Movatterモバイル変換


[0]ホーム

URL:


CN2706955Y - Boost type active staggered parallel soft switch DC-DC converter - Google Patents

Boost type active staggered parallel soft switch DC-DC converter
Download PDF

Info

Publication number
CN2706955Y
CN2706955YCN 200420037469CN200420037469UCN2706955YCN 2706955 YCN2706955 YCN 2706955YCN 200420037469CN200420037469CN 200420037469CN 200420037469 UCN200420037469 UCN 200420037469UCN 2706955 YCN2706955 YCN 2706955Y
Authority
CN
China
Prior art keywords
power switch
switch tube
inductor
tube
converter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN 200420037469
Other languages
Chinese (zh)
Inventor
何湘宁
姚刚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJUfiledCriticalZhejiang University ZJU
Priority to CN 200420037469priorityCriticalpatent/CN2706955Y/en
Application grantedgrantedCritical
Publication of CN2706955YpublicationCriticalpatent/CN2706955Y/en
Anticipated expirationlegal-statusCritical
Expired - Lifetimelegal-statusCriticalCurrent

Links

Images

Landscapes

Abstract

Translated fromChinese

本实用新型的升压型有源交错并联软开关直流一直流变换器包括两个相耦合的电感,两个续流二极管,两个功率开关管,第一功率开关管的漏极与第二二极管的阳极及第二电感的一端相连,第二功率开关管的漏极与第一二极管的阳极及第一电感的一端相连,第一电感的另一端与第二电感的另一端相连,在第一功率开关管并联由第一电容和第一辅助开关管构成的串联电路,在第二功率开关管并联由第二电容和第二辅助开关管构成的串联电路。本实用新型附加元件少,结构简单,无需额外检测,电路中无能量损耗元件,可提高升压型交错并联电路的效率,且换流过程中,功率开关管关断时无电压过冲。

Figure 200420037469

The boost type active interleaved parallel soft switch DC-DC converter of the utility model includes two coupled inductors, two freewheeling diodes, two power switch tubes, the drain of the first power switch tube and the second two The anode of the pole tube is connected to one end of the second inductor, the drain of the second power switch tube is connected to the anode of the first diode and one end of the first inductor, and the other end of the first inductor is connected to the other end of the second inductor A series circuit composed of the first capacitor and the first auxiliary switch tube is connected in parallel to the first power switch tube, and a series circuit composed of the second capacitor and the second auxiliary switch tube is connected in parallel to the second power switch tube. The utility model has few additional components, simple structure, no additional detection, no energy loss components in the circuit, can improve the efficiency of the step-up interleaved parallel circuit, and has no voltage overshoot when the power switch tube is turned off during the commutation process.

Figure 200420037469

Description

Translated fromChinese
升压型有源交错并联软开关直流-直流变换器Step-up Active Interleaved Parallel Soft Switching DC-DC Converter

技术领域technical field

本实用新型涉及直流-直流变换器。具体说是升压型有源交错并联软开关直流-直流变换器。The utility model relates to a DC-DC converter. Specifically, it is a step-up active interleaved parallel soft-switching DC-DC converter.

背景技术Background technique

常规的升压型(Boost)交错并联直流-直流变换器,包括两个电感L1、L2,两个续流二极管D1、D2,两个功率开关管S1、S2,第一功率开关管S1的漏极与第二二极管D2的阳极及第二电感L2的一端相连,第二功率开关管S2的漏极与第一二极管D1的阳极及第一电感L1的一端相连,第一电感L1的另一端与第二电感L2的另一端相连。这种升压型交错并联直流-直流变换器一般为硬开关工作,开关损耗较大。近年来,相继研究了一些软开关电路,主要有两种:一种是在变换器中附加有源和无源元件,实现功率器件的软开关;另一种是附加含电阻的无源缓冲电路,其能量损耗大,工作时能量消耗在电阻上,导致电路工作效率下降。A conventional step-up (Boost) interleaved parallel DC-DC converter includes two inductors L1, L2, two freewheeling diodes D1, D2, two power switch tubes S1, S2, and the drain of the first power switch tube S1 The pole is connected with the anode of the second diode D2 and one end of the second inductor L2, the drain of the second power switch tube S2 is connected with the anode of the first diode D1 and one end of the first inductor L1, and the first inductor L1 The other end of is connected to the other end of the second inductor L2. This step-up interleaved parallel DC-DC converter generally works as a hard switch, and the switching loss is relatively large. In recent years, some soft switching circuits have been studied successively. There are two main types: one is to add active and passive components to the converter to realize the soft switching of power devices; the other is to add a passive snubber circuit with resistance , its energy loss is large, and the energy is consumed on the resistance during operation, resulting in a decrease in circuit efficiency.

发明内容Contents of the invention

本实用新型的目的是提供附加元件数量少,结构简单,成本低,且无能量损耗的升压型有源交错并联软开关直流-直流变换器。The purpose of the utility model is to provide a step-up active interleaved parallel soft-switching DC-DC converter with few additional components, simple structure, low cost and no energy loss.

本实用新型的技术解决方案是,升压型有源交错并联软开关直流-直流变换器包括两个相耦合的电感,两个续流二极管,两个功率开关管,第一功率开关管的漏极与第二二极管的阳极及第二电感的一端相连,第二功率开关管的漏极与第一二极管的阳极及第一电感的一端相连,第一电感的另一端与第二电感的另一端相连,其特征是在第一功率开关管并联由第一电容和第一辅助开关管构成的串联电路,其中第一辅助开关管与第一功率开关管方向一致,且第一电容与第一功率开关管和第二电感的接点相连;在第二功率开关管并联由第二电容和第二辅助开关管构成的串联电路,其中第二辅助开关管与第二功率开关管方向一致,且第二电容与第二功率开关管和第一电感的接点相连。The technical solution of the utility model is that the step-up active interleaved parallel soft switch DC-DC converter includes two coupled inductors, two freewheeling diodes, two power switch tubes, and the drain of the first power switch tube The pole is connected to the anode of the second diode and one end of the second inductor, the drain of the second power switch tube is connected to the anode of the first diode and one end of the first inductor, and the other end of the first inductor is connected to the second The other end of the inductance is connected, which is characterized in that a series circuit composed of the first capacitor and the first auxiliary switch tube is connected in parallel with the first power switch tube, wherein the first auxiliary switch tube is in the same direction as the first power switch tube, and the first capacitor It is connected to the junction of the first power switch tube and the second inductor; a series circuit composed of the second capacitor and the second auxiliary switch tube is connected in parallel to the second power switch tube, wherein the second auxiliary switch tube is in the same direction as the second power switch tube , and the second capacitor is connected to the junction of the second power switch tube and the first inductor.

工作时,利用两个耦合电感的漏感实现第一功率开关管、第二功率开关管的零电流开通以及第一、第二两个续流二极管的软关断;第一功率开关管和第二功率开关管关断时,由于第一电容和第二电容的存在,实现了第一功率开关管和第二功率开关管的零电压关断。同时,每个开关周期第一、第二两个电容收集这些能量,并最终将其转移到负载,实现了吸收电路的无损运行。在整个开关周期中,通过控制第一、第二辅助开关管的门极脉冲,可使第一、第二两个辅助开关管实现零电压开通和零电压关断。When working, the leakage inductance of the two coupled inductors is used to realize the zero-current turn-on of the first power switch tube and the second power switch tube and the soft turn-off of the first and second freewheeling diodes; the first power switch tube and the second power switch tube When the two power switch tubes are turned off, due to the existence of the first capacitor and the second capacitor, the zero-voltage turn-off of the first power switch tube and the second power switch tube is realized. At the same time, the first and second capacitors collect the energy in each switching cycle, and finally transfer it to the load, realizing the lossless operation of the absorbing circuit. During the whole switching period, by controlling the gate pulses of the first and second auxiliary switching tubes, the first and second auxiliary switching tubes can be turned on and off with zero voltage.

本实用新型的升压型有源交错并联软开关直流-直流变换器利用了耦合电感的漏感来实现功率开关管的软开关,无需附加额外的电感元件,从而附加元件少,结构简单,成本低,无需额外的检测电路,电路中无能量损耗元件,可提高升压型交错并联电路的效率,且换流过程中,功率开关管关断时无电压过冲,续流二极管开通时无电流过冲。The boost type active interleaved parallel soft-switching DC-DC converter of the utility model utilizes the leakage inductance of the coupling inductor to realize the soft switching of the power switch tube without additional inductive elements, so that there are few additional elements, simple structure and low cost. Low, no additional detection circuit, no energy loss components in the circuit, which can improve the efficiency of the step-up interleaved parallel circuit, and during the commutation process, there is no voltage overshoot when the power switch tube is turned off, and no current when the freewheeling diode is turned on overshoot.

附图说明Description of drawings

图1是升压型有源交错并联软开关直流-直流变换器的电路图。Figure 1 is a circuit diagram of a step-up active interleaved parallel soft-switching DC-DC converter.

具体实施方式Detailed ways

参见图1,升压型有源交错并联软开关直流-直流变换器包括两个相耦合的电感L1、L2,两个续流二极管D1、D2,两个功率开关管S1、S2,第一功率开关管S1的漏极与第二二极管D2的阳极及第二电感L2的一端相连,第二功率开关管S2的漏极与第一二极管D1的阳极及第一电感L1的一端相连,第一电感L1的另一端与第二电感L2的另一端相连,其特征是在第一功率开关管S1并联由第一电容C1和第一辅助开关管S3构成的串联电路,其中第一辅助开关管S3与第一功率开关管S1方向一致,且第一电容C1与第一功率开关管S1和第二电感L2的接点相连;在第二功率开关管S2并联由第二电容C2和第二辅助开关管S4构成的串联电路,其中第二辅助开关管S4与第二功率开关管S2方向一致,且第二电容C2与第二功率开关管S2和第一电感L1的接点相连。Referring to Figure 1, the step-up active interleaved parallel soft-switching DC-DC converter includes two phase-coupled inductors L1, L2, two freewheeling diodes D1, D2, two power switch tubes S1, S2, the first power The drain of the switching tube S1 is connected to the anode of the second diode D2 and one end of the second inductor L2, and the drain of the second power switching tube S2 is connected to the anode of the first diode D1 and one end of the first inductor L1 , the other end of the first inductance L1 is connected to the other end of the second inductance L2, which is characterized in that a series circuit composed of the first capacitor C1 and the first auxiliary switch S3 is connected in parallel with the first power switch tube S1, wherein the first auxiliary switch tube S3 The switching tube S3 is in the same direction as the first power switching tube S1, and the first capacitor C1 is connected to the junction of the first power switching tube S1 and the second inductor L2; the second power switching tube S2 is connected in parallel by the second capacitor C2 and the second A series circuit formed by the auxiliary switching tube S4, wherein the second auxiliary switching tube S4 is in the same direction as the second power switching tube S2, and the second capacitor C2 is connected to the junction of the second power switching tube S2 and the first inductor L1.

升压型有源交错并联软开关直流-直流变换器存在四种换流情况,即第一功率开关管S1与第一续流二极管D1之间的换流和第一功率开关管S1与第二续流二极管D2之间的换流;第二功率开关管S2与第二续流二极管D2之间的换流和第二功率开关管S2与第一续流二极管D1之间的换流。由于电路结构的对称性,仅以第一功率开关管S1的换流过程为例分析如下:There are four commutation situations in the step-up active interleaved parallel soft-switching DC-DC converter, that is, the commutation between the first power switch S1 and the first freewheeling diode D1 and the commutation between the first power switch S1 and the second The commutation between the freewheeling diodes D2; the commutation between the second power switch S2 and the second freewheeling diode D2 and the commutation between the second power switch S2 and the first freewheeling diode D1. Due to the symmetry of the circuit structure, only taking the commutation process of the first power switch tube S1 as an example, the analysis is as follows:

第一功率开关管S1开通,第一续流二极管D1关断的换流过程:The commutation process in which the first power switch S1 is turned on and the first freewheeling diode D1 is turned off:

换流之前,电路处于第一功率开关管S1关断、第一续流二极管D1续流的稳定工作状态。当第一功率开关管S1开通时,由于耦合电感L1、L2的漏感存在,第一功率开关管S1的电流从零开始以一定斜率线性上升,即第一功率开关管S1实现了零电流开通,同时第一续流二极管D1的电流值从输入电流开始以相同的斜率线性减小,直至第一续流二极管D1关断。这样,第一续流二极管D1的反向恢复电流为零,大大减小了第一续流二极管D1所带来的反向恢复损耗。第一续流二极管D1关断后,第二电容C2经第二辅助开关管S4的体内二极管开始与耦合电感L1、L2的漏感谐振,直至第二电容C2上的电压降为零。之后,电路进入第一功率开关管S1导通的稳定运行状态。Before commutation, the circuit is in a stable working state where the first power switch tube S1 is turned off and the first freewheeling diode D1 is freewheeling. When the first power switch S1 is turned on, due to the leakage inductance of the coupled inductors L1 and L2, the current of the first power switch S1 rises linearly from zero with a certain slope, that is, the first power switch S1 realizes zero current turn-on , and at the same time the current value of the first freewheeling diode D1 decreases linearly with the same slope from the input current until the first freewheeling diode D1 is turned off. In this way, the reverse recovery current of the first freewheeling diode D1 is zero, which greatly reduces the reverse recovery loss caused by the first freewheeling diode D1. After the first freewheeling diode D1 is turned off, the second capacitor C2 starts to resonate with the leakage inductance of the coupling inductors L1 and L2 via the body diode of the second auxiliary switching transistor S4 until the voltage on the second capacitor C2 drops to zero. Afterwards, the circuit enters into a stable operation state in which the first power switch tube S1 is turned on.

第一功率开关管S1关断,第二续流二极管D2开通的换流过程:The commutation process in which the first power switch S1 is turned off and the second freewheeling diode D2 is turned on:

第一功率开关管S1关断之前,第一辅助开关管S3导通,因为第一辅助开关管S3导通前,第一功率开关管S1已经导通,这样第一辅助开关管S3实现了零电压开通。第一功率开关管S1关断后,输入电流经第一辅助开关管S3对第一电容C1充电,第一功率开关管S1的管电压从零上升,即实现了第一功率开关管S1的零电压关断。第一电容C1电压充电至与上输出电容端电压相等时,第二续流二极管D2自然导通。第一功率开关管S1关断后再将第一辅助开关管S3关断,因为第一电容C1两端电压为输出电压,所以第一辅助开关管S3实现了零电压关断。电路进入负载电流通过第二续流二极管D2输出的稳定状态。Before the first power switch S1 is turned off, the first auxiliary switch S3 is turned on, because before the first auxiliary switch S3 is turned on, the first power switch S1 has been turned on, so that the first auxiliary switch S3 achieves zero The voltage is turned on. After the first power switch tube S1 is turned off, the input current charges the first capacitor C1 through the first auxiliary switch tube S3, and the tube voltage of the first power switch tube S1 rises from zero, that is, the zero voltage of the first power switch tube S1 is realized. voltage off. When the voltage of the first capacitor C1 is charged to be equal to the voltage of the upper output capacitor terminal, the second freewheeling diode D2 is naturally turned on. After the first power switch S1 is turned off, the first auxiliary switch S3 is turned off. Because the voltage across the first capacitor C1 is the output voltage, the first auxiliary switch S3 realizes zero-voltage turn-off. The circuit enters a steady state where the load current is output through the second freewheeling diode D2.

Claims (1)

1. the soft switch dc-dc converter of the active crisscross parallel of booster type comprises two inductance (L1 that are coupled, L2), two fly-wheel diode (D1, D2), two power switch pipe (S1, S2), the drain electrode of first power switch pipe (S1) links to each other with the anode of second diode (D2) and an end of second inductance (L2), the drain electrode of second power switch pipe (S2) links to each other with the anode of first diode (D1) and an end of first inductance (L1), the other end of first inductance (L1) links to each other with the other end of second inductance (L2), it is characterized in that at first power switch pipe (S1) series circuit that constitutes by first electric capacity (C1) and first auxiliary switch (S3) in parallel, wherein first auxiliary switch (S3) is consistent with first power switch pipe (S1) direction, and first electric capacity (C1) links to each other with the contact of first power switch pipe (S1) with second inductance (L2); At second power switch pipe (S2) series circuit that constitutes by second electric capacity (C2) and second auxiliary switch (S4) in parallel, wherein second auxiliary switch (S4) is consistent with second power switch pipe (S2) direction, and second electric capacity (C2) links to each other with the contact of second power switch pipe (S2) with first inductance (L1).
CN 2004200374692004-07-082004-07-08Boost type active staggered parallel soft switch DC-DC converterExpired - LifetimeCN2706955Y (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN 200420037469CN2706955Y (en)2004-07-082004-07-08Boost type active staggered parallel soft switch DC-DC converter

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN 200420037469CN2706955Y (en)2004-07-082004-07-08Boost type active staggered parallel soft switch DC-DC converter

Publications (1)

Publication NumberPublication Date
CN2706955Ytrue CN2706955Y (en)2005-06-29

Family

ID=34850455

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN 200420037469Expired - LifetimeCN2706955Y (en)2004-07-082004-07-08Boost type active staggered parallel soft switch DC-DC converter

Country Status (1)

CountryLink
CN (1)CN2706955Y (en)

Cited By (56)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN100334797C (en)*2004-07-082007-08-29浙江大学Boost type active interlaced parallel soft switch circuit
CN100358226C (en)*2005-08-082007-12-26南京航空航天大学Single switch double output booster converter
CN100446390C (en)*2007-03-052008-12-24浙江大学 Active-clamp zero-voltage soft-switching high-gain step-up interleaved parallel converter
CN102223058A (en)*2011-06-032011-10-19浙江源创电子科技有限公司Interlaced on-line isolated double-cuk circuit
CN103312151A (en)*2012-03-052013-09-18太阳能安吉科技有限公司Direct current link circuit
CN103856037A (en)*2012-12-052014-06-11三星电机株式会社Driver device for power factor correction circuit
CN104716821A (en)*2013-12-122015-06-17杭州先途电子有限公司Air conditioner controller, power conversion circuit of air conditioner controller, and power factor correction circuit
US9407161B2 (en)2007-12-052016-08-02Solaredge Technologies Ltd.Parallel connected inverters
US9537445B2 (en)2008-12-042017-01-03Solaredge Technologies Ltd.Testing of a photovoltaic panel
US9548619B2 (en)2013-03-142017-01-17Solaredge Technologies Ltd.Method and apparatus for storing and depleting energy
US9590526B2 (en)2006-12-062017-03-07Solaredge Technologies Ltd.Safety mechanisms, wake up and shutdown methods in distributed power installations
US9647442B2 (en)2010-11-092017-05-09Solaredge Technologies Ltd.Arc detection and prevention in a power generation system
US9673711B2 (en)2007-08-062017-06-06Solaredge Technologies Ltd.Digital average input current control in power converter
US9812984B2 (en)2012-01-302017-11-07Solaredge Technologies Ltd.Maximizing power in a photovoltaic distributed power system
US9853565B2 (en)2012-01-302017-12-26Solaredge Technologies Ltd.Maximized power in a photovoltaic distributed power system
US9853538B2 (en)2007-12-042017-12-26Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
US9853490B2 (en)2006-12-062017-12-26Solaredge Technologies Ltd.Distributed power system using direct current power sources
US9866098B2 (en)2011-01-122018-01-09Solaredge Technologies Ltd.Serially connected inverters
US9869701B2 (en)2009-05-262018-01-16Solaredge Technologies Ltd.Theft detection and prevention in a power generation system
US9876430B2 (en)2008-03-242018-01-23Solaredge Technologies Ltd.Zero voltage switching
US9935458B2 (en)2010-12-092018-04-03Solaredge Technologies Ltd.Disconnection of a string carrying direct current power
US9948233B2 (en)2006-12-062018-04-17Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
US9960731B2 (en)2006-12-062018-05-01Solaredge Technologies Ltd.Pairing of components in a direct current distributed power generation system
US9966766B2 (en)2006-12-062018-05-08Solaredge Technologies Ltd.Battery power delivery module
US9979280B2 (en)2007-12-052018-05-22Solaredge Technologies Ltd.Parallel connected inverters
US10061957B2 (en)2016-03-032018-08-28Solaredge Technologies Ltd.Methods for mapping power generation installations
US10097007B2 (en)2006-12-062018-10-09Solaredge Technologies Ltd.Method for distributed power harvesting using DC power sources
US10230310B2 (en)2016-04-052019-03-12Solaredge Technologies LtdSafety switch for photovoltaic systems
US10381977B2 (en)2012-01-302019-08-13Solaredge Technologies LtdPhotovoltaic panel circuitry
US10396662B2 (en)2011-09-122019-08-27Solaredge Technologies LtdDirect current link circuit
US10468878B2 (en)2008-05-052019-11-05Solaredge Technologies Ltd.Direct current power combiner
US10599113B2 (en)2016-03-032020-03-24Solaredge Technologies Ltd.Apparatus and method for determining an order of power devices in power generation systems
US10637393B2 (en)2006-12-062020-04-28Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
US10651647B2 (en)2013-03-152020-05-12Solaredge Technologies Ltd.Bypass mechanism
US10673222B2 (en)2010-11-092020-06-02Solaredge Technologies Ltd.Arc detection and prevention in a power generation system
US10673229B2 (en)2010-11-092020-06-02Solaredge Technologies Ltd.Arc detection and prevention in a power generation system
US10931119B2 (en)2012-01-112021-02-23Solaredge Technologies Ltd.Photovoltaic module
US11018623B2 (en)2016-04-052021-05-25Solaredge Technologies Ltd.Safety switch for photovoltaic systems
US11031861B2 (en)2006-12-062021-06-08Solaredge Technologies Ltd.System and method for protection during inverter shutdown in distributed power installations
US11081608B2 (en)2016-03-032021-08-03Solaredge Technologies Ltd.Apparatus and method for determining an order of power devices in power generation systems
US11177768B2 (en)2012-06-042021-11-16Solaredge Technologies Ltd.Integrated photovoltaic panel circuitry
US11177663B2 (en)2016-04-052021-11-16Solaredge Technologies Ltd.Chain of power devices
US11264947B2 (en)2007-12-052022-03-01Solaredge Technologies Ltd.Testing of a photovoltaic panel
US11296650B2 (en)2006-12-062022-04-05Solaredge Technologies Ltd.System and method for protection during inverter shutdown in distributed power installations
US11309832B2 (en)2006-12-062022-04-19Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
US11569659B2 (en)2006-12-062023-01-31Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
US11569660B2 (en)2006-12-062023-01-31Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
US11598652B2 (en)2006-12-062023-03-07Solaredge Technologies Ltd.Monitoring of distributed power harvesting systems using DC power sources
US11687112B2 (en)2006-12-062023-06-27Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
US11728768B2 (en)2006-12-062023-08-15Solaredge Technologies Ltd.Pairing of components in a direct current distributed power generation system
US11735910B2 (en)2006-12-062023-08-22Solaredge Technologies Ltd.Distributed power system using direct current power sources
US11855231B2 (en)2006-12-062023-12-26Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
US11881814B2 (en)2005-12-052024-01-23Solaredge Technologies Ltd.Testing of a photovoltaic panel
US11888387B2 (en)2006-12-062024-01-30Solaredge Technologies Ltd.Safety mechanisms, wake up and shutdown methods in distributed power installations
US12057807B2 (en)2016-04-052024-08-06Solaredge Technologies Ltd.Chain of power devices
US12418177B2 (en)2009-10-242025-09-16Solaredge Technologies Ltd.Distributed power system using direct current power sources

Cited By (136)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN100334797C (en)*2004-07-082007-08-29浙江大学Boost type active interlaced parallel soft switch circuit
CN100358226C (en)*2005-08-082007-12-26南京航空航天大学Single switch double output booster converter
US11881814B2 (en)2005-12-052024-01-23Solaredge Technologies Ltd.Testing of a photovoltaic panel
US9960731B2 (en)2006-12-062018-05-01Solaredge Technologies Ltd.Pairing of components in a direct current distributed power generation system
US11682918B2 (en)2006-12-062023-06-20Solaredge Technologies Ltd.Battery power delivery module
US12388492B2 (en)2006-12-062025-08-12Solaredge Technologies Ltd.Safety mechanisms, wake up and shutdown methods in distributed power installations
US12316274B2 (en)2006-12-062025-05-27Solaredge Technologies Ltd.Pairing of components in a direct current distributed power generation system
US11594882B2 (en)2006-12-062023-02-28Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
US11575260B2 (en)2006-12-062023-02-07Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
US11575261B2 (en)2006-12-062023-02-07Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
US11569660B2 (en)2006-12-062023-01-31Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
US12281919B2 (en)2006-12-062025-04-22Solaredge Technologies Ltd.Monitoring of distributed power harvesting systems using DC power sources
US9590526B2 (en)2006-12-062017-03-07Solaredge Technologies Ltd.Safety mechanisms, wake up and shutdown methods in distributed power installations
US12276997B2 (en)2006-12-062025-04-15Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
US12224706B2 (en)2006-12-062025-02-11Solaredge Technologies Ltd.Pairing of components in a direct current distributed power generation system
US11569659B2 (en)2006-12-062023-01-31Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
US11031861B2 (en)2006-12-062021-06-08Solaredge Technologies Ltd.System and method for protection during inverter shutdown in distributed power installations
US11598652B2 (en)2006-12-062023-03-07Solaredge Technologies Ltd.Monitoring of distributed power harvesting systems using DC power sources
US12107417B2 (en)2006-12-062024-10-01Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
US11888387B2 (en)2006-12-062024-01-30Solaredge Technologies Ltd.Safety mechanisms, wake up and shutdown methods in distributed power installations
US9853490B2 (en)2006-12-062017-12-26Solaredge Technologies Ltd.Distributed power system using direct current power sources
US12068599B2 (en)2006-12-062024-08-20Solaredge Technologies Ltd.System and method for protection during inverter shutdown in distributed power installations
US11476799B2 (en)2006-12-062022-10-18Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
US11658482B2 (en)2006-12-062023-05-23Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
US11309832B2 (en)2006-12-062022-04-19Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
US9948233B2 (en)2006-12-062018-04-17Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
US11855231B2 (en)2006-12-062023-12-26Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
US11043820B2 (en)2006-12-062021-06-22Solaredge Technologies Ltd.Battery power delivery module
US11735910B2 (en)2006-12-062023-08-22Solaredge Technologies Ltd.Distributed power system using direct current power sources
US9966766B2 (en)2006-12-062018-05-08Solaredge Technologies Ltd.Battery power delivery module
US12046940B2 (en)2006-12-062024-07-23Solaredge Technologies Ltd.Battery power control
US10097007B2 (en)2006-12-062018-10-09Solaredge Technologies Ltd.Method for distributed power harvesting using DC power sources
US10673253B2 (en)2006-12-062020-06-02Solaredge Technologies Ltd.Battery power delivery module
US12032080B2 (en)2006-12-062024-07-09Solaredge Technologies Ltd.Safety mechanisms, wake up and shutdown methods in distributed power installations
US10230245B2 (en)2006-12-062019-03-12Solaredge Technologies LtdBattery power delivery module
US12027849B2 (en)2006-12-062024-07-02Solaredge Technologies Ltd.Distributed power system using direct current power sources
US12027970B2 (en)2006-12-062024-07-02Solaredge Technologies Ltd.Safety mechanisms, wake up and shutdown methods in distributed power installations
US10447150B2 (en)2006-12-062019-10-15Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
US11594881B2 (en)2006-12-062023-02-28Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
US11183922B2 (en)2006-12-062021-11-23Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
US11063440B2 (en)2006-12-062021-07-13Solaredge Technologies Ltd.Method for distributed power harvesting using DC power sources
US11687112B2 (en)2006-12-062023-06-27Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
US11594880B2 (en)2006-12-062023-02-28Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
US11961922B2 (en)2006-12-062024-04-16Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
US10637393B2 (en)2006-12-062020-04-28Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
US11728768B2 (en)2006-12-062023-08-15Solaredge Technologies Ltd.Pairing of components in a direct current distributed power generation system
US11962243B2 (en)2006-12-062024-04-16Solaredge Technologies Ltd.Method for distributed power harvesting using DC power sources
US11296650B2 (en)2006-12-062022-04-05Solaredge Technologies Ltd.System and method for protection during inverter shutdown in distributed power installations
CN100446390C (en)*2007-03-052008-12-24浙江大学 Active-clamp zero-voltage soft-switching high-gain step-up interleaved parallel converter
US10516336B2 (en)2007-08-062019-12-24Solaredge Technologies Ltd.Digital average input current control in power converter
US10116217B2 (en)2007-08-062018-10-30Solaredge Technologies Ltd.Digital average input current control in power converter
US11594968B2 (en)2007-08-062023-02-28Solaredge Technologies Ltd.Digital average input current control in power converter
US9673711B2 (en)2007-08-062017-06-06Solaredge Technologies Ltd.Digital average input current control in power converter
US9853538B2 (en)2007-12-042017-12-26Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
US11693080B2 (en)2007-12-052023-07-04Solaredge Technologies Ltd.Parallel connected inverters
US12055647B2 (en)2007-12-052024-08-06Solaredge Technologies Ltd.Parallel connected inverters
US9407161B2 (en)2007-12-052016-08-02Solaredge Technologies Ltd.Parallel connected inverters
US9979280B2 (en)2007-12-052018-05-22Solaredge Technologies Ltd.Parallel connected inverters
US11264947B2 (en)2007-12-052022-03-01Solaredge Technologies Ltd.Testing of a photovoltaic panel
US11183923B2 (en)2007-12-052021-11-23Solaredge Technologies Ltd.Parallel connected inverters
US11183969B2 (en)2007-12-052021-11-23Solaredge Technologies Ltd.Testing of a photovoltaic panel
US11894806B2 (en)2007-12-052024-02-06Solaredge Technologies Ltd.Testing of a photovoltaic panel
US10644589B2 (en)2007-12-052020-05-05Solaredge Technologies Ltd.Parallel connected inverters
US9876430B2 (en)2008-03-242018-01-23Solaredge Technologies Ltd.Zero voltage switching
US11424616B2 (en)2008-05-052022-08-23Solaredge Technologies Ltd.Direct current power combiner
US10468878B2 (en)2008-05-052019-11-05Solaredge Technologies Ltd.Direct current power combiner
US12218498B2 (en)2008-05-052025-02-04Solaredge Technologies Ltd.Direct current power combiner
US9537445B2 (en)2008-12-042017-01-03Solaredge Technologies Ltd.Testing of a photovoltaic panel
US10461687B2 (en)2008-12-042019-10-29Solaredge Technologies Ltd.Testing of a photovoltaic panel
US10969412B2 (en)2009-05-262021-04-06Solaredge Technologies Ltd.Theft detection and prevention in a power generation system
US12306215B2 (en)2009-05-262025-05-20Solaredge Technologies Ltd.Theft detection and prevention in a power generation system
US9869701B2 (en)2009-05-262018-01-16Solaredge Technologies Ltd.Theft detection and prevention in a power generation system
US11867729B2 (en)2009-05-262024-01-09Solaredge Technologies Ltd.Theft detection and prevention in a power generation system
US12418177B2 (en)2009-10-242025-09-16Solaredge Technologies Ltd.Distributed power system using direct current power sources
US12407158B2 (en)2010-11-092025-09-02Solaredge Technologies Ltd.Arc detection and prevention in a power generation system
US11349432B2 (en)2010-11-092022-05-31Solaredge Technologies Ltd.Arc detection and prevention in a power generation system
US10931228B2 (en)2010-11-092021-02-23Solaredge Technologies Ftd.Arc detection and prevention in a power generation system
US10673229B2 (en)2010-11-092020-06-02Solaredge Technologies Ltd.Arc detection and prevention in a power generation system
US11489330B2 (en)2010-11-092022-11-01Solaredge Technologies Ltd.Arc detection and prevention in a power generation system
US10673222B2 (en)2010-11-092020-06-02Solaredge Technologies Ltd.Arc detection and prevention in a power generation system
US9647442B2 (en)2010-11-092017-05-09Solaredge Technologies Ltd.Arc detection and prevention in a power generation system
US12003215B2 (en)2010-11-092024-06-04Solaredge Technologies Ltd.Arc detection and prevention in a power generation system
US11070051B2 (en)2010-11-092021-07-20Solaredge Technologies Ltd.Arc detection and prevention in a power generation system
US11996488B2 (en)2010-12-092024-05-28Solaredge Technologies Ltd.Disconnection of a string carrying direct current power
US12295184B2 (en)2010-12-092025-05-06Solaredge Technologies Ltd.Disconnection of a string carrying direct current power
US9935458B2 (en)2010-12-092018-04-03Solaredge Technologies Ltd.Disconnection of a string carrying direct current power
US11271394B2 (en)2010-12-092022-03-08Solaredge Technologies Ltd.Disconnection of a string carrying direct current power
US11205946B2 (en)2011-01-122021-12-21Solaredge Technologies Ltd.Serially connected inverters
US9866098B2 (en)2011-01-122018-01-09Solaredge Technologies Ltd.Serially connected inverters
US10666125B2 (en)2011-01-122020-05-26Solaredge Technologies Ltd.Serially connected inverters
US12218505B2 (en)2011-01-122025-02-04Solaredge Technologies Ltd.Serially connected inverters
CN102223058A (en)*2011-06-032011-10-19浙江源创电子科技有限公司Interlaced on-line isolated double-cuk circuit
CN102223058B (en)*2011-06-032014-02-12浙江源创电子科技有限公司Interlaced on-line isolated double-cuk circuit
US10396662B2 (en)2011-09-122019-08-27Solaredge Technologies LtdDirect current link circuit
US11979037B2 (en)2012-01-112024-05-07Solaredge Technologies Ltd.Photovoltaic module
US10931119B2 (en)2012-01-112021-02-23Solaredge Technologies Ltd.Photovoltaic module
US11183968B2 (en)2012-01-302021-11-23Solaredge Technologies Ltd.Photovoltaic panel circuitry
US12094306B2 (en)2012-01-302024-09-17Solaredge Technologies Ltd.Photovoltaic panel circuitry
US9853565B2 (en)2012-01-302017-12-26Solaredge Technologies Ltd.Maximized power in a photovoltaic distributed power system
US10992238B2 (en)2012-01-302021-04-27Solaredge Technologies Ltd.Maximizing power in a photovoltaic distributed power system
US12191668B2 (en)2012-01-302025-01-07Solaredge Technologies Ltd.Maximizing power in a photovoltaic distributed power system
US10381977B2 (en)2012-01-302019-08-13Solaredge Technologies LtdPhotovoltaic panel circuitry
US9812984B2 (en)2012-01-302017-11-07Solaredge Technologies Ltd.Maximizing power in a photovoltaic distributed power system
US11929620B2 (en)2012-01-302024-03-12Solaredge Technologies Ltd.Maximizing power in a photovoltaic distributed power system
US11620885B2 (en)2012-01-302023-04-04Solaredge Technologies Ltd.Photovoltaic panel circuitry
US10608553B2 (en)2012-01-302020-03-31Solaredge Technologies Ltd.Maximizing power in a photovoltaic distributed power system
US9639106B2 (en)2012-03-052017-05-02Solaredge Technologies Ltd.Direct current link circuit
US10007288B2 (en)2012-03-052018-06-26Solaredge Technologies Ltd.Direct current link circuit
CN103312151A (en)*2012-03-052013-09-18太阳能安吉科技有限公司Direct current link circuit
US11177768B2 (en)2012-06-042021-11-16Solaredge Technologies Ltd.Integrated photovoltaic panel circuitry
US12218628B2 (en)2012-06-042025-02-04Solaredge Technologies Ltd.Integrated photovoltaic panel circuitry
US9312749B2 (en)2012-12-052016-04-12Samsung Electro-Mechanics Co., Ltd.Driver device for power factor correction circuit
CN103856037B (en)*2012-12-052017-04-12三星电机株式会社Driver device for power factor correction circuit
CN103856037A (en)*2012-12-052014-06-11三星电机株式会社Driver device for power factor correction circuit
US10778025B2 (en)2013-03-142020-09-15Solaredge Technologies Ltd.Method and apparatus for storing and depleting energy
US9548619B2 (en)2013-03-142017-01-17Solaredge Technologies Ltd.Method and apparatus for storing and depleting energy
US12003107B2 (en)2013-03-142024-06-04Solaredge Technologies Ltd.Method and apparatus for storing and depleting energy
US12255457B2 (en)2013-03-142025-03-18Solaredge Technologies Ltd.Method and apparatus for storing and depleting energy
US11424617B2 (en)2013-03-152022-08-23Solaredge Technologies Ltd.Bypass mechanism
US12132125B2 (en)2013-03-152024-10-29Solaredge Technologies Ltd.Bypass mechanism
US10651647B2 (en)2013-03-152020-05-12Solaredge Technologies Ltd.Bypass mechanism
CN104716821A (en)*2013-12-122015-06-17杭州先途电子有限公司Air conditioner controller, power conversion circuit of air conditioner controller, and power factor correction circuit
US10540530B2 (en)2016-03-032020-01-21Solaredge Technologies Ltd.Methods for mapping power generation installations
US11081608B2 (en)2016-03-032021-08-03Solaredge Technologies Ltd.Apparatus and method for determining an order of power devices in power generation systems
US11538951B2 (en)2016-03-032022-12-27Solaredge Technologies Ltd.Apparatus and method for determining an order of power devices in power generation systems
US12224365B2 (en)2016-03-032025-02-11Solaredge Technologies Ltd.Apparatus and method for determining an order of power devices in power generation systems
US11824131B2 (en)2016-03-032023-11-21Solaredge Technologies Ltd.Apparatus and method for determining an order of power devices in power generation systems
US10599113B2 (en)2016-03-032020-03-24Solaredge Technologies Ltd.Apparatus and method for determining an order of power devices in power generation systems
US10061957B2 (en)2016-03-032018-08-28Solaredge Technologies Ltd.Methods for mapping power generation installations
US11870250B2 (en)2016-04-052024-01-09Solaredge Technologies Ltd.Chain of power devices
US11201476B2 (en)2016-04-052021-12-14Solaredge Technologies Ltd.Photovoltaic power device and wiring
US11177663B2 (en)2016-04-052021-11-16Solaredge Technologies Ltd.Chain of power devices
US12348182B2 (en)2016-04-052025-07-01Solaredge Technologies Ltd.Safety switch for photovoltaic systems
US11018623B2 (en)2016-04-052021-05-25Solaredge Technologies Ltd.Safety switch for photovoltaic systems
US12057807B2 (en)2016-04-052024-08-06Solaredge Technologies Ltd.Chain of power devices
US10230310B2 (en)2016-04-052019-03-12Solaredge Technologies LtdSafety switch for photovoltaic systems

Similar Documents

PublicationPublication DateTitle
CN2706955Y (en)Boost type active staggered parallel soft switch DC-DC converter
CN1588773A (en)Boost type active interlaced parallel soft switch circuit
CN100446390C (en) Active-clamp zero-voltage soft-switching high-gain step-up interleaved parallel converter
CN101714815B (en)Boost type converter for realizing high-gain voltage multiplication by coupling inductors
CN100581033C (en) An Active Clamp High Gain Interleaved Parallel Boost Converter
CN201383753Y (en) A Passive Clamp Boost Interleaved Parallel Converter with Coupled Inductor and Switched Capacitor
CN1169280C (en) Three-level passive soft-switching DC converter circuit
CN106487232B (en) A ZVS Isolated Three-Level Buck Converter
CN108365746A (en)A kind of two-way four phase DC-DC converter of high-gain based on coupling inductance and control method
CN100499337C (en)High gain isolating active clamping boost transducer
CN203243222U (en)High-gain converter containing voltage multiplying unit and improved interleaved Boost
CN111725993A (en) A high-efficiency Sepic soft-switching converter and its control method
CN203119763U (en)Quasi-interweaving parallel high-gain converter with voltage multiplication unit
CN101247085B (en) A Passive Clamp Interleaved Parallel Boost Converter
CN100403637C (en) Passive Clamp Soft Switching High Gain Boost Interleaved Parallel Converter
CN201018410Y (en) An active-clamp zero-voltage soft-switching high-gain step-up interleaved parallel converter
CN103595257A (en)Isolation type direct-current buck converter with soft switching function and control method of isolation type direct-current buck converter
CN100553093C (en)Active clamping stagger parallel connection voltage boosting-type converter
CN201985757U (en)Boost converter of voltage doubling unit of built-in transformer and switched capacitor
CN100563087C (en) An Isolated Active Clamp Interleaved Parallel DC/DC Converter
CN201167287Y (en) Active Clamp High Gain Interleaved Parallel Boost Converter
CN101325368A (en) Interleaved Parallel Step-Down Converter Realized by Three Windings Coupled Inductors
CN102158090A (en)Boost converter with built-in transformer and voltage-doubling unit of switching capacitor
CN203775030U (en)DC-module-used high-voltage-boost-ratio converter based on coupling inductors
CN117277824A (en) A high-gain isolation quasi-Z source soft-switching DC-DC converter

Legal Events

DateCodeTitleDescription
C14Grant of patent or utility model
GR01Patent grant
AV01Patent right actively abandoned

Effective date of abandoning:20040708

C25Abandonment of patent right or utility model to avoid double patenting

[8]ページ先頭

©2009-2025 Movatter.jp