Die Erfindung betrifft ein Verfahren zum Nachführen von Werkzeugen mittels Kantenverfolgung gemäß Oberbegriff des Anspruchs 1 sowie eine Vorrichtung zur Durchführung des Verfahrens.The invention relates to a method for trackingTools using edge tracking according to the preamble ofClaim 1 and a device for performing the Verdriving.
Es ist beispielsweise beim Laserschweißen von Überlappnähten und Kehlnähten in der Automobilindustrie bekannt (W. Weidlich, Laser in der Technik, Laser 93, Springer-Verlag, 1993; E. U. Beske, Untersuchungen zum Schweißen mit ND: YAG-Laserstrahlung, Fortschritt-Berichte VDI, Reihe 2: Fertigungstechnik, VDI-Verlag), den Laserstrahl in einer feststehenden Strahlquelle zu generieren und über einen flexiblen Lichtwellenleiter zu einer Bearbeitungsoptik zu führen. Dadurch ist eine 3D-Naterialbearbeitung mit vergleichsweise geringem Aufwand realisierbar. Dabei wird die Bearbeitungsoptik von einem Industrie-Roboter entlang einer programmierten Bahn über die zu verschweißende Naht geführt. Da es sich bei dem Werkstück um ein toleranzbehaftetes Blechformteil handelt und der fokussierte Laserstrahl mit geringen Toleranzen entlang der Kante der zu verschweißenden Blechformteile positioniert werden muß, entstehen Probleme, welche einen Handlungsbedarf im Bereich der Bahnkorrektur hervorrufen.It is for example when laser welding overlapseams and fillet welds known in the automotive industry(W. Weidlich, Laser in Technology, Laser 93, Springer-Verlay, 1993; E. U. Beske, studies on welding withND: YAG laser radiation, progress reports VDI, series 2:Manufacturing technology, VDI-Verlag), the laser beam in onegenerate fixed beam source and via a flexiblen fiber optic lead to a processing opticsRen. This is a 3D material processing with comparativewise little effort realizable. Thereby the processingoptics from an industrial robot along a programgated web over the seam to be welded. Because itthe workpiece is a tolerant sheet metal shapepart acts and the focused laser beam with lowTolerances along the edge of the sheet to be weldedProblems must be positioned, which arisea need for action in the field of path correctionfen.
Bestehende Kantenverfolgungssysteme (K. Bartel, W. Trun zer, Sensor verfolgt die Schweißbahn, Laserpraxis 10/94; D. Schmidt, K. Sichler, E. Nichalak, Robotertechnik: Sensorunterstützte Bahnprogrammierung beim Laserschweißen mit Roboter, Springer-Verlag 92, Nayak, N.; Ray, A.: Intelligent Seam Tracking for Robot Welding; Nitsch, A.: Kaierle, S.: Der Schweißnaht auf der Spur, Roboter 12 (1194) Heft 2) vermessen die Lage der Kante mit optischen Verfahren, wie z. B. Linienprojektion und darauf folgende Bildauswertung. Sie korrigieren dann die Fokuspunktlage, indem der berichtigende Versatz der programmierten Vorschubbewegung überlagert wird. Dies führt zu hohem Rechenaufwand innerhalb der Robotersteuerung und damit zu steigenden Kosten bei der Investition der Rechner-Hardware und Rechner-Software. Auch das optische Meßsystem selbst benötigt zur Bildauswertung eine hohe Rechnerleistung und eine regelmäßige Wartung der bildaufnehmenden Komponenten.Existing edge tracking systems (K. Bartel, W. Trun zer, sensor tracks the welding path, laser practice 10/94; D.Schmidt, K. Sichler, E. Nichalak, robot technology: SensorunSupported path programming for laser welding with roboter, Springer-Verlag 92, Nayak, N .; Ray, A .: IntelligentSeam Tracking for Robot Welding; Nitsch, A .: Kaierle, S .:The weld seam on the track, Robot 12 (1194) Book 2) vermeasure the position of the edge with optical methods, such as B.Line projection and subsequent image evaluation. You korthen rig the focus point position by the correctiveOffset of the programmed feed movement is superimposed.This leads to high computing effort within the robot controland thus increasing costs when investingComputer hardware and computer software. Even the optical measurementsystem itself requires a high computer for image evaluationperformance and regular maintenance of the imaging staffComponents.
Die Aufgabe der vorliegenden Erfindung besteht darin, ein Verfahren und eine Vorrichtung zur Nachführung von Werkzeugen der eingangs genannten Art anzugeben, die einen einfachen Aufbau, eine einfache Bedienbarkeit und eine kostengünstige Herstellung ermöglichen, und mit denen Toleranzen der Werkstückgeometrien auf einfache Weise kompensierbar sind und der Programmieraufwand für das Handhabungsgerät (beispielsweise Roboter) verringert werden kann.The object of the present invention is aMethod and device for tracking toolsof the type mentioned at the beginning, which is a simpleStructure, ease of use and inexpensiveAllow manufacturing, and with tolerances of the factorypiece geometries can be compensated in a simple manner and theProgramming effort for the handling device (for exampleRobot) can be reduced.
Diese Aufgabe wird durch die Erfindung gemäß Ansprüchen 1 und 3 gelöst.This object is achieved by the invention according to claims 1and 3 solved.
Vorteilhafte und zweckmäßige Weiterbildungen der Erfindung sind in den Unteransprüchen angegeben.Advantageous and expedient further training of the Erfinare specified in the subclaims.
Durch die Erfindung wird eine zwei- als auch dreidimensionale Kantenverfolgung ermöglicht. Die Position der Kante wird in der Verfahrbewegung vor laufend mit einem taktilen Meßtaster aufgenommen und in einer Regelelektronik so verarbeitet, daß in Richtung zweier Zusatzachsen die Position des Bearbeitungswerkzeuges nachführbar ist, ohne das Handhabungsgerät zu beeinflussen. Die Nachführung erfolgt dabei mit hoher Geschwindigkeit. Durch die erfindungsgemäße Ausbildung kann der Aufwand zur Programmierung des Handhabungsgerätes bei neuen Bearbeitungsgeometrien stark verringert werden, da eine geringe Anzahl von Stützpunkten ausreicht, um den Meßtaster an der Kante entlangzuführen. Weiterhin können Toleranzen der Werkstoffgeometrie auch in der vollautomatisierten Fertigung kompensiert werden. Die Erfindung ermöglicht eine Nachrüstung bekannter Vorrichtungen, wobei eine Modifikation der Handhabungssteuerungen nicht notwendig ist. Weitere Vorteile bestehen im einfachen mechanischen Aufbau der erfindungsgemäßen Vorrichtung, in der einfachen Bedienbarkeit der Vorrichtung und in geringen Herstellungskosten.The invention makes two and three dimesregional edge tracking enables. The position of the edgeis in the traversing movement before running with a tactileProbe included and ver in a control electronicsworks that in the direction of two additional axesof the processing tool can be tracked without the handleto influence exercise equipment. The tracking is done withhigh speed. Through the training according to the inventioncan the effort to program the handling device can be greatly reduced with new machining geometries becausea small number of bases is sufficient to measure the measmost along the edge. Toleranzen of the material geometry also in the fully automatedManufacturing to be compensated. The invention enables oneRetrofitting known devices, with a modificationthe handling controls are not necessary. More beforeparts consist of the simple mechanical structure of the inventordevice according to the invention, in the ease of use ofDevice and in low manufacturing costs.
Die Erfindung soll nachfolgend anhand eines in der beigefügten Zeichnung dargestellten Ausführungsbeispiels näher erläutert werden.The invention is based on one in theattached drawing illustrated embodimentare explained.
Es zeigtIt shows
Fig. 1 schematisch eine Seitenansicht einer Vorrichtung zum Nachführen von Werkzeugen mittels Kantenverfolgung undFig. 1 shows schematically a side view of a Vorrich device for tracking tools by means of edge tracking and
Fig. 2 eine schematische Rückansicht der Vorrichtung nachFig. 1.FIG. 2 shows a schematic rear view of the device according toFIG. 1.
Gleiche Bauteile in den Figuren der Zeichnung sind mit den gleichen Bezugszeichen versehen.The same components in the figures of the drawing are includedprovided with the same reference numerals.
Die Zeichnung zeigt eine Vorrichtung2 zur Nachführung von Werkzeugen mittels Kantenverfolgung, die aus mehreren Komponenten besteht.The drawing shows a device2 for tracking tools by means of edge tracking, which consists of several components.
Auf einer Grundplatte4, welche an einer nicht dargestellten, die Vorrichtung2 in Vorschubrichtung (X-Achse) verfahrenden Handhabungsvorrichtung, beispielsweise einem Roboter, befestigt ist, sind ein Werkzeug5 (hier beispielsweise ein Laserbearbeitungskopf), ein sensorischer Teil6 und ein aktiv korrigierender Teil8 angeordnet, welche über eine Regeleinrichtung10 miteinander verbunden sind, welche nicht vom Roboter mitgeführt wird, sondern über Kabel angeschlossen ist.On a base plate4 , which is attached to a handling device (not shown), the device2 moving in the feed direction (X-axis), for example a robot, are a tool5 (here, for example, a laser processing head), a sensor part6 and a actively correcting part8 arranged, which are connected to each other via a control device10 , which is not carried by the robot, but is connected via cable.
Der sensorische Teil6 umfaßt einen Meßtaster12 als tak tilen Sensor mit mechanischem, mittels Feder13 vorgespanntem Taster14, welcher schleppend in einem definierten Abstand A zur Bearbeitungsstelle16 an einer Kante18 zwischen zwei beispielsweise zu verschweißenden Blechformteilen20 und22 vorlaufend entlanggeführt wird, und einen 2 D-Wegaufnehmer24.The sensory part6 comprises a probe12 as a tactile sensor with mechanical spring13 pretensioned button14 , which is dragged along at a defined distance A to the processing point16 on an edge18 between two sheet metal parts20 and22 to be welded, for example, and a 2-D transducer24 .
Der aktiv korrigierende Teil8 umfaßt einen ersten Notor26 mit Getriebe28 und Kurbeltrieb30 zur Linearbewegung des Werkzeuges5 in Z-Richtung31 (Z-Achse), um so beispielsweise die Fokuslage eines Laserstrahles zu korrigieren, und einen zweiten Notor32 mit Getriebe34 und Kurbeltrieb36 zur Bewegung des Werkzeuges quer zur Kante18, also quer zur Bearbeitungsrichtung, wobei die Querbewegung (Y-Achse38) durch Verkippen des Werkzeuges um die Y-Achse erfolgt, um die Position des Bearbeitungspunktes (beispielsweise des Schweißpunktes) entlang der Kante, beispielsweise der zu verschweißenden Naht zu führen.The actively correcting part8 comprises a first notor26 with gear28 and crank mechanism30 for linear movement of the tool5 in the Z direction31 (Z axis) in order to correct the focus position of a laser beam, for example, and a second notor32 with gear34 and crank mechanism36 for moving the tool transversely to the edge18 , that is to say transversely to the machining direction, the transverse movement (Y-axis38 ) being effected by tilting the tool about the Y-axis to the position of the machining point (for example the welding point) along the edge, for example the seam to be welded.
Das Werkzeug5, am dargestellten Beispiel der Laser-Bearbeitungskopf, ist starr mit dem Meßtaster12 gekoppelt.The tool5 , in the example shown the laser processing head, is rigidly coupled to the probe12 .
Die Vorrichtung2 arbeitet wie folgt:
Ein Bearbeitungswerkzeug5, beispielsweise eine Laserschweißeinrichtung, wird von einer Handhabungsvorrichtung, beispielsweise einem Roboter, entlang einer Bearbeitungsbahn, beispielsweise einer zu verschweißenden Naht40 eines Werkstückes42 geführt. Während der Verfahrbewegung in X-Richtung, beispielsweise durch die Handhabungsvorrichtung, wird der Ist-Verlauf der Kante18 und damit am dargestellten Beispiel die reale Position der zu schweißenden Naht40 des Werkstückes42 vor laufend mit Hilfe des Meßtasters12 aufgenommen. Die Meßdaten werden in der Regeleinrichtung10 mit der vorgegebenen Position der vorprogrammierten Bearbeitungsbahn verglichen und ausgewertet. Die Regeleinrichtung erzeugt Regelsignale, die die beiden Notoren26 und32 steuern, welche die Position des Werkzeuges5 nachführen. Senkrecht zur Oberfläche des Werkstückes42 erfolgt dabei eine Nachführung der Höhenlage (Z-Achse) des Werkzeuges5 durch eine Linearbewegung des Werkzeuges; quer zur Bearbeitungsrichtung (Y-Ach se) erfolgt eine Nachführung des Werkzeuges durch eine Verkippung, siehe Pfeil44 inFig. 2. Wenn sich die Position des Tasters14 während des Bearbeitungsprozesses (beispielsweise während des Schweißvorganges) in Z- oder Y-Richtung verändert, führen die beiden Motoren26 und32 über die Zusatzachsen in Z- oder Y-Richtung das Werkzeug nach bzw. führen eine entsprechende Korrekturbewegung des Werkzeuges mit hoher Geschwindigkeit durch. Der maximale Verstellbereich der Zusatzachsen (Y- und Z-Achse) wird durch die Kraftübertragung mit einem Kurbeltrieb an der Abgangswelle des jeweiligen Getriebes28,34 begrenzt.The device2 works as follows:
 A processing tool5 , for example a laser welding device, is guided by a handling device, for example a robot, along a processing path, for example a seam40 to be welded, of a workpiece42 . During the traversing movement in the X-Rich direction, for example by the handling device, the actual profile of the edge18 and thus the actual position of the seam40 to be welded on the workpiece42 shown before is continuously taken up with the aid of the measuring probe12 . The measurement data are compared and evaluated in the control device10 with the predetermined position of the preprogrammed machining path. The control device generates control signals which control the two notors26 and32 , which track the position of the tool5 . Perpendicular to the surface of the workpiece42 there is a tracking of the height (Z axis) of the tool5 by a Linearbe movement of the tool; transverse to the machining direction (Y-axis se), the tool is tilted, see arrow44 inFig. 2. If the position of the button14 during the machining process (for example during the welding process) in the Z or Y direction changed, the two motors26 and32 guide the tool via the additional axes in the Z or Y direction or perform a corresponding correction movement of the tool at high speed. The maximum adjustment range of the additional axes (Y and Z axes) is limited by the power transmission with a crank mechanism on the output shaft of the respective gear28 ,34 .
Beispielsweise konnten beim Laserstrahlschweißen mit einem Nd:YAG-Laser, der einen Fokusdurchmesser von 0,6 mm aufwies, Kehlnähte mit einer Blechdicke von 1 mm mit einer Geschwindigkeit von 2,5 m/min mit hoher Qualität gefügt werden. Der eingesetzte Roboter als Handhabungsgerät führte dabei eine lineare Verfahrbewegung aus, und der Bearbeitungskopf des Laserschweißgerätes wurde allein durch die Zusatzachsen (Z- und Y-Achse) entlang der gekrümmten Kehlnaht nachgeführt.For example, laser welding with einem Nd: YAG laser, which has a focus diameter of 0.6 mmpointed, fillet welds with a sheet thickness of 1 mm with a Gespeed of 2.5 m / min can be joined with high quality.The robot used as a handling device leda linear movement, and the machining headof the laser welding machine was achieved solely through the additional axes(Z and Y axes) along the curved fillet weld.
| Application Number | Priority Date | Filing Date | Title | 
|---|---|---|---|
| DE19615069ADE19615069A1 (en) | 1996-04-17 | 1996-04-17 | Procedure for panning machine tool esp. laser beam cutter using edge tracking on workpiece | 
| Application Number | Priority Date | Filing Date | Title | 
|---|---|---|---|
| DE19615069ADE19615069A1 (en) | 1996-04-17 | 1996-04-17 | Procedure for panning machine tool esp. laser beam cutter using edge tracking on workpiece | 
| Publication Number | Publication Date | 
|---|---|
| DE19615069A1true DE19615069A1 (en) | 1997-10-23 | 
| Application Number | Title | Priority Date | Filing Date | 
|---|---|---|---|
| DE19615069ACeasedDE19615069A1 (en) | 1996-04-17 | 1996-04-17 | Procedure for panning machine tool esp. laser beam cutter using edge tracking on workpiece | 
| Country | Link | 
|---|---|
| DE (1) | DE19615069A1 (en) | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| DE19847867A1 (en)* | 1998-07-18 | 2000-01-13 | Rofin Sinar Laser Gmbh | Apparatus for laser welding of a workpiece along a linear seam | 
| DE19930087A1 (en)* | 1999-06-30 | 2001-01-11 | Charalambos Tassakos | Control of the positioning of a robot type handling device with optical sensors is improved by storage of future movement points in memory to enable the robot to follow a path more quickly with no loss of positioning accuracy | 
| DE10007837A1 (en)* | 2000-02-21 | 2001-08-23 | Nelson Bolzenschweis Technik G | Welding stud positioning method and stud welding head | 
| DE10006852A1 (en)* | 2000-02-16 | 2001-08-30 | Anders Michael | Method and device for joining workpiece parts by means of an energy beam, in particular a laser beam | 
| EP1157770A3 (en)* | 2000-05-26 | 2003-05-14 | Sikora GmbH | Laser brazing head | 
| WO2005035179A1 (en)* | 2003-10-06 | 2005-04-21 | Daimlerchrysler Ag | Method for joining two workpieces by fusion welding using detectors for locating recesses in said workpieces | 
| EP1762328A1 (en) | 2005-09-09 | 2007-03-14 | Highyag Lasertechnologie GmbH | Tactile driven laser processing optic | 
| WO2008037548A1 (en)* | 2006-09-26 | 2008-04-03 | Scansonic Mi Gmbh | Device for guiding an energy beam | 
| DE102007006115A1 (en) | 2007-02-02 | 2008-08-14 | Scansonic Mi Gmbh | Device for joining workpiece parts by means of an arc with a seam guiding device | 
| DE102008054040A1 (en) | 2008-10-31 | 2010-05-06 | Audi Ag | Method for the production of metal sheet connection through seam welding by laser beam, comprises galvanizing the metal sheet connection, where a welding device is associated to a pressure element influencing on one of the components | 
| US8569646B2 (en) | 2009-11-13 | 2013-10-29 | Lincoln Global, Inc. | Systems, methods, and apparatuses for monitoring weld quality | 
| US8747116B2 (en) | 2008-08-21 | 2014-06-10 | Lincoln Global, Inc. | System and method providing arc welding training in a real-time simulated virtual reality environment using real-time weld puddle feedback | 
| US8834168B2 (en) | 2008-08-21 | 2014-09-16 | Lincoln Global, Inc. | System and method providing combined virtual reality arc welding and three-dimensional (3D) viewing | 
| US8851896B2 (en) | 2008-08-21 | 2014-10-07 | Lincoln Global, Inc. | Virtual reality GTAW and pipe welding simulator and setup | 
| US8884177B2 (en) | 2009-11-13 | 2014-11-11 | Lincoln Global, Inc. | Systems, methods, and apparatuses for monitoring weld quality | 
| US8911237B2 (en) | 2008-08-21 | 2014-12-16 | Lincoln Global, Inc. | Virtual reality pipe welding simulator and setup | 
| US8915740B2 (en) | 2008-08-21 | 2014-12-23 | Lincoln Global, Inc. | Virtual reality pipe welding simulator | 
| USRE45398E1 (en) | 2009-03-09 | 2015-03-03 | Lincoln Global, Inc. | System for tracking and analyzing welding activity | 
| US9011154B2 (en) | 2009-07-10 | 2015-04-21 | Lincoln Global, Inc. | Virtual welding system | 
| US9196169B2 (en) | 2008-08-21 | 2015-11-24 | Lincoln Global, Inc. | Importing and analyzing external data using a virtual reality welding system | 
| US9221117B2 (en) | 2009-07-08 | 2015-12-29 | Lincoln Global, Inc. | System for characterizing manual welding operations | 
| US9230449B2 (en) | 2009-07-08 | 2016-01-05 | Lincoln Global, Inc. | Welding training system | 
| US9280913B2 (en) | 2009-07-10 | 2016-03-08 | Lincoln Global, Inc. | Systems and methods providing enhanced education and training in a virtual reality environment | 
| US9318026B2 (en) | 2008-08-21 | 2016-04-19 | Lincoln Global, Inc. | Systems and methods providing an enhanced user experience in a real-time simulated virtual reality welding environment | 
| US9330575B2 (en) | 2008-08-21 | 2016-05-03 | Lincoln Global, Inc. | Tablet-based welding simulator | 
| DE102014017307A1 (en)* | 2014-11-21 | 2016-05-25 | Kuka Roboter Gmbh | Method and system for processing a component with a robot-guided tool | 
| CN105728630A (en)* | 2016-02-24 | 2016-07-06 | 浙江大学 | Pressure foot unit of automatic drilling and riveting machine | 
| US9468988B2 (en) | 2009-11-13 | 2016-10-18 | Lincoln Global, Inc. | Systems, methods, and apparatuses for monitoring weld quality | 
| US9483959B2 (en) | 2008-08-21 | 2016-11-01 | Lincoln Global, Inc. | Welding simulator | 
| US9685099B2 (en) | 2009-07-08 | 2017-06-20 | Lincoln Global, Inc. | System for characterizing manual welding operations | 
| US9767712B2 (en) | 2012-07-10 | 2017-09-19 | Lincoln Global, Inc. | Virtual reality pipe welding simulator and setup | 
| US9773429B2 (en) | 2009-07-08 | 2017-09-26 | Lincoln Global, Inc. | System and method for manual welder training | 
| US9836987B2 (en) | 2014-02-14 | 2017-12-05 | Lincoln Global, Inc. | Virtual reality pipe welding simulator and setup | 
| US9895267B2 (en) | 2009-10-13 | 2018-02-20 | Lincoln Global, Inc. | Welding helmet with integral user interface | 
| US10083627B2 (en) | 2013-11-05 | 2018-09-25 | Lincoln Global, Inc. | Virtual reality and real welding training system and method | 
| US10198962B2 (en) | 2013-09-11 | 2019-02-05 | Lincoln Global, Inc. | Learning management system for a real-time simulated virtual reality welding training environment | 
| DE102007055453B4 (en)* | 2007-11-19 | 2019-03-07 | Coast Composites, Inc. | Apparatus and method for laser welding | 
| US10373524B2 (en) | 2009-07-10 | 2019-08-06 | Lincoln Global, Inc. | Systems and methods providing a computerized eyewear device to aid in welding | 
| US10475353B2 (en) | 2014-09-26 | 2019-11-12 | Lincoln Global, Inc. | System for characterizing manual welding operations on pipe and other curved structures | 
| US10473447B2 (en) | 2016-11-04 | 2019-11-12 | Lincoln Global, Inc. | Magnetic frequency selection for electromagnetic position tracking | 
| US10496080B2 (en) | 2006-12-20 | 2019-12-03 | Lincoln Global, Inc. | Welding job sequencer | 
| US10878591B2 (en) | 2016-11-07 | 2020-12-29 | Lincoln Global, Inc. | Welding trainer utilizing a head up display to display simulated and real-world objects | 
| US10913125B2 (en) | 2016-11-07 | 2021-02-09 | Lincoln Global, Inc. | Welding system providing visual and audio cues to a welding helmet with a display | 
| US10930174B2 (en) | 2013-05-24 | 2021-02-23 | Lincoln Global, Inc. | Systems and methods providing a computerized eyewear device to aid in welding | 
| US10940555B2 (en) | 2006-12-20 | 2021-03-09 | Lincoln Global, Inc. | System for a welding sequencer | 
| US10994358B2 (en) | 2006-12-20 | 2021-05-04 | Lincoln Global, Inc. | System and method for creating or modifying a welding sequence based on non-real world weld data | 
| US11475792B2 (en) | 2018-04-19 | 2022-10-18 | Lincoln Global, Inc. | Welding simulator with dual-user configuration | 
| US11557223B2 (en) | 2018-04-19 | 2023-01-17 | Lincoln Global, Inc. | Modular and reconfigurable chassis for simulated welding training | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| DE3341964A1 (en)* | 1983-11-21 | 1985-05-30 | Brose Werkzeugmaschinen GmbH & Co KG, 6625 Püttlingen | Device for the automatic guidance of tools | 
| DE3243341C2 (en)* | 1981-11-20 | 1989-04-20 | Tokico Ltd., Kawasaki, Kanagawa, Jp | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| DE3243341C2 (en)* | 1981-11-20 | 1989-04-20 | Tokico Ltd., Kawasaki, Kanagawa, Jp | |
| DE3341964A1 (en)* | 1983-11-21 | 1985-05-30 | Brose Werkzeugmaschinen GmbH & Co KG, 6625 Püttlingen | Device for the automatic guidance of tools | 
| Title | 
|---|
| McCloy, D., Harris, D.M.J.: Robotertechnik, VCH Verlagsgesellschaft mbH, Weinheim 1989, S. 230,231* | 
| Publication number | Priority date | Publication date | Assignee | Title | 
|---|---|---|---|---|
| DE19847867A1 (en)* | 1998-07-18 | 2000-01-13 | Rofin Sinar Laser Gmbh | Apparatus for laser welding of a workpiece along a linear seam | 
| DE19930087B4 (en)* | 1999-06-30 | 2007-08-30 | Inos Automationssoftware Gmbh | Method and device for controlling the advance position of a manipulator of a handling device | 
| DE19930087A1 (en)* | 1999-06-30 | 2001-01-11 | Charalambos Tassakos | Control of the positioning of a robot type handling device with optical sensors is improved by storage of future movement points in memory to enable the robot to follow a path more quickly with no loss of positioning accuracy | 
| DE19930087C5 (en)* | 1999-06-30 | 2011-12-01 | Inos Automationssoftware Gmbh | Method and device for controlling the advance position of a manipulator of a handling device | 
| US6596962B2 (en) | 2000-02-16 | 2003-07-22 | Michael Anders | Process and device for joining of workpiece parts by means of an energy beam, in particular by means of a laser beam | 
| DE10006852A1 (en)* | 2000-02-16 | 2001-08-30 | Anders Michael | Method and device for joining workpiece parts by means of an energy beam, in particular a laser beam | 
| DE10006852C5 (en)* | 2000-02-16 | 2004-08-26 | Anders, Michael, Dr.-Ing. | Method and device for joining workpiece parts by means of an energy beam, in particular a laser beam | 
| DE10007837A1 (en)* | 2000-02-21 | 2001-08-23 | Nelson Bolzenschweis Technik G | Welding stud positioning method and stud welding head | 
| EP1157770A3 (en)* | 2000-05-26 | 2003-05-14 | Sikora GmbH | Laser brazing head | 
| WO2005035179A1 (en)* | 2003-10-06 | 2005-04-21 | Daimlerchrysler Ag | Method for joining two workpieces by fusion welding using detectors for locating recesses in said workpieces | 
| DE10346264A1 (en)* | 2003-10-06 | 2005-04-28 | Daimler Chrysler Ag | Method for joining two workpieces by fusion welding | 
| EP1762328A1 (en) | 2005-09-09 | 2007-03-14 | Highyag Lasertechnologie GmbH | Tactile driven laser processing optic | 
| WO2008037548A1 (en)* | 2006-09-26 | 2008-04-03 | Scansonic Mi Gmbh | Device for guiding an energy beam | 
| DE102006056252A1 (en)* | 2006-09-26 | 2008-04-03 | Scansonic Mi Gmbh | Device for guiding an energy beam | 
| DE102006056252B4 (en)* | 2006-09-26 | 2009-06-10 | Scansonic Mi Gmbh | Device for guiding an energy beam | 
| US10496080B2 (en) | 2006-12-20 | 2019-12-03 | Lincoln Global, Inc. | Welding job sequencer | 
| US11980976B2 (en) | 2006-12-20 | 2024-05-14 | Lincoln Global, Inc. | Method for a welding sequencer | 
| US10940555B2 (en) | 2006-12-20 | 2021-03-09 | Lincoln Global, Inc. | System for a welding sequencer | 
| US10994358B2 (en) | 2006-12-20 | 2021-05-04 | Lincoln Global, Inc. | System and method for creating or modifying a welding sequence based on non-real world weld data | 
| DE102007006115A1 (en) | 2007-02-02 | 2008-08-14 | Scansonic Mi Gmbh | Device for joining workpiece parts by means of an arc with a seam guiding device | 
| DE102007055453B4 (en)* | 2007-11-19 | 2019-03-07 | Coast Composites, Inc. | Apparatus and method for laser welding | 
| US9761153B2 (en) | 2008-08-21 | 2017-09-12 | Lincoln Global, Inc. | Importing and analyzing external data using a virtual reality welding system | 
| US9818311B2 (en) | 2008-08-21 | 2017-11-14 | Lincoln Global, Inc. | Importing and analyzing external data using a virtual reality welding system | 
| US8915740B2 (en) | 2008-08-21 | 2014-12-23 | Lincoln Global, Inc. | Virtual reality pipe welding simulator | 
| US10056011B2 (en) | 2008-08-21 | 2018-08-21 | Lincoln Global, Inc. | Importing and analyzing external data using a virtual reality welding system | 
| US11715388B2 (en) | 2008-08-21 | 2023-08-01 | Lincoln Global, Inc. | Importing and analyzing external data using a virtual reality welding system | 
| US8851896B2 (en) | 2008-08-21 | 2014-10-07 | Lincoln Global, Inc. | Virtual reality GTAW and pipe welding simulator and setup | 
| US11521513B2 (en) | 2008-08-21 | 2022-12-06 | Lincoln Global, Inc. | Importing and analyzing external data using a virtual reality welding system | 
| US11030920B2 (en) | 2008-08-21 | 2021-06-08 | Lincoln Global, Inc. | Importing and analyzing external data using a virtual reality welding system | 
| US8834168B2 (en) | 2008-08-21 | 2014-09-16 | Lincoln Global, Inc. | System and method providing combined virtual reality arc welding and three-dimensional (3D) viewing | 
| US8747116B2 (en) | 2008-08-21 | 2014-06-10 | Lincoln Global, Inc. | System and method providing arc welding training in a real-time simulated virtual reality environment using real-time weld puddle feedback | 
| US9196169B2 (en) | 2008-08-21 | 2015-11-24 | Lincoln Global, Inc. | Importing and analyzing external data using a virtual reality welding system | 
| US9965973B2 (en) | 2008-08-21 | 2018-05-08 | Lincoln Global, Inc. | Systems and methods providing enhanced education and training in a virtual reality environment | 
| US9928755B2 (en) | 2008-08-21 | 2018-03-27 | Lincoln Global, Inc. | Virtual reality GTAW and pipe welding simulator and setup | 
| US10916153B2 (en) | 2008-08-21 | 2021-02-09 | Lincoln Global, Inc. | Systems and methods providing an enhanced user experience in a real-time simulated virtual reality welding environment | 
| US10803770B2 (en) | 2008-08-21 | 2020-10-13 | Lincoln Global, Inc. | Importing and analyzing external data using a virtual reality welding system | 
| US9293056B2 (en) | 2008-08-21 | 2016-03-22 | Lincoln Global, Inc. | Importing and analyzing external data using a virtual reality welding system | 
| US9293057B2 (en) | 2008-08-21 | 2016-03-22 | Lincoln Global, Inc. | Importing and analyzing external data using a virtual reality welding system | 
| US9318026B2 (en) | 2008-08-21 | 2016-04-19 | Lincoln Global, Inc. | Systems and methods providing an enhanced user experience in a real-time simulated virtual reality welding environment | 
| US9330575B2 (en) | 2008-08-21 | 2016-05-03 | Lincoln Global, Inc. | Tablet-based welding simulator | 
| US9336686B2 (en) | 2008-08-21 | 2016-05-10 | Lincoln Global, Inc. | Tablet-based welding simulator | 
| US10762802B2 (en) | 2008-08-21 | 2020-09-01 | Lincoln Global, Inc. | Welding simulator | 
| US10629093B2 (en) | 2008-08-21 | 2020-04-21 | Lincoln Global Inc. | Systems and methods providing enhanced education and training in a virtual reality environment | 
| US10204529B2 (en) | 2008-08-21 | 2019-02-12 | Lincoln Global, Inc. | System and methods providing an enhanced user Experience in a real-time simulated virtual reality welding environment | 
| US9483959B2 (en) | 2008-08-21 | 2016-11-01 | Lincoln Global, Inc. | Welding simulator | 
| US10249215B2 (en) | 2008-08-21 | 2019-04-02 | Lincoln Global, Inc. | Systems and methods providing enhanced education and training in a virtual reality environment | 
| US9691299B2 (en) | 2008-08-21 | 2017-06-27 | Lincoln Global, Inc. | Systems and methods providing an enhanced user experience in a real-time simulated virtual reality welding environment | 
| US9754509B2 (en) | 2008-08-21 | 2017-09-05 | Lincoln Global, Inc. | Importing and analyzing external data using a virtual reality welding system | 
| US9858833B2 (en) | 2008-08-21 | 2018-01-02 | Lincoln Global, Inc. | Importing and analyzing external data using a virtual reality welding system | 
| US9836995B2 (en) | 2008-08-21 | 2017-12-05 | Lincoln Global, Inc. | Importing and analyzing external data using a virtual reality welding system | 
| US12136353B2 (en) | 2008-08-21 | 2024-11-05 | Lincoln Global, Inc. | Importing and analyzing external data using a virtual reality welding system | 
| US9779635B2 (en) | 2008-08-21 | 2017-10-03 | Lincoln Global, Inc. | Importing and analyzing external data using a virtual reality welding system | 
| US9779636B2 (en) | 2008-08-21 | 2017-10-03 | Lincoln Global, Inc. | Importing and analyzing external data using a virtual reality welding system | 
| US9792833B2 (en) | 2008-08-21 | 2017-10-17 | Lincoln Global, Inc. | Systems and methods providing an enhanced user experience in a real-time simulated virtual reality welding environment | 
| US9818312B2 (en) | 2008-08-21 | 2017-11-14 | Lincoln Global, Inc. | Importing and analyzing external data using a virtual reality welding system | 
| US8911237B2 (en) | 2008-08-21 | 2014-12-16 | Lincoln Global, Inc. | Virtual reality pipe welding simulator and setup | 
| DE102008054040A1 (en) | 2008-10-31 | 2010-05-06 | Audi Ag | Method for the production of metal sheet connection through seam welding by laser beam, comprises galvanizing the metal sheet connection, where a welding device is associated to a pressure element influencing on one of the components | 
| USRE47918E1 (en) | 2009-03-09 | 2020-03-31 | Lincoln Global, Inc. | System for tracking and analyzing welding activity | 
| USRE45398E1 (en) | 2009-03-09 | 2015-03-03 | Lincoln Global, Inc. | System for tracking and analyzing welding activity | 
| US9773429B2 (en) | 2009-07-08 | 2017-09-26 | Lincoln Global, Inc. | System and method for manual welder training | 
| US10347154B2 (en) | 2009-07-08 | 2019-07-09 | Lincoln Global, Inc. | System for characterizing manual welding operations | 
| US10522055B2 (en) | 2009-07-08 | 2019-12-31 | Lincoln Global, Inc. | System for characterizing manual welding operations | 
| US10068495B2 (en) | 2009-07-08 | 2018-09-04 | Lincoln Global, Inc. | System for characterizing manual welding operations | 
| US9685099B2 (en) | 2009-07-08 | 2017-06-20 | Lincoln Global, Inc. | System for characterizing manual welding operations | 
| US9230449B2 (en) | 2009-07-08 | 2016-01-05 | Lincoln Global, Inc. | Welding training system | 
| US9221117B2 (en) | 2009-07-08 | 2015-12-29 | Lincoln Global, Inc. | System for characterizing manual welding operations | 
| US9011154B2 (en) | 2009-07-10 | 2015-04-21 | Lincoln Global, Inc. | Virtual welding system | 
| US10373524B2 (en) | 2009-07-10 | 2019-08-06 | Lincoln Global, Inc. | Systems and methods providing a computerized eyewear device to aid in welding | 
| US10134303B2 (en) | 2009-07-10 | 2018-11-20 | Lincoln Global, Inc. | Systems and methods providing enhanced education and training in a virtual reality environment | 
| US10643496B2 (en) | 2009-07-10 | 2020-05-05 | Lincoln Global Inc. | Virtual testing and inspection of a virtual weldment | 
| US9911360B2 (en) | 2009-07-10 | 2018-03-06 | Lincoln Global, Inc. | Virtual testing and inspection of a virtual weldment | 
| US9911359B2 (en) | 2009-07-10 | 2018-03-06 | Lincoln Global, Inc. | Virtual testing and inspection of a virtual weldment | 
| US10991267B2 (en) | 2009-07-10 | 2021-04-27 | Lincoln Global, Inc. | Systems and methods providing a computerized eyewear device to aid in welding | 
| US9836994B2 (en) | 2009-07-10 | 2017-12-05 | Lincoln Global, Inc. | Virtual welding system | 
| US9280913B2 (en) | 2009-07-10 | 2016-03-08 | Lincoln Global, Inc. | Systems and methods providing enhanced education and training in a virtual reality environment | 
| US9895267B2 (en) | 2009-10-13 | 2018-02-20 | Lincoln Global, Inc. | Welding helmet with integral user interface | 
| US8987628B2 (en) | 2009-11-13 | 2015-03-24 | Lincoln Global, Inc. | Systems, methods, and apparatuses for monitoring weld quality | 
| US9012802B2 (en) | 2009-11-13 | 2015-04-21 | Lincoln Global, Inc. | Systems, methods, and apparatuses for monitoring weld quality | 
| US9050679B2 (en) | 2009-11-13 | 2015-06-09 | Lincoln Global, Inc. | Systems, methods, and apparatuses for monitoring weld quality | 
| US9050678B2 (en) | 2009-11-13 | 2015-06-09 | Lincoln Global, Inc. | Systems, methods, and apparatuses for monitoring weld quality | 
| US8884177B2 (en) | 2009-11-13 | 2014-11-11 | Lincoln Global, Inc. | Systems, methods, and apparatuses for monitoring weld quality | 
| US9468988B2 (en) | 2009-11-13 | 2016-10-18 | Lincoln Global, Inc. | Systems, methods, and apparatuses for monitoring weld quality | 
| US8569646B2 (en) | 2009-11-13 | 2013-10-29 | Lincoln Global, Inc. | Systems, methods, and apparatuses for monitoring weld quality | 
| US9089921B2 (en) | 2009-11-13 | 2015-07-28 | Lincoln Global, Inc. | Systems, methods, and apparatuses for monitoring weld quality | 
| US9269279B2 (en) | 2010-12-13 | 2016-02-23 | Lincoln Global, Inc. | Welding training system | 
| US9767712B2 (en) | 2012-07-10 | 2017-09-19 | Lincoln Global, Inc. | Virtual reality pipe welding simulator and setup | 
| US10748447B2 (en) | 2013-05-24 | 2020-08-18 | Lincoln Global, Inc. | Systems and methods providing a computerized eyewear device to aid in welding | 
| US10930174B2 (en) | 2013-05-24 | 2021-02-23 | Lincoln Global, Inc. | Systems and methods providing a computerized eyewear device to aid in welding | 
| US10198962B2 (en) | 2013-09-11 | 2019-02-05 | Lincoln Global, Inc. | Learning management system for a real-time simulated virtual reality welding training environment | 
| US11100812B2 (en) | 2013-11-05 | 2021-08-24 | Lincoln Global, Inc. | Virtual reality and real welding training system and method | 
| US10083627B2 (en) | 2013-11-05 | 2018-09-25 | Lincoln Global, Inc. | Virtual reality and real welding training system and method | 
| US9836987B2 (en) | 2014-02-14 | 2017-12-05 | Lincoln Global, Inc. | Virtual reality pipe welding simulator and setup | 
| US10720074B2 (en) | 2014-02-14 | 2020-07-21 | Lincoln Global, Inc. | Welding simulator | 
| US10475353B2 (en) | 2014-09-26 | 2019-11-12 | Lincoln Global, Inc. | System for characterizing manual welding operations on pipe and other curved structures | 
| DE102014017307A1 (en)* | 2014-11-21 | 2016-05-25 | Kuka Roboter Gmbh | Method and system for processing a component with a robot-guided tool | 
| US10394216B2 (en) | 2014-11-21 | 2019-08-27 | Kuka Deutschland Gmbh | Method and system for correcting a processing path of a robot-guided tool | 
| DE102014017307B4 (en) | 2014-11-21 | 2019-08-01 | Kuka Roboter Gmbh | Method and system for processing a component with a robot-guided tool | 
| CN105728630A (en)* | 2016-02-24 | 2016-07-06 | 浙江大学 | Pressure foot unit of automatic drilling and riveting machine | 
| US10473447B2 (en) | 2016-11-04 | 2019-11-12 | Lincoln Global, Inc. | Magnetic frequency selection for electromagnetic position tracking | 
| US10913125B2 (en) | 2016-11-07 | 2021-02-09 | Lincoln Global, Inc. | Welding system providing visual and audio cues to a welding helmet with a display | 
| US10878591B2 (en) | 2016-11-07 | 2020-12-29 | Lincoln Global, Inc. | Welding trainer utilizing a head up display to display simulated and real-world objects | 
| US11475792B2 (en) | 2018-04-19 | 2022-10-18 | Lincoln Global, Inc. | Welding simulator with dual-user configuration | 
| US11557223B2 (en) | 2018-04-19 | 2023-01-17 | Lincoln Global, Inc. | Modular and reconfigurable chassis for simulated welding training | 
| Publication | Publication Date | Title | 
|---|---|---|
| DE19615069A1 (en) | Procedure for panning machine tool esp. laser beam cutter using edge tracking on workpiece | |
| DE102006030130B3 (en) | Workpiece machining method for, e.g., industrial robot, involves compensating deviation of determined actual-position from reference-movement path and deviation of determined actual-speed vector from measured reference-speed vector | |
| EP1125672B2 (en) | Method and apparatus for joining workpieces by using a beam of energy, especially a laserbeam | |
| DE69127121T3 (en) | Device and method for automatically aligning a welding device for butt welding workpieces | |
| EP0770445B1 (en) | Control and positioning method of a beam or jet for machining a workpiece | |
| DE102008049821B4 (en) | Distance sensor and method for determining a distance and / or distance variations between a processing laser and a workpiece | |
| DE102017126867A1 (en) | Laser processing system and method for laser processing | |
| EP0707920A2 (en) | Compact laser processing head for laser processing of material, with an integrated on-line track control | |
| WO2018059901A1 (en) | Method and laser machining tool for laser welding a first and a second workpiece portion | |
| EP2418040B1 (en) | Method of controlling a device for laser welding | |
| DE102010005896A1 (en) | Laser welding robot for connecting components by a welding seam, comprises a laser welding device arranged on an arm of the robot, a coupling device for laser radiation, a laser head and an electronic control | |
| EP2353801A2 (en) | Working device with robot on movable platform and working method | |
| EP1238746A2 (en) | Method and device for robotically controlled laser cutting and welding | |
| DE102020100803A1 (en) | Follow-up robot and robot work system | |
| DE202006005916U1 (en) | Monitoring device for jet mechanisms e.g. remote lasers, has jet e.g. laser beam for treatment of workpiece and movable jet head e.g. laser head, where monitoring device has sensor unit attached to jet head, preferably at exit of jet optics | |
| DE3413731A1 (en) | Arrangement on an industrial robot | |
| EP2091699B1 (en) | Method and device for fine-positioning a tool having a handling device | |
| DE102008029063B4 (en) | Method and device for applying an application structure to a workpiece and for monitoring the application structure | |
| DE102011117454B4 (en) | Laser processing device | |
| WO2017046306A1 (en) | Method for guiding a machining head along a track to be machined | |
| EP2022595B1 (en) | Method and apparatus for setting a processing position with determination of the real processing line in comparison with the programmed processing line of the processing tool | |
| EP0037521B1 (en) | Process and apparatus for automatically tracking a weld seam | |
| WO2020007984A1 (en) | Method and device for checking a focus position of a laser beam in relation to a workpiece | |
| DE112021003769T5 (en) | laser processing system | |
| DE3117606A1 (en) | "AUTOMATIC, CONTACTLESS TORCH GUIDE AT JOINT CENTER WHEN PROTECTIVE GAS ARC WELDING" | 
| Date | Code | Title | Description | 
|---|---|---|---|
| OP8 | Request for examination as to paragraph 44 patent law | ||
| 8131 | Rejection |