Die Erfindung betrifft ein Verfahren zur dreidimensionalen optischen Vermessung der Oberfläche von Objekten mit großer Punktdichte, das die Merkmale des Oberbegriffs des Anspruches 1 aufweist.The invention relates to a method for three-dimensional optical measurement of theSurface of objects with high point density, which is the characteristics of the generic termof claim 1.
Die bekannten Verfahren dieser Art lassen sich mit verschiedenen Beleuchtungsverfahren wie Lichtschnitt, codierter Lichtansatz und Moir´ durchführen. Sie liefern zumindest dann sehr genaue Meßergebnisse wenn das Auflösungsvermögen der Videokamera und die Ausleuchtung der Oberfläche mit der Lichtstruktur gut ist.The known methods of this type can be illuminated with different light sourcesCarry out processing procedures such as light section, coded light approach and Moir´. shedeliver very accurate measurement results at least if the resolutionthe video camera and the illumination of the surface with the light structure is good.
Mit diesen Verfahren ist es möglich, eine Massenpunktbestimmung mit sehr hoher Punktdichte durchzuführen. Zu jedem Bildpunkt des Videobildes lassen sich die Koordinaten des entsprechenden Oberflächenpunktes berechnen. Man spricht deshalb auch von einer bildgebenden Vermessung der Oberfläche. Nachteilig ist jedoch der relativ große Aufwand für die erforderliche Kalibrierung, also die Bestimmung der inneren und äußeren Orientierung sowohl des Projektors als auch der Kamera sowie deren optischen Konstanten und Parameter zur Korrektur von Objektivfehlern. Der Aufwand für die Bestimmung von Position und Orientierung der Kamera und des Projektors erhöht sich noch weiter, wenn das Objekt es erforderlich macht, die Kamera und den Projektor in mehrere Positionen zu bringen, sei es, weil die mittels des Projektors mit einer für die Auswertung ausreichenden Intensität ausleuchtbare und von Kamera erfaßbare Fläche kleiner ist als die zu vermessende Oberfläche, sei es, daß das Objekt es erforderlich macht, seine Oberfläche aus unterschiedlichen Richtungen zu beleuchten und aufzunehmen.With these methods it is possible to determine the mass point with a very high onePoint density. The coordinates can be assigned to each pixel of the video imageCalculate the data of the corresponding surface point. One therefore speaks alsofrom an imaging measurement of the surface. However, the disadvantage is the relativegreat effort for the required calibration, i.e. the determination of the innerand external orientation of both the projector and the camera and theiroptical constants and parameters for correcting lens errors. The effortfor determining the position and orientation of the camera and the projectorincreases even further when the object requires it, the camera and theBring the projector in several positions, be it because of the projector an intensity that can be illuminated and evaluated by the cameragraspable area is smaller than the surface to be measured, be it that the object is itrequires illuminating its surface from different directionsand record.
Der Gesamtaufwand läßt sich selbst dann nicht wesentlich reduzieren, wenn man den Projektor und die Kamera relativ zueinander mechanisch fixiert, also eine Projektor/Kamera-Einheit bildet und diese Einheit längs einer genau vermessenen Bahn bewegt. Hinzu kommt, daß bei großen Objekten, die einen großen Abstand der Einheit vom Objekt erforderlich machen, eine genaue Führung in vielen Fällen nicht mehr mit noch vertretbarem Aufwand realisiert werden kann oder häufig auch aus Platzgründen nicht in Frage kommt. Außerdem ist es bei solchen Einheiten nachteilig, daß Projektor und Kamera oft nicht in die günstigste Meßposition gebracht werden können.The total effort can not be significantly reduced even if oneThe projector and the camera are mechanically fixed relative to each other, i.e. oneProjector / camera unit forms and this unit along a precisely measuredRailway moves. In addition, for large objects that have a large distance between themRequire unity of the object, in many cases not precise guidancemore can be achieved with justifiable effort or often fromSpace is out of the question. It is also disadvantageous with such units thatthat the projector and camera are often not brought into the most favorable measuring positioncan.
Der Erfindung liegt die Aufgabe zugrunde, ein bildgebendes Verfahren der eingangs genannten Art zu schaffen, das zumindest weitgehend von den Nachteilen der bekannten Verfahren frei ist und dadurch verbesserte Einsatzmöglichkeiten bietet. Diese Aufgabe löst ein Verfähren mit den Merkmalen des Anspruches 1.The invention has for its object an imaging method of the beginningto create the type mentioned, which at least largely from the disadvantages ofprocess is free and thus offers improved application possibilities. This ongift resolves a method with the features of claim 1.
Bei der erfindungsgemäßen Kalibrierung mit Hilfe von objektfesten homologen Punkten auf der zu vermessenden Oberfläche des Objektes unter Anwendung der aus der Photogrammetrie bekannten Bildtriangulation im Rahmen einer kombinierten Netzausgleichung (nachfolgend als Bündelausgleichung bezeichnet) entfällt die Notwendigkeit, vor Beginn der Vermessung der Oberfläche des Objektes die Position und Orientierung von Projektor und Kamera mit Hilfe von Referenzkörpern und Vermessungsmitteln, beispielsweise einer Koordinatenmeßmaschine zu bestimmen. Das erfindungsgemäße Verfahren macht es nämlich möglich, gestützt auf die mit der Kamera aufgenommenen Bilder nicht nur die Positionen und Orientierungen von Kamera und Projektor rechnerisch zu bestimmen, sondern auch die optischen Konstanten von Ka mera und Projektor sowie die Parameter zur Korrektur von Objektivfehlern zu berechnen. Vorteilhaft ist hierbei ferner, daß alle erforderlichen Berechnungen ausgeführt werden können, nachdem alle Aufnahmen gemacht und in digitaler Form abgespeichert worden sind. Wenn die Bilder eines Objektes gemacht sind, kann sich deshalb unmittelbar die Vermessung eines anderen Objektes anschließen, was beispielsweise die Anwendung des erfindungsgemäßen Verfahrens bei der Vermessung von Produkten einer Serienfertigung erlaubt.In the calibration according to the invention with the aid of object-fixed homologous punkten on the surface of the object to be measured using the from theKnown image triangulation photogrammetry as part of a combined networkadjustment (hereinafter referred to as bundle adjustment) the need is eliminatedposition, and before starting to measure the surface of the objectOrientation of projector and camera with the help of reference objects and surveyingmeans to determine, for example, a coordinate measuring machine. That inventedThe method according to the invention makes it possible, based on that with the camerapictures taken not only the positions and orientations of camera andTo determine the projector mathematically, but also the optical constants of Ka mera and projector as well as the parameters for correcting lens errorsnen. It is also advantageous here that all the necessary calculations are carried outcan be taken after all the pictures have been taken and saved in digital formhave been saved. Therefore, when the pictures of an object are made, it canimmediately connect the measurement of another object, which for examplethe application of the method according to the invention in the measurement of productSeries production allowed.
Von besonderem Vorteil ist ferner, daß für Standortveränderungen von Kamera und Projektor keine teuren mechanischen Führungsmittel erforderlich sind und außerdem die bei dem bekannten Verfahren in solchen Fällen erforderliche Verbindung von Kamera und Projektor zu einer nur gemeinsam bewegbaren Einheit entfällt. Das erfindungsgemäße Verfahren läßt sich deshalb überall dort mit großem Vorteil anwenden, wo das Objekt wegen seiner Form und/oder Größe nicht nur Ortsveränderungen der Kamera, sondern auch des Projektors erforderlich macht. Dank der freien Bewegbarkeit von Kamera und Projektor ist das erfindungsgemäße Verfahren auch vorzüglich für den Einsatz unter ungünstigen äußeren Bedingungen, beispielsweise in Produktionshallen, geeignet, zumal Umgebungslicht in der Regel nicht störend ist.It is also of particular advantage that for changes in the location of the camera andNo expensive mechanical guide means are required and moreoverthe compound of Ka required in the known method in such casesmera and projector into one unit that can only be moved together are eliminated. That inventedThe method according to the invention can therefore be used with great advantage everywhere there,where, due to its shape and / or size, the object is not just a change of locationCamera, but also the projector requires. Thanks to the free movementspeed of camera and projector, the inventive method is also excellentfor use under unfavorable external conditions, for example in productstion halls, suitable, especially since ambient light is usually not distracting.
Die für die Auswertung der mittels der Videokamera aufgenommenen Bilder zum Zwecke der Kalibrierung und zur Bestimmung der Koordinaten der Oberflächenpunkte hängt in erheblichem Maße von der Rechengeschwindigkeit des für die Auswertung der Videobilder zur Verfügung stehenden Rechners ab. Rechenzeiten in der Größenordnung von 10 Sekunden bei 200.000 Bildpunkten lassen sich ohne weiteres erreichen. Die für die Vermessung einer Oberfläche erforderliche Zeit kann außerdem dadurch verringert werden, daß man wenigstens eine zusätzliche Videokamera verwendet, die aus einer anderen Position als die erste Videokamera den mit der Lichtstruktur beleuchteten Oberflächenbereich aufnimmt.The for the evaluation of the images taken by means of the video camera forPurposes of calibration and to determine the coordinates of the surface pointsdepends largely on the computing speed of the for evaluationof the video images available from the computer. Computing times in sizesAn order of 10 seconds at 200,000 pixels can be easily achievedchen. The time required to measure a surface can also be therebe reduced by using at least one additional video cameradet that from a different position than the first video camera with the light structurerecords illuminated surface area.
Das erfindungsgemäße Verfahren ermöglicht es, die Kalibrierung nur für die Videokamera oder Videokameras durchzuführen, also auf eine Kalibrierung des Projektors oder der Projektoren zu verzichten, wenn zusätzliche Aufnahmen des vom Projektor beleuchteten Oberflächenbereiches aus unterschiedlichen Positionen aufgenommen werden. Das erfindungsgemäße Verfahren ist deshalb insgesamt sehr flexibel, d. h., an unterschiedliche, sowohl durch das Objekt als auch dessen Umgebung vorgegebene Bedingungen anpaßbar.The method according to the invention makes it possible to calibrate only for the videokamera or video cameras, so calibration of the projectoror the projectors if there are additional recordings of the projectorilluminated surface area from different positionswill. The method according to the invention is therefore very flexible overall, i. i.e., ondifferent, given both by the object and its surroundingsCustomizable conditions.
Bei den homologen Punkten muß es sich nicht um mechanisch auf die zu vermessende Oberfläche aufgebrachte Markierungen handeln. Zusätzlich zu solchen Markierungen oder statt dieser können homologe Punkte auch durch Muster gebildet sein, die mittels eines Projektors auf die zu vermessende Oberfläche projiziert werden, wodurch auch beispielsweise die Vermessung von nicht, oder nur schwer zugänglichen Oberflächen möglich ist. Als homologe Punkte können auch markante Punkte der Objektoberfläche benutzt werden, die sich in mindestens zwei aus unterschiedlichen Positionen aufgenommenen Videoaufnahmen eindeutig identifizieren lassen. Während die Anzahl der mechanisch aufgebrachten Markierungen in der Regel relativ gering gehalten werden muß, können homologe Punkte, die auf die Objektoberfläche aufprojiziert werden oder durch markante Punkte derselben gebildet sind, in großer Anzahl zur Verfügung gestellt werden, was eine entsprechend hohe Redundanz und entsprechend verbesserte Bedingungen für die Bündelausgleichsrechnung ergibt. Als sehr vorteilhafte Eigenschaft der Bündelausgleichung gilt ihre Unterdrückung der Fehlersummation (Summenfehler) bei einer gegebenenfalls erforderlichen Aufteilung der Objektoberfläche in sich überlappende Teilbereiche, die nacheinander abgearbeitet werden.The homologous points do not have to be mechanical on those to be measuredAct surface markings. In addition to such markingsor instead of this, homologous dots can also be formed by patterns, which by means ofof a projector are projected onto the surface to be measured, which alsoFor example, the measurement of surfaces that are difficult or difficult to accessis possible. Striking points on the object surface can also be used as homologous pointsare used, which arise in at least two from different positionshave the video recordings clearly identified. While the number ofmechanically applied markings are usually kept relatively lowmust be homologous points that are projected onto the object surface orare formed by distinctive points of the same, available in large numberswhat a correspondingly high redundancy and accordingly improvedConditions for the bundle compensation calculation. As a very advantageous propertyThe bundle adjustment suppresses the error accumulation (sumerror) if a necessary division of the object surface intooverlapping sections that are processed one after the other.
Zweckmäßigerweise werden erfindungsgemäß zwei Typen von Musterprojektoren eingesetzt:According to the invention, two types of model projectors are expedientused:
Damit die Bilder von Teilbereichen einander koordinatenmäßig richtig zugeordnet werden können, muß darauf geachtet werden, daß sich die Teilbereiche überlappen, sich das Objekt während der Messung nicht bewegt und in jedem Überlappungsbereich wenigstens drei homologe Punkte zur Verfügung stehen. Diese homologen Punkte dürfen in den Bildern nicht auf einer Linie liegen.So that the images of partial areas are correctly assigned to each other in terms of coordinatescare must be taken to ensure that the partial areas overlap,the object does not move during the measurement and in any overlap areaat least three homologous points are available. These homologous pointsmust not be in line in the pictures.
Herkömmliche Marken (Fig. 3) sind feste Marken mit einer Kreisfläche20. Die Information der Marke liegt in dem Hell-Dunkel-Übergang21 der Begrenzungslinie. Erfindungsgemäß wird hier eine ringförmige Struktur22 (Fig. 4) eingeführt. Diese weist den Vorteil auf, daß bei gleichem Außendurchmesser gleich zwei informationstragende Begrenzungslinien22 und23 pro Marke vorhanden sind. Die ringförmigen Marken können erfindungsgemäß als feste Marken oder als projizierte Marken realisiert sein.Conventional marks (FIG. 3) are fixed marks with a circular area20 . The information of the mark lies in the light-dark transition21 of the boundary line. According to the invention, an annular structure22 (FIG. 4) is introduced here. This has the advantage that there are two information-bearing boundary lines22 and23 per mark for the same outer diameter. The annular marks can be realized according to the invention as fixed marks or as projected marks.
Das Aufnehmen von Teilbereichen der Objektoberfläche erfolgt vorzugsweise mäandrierend, d. h. zeilen- oder spaltenweise in einer sprungfreien Folge. Die Arbeitsweise des Projektors und der Kamera können hierbei mit der Arbeitsweise eines Scanners verglichen werden.Partial areas of the object surface are preferably meanderedurgent, d. H. row or column by row in a jump-free sequence. The way of workingthe projector and the camera can work with a scannerbe compared.
Sofern die Form der Objektoberfläche dies zuläßt, ist es vorteilhaft, die Kamera oder Kameras und den Projektor für die zeilenweise Erfassung der Teilbereiche der Objektoberfläche zu schwenken, was mit Hilfe von entsprechend ausgebildeten Stativen möglich ist. Sofern solche Stative eine Winkelmessung zulassen, können die Schwenkwinkel in die Kalibrierung mit einbezogen werden.If the shape of the object surface permits, it is advantageous to use the camera orCameras and the projector for the line-by-line detection of the partial areas of the objectsurface to swivel, using appropriately trained tripodsis possible. If such tripods allow an angle measurement, theSwivel angle can be included in the calibration.
Wenn bei einer Unterteilung der Objektoberfläche in Teilbereiche der Projektor hinsichtlich seiner Position und Orientierung verändert werden muß, ist es zweckmäßig, die Position des Projektors so zu ändern, daß der in der neuen Position mit der Lichtstruktur beleuchtete Teilbereich sich mit dem in der alten Position belichteten Teilbereich überlappt. Die Kamera bleibt während dieser Positionsänderung des Projektors in einer Position, in welcher sie den Überlappungsbereich erfassen kann. Dadurch können bei der Bildauswertung die beiden Teilbereiche einander richtig zugeordnet werden.If the projector divides the surface of the object into sectionsvisually changing its position and orientation, it is advisablechange the position of the projector so that it is in the new position with the lightThe structure of the sub-area illuminated with the part exposed in the old positionarea overlaps. The camera stays on while the projector is changing positionin a position in which it can grasp the overlap area. Therebycan correctly assign the two sub-areas to each other during image evaluationwill.
Als Beleuchtungsstruktur wird zur geometrischen Oberflächenerfassung vorteilhafterweise eine Linienstruktur verwendet, wobei in vielen Fällen eine aus parallelen Linien bestehende Linienstruktur ausreichend ist. Andernfalls kann eine Linienstruktur mit zwei sich vorzugsweise rechtwinklig kreuzenden Liniensystemen verwendet werden. Besonders vorteilhaft ist es, wenn die Liniensysteme hell und dunkel geschaltet werden können, da dann alle Linien in einfacher Weise codiert werden können. Solche schaltbaren Linienstrukturen lassen sich mit besonderem Vorteil mittels LCD-Lichtmodulatoren erzeugen.As a lighting structure for geometric surface detection is more advantageousas a line structure used, in many cases one of parallel linesexisting line structure is sufficient. Otherwise you can use a line structuretwo line systems, preferably crossing each other at right angles, can be used.It is particularly advantageous if the line systems are switched light and darkcan, because then all lines can be encoded in a simple manner. SuchSwitchable line structures can be particularly advantageous using LCD lightgenerate modulators.
Im folgenden ist die Erfindung anhand von in der Zeichnung dargestellten Ausführungsbeispielen im einzelnen erläutert. Es zeigenThe invention is based on the embodiment shown in the drawingExample explained in detail. Show it
Fig. 1 eine schematische Darstellung des Meßobjektes, des Projektors und der Kamera in den Meßpositionen,Fig. 1 is a schematic representation of the object to be measured, the projector and the camera in the measuring positions,
Fig. 2 eine schematische Darstellung eines großen Meßobjektes und der unterschiedlichen Standorte des Projektors und der Kamera bei der Erfassung von Teilbereichen der Objektoberfläche.Fig. 2 is a schematic representation of a large measurement object and the different locations of the projector and the camera when detecting partial areas of the object surface.
Ausführungsbeispiel zuFig. 1:Embodiment ofFig. 1:
Zur dreidimensionalen optischen Vermessung der Oberfläche eines Meßobjektes1, bei dem es sich beispielsweise um das verkleinerte Modell eines Flügelprofils handelt, wird eine 3D-Digitalisierung der Oberfläche des Meßobjektes durchgeführt. Mit Hilfe eines Linienprojektors2, in den ein schaltbarer LCD-Lichtmodulator integriert ist, wird ein aus parallelen Linien bestehendes Linienmuster auf die zu vermessende Oberfläche des Meßobjektes projiziert. Die Linien des Linienmusters können dank des schaltbaren LCD-Lichtmodulators im Wechsel hell und dunkel geschaltet werden, wodurch es möglich ist, jeder Linie eine sie kennzeichnende digitale Codierung zuzuordnen, welche aus der Hell-Dunkel-Folge entsprechenden Bitfolge besteht. Der Standort des Linienprojektors2 wird so gewählt, daß die gesamte zu vermessende Oberfläche des Meßobjektes1 gleichzeitig ausgeleuchtet wird, und zwar mit einer ausreichend großen Intensität.For the three-dimensional optical measurement of the surface of a measurement object1 , which is, for example, the reduced model of a wing profile, a 3D digitization of the surface of the measurement object is carried out. With the help of a line projector2 , in which a switchable LCD light modulator is integrated, a line pattern consisting of parallel lines is projected onto the surface of the measurement object to be measured. The lines of the line pattern can be switched alternately light and dark thanks to the switchable LCD light modulator, which makes it possible to assign each line a digital coding that characterizes it, which consists of the bit sequence corresponding to the light-dark sequence. The location of the line projector2 is selected so that the entire surface of the measurement object1 to be measured is illuminated simultaneously, with a sufficiently high intensity.
Im Ausführungsbeispiel hat der Linienprojektor2 sechshundertvierzig horizontale und sechshundertvierzig vertikale, schaltbare Linien. Bei geringeren Anforderungen an die Meßgenauigkeit könnte aber auch Linienprojektor mit beispielsweise dreihundertzwanzig schaltbaren Linien, bei höheren Anforderungen an die Meßgenauigkeit beispielsweise ein solcher mit zwölfhundertachtzig schaltbaren Linien eingesetzt werden.In the exemplary embodiment, the line projector2 has six hundred and forty horizontal and six hundred and forty vertical, switchable lines. With lower demands on the measuring accuracy, however, a line projector with, for example, three hundred and twenty switchable lines could also be used, with higher demands on the measuring accuracy, for example, one with twelve hundred and eighty switchable lines.
Eine CCD-Kamera3, also eine Videokamera, die im Ausführungsbeispiel 512 × 512 Pixel aufweist, wird an wenigstens zwei unterschiedlichen Standorten aufgestellt, die im Ausführungsbeispiel durch ausgezogene bzw. gestrichelte Linien dargestellt sind und die so gewählt werden, daß in jeder Position die gesamte zu vermessende Oberfläche des Meßobjektes1 erfaßt wird und außerdem die optische Achsen des Linienprojektors2 und der Kamera in ihrer jeweiligen Position einen für die zu erzielende Meßgenauigkeit ausreichend großen Konvergenzwinkel einschließen.A CCD camera3 , that is, a video camera, which in the exemplary embodiment has 512 × 512 pixels, is placed at at least two different locations, which are represented in the exemplary embodiment by solid or dashed lines and which are selected such that in every position the entire surface to be measured to be measured object1 is detected and also include the optical axes of the line projector2 and the camera in their respective position a sufficiently large convergence angle for the measurement accuracy to be achieved.
Die CCD-Kamera3 erfaßt in den unterschiedlichen Meßpositionen nicht nur die gesamte Oberfläche des Meßobjektes1 in Form von etwa 250.000 Bildpunkten, sondern auch eine gewisse Anzahl von homologen Marken4, die entweder auf die Objektoberfläche vor der Vermessung mechanisch aufgebracht worden sind, durch markante und dadurch identifizierbare Punkte der Oberfläche gebildet werden, durch spezielle Markenprojektoren aufprojiziert wurden, also permanente Marken sind, oder mittels des Linienprojektors2 erzeugt werden, also temporäre Marken sind. Die vorhandenen homologen Marken4 können aus nur einer dieser drei Arten von homologen Marken, teilweise aus der einen und im übrigen aus einer der beiden anderen Arten oder aus allen drei Arten ausgewählt sein. Vorteilhaft ist, wenn die homologen Marken4 möglichst große Abstände voneinander haben und den zu vermessenden Objektbereich weitestgehend umschließen.The CCD camera3 not only records the entire surface of the measurement object1 in the form of approximately 250,000 pixels in the different measurement positions, but also a certain number of homologous marks4 , which have either been mechanically applied to the object surface before the measurement, are formed by distinctive and thus identifiable points on the surface, have been projected onto them by special brand projectors, i.e. are permanent brands, or are generated by means of line projector2 , i.e. are temporary brands. The existing homologous marks4 can be selected from only one of these three types of homologous marks, partly from one and the rest from one of the two other types or from all three types. It is advantageous if the homologous marks4 are as far apart as possible from one another and largely enclose the object area to be measured.
Die nacheinander auf die zu vermessende Objektoberfläche mit Hilfe des schaltbaren Lichtmodulators projizierten, codierten Linienmuster können zur Erhöhung der Ortsauflösung auch mit einer sinusförmigen oder anderen in bekannter weise definierten Lichtintensitätsverteilung erzeugt werden. Ferner kann man durch in kurzen Zeitabständen mit unterschiedlichem Schaltzustand des Lichtmodulators aufgenommene Bilderpaare durch Subtraktion der Helligkeitswerte Störeinflüsse, insbesondere des Umgebungslichtes, unterdrücken.The one after the other on the object surface to be measured with the help of the switchableLight modulators projected, encoded line patterns can increase the locationresolution also with a sinusoidal or other defined in a known mannerLight intensity distribution can be generated. Furthermore, one can in a short timestands recorded with different switching state of the light modulatorImage pairs by subtracting the brightness values of interference, in particular theAmbient light, suppress.
Die mit der CCD-Kamera3 von den unterschiedlichen Positionen aus aufgenommenen Bilder der mit dem codierten Linienmuster überzogenen Objektoberfläche werden zunächst in digitaler Form gespeichert, d. h., von jedem der Bildpunkte der Videobilder, denen je ein Punkt auf der Oberfläche des Meßobjektes1 entspricht, werden der Helligkeitswert und die Koordinaten gespeichert.The images of the object surface covered with the coded line pattern, taken from the different positions with the CCD camera3, are first stored in digital form, ie, from each of the image points of the video mobiles, each of which corresponds to a point on the surface of the measurement object1 , the brightness value and the coordinates are saved.
Aufgrund dieser gespeicherten Bilder werden zur Systemkalibrierung anhand der homologen Marken4 mit Hilfe eines marktgängigen Programmes zu der aus der Photogrammetrie bekannten Bündelausgleichsrechnung von einem Rechner die Orte aller homologen Marken4 im Meßkoordinatensystem, der Ort und die äußere Orientierung sowohl des Linienprojektors2 als auch der CCD-Kamera3 in beiden Meßpositionen und außerdem, falls nicht schon vorher bestimmt, die optischen Konstanten des Linienprojektors2 und der CCD-Kamera3 sowie die Parameter zur Korrektur von Objektivfehlern ermittelt. Außerdem wird eine Skalierung aufgrund einer Meßstrecke vorgenommen. Sofern zumindest zwei Aufnahmen der gesamten Objektoberfläche aus unterschiedlichen Blickrichtungen mit mindestens 5 homologen Punkten in den Bildern gemacht worden sind, braucht der Linienprojektor2 nicht in die Kalibrierung einbezogen zu werden, d. h., seine Daten brauchen nicht berechnet zu werden.On the basis of these stored images, the locations of all homologous marks4 in the measurement coordinate system, the location and the external orientation of both the line projector2 and also be used for system calibration based on the homologous marks4 with the aid of a marketable program for the bundle compensation calculation known from photo grammetry from a computer the CCD camera3 in both measuring positions and also, if not previously determined, the optical constants of the line projector2 and the CCD camera3 and the parameters for correcting ob jective errors determined. In addition, scaling is carried out on the basis of a measuring section. If at least two images of the entire object surface have been taken from different viewing directions with at least 5 homologous points in the images, the line projector2 does not need to be included in the calibration, ie its data need not be calculated.
Für die weitere Auswertung der aufgenommenen Bilder ist es in der Regel sinnvoll, vom Meßkoordinatensystem auf ein sogenanntes Weltkoordinatensystem überzuwechseln.For the further evaluation of the captured images, it is usually advisableto change from the measurement coordinate system to a so-called world coordinate system.
Nach der Kalibrierung berechnet der Rechner für jeden Oberflächenpunkt, der einem der Bildpunkte in einem der Videobilder entspricht, die Weltkoordinaten. Da diese Bildpunkte und damit auch die Oberflächenpunkte sehr eng nebeneinander liegen, die Punktdichte also sehr groß ist, spricht man hier von einem bildgebenden Meßverfahren.After calibration, the computer calculates for each surface point that oneof the pixels in one of the video images corresponds to the world coordinates. This onePixels and thus the surface points are very close to each otherPoint density is very large, one speaks here of an imaging measurement methodren.
Aus verschiedenen Gründen kann es unmöglich sein, den gesamten interessierenden Teil der Oberfläche eines Meßobjektes mit einer einzigen Positionierung des Projektors so auszuleuchten. Ferner kann eine Ausleuchtung nur eines Teilbereiches der Oberfläche mittels des Projektors notwendig sein, weil sonst der Abstand des Projektors vom Objekt zu groß und damit die Intensität der Lichtstruktur zu gering werden würde. Weiterhin kann eine Vermessung von Teilbereichen notwendig sein, weil die Kamera von verschiedenen Standorten oder mit unterschiedlichen Orientierungen auf die Oberfläche des Objektes gerichtet werden muß, um alle Einzelheiten erfassen zu können oder weil die notwendige Auflösung es verlangt, nur einen Teilbereich der Oberfläche des Objektes mit der Kamera zu erfassen.For various reasons, it may be impossible to interest everyonePart of the surface of a measurement object with a single positioning of the projectto illuminate the tors. Furthermore, illumination of only a partial area of the Surface using the projector may be necessary, otherwise the distance of the projecttors of the object are too large and the intensity of the light structure is too lowwould. It may also be necessary to measure partial areas because theCamera from different locations or with different orientationsthe surface of the object must be straightened to capture all the detailscan or because the necessary resolution requires only a sub-area of theCapture the surface of the object with the camera.
Ausführungsbeispiel zuFig. 2:Embodiment ofFig. 2:
Die zu vermessende Oberfläche des Meßobjektes11, bei dem es sich beispielsweise um ein Flugzeugflügelprofil normaler Größe handelt, wird, wieFig. 2 zeigt, in eine Vielzahl von sich überlappende Teilbereiche15a bis15o unterteilt. Ein wegen des erforderlichen relativ großen Abstandes vom Meßobjekt11 mit einem Teleobjektiv ausgerüsteter Linienprojektor, der im übrigen wie der Linienprojektor 2 ausgebildet ist, wird zunächst an einem Ort P1 so positioniert und auf das Meßobjekt11 ausgerichtet, daß dessen Teilbereich15a vollständig von dem vom Linienprojektor erzeugten Linienmuster überdeckt ist. Eine Videokamera13, die wegen des relativ großen Abstandes vom Meßobjekt11 ebenfalls mit einem Teleobjektiv ausgerüstet ist, im übrigen aber wie die CCD-Kamera3 ausgebildet ist, wird zunächst an einem Ort Kl so aufgestellt, daß sie den gesamten Teilbereich15a zu erfassen vermag und außerdem ein ausreichend großer Konvergenzwinkel zwischen ihrer optischen Achse und derjenigen des Linienprojektors vorhanden ist. Anschließend wird die Videokamera an einem Ort K2 positioniert, von dem aus sie den gesamten Teilbereich15a unter einem anderen Blickwinkel aufnehmen kann. Dieser Ort K2 ist außerdem so gewählt, daß die optische Achse der Videokamera in dieser Position einen ausreichend großen Winkel mit der optischen Achse des Linienprojektors und der Videokamera in der Position am Ort K1 einschließt.The surface of the measurement object11 to be measured, which is, for example, an aircraft wing profile of normal size, is divided into a plurality of overlapping partial areas15 a to15 o, as shown inFIG. 2. A reactor equipped with a telephoto lens due to the required relatively large distance from the measurement object11 line projector, which is formed in the rest as the line projector 2 is first positioned at a location P1 and aligned with the measurement object11 such that its portion15 a completely from the Line projector generated line pattern is covered. A video camera13 , which is also equipped with a telephoto lens because of the relatively large distance from the measurement object11 , but is otherwise designed like the CCD camera3 , is first set up at one location Kl so that it covers the entire sub-area15 a is able to detect and there is also a sufficiently large convergence angle between its optical axis and that of the line projector. The video camera is then positioned at a location K2 from which it can record the entire partial area15a from a different angle. This location K2 is also selected so that the optical axis of the video camera in this position forms a sufficiently large angle with the optical axis of the line projector and the video camera in the position at location K1.
Die bildmäßige Erfassung des Teilbereiches15a ist also identisch mit der bildmäßigen Erfassung der gesamten Oberfläche des relativ kleinen Meßobjektes1 des ersten Aus führungsbeispiels. Deshalb ist es auch notwendig, daß jeder der Teilbereiche eine gewisse Anzahl von homologen Marken aufweist, welche wie die homologen Marken4 erzeugt werden können. Diese inFig. 2 nicht dargestellten homologen Marken sind nach den gleichen Gesichtspunkten wie bei dem Meßobjekt1 anzuordnen. Allerdings ist darauf zu achten, daß in jedem Überlappungsbereich16 wenigstens drei homologe Marken vorhanden sind, weil diese dazu benötigt werden, die Bilder benachbarter Teilbereiche richtig aneinanderfügen zu können.The imaging of the sub-area15 a is thus identical to the imaging of the entire surface of the relatively small measurement object1 from the first exemplary embodiment. Therefore, it is also necessary that each of the partial areas has a certain number of homologous marks, which can be generated like the homologous marks4 . These homologous marks, which are not shown inFIG. 2, are to be arranged according to the same criteria as for the measurement object1 . However, care must be taken to ensure that there are at least three homologous marks in each overlap area16 , because these are required in order to be able to correctly join the images of adjacent partial areas.
Wenn vom Teilbereich15a alle für die Systemkalibrierung sowie für die dreidimensionale optische Vermessung erforderlichen Aufnahmen mit der Videokamera gemacht worden sind, wird, während sich die Videokamera noch am Ort K2 in der für die Aufnahme des Teilbereiches15a erforderlichen Position befindet, der Projektor auf den Teilbereich15b gerichtet, der im Überlappungsbereich16 sich mit dem Teilbereich15a überlappt. Nun wird bei unveränderter Orientierung der Videokamera eine weitere Aufnahme gemacht, aufgrund deren wegen des von ihr erfaßten Überlappungsbereiches16 mit Hilfe des Rechners später die vom Teilbereich15b gemachten Aufnahmen koordinatenrichtig an die Aufnahmen des Teilbereiches15a angefügt werden können. Danach wird der Teilbereich15b mittels der Videokamera von den Positionen K2 und K1 aus aufgenommen.If from section15 a all necessary for the system calibration as well as for the three-dimensional optical measurement recordings have been made with the video camera, while the video camera is still at location K2 in the position required for recording section15 a, the Projector directed to the partial area15 b, which overlaps the partial area15 a in the overlap area16 . Now, with the orientation of the video camera unchanged, another picture is taken, on the basis of which, due to the overlapping areas16 detected by it, the pictures taken by section15 b can later be added to the pictures of section15 a with the aid of the computer. Thereafter, the portion15 b by means of the video camera from the positions K2 and K1 taken out.
Ehe die Videokamera danach auf den Teilbereich15c gerichtet werden kann, muß zunächst der Projektor auf den Teilbereich15c gerichtet werden. Der Projektor ist deshalb zweckmäßigerweise auf einem Stativ angeordnet, das die erforderlichen Schwenkbewegungen des Projektors für die nacheinander erforderliche Projektion des Linienmusters auf die Teilbereiche15a bis15c in einfacher Weise ermöglicht. Nachdem mit der Videokamera aus der gegenüber der letzten Aufnahme des Teilbereiches15b unveränderten Position nochmals eine Aufnahme gemacht worden ist, welche den zwischen den Teilbereichen15b und15c sich befindenden Überlappungsbereich16 mit den hier vorgesehenen homologen Marken erfaßt, können nun die verschiedenen Aufnahmen des Teilbereiches15c von den Orten K1 und K2 aus ausgeführt werden.Before the video camera can then be aimed at section15 c, the projector must first be directed at section15 c. The projector is therefore advantageously arranged on a stand that allows the required pivoting movement of the projector for the successively required projection of the line pattern on the portions15 a to15 c in a simple manner. After the video camera has made another position from the position unchanged since the last recording of the sub-area15 b, which captures the overlap area16 between the sub-areas15 b and15 c with the homologous marks provided here, the different ones can now be taken Recordings of the sub-area15 c are carried out from the locations K1 and K2.
Nun wird der Projektor auf den seitlich neben dem Teilbereich15c liegenden Teilbereich15d gerichtet. Hierzu bedarf es nur einer Schwenkung des Projektors. Anschließend werden, wie vorstehend für die Teilbereiche15a bis15c geschildert, die Aufnahmen des Teilbereiches15d gemacht. In entsprechender Weise erfolgt der Übergang zum folgenden Teilbereich und dessen bildmäßiger Erfassung für alle übrigen Teilbereiche15e bis15o.Now the projector is directed to the area15 d lying to the side next to the area15 c. All that is required is a swivel of the projector. At closing, as described above for sub-areas15 a to15 c, the recordings of sub-area15 d are made. In a corresponding manner, the transition to the following sub-area and its image acquisition for all other sub-areas15 e to15 o.
Die gesamte Oberfläche des Meßobjektes11 wird also zeilenweise ohne Sprung mäandrierend, d. h. bei aufeinanderfolgenden Zeilen in entgegengesetzter Richtung fortlaufend erfaßt, weshalb man auch von einem Scanner-System mit einem Sendescanner und einem Empfangsscanner bei dem Projektor bzw. der Videokamera sprechen kann. Vorteilhaft ist die zeilenförmige, sprungfreie Folge bei der Erfassung der Teilbereiche nicht nur wegen der vereinfachten Ausrichtung von Projektor und Videokamera auf die Teilbereiche im Falle einer schwenkbaren Anordnung auf einem Stativ. Sie ist vor allem für die Beseitigung von Fehlern aufgrund der Anfügung eines Teilbereiches an den vorhergehenden Teilbereich vorteilhaft, wenn beispielsweise der Teilbereich15f nicht nur an den vorausgehenden Teilbereich15e, sondern auch an den seitlich neben ihm liegenden Teilbereich15a rechnerisch angefügt werden kann.The entire surface of the measuring object11 is thus meandering line by line without jumping, ie continuously being detected in successive lines in the opposite direction, which is why one can also speak of a scanner system with a transmission scanner and a reception scanner in the projector or the video camera. The line-shaped, jump-free sequence when capturing the partial areas is advantageous not only because of the simplified alignment of the projector and video camera to the partial areas in the case of a pivotable arrangement on a tripod. It is particularly advantageous for the elimination of errors due to the addition of a partial area to the previous partial area if, for example, partial area15 f can be arithmetically added not only to the preceding partial area15 e but also to the partial area15 a lying to the side of it .
Wie inFig. 2 dargestellt, kann es bei großen Meßobjekten erforderlich sein, den Projektor an unterschiedlichen Orten anzuordnen, um alle Teilbereiche15a bis15o mit dem Linienmuster vollständig überziehen zu können. Im Ausführungsbeispiel ist es erforderlich, nach der Erfassung der Teilbereiche15a bis15f, während deren der Projektor sich am Ort P1 befindet, den Projektor für die Erfassung der Teilbereiche15g bis15o am Ort P2 aufzustellen. Im Ausführungsbeispiel kann der Projektor von diesem Ort aus durch Schwenkbewegungen um zwei im Winkel zueinander verlaufende Achsen nacheinander alle Teilbereiche15b bis15o ausleuchten. Für die von den Teilbereichen15g bis15o zu machenden Aufnahmen wird im Ausführungsbeispiel die Videokamera an den Orten K3 und K4 aufgestellt.As shown inFig. 2, it may be necessary with large objects to arrange the Pro jector at different locations in order to completely cover all sub-areas15 a to15 o with the line pattern. In the exemplary embodiment, it is necessary, after the detection of the partial areas15 a to15 f, during which the projector is located at the location P1, to set up the projector for the detection of the partial areas15 g to15 o at the location P2. In the exemplary embodiment, the projector can illuminate all partial areas15 b to15 o from this location by swiveling movements about two axes running at an angle to one another. In the exemplary embodiment, the video camera is set up at the locations K3 and K4 for the recordings to be made of the partial areas15 g to15 o.
Nachdem die Aufnahmen aller Teilbereiche15a bis15o digital abgespeichert worden sind, wird zunächst die Systemkalibrierung in der im Zusammenhang mit dem Ausführungsbeispiel gemäßFig. 1 beschrieben Weise durchgeführt. Danach kann der Rechner die Weltkoordinaten für alle einem der Bildpunkte entsprechenden Oberflächenpunkte der Teilbereiche15a bis15o berechnen.After the recordings of all sections15 a to15 o have been digitally stored, the system calibration is first carried out in the manner described in connection with the exemplary embodiment according toFIG. 1. Thereafter, the computer can the world coordinates for all of the pixels a corresponding Oberflä15 chenpunkte the partial areas a to15 o calculate.
Selbstverständlich wäre es möglich, mehr als einen Linienprojektor zu verwenden und beispielsweise den einen am Ort P1 und den anderen am Ort P2 aufzustellen. Ebenso könnte mit wenigstens zwei Videokameras gearbeitet werden.Of course it would be possible to use more than one line projector andfor example, to place one at location P1 and the other at location P2. As wellcould be used with at least two video cameras.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE1995102459DE19502459A1 (en) | 1995-01-28 | 1995-01-28 | Three dimensional optical measurement of surface of objects |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE1995102459DE19502459A1 (en) | 1995-01-28 | 1995-01-28 | Three dimensional optical measurement of surface of objects |
| Publication Number | Publication Date |
|---|---|
| DE19502459A1true DE19502459A1 (en) | 1996-08-01 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| DE1995102459CeasedDE19502459A1 (en) | 1995-01-28 | 1995-01-28 | Three dimensional optical measurement of surface of objects |
| Country | Link |
|---|---|
| DE (1) | DE19502459A1 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO1997031336A1 (en)* | 1996-02-20 | 1997-08-28 | Imetric S.A. | Automation methodology for 3d image metrology systems |
| DE19639999A1 (en)* | 1996-09-18 | 1998-03-26 | Omeca Messtechnik Gmbh | Method and device for 3D measurement |
| DE19748062A1 (en)* | 1997-10-31 | 1999-05-12 | Bernward Maehner | 3D optical measuring of object with grating projecting light pattern on object |
| DE19753246A1 (en)* | 1997-12-01 | 1999-06-10 | Roland Seifert | Device for determining three-dimensional data from objects |
| DE19925462C1 (en)* | 1999-06-02 | 2001-02-15 | Daimler Chrysler Ag | Method and system for measuring and testing a 3D body during its manufacture has a measuring system with an optical 3D sensor, a data processor and a testing system storing 3D theoretical data records of a 3D body's surface. |
| EP0957336A3 (en)* | 1998-05-11 | 2001-10-10 | Vought Aircraft Industries, Inc. | System and method for aligning coordinate systems for assembling an aircraft |
| DE10025741A1 (en)* | 2000-05-19 | 2001-11-29 | Fraunhofer Ges Forschung | Method for determining the spatial coordinates of objects and / or their change over time |
| WO2002010720A3 (en)* | 2000-07-31 | 2002-05-02 | Geodetic Services Inc | Photogrammetric image correlation and measurement system and method |
| EP1245344A2 (en) | 2001-03-27 | 2002-10-02 | VMT Bildverarbeitungssysteme GmbH | Reintegration of a digital camera in an image processing system which is deplaced from a calibrated position in a non-calibrated position |
| EP1241442A3 (en)* | 2001-03-14 | 2002-11-27 | Boochs, Frank | Method of determining the position of measured images of an object relative to the object |
| EP1174681A3 (en)* | 2000-06-23 | 2003-01-02 | Ford Global Technologies, Inc. | Method and apparatus for the determination of the contour of sheet metal blanks |
| WO2003044464A1 (en)* | 2001-11-21 | 2003-05-30 | Corpus.E Ag | Method and system for detecting the three-dimensional shape of an object |
| WO2003005303A3 (en)* | 2001-07-02 | 2003-09-25 | Matchlight Software Inc | System and method for discovering and categorizing attributes of a digital image |
| DE19536294C2 (en)* | 1995-09-29 | 2003-12-18 | Daimler Chrysler Ag | Method for geometric navigation of 3D optical sensors for the three-dimensional measurement of objects |
| WO2004093444A1 (en)* | 2003-04-11 | 2004-10-28 | Mitsubishi Denki Kabushiki Kaisha | Method for displaying an output image on an object |
| US6826299B2 (en) | 2000-07-31 | 2004-11-30 | Geodetic Services, Inc. | Photogrammetric image correlation and measurement system and method |
| WO2006094637A1 (en)* | 2005-03-05 | 2006-09-14 | Daimlerchrysler Ag | Method for comparing a real object with a digital pattern |
| FR2889303A1 (en)* | 2005-07-26 | 2007-02-02 | Airbus France Sas | METHOD FOR MEASURING SHAPE ANOMALY ON A PANEL OF AN AIRCRAFT STRUCTURE AND SYSTEM FOR IMPLEMENTING SAID METHOD |
| EP1770356A3 (en)* | 2005-09-30 | 2007-05-09 | Topcon Corporation | Three-dimensional measurement system with projection device |
| DE10344922B4 (en)* | 2003-09-25 | 2008-06-26 | Siemens Audiologische Technik Gmbh | All-scanner |
| EP1877726A4 (en)* | 2005-03-11 | 2008-08-06 | Creaform Inc | AUTOREFERENCE SYSTEM AND 3D OPTICAL READING APPARATUS |
| EP2034269A1 (en) | 2007-09-10 | 2009-03-11 | Steinbichler Optotechnik Gmbh | Method and device for three-dimensional digitalising of objects |
| DE19634254B4 (en)* | 1995-09-04 | 2009-06-10 | Volkswagen Ag | Optical-numerical method for determining the entire surface of a three-dimensional object |
| EP1750090A3 (en)* | 2005-08-01 | 2010-10-13 | Topcon Corporation | Three-dimensional measurement system and method of the same, and color-coded mark |
| US20100319100A1 (en)* | 2008-01-28 | 2010-12-23 | Jian Chen | Simple techniques for three-dimensional modeling |
| US8082120B2 (en) | 2005-03-11 | 2011-12-20 | Creaform Inc. | Hand-held self-referenced apparatus for three-dimensional scanning |
| DE102010047444A1 (en)* | 2010-10-04 | 2012-04-05 | Audi Ag | Method for visualization of deviations between actual geometry and target geometry of component, particularly vehicle door panel, involves calculating actual-target comparison deviations of virtually stored target geometry |
| US8218857B2 (en) | 2007-12-05 | 2012-07-10 | Topcon Corporation | Color-coded target, color code extracting device, and three-dimensional measuring system |
| US8284240B2 (en) | 2008-08-06 | 2012-10-09 | Creaform Inc. | System for adaptive three-dimensional scanning of surface characteristics |
| DE102011007520A1 (en)* | 2011-04-15 | 2012-10-18 | Krones Aktiengesellschaft | Method for calibrating orientation unit of labeling device for e.g. glass bottle for storing drinks, involves calculating algorithm for coordinate transformation from camera coordinate system into absolute Cartesian coordinate system |
| EP2530649A1 (en)* | 2011-06-03 | 2012-12-05 | BAE Systems Plc | Sensor data processing |
| DE102012023623A1 (en) | 2012-11-28 | 2014-06-12 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method for assembling sub-housings of surface of static object, involves determining homologous image points of partial images of surface of object, and assembling images using homologous image points to form overall housing |
| CN104990515A (en)* | 2015-06-02 | 2015-10-21 | 江苏科技大学 | Three-dimensional shape measurement system and method for large-size object |
| DE102014113389A1 (en)* | 2014-09-17 | 2016-03-17 | Pilz Gmbh & Co. Kg | Method and device for identifying structural elements of a projected structural pattern in camera images |
| DE102014019669A1 (en)* | 2014-12-30 | 2016-06-30 | Faro Technologies, Inc. | Method for optically scanning and measuring an environment with a 3D measuring device and autocalibration with predetermined conditions |
| DE102014019671A1 (en)* | 2014-12-30 | 2016-06-30 | Faro Technologies, Inc. | Method for optically scanning and measuring an environment with a 3D measuring device and auto-calibration by means of a 2D camera |
| DE102014019670B3 (en)* | 2014-12-30 | 2016-06-30 | Faro Technologies, Inc. | Method for optically scanning and measuring an environment with a 3D measuring device and auto-calibration by means of redundancies |
| DE102012108567B4 (en)* | 2011-10-05 | 2017-04-27 | Electronics And Telecommunications Research Institute | Method of obtaining depth information using a light pattern |
| DE102016120026A1 (en)* | 2015-10-22 | 2017-04-27 | Canon Kabushiki Kaisha | Measuring device and method, program, product manufacturing method, calibration marking element, processing device and processing system |
| US9769463B2 (en) | 2014-09-10 | 2017-09-19 | Faro Technologies, Inc. | Device and method for optically scanning and measuring an environment and a method of control |
| US9879975B2 (en) | 2014-09-10 | 2018-01-30 | Faro Technologies, Inc. | Method for optically measuring three-dimensional coordinates and calibration of a three-dimensional measuring device |
| US9915521B2 (en) | 2014-09-10 | 2018-03-13 | Faro Technologies, Inc. | Method for optically measuring three-dimensional coordinates and controlling a three-dimensional measuring device |
| US10070116B2 (en) | 2014-09-10 | 2018-09-04 | Faro Technologies, Inc. | Device and method for optically scanning and measuring an environment |
| DE102018108874A1 (en)* | 2018-04-13 | 2019-10-17 | Isra Vision Ag | Method and system for measuring an object by means of stereoscopy |
| CN110644334A (en)* | 2019-09-30 | 2020-01-03 | 湖北文理学院 | Detection method, detection system and storage medium for three-dimensional texture topography of pavement |
| CN110823276A (en)* | 2019-11-28 | 2020-02-21 | 广东博智林机器人有限公司 | Method, device and system for detecting vision sensor |
| CN113847884A (en)* | 2021-09-18 | 2021-12-28 | 武汉光谷卓越科技股份有限公司 | Fine three-dimensional measurement and modeling method based on line scanning |
| US11350077B2 (en) | 2018-07-03 | 2022-05-31 | Faro Technologies, Inc. | Handheld three dimensional scanner with an autoaperture |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE19634254B4 (en)* | 1995-09-04 | 2009-06-10 | Volkswagen Ag | Optical-numerical method for determining the entire surface of a three-dimensional object |
| DE19536294C2 (en)* | 1995-09-29 | 2003-12-18 | Daimler Chrysler Ag | Method for geometric navigation of 3D optical sensors for the three-dimensional measurement of objects |
| WO1997031336A1 (en)* | 1996-02-20 | 1997-08-28 | Imetric S.A. | Automation methodology for 3d image metrology systems |
| DE19639999A1 (en)* | 1996-09-18 | 1998-03-26 | Omeca Messtechnik Gmbh | Method and device for 3D measurement |
| DE19639999C2 (en)* | 1996-09-18 | 1998-08-20 | Omeca Messtechnik Gmbh | Method and device for 3D measurement |
| US6611343B1 (en) | 1996-09-18 | 2003-08-26 | Gf Messtechnik Gmbh | Method and device for 3D measurement |
| DE19748062A1 (en)* | 1997-10-31 | 1999-05-12 | Bernward Maehner | 3D optical measuring of object with grating projecting light pattern on object |
| DE19748062C2 (en)* | 1997-10-31 | 2000-10-05 | Bernward Maehner | Method and device for three-dimensional optical measurement of objects |
| DE19753246A1 (en)* | 1997-12-01 | 1999-06-10 | Roland Seifert | Device for determining three-dimensional data from objects |
| DE19753246C2 (en)* | 1997-12-01 | 2002-11-28 | Roland Seifert | Device for determining three-dimensional data from objects |
| EP0957336A3 (en)* | 1998-05-11 | 2001-10-10 | Vought Aircraft Industries, Inc. | System and method for aligning coordinate systems for assembling an aircraft |
| US6484381B2 (en) | 1998-05-11 | 2002-11-26 | Vought Aircraft Industries, Inc. | System and method for aligning aircraft coordinate systems |
| DE19925462C1 (en)* | 1999-06-02 | 2001-02-15 | Daimler Chrysler Ag | Method and system for measuring and testing a 3D body during its manufacture has a measuring system with an optical 3D sensor, a data processor and a testing system storing 3D theoretical data records of a 3D body's surface. |
| DE10025741C2 (en)* | 2000-05-19 | 2002-06-13 | Fraunhofer Ges Forschung | Method for determining the spatial coordinates of objects and / or their change over time |
| DE10025741A1 (en)* | 2000-05-19 | 2001-11-29 | Fraunhofer Ges Forschung | Method for determining the spatial coordinates of objects and / or their change over time |
| EP1174681A3 (en)* | 2000-06-23 | 2003-01-02 | Ford Global Technologies, Inc. | Method and apparatus for the determination of the contour of sheet metal blanks |
| WO2002010720A3 (en)* | 2000-07-31 | 2002-05-02 | Geodetic Services Inc | Photogrammetric image correlation and measurement system and method |
| US6826299B2 (en) | 2000-07-31 | 2004-11-30 | Geodetic Services, Inc. | Photogrammetric image correlation and measurement system and method |
| EP1241442A3 (en)* | 2001-03-14 | 2002-11-27 | Boochs, Frank | Method of determining the position of measured images of an object relative to the object |
| DE10115149B4 (en)* | 2001-03-27 | 2004-07-29 | Vmt Bildverarbeitungssysteme Gmbh | Reintegration of a digital camera into an image processing system which has been moved from a calibrated position to an uncalibrated position |
| DE10115149A1 (en)* | 2001-03-27 | 2002-10-10 | Vmt Bildverarbeitungssysteme G | Reintegration of a digital camera into an image processing system which has been moved from a calibrated position to an uncalibrated position |
| EP1245344A2 (en) | 2001-03-27 | 2002-10-02 | VMT Bildverarbeitungssysteme GmbH | Reintegration of a digital camera in an image processing system which is deplaced from a calibrated position in a non-calibrated position |
| WO2003005303A3 (en)* | 2001-07-02 | 2003-09-25 | Matchlight Software Inc | System and method for discovering and categorizing attributes of a digital image |
| US7113633B2 (en) | 2001-07-02 | 2006-09-26 | Photoinaphoto.Com, Inc. | System and method for discovering and categorizing attributes of a digital image |
| US7764829B2 (en) | 2001-07-02 | 2010-07-27 | Petrich David B | System and method for discovering and categorizing attributes of a digital image |
| WO2003044464A1 (en)* | 2001-11-21 | 2003-05-30 | Corpus.E Ag | Method and system for detecting the three-dimensional shape of an object |
| US7489813B2 (en) | 2001-11-21 | 2009-02-10 | Corpus.E Ag | Method and system for detecting the three-dimensional shape of an object |
| WO2004093444A1 (en)* | 2003-04-11 | 2004-10-28 | Mitsubishi Denki Kabushiki Kaisha | Method for displaying an output image on an object |
| CN1698357B (en)* | 2003-04-11 | 2010-04-28 | 三菱电机株式会社 | A method to display an output image on an object |
| DE10344922B4 (en)* | 2003-09-25 | 2008-06-26 | Siemens Audiologische Technik Gmbh | All-scanner |
| WO2006094637A1 (en)* | 2005-03-05 | 2006-09-14 | Daimlerchrysler Ag | Method for comparing a real object with a digital pattern |
| US7912673B2 (en) | 2005-03-11 | 2011-03-22 | Creaform Inc. | Auto-referenced system and apparatus for three-dimensional scanning |
| EP2278271A3 (en)* | 2005-03-11 | 2011-03-02 | Creaform Inc. | Auto-referenced system and apparatus for three-dimensional scanning |
| US8140295B2 (en) | 2005-03-11 | 2012-03-20 | Creaform Inc. | Auto-referenced sensing device for three-dimensional scanning |
| EP1877726A4 (en)* | 2005-03-11 | 2008-08-06 | Creaform Inc | AUTOREFERENCE SYSTEM AND 3D OPTICAL READING APPARATUS |
| US8082120B2 (en) | 2005-03-11 | 2011-12-20 | Creaform Inc. | Hand-held self-referenced apparatus for three-dimensional scanning |
| US8032327B2 (en) | 2005-03-11 | 2011-10-04 | Creaform Inc. | Auto-referenced sensing method for three-dimensional scanning |
| FR2889303A1 (en)* | 2005-07-26 | 2007-02-02 | Airbus France Sas | METHOD FOR MEASURING SHAPE ANOMALY ON A PANEL OF AN AIRCRAFT STRUCTURE AND SYSTEM FOR IMPLEMENTING SAID METHOD |
| JP2009506920A (en)* | 2005-07-26 | 2009-02-19 | エアバス フランス | Method for measuring anomalous part of surface shape of aircraft structural panel and system for executing the method |
| RU2414683C2 (en)* | 2005-07-26 | 2011-03-20 | Эрбюс Франс | Method of measuring shape defect of aircraft structural panel and system for implementing said method |
| WO2007012781A3 (en)* | 2005-07-26 | 2007-03-15 | Airbus France | Method for measuring a shape anomaly on an aircraft structural panel and system therefor |
| EP1750090A3 (en)* | 2005-08-01 | 2010-10-13 | Topcon Corporation | Three-dimensional measurement system and method of the same, and color-coded mark |
| CN1912537B (en)* | 2005-08-01 | 2012-07-18 | 株式会社拓普康 | Three-dimensional measurement system and method of the same |
| EP1770356A3 (en)* | 2005-09-30 | 2007-05-09 | Topcon Corporation | Three-dimensional measurement system with projection device |
| EP2034269A1 (en) | 2007-09-10 | 2009-03-11 | Steinbichler Optotechnik Gmbh | Method and device for three-dimensional digitalising of objects |
| US8218857B2 (en) | 2007-12-05 | 2012-07-10 | Topcon Corporation | Color-coded target, color code extracting device, and three-dimensional measuring system |
| US20100319100A1 (en)* | 2008-01-28 | 2010-12-23 | Jian Chen | Simple techniques for three-dimensional modeling |
| US8571698B2 (en)* | 2008-01-28 | 2013-10-29 | Netvirta, Llc | Simple techniques for three-dimensional modeling |
| US8284240B2 (en) | 2008-08-06 | 2012-10-09 | Creaform Inc. | System for adaptive three-dimensional scanning of surface characteristics |
| DE102010047444A1 (en)* | 2010-10-04 | 2012-04-05 | Audi Ag | Method for visualization of deviations between actual geometry and target geometry of component, particularly vehicle door panel, involves calculating actual-target comparison deviations of virtually stored target geometry |
| DE102010047444B4 (en)* | 2010-10-04 | 2014-04-03 | Audi Ag | Method for visualizing dimensional deviations between an actual and a target geometry of a component |
| DE102011007520A1 (en)* | 2011-04-15 | 2012-10-18 | Krones Aktiengesellschaft | Method for calibrating orientation unit of labeling device for e.g. glass bottle for storing drinks, involves calculating algorithm for coordinate transformation from camera coordinate system into absolute Cartesian coordinate system |
| EP2530649A1 (en)* | 2011-06-03 | 2012-12-05 | BAE Systems Plc | Sensor data processing |
| DE102012108567B4 (en)* | 2011-10-05 | 2017-04-27 | Electronics And Telecommunications Research Institute | Method of obtaining depth information using a light pattern |
| DE102012023623A1 (en) | 2012-11-28 | 2014-06-12 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method for assembling sub-housings of surface of static object, involves determining homologous image points of partial images of surface of object, and assembling images using homologous image points to form overall housing |
| DE102012023623B4 (en)* | 2012-11-28 | 2014-07-03 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Method for assembling partial recordings of a surface of an object to a total record of the object and system for creating a complete record of an object |
| US10070116B2 (en) | 2014-09-10 | 2018-09-04 | Faro Technologies, Inc. | Device and method for optically scanning and measuring an environment |
| US9769463B2 (en) | 2014-09-10 | 2017-09-19 | Faro Technologies, Inc. | Device and method for optically scanning and measuring an environment and a method of control |
| US10088296B2 (en) | 2014-09-10 | 2018-10-02 | Faro Technologies, Inc. | Method for optically measuring three-dimensional coordinates and calibration of a three-dimensional measuring device |
| US10401143B2 (en) | 2014-09-10 | 2019-09-03 | Faro Technologies, Inc. | Method for optically measuring three-dimensional coordinates and controlling a three-dimensional measuring device |
| US9915521B2 (en) | 2014-09-10 | 2018-03-13 | Faro Technologies, Inc. | Method for optically measuring three-dimensional coordinates and controlling a three-dimensional measuring device |
| US10499040B2 (en) | 2014-09-10 | 2019-12-03 | Faro Technologies, Inc. | Device and method for optically scanning and measuring an environment and a method of control |
| US9879975B2 (en) | 2014-09-10 | 2018-01-30 | Faro Technologies, Inc. | Method for optically measuring three-dimensional coordinates and calibration of a three-dimensional measuring device |
| DE102014113389A1 (en)* | 2014-09-17 | 2016-03-17 | Pilz Gmbh & Co. Kg | Method and device for identifying structural elements of a projected structural pattern in camera images |
| US10068348B2 (en) | 2014-09-17 | 2018-09-04 | Pilz Gmbh & Co. Kg | Method and apparatus for indentifying structural elements of a projected structural pattern in camera images |
| DE102014019669A1 (en)* | 2014-12-30 | 2016-06-30 | Faro Technologies, Inc. | Method for optically scanning and measuring an environment with a 3D measuring device and autocalibration with predetermined conditions |
| DE102014019671B4 (en)* | 2014-12-30 | 2017-09-14 | Faro Technologies, Inc. | Method for optically scanning and measuring an environment with a 3D measuring device and auto-calibration by means of a 2D camera |
| DE102014019669B4 (en) | 2014-12-30 | 2019-05-02 | Faro Technologies, Inc. | 16Method for optically sensing and measuring an environment with a 3D measuring device and autocalibrating under predetermined conditions |
| DE102014019670B3 (en)* | 2014-12-30 | 2016-06-30 | Faro Technologies, Inc. | Method for optically scanning and measuring an environment with a 3D measuring device and auto-calibration by means of redundancies |
| DE102014019671A1 (en)* | 2014-12-30 | 2016-06-30 | Faro Technologies, Inc. | Method for optically scanning and measuring an environment with a 3D measuring device and auto-calibration by means of a 2D camera |
| CN104990515B (en)* | 2015-06-02 | 2017-09-15 | 江苏科技大学 | Large-sized object three-dimensional shape measure system and its measuring method |
| CN104990515A (en)* | 2015-06-02 | 2015-10-21 | 江苏科技大学 | Three-dimensional shape measurement system and method for large-size object |
| DE102016120026B4 (en) | 2015-10-22 | 2019-01-03 | Canon Kabushiki Kaisha | Measuring device and method, program, product manufacturing method, calibration marking element, processing device and processing system |
| DE102016120026A1 (en)* | 2015-10-22 | 2017-04-27 | Canon Kabushiki Kaisha | Measuring device and method, program, product manufacturing method, calibration marking element, processing device and processing system |
| DE102018108874A1 (en)* | 2018-04-13 | 2019-10-17 | Isra Vision Ag | Method and system for measuring an object by means of stereoscopy |
| US11640673B2 (en) | 2018-04-13 | 2023-05-02 | Isra Vision Ag | Method and system for measuring an object by means of stereoscopy |
| US11350077B2 (en) | 2018-07-03 | 2022-05-31 | Faro Technologies, Inc. | Handheld three dimensional scanner with an autoaperture |
| CN110644334A (en)* | 2019-09-30 | 2020-01-03 | 湖北文理学院 | Detection method, detection system and storage medium for three-dimensional texture topography of pavement |
| CN110644334B (en)* | 2019-09-30 | 2021-10-22 | 湖北文理学院 | Detection method, detection system and storage medium for three-dimensional texture topography of pavement |
| CN110823276A (en)* | 2019-11-28 | 2020-02-21 | 广东博智林机器人有限公司 | Method, device and system for detecting vision sensor |
| CN113847884A (en)* | 2021-09-18 | 2021-12-28 | 武汉光谷卓越科技股份有限公司 | Fine three-dimensional measurement and modeling method based on line scanning |
| Publication | Publication Date | Title |
|---|---|---|
| DE19502459A1 (en) | Three dimensional optical measurement of surface of objects | |
| DE10219054B4 (en) | Method and device for determining the spatial coordinates of an object | |
| DE10344922B4 (en) | All-scanner | |
| DE19727281C1 (en) | Geometric calibration device for CCD camera | |
| DE102011114674C5 (en) | Method and device for determining the 3D coordinates of an object | |
| DE102012112322B4 (en) | Method for optically scanning and measuring an environment | |
| EP2079981B1 (en) | Device and method for the contactless detection of a three-dimensional contour | |
| DE102012112321B4 (en) | Device for optically scanning and measuring an environment | |
| DE10137241A1 (en) | Arrangement, for detecting and measuring objects, optically projects markers onto object, records partial views of object in global coordinate system using information re-detected markers | |
| EP2002203A2 (en) | Method and system for measuring the shape of a reflective surface | |
| EP2880853B1 (en) | Apparatus and method for determining the distinct location of an image-recording camera | |
| DE102009032262A1 (en) | Method for determining the 3D coordinates of an object | |
| DE102013008273A1 (en) | Three-dimensional image capture device | |
| EP0923705B1 (en) | Method and device for determining the spatial coordinates of objects | |
| DE10020893A1 (en) | Optical determination of the shape of an object by determination of the normal to the surface of the object at a large number of points and relating the normals to image points so that an entire surface image is built-up | |
| DE102006042311B4 (en) | Three-dimensional measurement of objects in an extended angle range | |
| EP3104330B1 (en) | Methods for tracking at least one object and method for replacing at least one object with a virtual object in a motion picture signal recorded by a camera | |
| EP3775767A1 (en) | Method and system for measuring an object by means of stereoscopy | |
| WO2016146105A1 (en) | Method and device for calibrating a camera | |
| EP1640688A1 (en) | Method and Apparatus for Measuring the Surface on an Object in three Dimensions | |
| DE102004058655A1 (en) | Two dimensional coordinate geometry or structure measurement for object, uses image processing, combines partial images to produce results with equidistant pixels | |
| EP3628995A1 (en) | Calibration template and calibration method for geometric calibration of a plurality of cameras of a camera array | |
| DE4011407A1 (en) | Quantitative absolute measurer for three=dimensional coordinates - contains projector of test pattern, sensor and displacement device for surface evaluation of test object | |
| DE102007038785A1 (en) | Method and device for determining geometric data of a measurement object | |
| DE10025741A1 (en) | Method for determining the spatial coordinates of objects and / or their change over time |
| Date | Code | Title | Description |
|---|---|---|---|
| 8110 | Request for examination paragraph 44 | ||
| 8131 | Rejection |