external data using a virtual reality welding system |
| US11521513B2 (en) | 2008-08-21 | 2022-12-06 | Lincoln Global, Inc. | Importing and analyzing external data using a virtual reality welding system |
| US11030920B2 (en) | 2008-08-21 | 2021-06-08 | Lincoln Global, Inc. | Importing and analyzing external data using a virtual reality welding system |
| US8851896B2 (en) | 2008-08-21 | 2014-10-07 | Lincoln Global, Inc. | Virtual reality GTAW and pipe welding simulator and setup |
| US8834168B2 (en) | 2008-08-21 | 2014-09-16 | Lincoln Global, Inc. | System and method providing combined virtual reality arc welding and three-dimensional (3D) viewing |
| US10916153B2 (en) | 2008-08-21 | 2021-02-09 | Lincoln Global, Inc. | Systems and methods providing an enhanced user experience in a real-time simulated virtual reality welding environment |
| US9196169B2 (en) | 2008-08-21 | 2015-11-24 | Lincoln Global, Inc. | Importing and analyzing external data using a virtual reality welding system |
| US9965973B2 (en) | 2008-08-21 | 2018-05-08 | Lincoln Global, Inc. | Systems and methods providing enhanced education and training in a virtual reality environment |
| US9928755B2 (en) | 2008-08-21 | 2018-03-27 | Lincoln Global, Inc. | Virtual reality GTAW and pipe welding simulator and setup |
| US10803770B2 (en) | 2008-08-21 | 2020-10-13 | Lincoln Global, Inc. | Importing and analyzing external data using a virtual reality welding system |
| US8747116B2 (en) | 2008-08-21 | 2014-06-10 | Lincoln Global, Inc. | System and method providing arc welding training in a real-time simulated virtual reality environment using real-time weld puddle feedback |
| US9293056B2 (en) | 2008-08-21 | 2016-03-22 | Lincoln Global, Inc. | Importing and analyzing external data using a virtual reality welding system |
| US9293057B2 (en) | 2008-08-21 | 2016-03-22 | Lincoln Global, Inc. | Importing and analyzing external data using a virtual reality welding system |
| US10204529B2 (en) | 2008-08-21 | 2019-02-12 | Lincoln Global, Inc. | System and methods providing an enhanced user Experience in a real-time simulated virtual reality welding environment |
| US9330575B2 (en) | 2008-08-21 | 2016-05-03 | Lincoln Global, Inc. | Tablet-based welding simulator |
| US9336686B2 (en) | 2008-08-21 | 2016-05-10 | Lincoln Global, Inc. | Tablet-based welding simulator |
| US10762802B2 (en) | 2008-08-21 | 2020-09-01 | Lincoln Global, Inc. | Welding simulator |
| US9483959B2 (en) | 2008-08-21 | 2016-11-01 | Lincoln Global, Inc. | Welding simulator |
| US10249215B2 (en) | 2008-08-21 | 2019-04-02 | Lincoln Global, Inc. | Systems and methods providing enhanced education and training in a virtual reality environment |
| US9691299B2 (en) | 2008-08-21 | 2017-06-27 | Lincoln Global, Inc. | Systems and methods providing an enhanced user experience in a real-time simulated virtual reality welding environment |
| US9754509B2 (en) | 2008-08-21 | 2017-09-05 | Lincoln Global, Inc. | Importing and analyzing external data using a virtual reality welding system |
| US9761153B2 (en) | 2008-08-21 | 2017-09-12 | Lincoln Global, Inc. | Importing and analyzing external data using a virtual reality welding system |
| US10629093B2 (en) | 2008-08-21 | 2020-04-21 | Lincoln Global Inc. | Systems and methods providing enhanced education and training in a virtual reality environment |
| US12136353B2 (en) | 2008-08-21 | 2024-11-05 | Lincoln Global, Inc. | Importing and analyzing external data using a virtual reality welding system |
| US9779636B2 (en) | 2008-08-21 | 2017-10-03 | Lincoln Global, Inc. | Importing and analyzing external data using a virtual reality welding system |
| US9779635B2 (en) | 2008-08-21 | 2017-10-03 | Lincoln Global, Inc. | Importing and analyzing external data using a virtual reality welding system |
| US9792833B2 (en) | 2008-08-21 | 2017-10-17 | Lincoln Global, Inc. | Systems and methods providing an enhanced user experience in a real-time simulated virtual reality welding environment |
| US8911237B2 (en) | 2008-08-21 | 2014-12-16 | Lincoln Global, Inc. | Virtual reality pipe welding simulator and setup |
| US9818312B2 (en) | 2008-08-21 | 2017-11-14 | Lincoln Global, Inc. | Importing and analyzing external data using a virtual reality welding system |
| US9836995B2 (en) | 2008-08-21 | 2017-12-05 | Lincoln Global, Inc. | Importing and analyzing external data using a virtual reality welding system |
| US9858833B2 (en) | 2008-08-21 | 2018-01-02 | Lincoln Global, Inc. | Importing and analyzing external data using a virtual reality welding system |
| USRE47918E1 (en) | 2009-03-09 | 2020-03-31 | Lincoln Global, Inc. | System for tracking and analyzing welding activity |
| USRE45398E1 (en) | 2009-03-09 | 2015-03-03 | Lincoln Global, Inc. | System for tracking and analyzing welding activity |
| US10522055B2 (en) | 2009-07-08 | 2019-12-31 | Lincoln Global, Inc. | System for characterizing manual welding operations |
| US9773429B2 (en) | 2009-07-08 | 2017-09-26 | Lincoln Global, Inc. | System and method for manual welder training |
| US10347154B2 (en) | 2009-07-08 | 2019-07-09 | Lincoln Global, Inc. | System for characterizing manual welding operations |
| US9685099B2 (en) | 2009-07-08 | 2017-06-20 | Lincoln Global, Inc. | System for characterizing manual welding operations |
| US9230449B2 (en) | 2009-07-08 | 2016-01-05 | Lincoln Global, Inc. | Welding training system |
| US9221117B2 (en) | 2009-07-08 | 2015-12-29 | Lincoln Global, Inc. | System for characterizing manual welding operations |
| US10068495B2 (en) | 2009-07-08 | 2018-09-04 | Lincoln Global, Inc. | System for characterizing manual welding operations |
| US9280913B2 (en) | 2009-07-10 | 2016-03-08 | Lincoln Global, Inc. | Systems and methods providing enhanced education and training in a virtual reality environment |
| US9836994B2 (en) | 2009-07-10 | 2017-12-05 | Lincoln Global, Inc. | Virtual welding system |
| US9011154B2 (en) | 2009-07-10 | 2015-04-21 | Lincoln Global, Inc. | Virtual welding system |
| US10134303B2 (en) | 2009-07-10 | 2018-11-20 | Lincoln Global, Inc. | Systems and methods providing enhanced education and training in a virtual reality environment |
| US9911360B2 (en) | 2009-07-10 | 2018-03-06 | Lincoln Global, Inc. | Virtual testing and inspection of a virtual weldment |
| US9911359B2 (en) | 2009-07-10 | 2018-03-06 | Lincoln Global, Inc. | Virtual testing and inspection of a virtual weldment |
| US10373524B2 (en) | 2009-07-10 | 2019-08-06 | Lincoln Global, Inc. | Systems and methods providing a computerized eyewear device to aid in welding |
| US10991267B2 (en) | 2009-07-10 | 2021-04-27 | Lincoln Global, Inc. | Systems and methods providing a computerized eyewear device to aid in welding |
| US10643496B2 (en) | 2009-07-10 | 2020-05-05 | Lincoln Global Inc. | Virtual testing and inspection of a virtual weldment |
| US9895267B2 (en) | 2009-10-13 | 2018-02-20 | Lincoln Global, Inc. | Welding helmet with integral user interface |
| US9012802B2 (en) | 2009-11-13 | 2015-04-21 | Lincoln Global, Inc. | Systems, methods, and apparatuses for monitoring weld quality |
| US9089921B2 (en) | 2009-11-13 | 2015-07-28 | Lincoln Global, Inc. | Systems, methods, and apparatuses for monitoring weld quality |
| US8569646B2 (en) | 2009-11-13 | 2013-10-29 | Lincoln Global, Inc. | Systems, methods, and apparatuses for monitoring weld quality |
| US8884177B2 (en) | 2009-11-13 | 2014-11-11 | Lincoln Global, Inc. | Systems, methods, and apparatuses for monitoring weld quality |
| US8987628B2 (en) | 2009-11-13 | 2015-03-24 | Lincoln Global, Inc. | Systems, methods, and apparatuses for monitoring weld quality |
| US9468988B2 (en) | 2009-11-13 | 2016-10-18 | Lincoln Global, Inc. | Systems, methods, and apparatuses for monitoring weld quality |
| US9050679B2 (en) | 2009-11-13 | 2015-06-09 | Lincoln Global, Inc. | Systems, methods, and apparatuses for monitoring weld quality |
| US9050678B2 (en) | 2009-11-13 | 2015-06-09 | Lincoln Global, Inc. | Systems, methods, and apparatuses for monitoring weld quality |
| US9269279B2 (en) | 2010-12-13 | 2016-02-23 | Lincoln Global, Inc. | Welding training system |
| US9767712B2 (en) | 2012-07-10 | 2017-09-19 | Lincoln Global, Inc. | Virtual reality pipe welding simulator and setup |
| US10930174B2 (en) | 2013-05-24 | 2021-02-23 | Lincoln Global, Inc. | Systems and methods providing a computerized eyewear device to aid in welding |
| US10748447B2 (en) | 2013-05-24 | 2020-08-18 | Lincoln Global, Inc. | Systems and methods providing a computerized eyewear device to aid in welding |
| US10198962B2 (en) | 2013-09-11 | 2019-02-05 | Lincoln Global, Inc. | Learning management system for a real-time simulated virtual reality welding training environment |
| US10083627B2 (en) | 2013-11-05 | 2018-09-25 | Lincoln Global, Inc. | Virtual reality and real welding training system and method |
| US11100812B2 (en) | 2013-11-05 | 2021-08-24 | Lincoln Global, Inc. | Virtual reality and real welding training system and method |
| US9836987B2 (en) | 2014-02-14 | 2017-12-05 | Lincoln Global, Inc. | Virtual reality pipe welding simulator and setup |
| US10720074B2 (en) | 2014-02-14 | 2020-07-21 | Lincoln Global, Inc. | Welding simulator |
| US10475353B2 (en) | 2014-09-26 | 2019-11-12 | Lincoln Global, Inc. | System for characterizing manual welding operations on pipe and other curved structures |
| US10473447B2 (en) | 2016-11-04 | 2019-11-12 | Lincoln Global, Inc. | Magnetic frequency selection for electromagnetic position tracking |
| US10913125B2 (en) | 2016-11-07 | 2021-02-09 | Lincoln Global, Inc. | Welding system providing visual and audio cues to a welding helmet with a display |
| US10878591B2 (en) | 2016-11-07 | 2020-12-29 | Lincoln Global, Inc. | Welding trainer utilizing a head up display to display simulated and real-world objects |
| US11475792B2 (en) | 2018-04-19 | 2022-10-18 | Lincoln Global, Inc. | Welding simulator with dual-user configuration |
| US11557223B2 (en) | 2018-04-19 | 2023-01-17 | Lincoln Global, Inc. | Modular and reconfigurable chassis for simulated welding training |
| Publication | Publication Date | Title |
|---|---|---|
| DE2833638A1 (en) | Robot hand programming system - uses frame with guide handle mounted on hand via force sensors | |
| EP1648650B2 (en) | Method and device for the laser machining of workpieces | |
| DE3208435C2 (en) | Control device for guiding an automatic arc welding machine | |
| DE19810333A1 (en) | Automatic tool positioning arrangement | |
| DE2014448C3 (en) | Device for treating work pieces by means of laser energy | |
| EP0232548B1 (en) | Work station for large work pieces | |
| DE10255037A1 (en) | Method and device for machining a workpiece | |
| WO1999012696A1 (en) | Automatic welding machine | |
| DE3236127A1 (en) | METHOD AND CONTROL OF AN INDUSTRIAL MACHINE | |
| DE3322221C2 (en) | ||
| EP0133499A2 (en) | Manipulator gear head | |
| DE2818058C3 (en) | Bevel cut EDM device | |
| EP0073185A1 (en) | Automatic welder | |
| DE3030432A1 (en) | PROGRAMMED WELDING MACHINE WITH SPEED TRANSLATION FOR THE WELDING HEAD | |
| EP0892692B1 (en) | Welding and/or cutting device | |
| DE3341169A1 (en) | Automatic plant for the assembly and welding of body shells with especially high output | |
| DE19516263A1 (en) | CNC controlled wood machining system, esp. for long timber workpieces, e.g. planks | |
| DE3413731A1 (en) | Arrangement on an industrial robot | |
| DE3428748C2 (en) | Gear head for manipulators | |
| DE60206112T2 (en) | Laser cutting machine for tubes with different cross sections and diameters | |
| DE3722524A1 (en) | PRODUCTION ROADS AND METHOD FOR THE PRODUCTION OF WORKPIECES ON THE SAME | |
| DE19851411A1 (en) | Position measurement method for milling or drilling tool, using contactless measuring devices cooperating with rotary machining tool in its machining position | |
| DE69308185T2 (en) | Method and device for grinding two butt-jointed rails | |
| DE2811234B2 (en) | Contour welding device for polygonal or non-circular workpieces | |
| EP1074338B9 (en) | Machine tool guiding system or multi-axis robot for a plurality of tools |
| Date | Code | Title | Description |
|---|---|---|---|
| 8139 | Disposal/non-payment of the annual fee |