
技术领域technical field
本实用新型涉及直流-直流变换器。具体说是升压型有源交错并联软开关直流-直流变换器。The utility model relates to a DC-DC converter. Specifically, it is a step-up active interleaved parallel soft-switching DC-DC converter.
背景技术Background technique
常规的升压型(Boost)交错并联直流-直流变换器,包括两个电感L1、L2,两个续流二极管D1、D2,两个功率开关管S1、S2,第一功率开关管S1的漏极与第二二极管D2的阳极及第二电感L2的一端相连,第二功率开关管S2的漏极与第一二极管D1的阳极及第一电感L1的一端相连,第一电感L1的另一端与第二电感L2的另一端相连。这种升压型交错并联直流-直流变换器一般为硬开关工作,开关损耗较大。近年来,相继研究了一些软开关电路,主要有两种:一种是在变换器中附加有源和无源元件,实现功率器件的软开关;另一种是附加含电阻的无源缓冲电路,其能量损耗大,工作时能量消耗在电阻上,导致电路工作效率下降。A conventional step-up (Boost) interleaved parallel DC-DC converter includes two inductors L1, L2, two freewheeling diodes D1, D2, two power switch tubes S1, S2, and the drain of the first power switch tube S1 The pole is connected with the anode of the second diode D2 and one end of the second inductor L2, the drain of the second power switch tube S2 is connected with the anode of the first diode D1 and one end of the first inductor L1, and the first inductor L1 The other end of is connected to the other end of the second inductor L2. This step-up interleaved parallel DC-DC converter generally works as a hard switch, and the switching loss is relatively large. In recent years, some soft switching circuits have been studied successively. There are two main types: one is to add active and passive components to the converter to realize the soft switching of power devices; the other is to add a passive snubber circuit with resistance , its energy loss is large, and the energy is consumed on the resistance during operation, resulting in a decrease in circuit efficiency.
发明内容Contents of the invention
本实用新型的目的是提供附加元件数量少,结构简单,成本低,且无能量损耗的升压型有源交错并联软开关直流-直流变换器。The purpose of the utility model is to provide a step-up active interleaved parallel soft-switching DC-DC converter with few additional components, simple structure, low cost and no energy loss.
本实用新型的技术解决方案是,升压型有源交错并联软开关直流-直流变换器包括两个相耦合的电感,两个续流二极管,两个功率开关管,第一功率开关管的漏极与第二二极管的阳极及第二电感的一端相连,第二功率开关管的漏极与第一二极管的阳极及第一电感的一端相连,第一电感的另一端与第二电感的另一端相连,其特征是在第一功率开关管并联由第一电容和第一辅助开关管构成的串联电路,其中第一辅助开关管与第一功率开关管方向一致,且第一电容与第一功率开关管和第二电感的接点相连;在第二功率开关管并联由第二电容和第二辅助开关管构成的串联电路,其中第二辅助开关管与第二功率开关管方向一致,且第二电容与第二功率开关管和第一电感的接点相连。The technical solution of the utility model is that the step-up active interleaved parallel soft switch DC-DC converter includes two coupled inductors, two freewheeling diodes, two power switch tubes, and the drain of the first power switch tube The pole is connected to the anode of the second diode and one end of the second inductor, the drain of the second power switch tube is connected to the anode of the first diode and one end of the first inductor, and the other end of the first inductor is connected to the second The other end of the inductance is connected, which is characterized in that a series circuit composed of the first capacitor and the first auxiliary switch tube is connected in parallel with the first power switch tube, wherein the first auxiliary switch tube is in the same direction as the first power switch tube, and the first capacitor It is connected to the junction of the first power switch tube and the second inductor; a series circuit composed of the second capacitor and the second auxiliary switch tube is connected in parallel to the second power switch tube, wherein the second auxiliary switch tube is in the same direction as the second power switch tube , and the second capacitor is connected to the junction of the second power switch tube and the first inductor.
工作时,利用两个耦合电感的漏感实现第一功率开关管、第二功率开关管的零电流开通以及第一、第二两个续流二极管的软关断;第一功率开关管和第二功率开关管关断时,由于第一电容和第二电容的存在,实现了第一功率开关管和第二功率开关管的零电压关断。同时,每个开关周期第一、第二两个电容收集这些能量,并最终将其转移到负载,实现了吸收电路的无损运行。在整个开关周期中,通过控制第一、第二辅助开关管的门极脉冲,可使第一、第二两个辅助开关管实现零电压开通和零电压关断。When working, the leakage inductance of the two coupled inductors is used to realize the zero-current turn-on of the first power switch tube and the second power switch tube and the soft turn-off of the first and second freewheeling diodes; the first power switch tube and the second power switch tube When the two power switch tubes are turned off, due to the existence of the first capacitor and the second capacitor, the zero-voltage turn-off of the first power switch tube and the second power switch tube is realized. At the same time, the first and second capacitors collect the energy in each switching cycle, and finally transfer it to the load, realizing the lossless operation of the absorbing circuit. During the whole switching period, by controlling the gate pulses of the first and second auxiliary switching tubes, the first and second auxiliary switching tubes can be turned on and off with zero voltage.
本实用新型的升压型有源交错并联软开关直流-直流变换器利用了耦合电感的漏感来实现功率开关管的软开关,无需附加额外的电感元件,从而附加元件少,结构简单,成本低,无需额外的检测电路,电路中无能量损耗元件,可提高升压型交错并联电路的效率,且换流过程中,功率开关管关断时无电压过冲,续流二极管开通时无电流过冲。The boost type active interleaved parallel soft-switching DC-DC converter of the utility model utilizes the leakage inductance of the coupling inductor to realize the soft switching of the power switch tube without additional inductive elements, so that there are few additional elements, simple structure and low cost. Low, no additional detection circuit, no energy loss components in the circuit, which can improve the efficiency of the step-up interleaved parallel circuit, and during the commutation process, there is no voltage overshoot when the power switch tube is turned off, and no current when the freewheeling diode is turned on overshoot.
附图说明Description of drawings
图1是升压型有源交错并联软开关直流-直流变换器的电路图。Figure 1 is a circuit diagram of a step-up active interleaved parallel soft-switching DC-DC converter.
具体实施方式Detailed ways
参见图1,升压型有源交错并联软开关直流-直流变换器包括两个相耦合的电感L1、L2,两个续流二极管D1、D2,两个功率开关管S1、S2,第一功率开关管S1的漏极与第二二极管D2的阳极及第二电感L2的一端相连,第二功率开关管S2的漏极与第一二极管D1的阳极及第一电感L1的一端相连,第一电感L1的另一端与第二电感L2的另一端相连,其特征是在第一功率开关管S1并联由第一电容C1和第一辅助开关管S3构成的串联电路,其中第一辅助开关管S3与第一功率开关管S1方向一致,且第一电容C1与第一功率开关管S1和第二电感L2的接点相连;在第二功率开关管S2并联由第二电容C2和第二辅助开关管S4构成的串联电路,其中第二辅助开关管S4与第二功率开关管S2方向一致,且第二电容C2与第二功率开关管S2和第一电感L1的接点相连。Referring to Figure 1, the step-up active interleaved parallel soft-switching DC-DC converter includes two phase-coupled inductors L1, L2, two freewheeling diodes D1, D2, two power switch tubes S1, S2, the first power The drain of the switching tube S1 is connected to the anode of the second diode D2 and one end of the second inductor L2, and the drain of the second power switching tube S2 is connected to the anode of the first diode D1 and one end of the first inductor L1 , the other end of the first inductance L1 is connected to the other end of the second inductance L2, which is characterized in that a series circuit composed of the first capacitor C1 and the first auxiliary switch S3 is connected in parallel with the first power switch tube S1, wherein the first auxiliary switch tube S3 The switching tube S3 is in the same direction as the first power switching tube S1, and the first capacitor C1 is connected to the junction of the first power switching tube S1 and the second inductor L2; the second power switching tube S2 is connected in parallel by the second capacitor C2 and the second A series circuit formed by the auxiliary switching tube S4, wherein the second auxiliary switching tube S4 is in the same direction as the second power switching tube S2, and the second capacitor C2 is connected to the junction of the second power switching tube S2 and the first inductor L1.
升压型有源交错并联软开关直流-直流变换器存在四种换流情况,即第一功率开关管S1与第一续流二极管D1之间的换流和第一功率开关管S1与第二续流二极管D2之间的换流;第二功率开关管S2与第二续流二极管D2之间的换流和第二功率开关管S2与第一续流二极管D1之间的换流。由于电路结构的对称性,仅以第一功率开关管S1的换流过程为例分析如下:There are four commutation situations in the step-up active interleaved parallel soft-switching DC-DC converter, that is, the commutation between the first power switch S1 and the first freewheeling diode D1 and the commutation between the first power switch S1 and the second The commutation between the freewheeling diodes D2; the commutation between the second power switch S2 and the second freewheeling diode D2 and the commutation between the second power switch S2 and the first freewheeling diode D1. Due to the symmetry of the circuit structure, only taking the commutation process of the first power switch tube S1 as an example, the analysis is as follows:
第一功率开关管S1开通,第一续流二极管D1关断的换流过程:The commutation process in which the first power switch S1 is turned on and the first freewheeling diode D1 is turned off:
换流之前,电路处于第一功率开关管S1关断、第一续流二极管D1续流的稳定工作状态。当第一功率开关管S1开通时,由于耦合电感L1、L2的漏感存在,第一功率开关管S1的电流从零开始以一定斜率线性上升,即第一功率开关管S1实现了零电流开通,同时第一续流二极管D1的电流值从输入电流开始以相同的斜率线性减小,直至第一续流二极管D1关断。这样,第一续流二极管D1的反向恢复电流为零,大大减小了第一续流二极管D1所带来的反向恢复损耗。第一续流二极管D1关断后,第二电容C2经第二辅助开关管S4的体内二极管开始与耦合电感L1、L2的漏感谐振,直至第二电容C2上的电压降为零。之后,电路进入第一功率开关管S1导通的稳定运行状态。Before commutation, the circuit is in a stable working state where the first power switch tube S1 is turned off and the first freewheeling diode D1 is freewheeling. When the first power switch S1 is turned on, due to the leakage inductance of the coupled inductors L1 and L2, the current of the first power switch S1 rises linearly from zero with a certain slope, that is, the first power switch S1 realizes zero current turn-on , and at the same time the current value of the first freewheeling diode D1 decreases linearly with the same slope from the input current until the first freewheeling diode D1 is turned off. In this way, the reverse recovery current of the first freewheeling diode D1 is zero, which greatly reduces the reverse recovery loss caused by the first freewheeling diode D1. After the first freewheeling diode D1 is turned off, the second capacitor C2 starts to resonate with the leakage inductance of the coupling inductors L1 and L2 via the body diode of the second auxiliary switching transistor S4 until the voltage on the second capacitor C2 drops to zero. Afterwards, the circuit enters into a stable operation state in which the first power switch tube S1 is turned on.
第一功率开关管S1关断,第二续流二极管D2开通的换流过程:The commutation process in which the first power switch S1 is turned off and the second freewheeling diode D2 is turned on:
第一功率开关管S1关断之前,第一辅助开关管S3导通,因为第一辅助开关管S3导通前,第一功率开关管S1已经导通,这样第一辅助开关管S3实现了零电压开通。第一功率开关管S1关断后,输入电流经第一辅助开关管S3对第一电容C1充电,第一功率开关管S1的管电压从零上升,即实现了第一功率开关管S1的零电压关断。第一电容C1电压充电至与上输出电容端电压相等时,第二续流二极管D2自然导通。第一功率开关管S1关断后再将第一辅助开关管S3关断,因为第一电容C1两端电压为输出电压,所以第一辅助开关管S3实现了零电压关断。电路进入负载电流通过第二续流二极管D2输出的稳定状态。Before the first power switch S1 is turned off, the first auxiliary switch S3 is turned on, because before the first auxiliary switch S3 is turned on, the first power switch S1 has been turned on, so that the first auxiliary switch S3 achieves zero The voltage is turned on. After the first power switch tube S1 is turned off, the input current charges the first capacitor C1 through the first auxiliary switch tube S3, and the tube voltage of the first power switch tube S1 rises from zero, that is, the zero voltage of the first power switch tube S1 is realized. voltage off. When the voltage of the first capacitor C1 is charged to be equal to the voltage of the upper output capacitor terminal, the second freewheeling diode D2 is naturally turned on. After the first power switch S1 is turned off, the first auxiliary switch S3 is turned off. Because the voltage across the first capacitor C1 is the output voltage, the first auxiliary switch S3 realizes zero-voltage turn-off. The circuit enters a steady state where the load current is output through the second freewheeling diode D2.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN 200420037469CN2706955Y (en) | 2004-07-08 | 2004-07-08 | Boost type active staggered parallel soft switch DC-DC converter |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN 200420037469CN2706955Y (en) | 2004-07-08 | 2004-07-08 | Boost type active staggered parallel soft switch DC-DC converter |
| Publication Number | Publication Date |
|---|---|
| CN2706955Ytrue CN2706955Y (en) | 2005-06-29 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN 200420037469Expired - LifetimeCN2706955Y (en) | 2004-07-08 | 2004-07-08 | Boost type active staggered parallel soft switch DC-DC converter |
| Country | Link |
|---|---|
| CN (1) | CN2706955Y (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN100334797C (en)* | 2004-07-08 | 2007-08-29 | 浙江大学 | Boost type active interlaced parallel soft switch circuit |
| CN100358226C (en)* | 2005-08-08 | 2007-12-26 | 南京航空航天大学 | Single switch double output booster converter |
| CN100446390C (en)* | 2007-03-05 | 2008-12-24 | 浙江大学 | Active-clamp zero-voltage soft-switching high-gain step-up interleaved parallel converter |
| CN102223058A (en)* | 2011-06-03 | 2011-10-19 | 浙江源创电子科技有限公司 | Interlaced on-line isolated double-cuk circuit |
| CN103312151A (en)* | 2012-03-05 | 2013-09-18 | 太阳能安吉科技有限公司 | Direct current link circuit |
| CN103856037A (en)* | 2012-12-05 | 2014-06-11 | 三星电机株式会社 | Driver device for power factor correction circuit |
| CN104716821A (en)* | 2013-12-12 | 2015-06-17 | 杭州先途电子有限公司 | Air conditioner controller, power conversion circuit of air conditioner controller, and power factor correction circuit |
| US9407161B2 (en) | 2007-12-05 | 2016-08-02 | Solaredge Technologies Ltd. | Parallel connected inverters |
| US9537445B2 (en) | 2008-12-04 | 2017-01-03 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
| US9548619B2 (en) | 2013-03-14 | 2017-01-17 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
| US9590526B2 (en) | 2006-12-06 | 2017-03-07 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
| US9647442B2 (en) | 2010-11-09 | 2017-05-09 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
| US9673711B2 (en) | 2007-08-06 | 2017-06-06 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
| US9812984B2 (en) | 2012-01-30 | 2017-11-07 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
| US9853565B2 (en) | 2012-01-30 | 2017-12-26 | Solaredge Technologies Ltd. | Maximized power in a photovoltaic distributed power system |
| US9853538B2 (en) | 2007-12-04 | 2017-12-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US9853490B2 (en) | 2006-12-06 | 2017-12-26 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
| US9866098B2 (en) | 2011-01-12 | 2018-01-09 | Solaredge Technologies Ltd. | Serially connected inverters |
| US9869701B2 (en) | 2009-05-26 | 2018-01-16 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
| US9876430B2 (en) | 2008-03-24 | 2018-01-23 | Solaredge Technologies Ltd. | Zero voltage switching |
| US9935458B2 (en) | 2010-12-09 | 2018-04-03 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
| US9948233B2 (en) | 2006-12-06 | 2018-04-17 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US9960731B2 (en) | 2006-12-06 | 2018-05-01 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
| US9966766B2 (en) | 2006-12-06 | 2018-05-08 | Solaredge Technologies Ltd. | Battery power delivery module |
| US9979280B2 (en) | 2007-12-05 | 2018-05-22 | Solaredge Technologies Ltd. | Parallel connected inverters |
| US10061957B2 (en) | 2016-03-03 | 2018-08-28 | Solaredge Technologies Ltd. | Methods for mapping power generation installations |
| US10097007B2 (en) | 2006-12-06 | 2018-10-09 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
| US10230310B2 (en) | 2016-04-05 | 2019-03-12 | Solaredge Technologies Ltd | Safety switch for photovoltaic systems |
| US10381977B2 (en) | 2012-01-30 | 2019-08-13 | Solaredge Technologies Ltd | Photovoltaic panel circuitry |
| US10396662B2 (en) | 2011-09-12 | 2019-08-27 | Solaredge Technologies Ltd | Direct current link circuit |
| US10468878B2 (en) | 2008-05-05 | 2019-11-05 | Solaredge Technologies Ltd. | Direct current power combiner |
| US10599113B2 (en) | 2016-03-03 | 2020-03-24 | Solaredge Technologies Ltd. | Apparatus and method for determining an order of power devices in power generation systems |
| US10637393B2 (en) | 2006-12-06 | 2020-04-28 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US10651647B2 (en) | 2013-03-15 | 2020-05-12 | Solaredge Technologies Ltd. | Bypass mechanism |
| US10673222B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
| US10673229B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
| US10931119B2 (en) | 2012-01-11 | 2021-02-23 | Solaredge Technologies Ltd. | Photovoltaic module |
| US11018623B2 (en) | 2016-04-05 | 2021-05-25 | Solaredge Technologies Ltd. | Safety switch for photovoltaic systems |
| US11031861B2 (en) | 2006-12-06 | 2021-06-08 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
| US11081608B2 (en) | 2016-03-03 | 2021-08-03 | Solaredge Technologies Ltd. | Apparatus and method for determining an order of power devices in power generation systems |
| US11177768B2 (en) | 2012-06-04 | 2021-11-16 | Solaredge Technologies Ltd. | Integrated photovoltaic panel circuitry |
| US11177663B2 (en) | 2016-04-05 | 2021-11-16 | Solaredge Technologies Ltd. | Chain of power devices |
| US11264947B2 (en) | 2007-12-05 | 2022-03-01 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
| US11296650B2 (en) | 2006-12-06 | 2022-04-05 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
| US11309832B2 (en) | 2006-12-06 | 2022-04-19 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11569659B2 (en) | 2006-12-06 | 2023-01-31 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11569660B2 (en) | 2006-12-06 | 2023-01-31 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11598652B2 (en) | 2006-12-06 | 2023-03-07 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
| US11687112B2 (en) | 2006-12-06 | 2023-06-27 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11728768B2 (en) | 2006-12-06 | 2023-08-15 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
| US11735910B2 (en) | 2006-12-06 | 2023-08-22 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
| US11855231B2 (en) | 2006-12-06 | 2023-12-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11881814B2 (en) | 2005-12-05 | 2024-01-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
| US11888387B2 (en) | 2006-12-06 | 2024-01-30 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
| US12057807B2 (en) | 2016-04-05 | 2024-08-06 | Solaredge Technologies Ltd. | Chain of power devices |
| US12418177B2 (en) | 2009-10-24 | 2025-09-16 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN100334797C (en)* | 2004-07-08 | 2007-08-29 | 浙江大学 | Boost type active interlaced parallel soft switch circuit |
| CN100358226C (en)* | 2005-08-08 | 2007-12-26 | 南京航空航天大学 | Single switch double output booster converter |
| US11881814B2 (en) | 2005-12-05 | 2024-01-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
| US9960731B2 (en) | 2006-12-06 | 2018-05-01 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
| US11682918B2 (en) | 2006-12-06 | 2023-06-20 | Solaredge Technologies Ltd. | Battery power delivery module |
| US12388492B2 (en) | 2006-12-06 | 2025-08-12 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
| US12316274B2 (en) | 2006-12-06 | 2025-05-27 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
| US11594882B2 (en) | 2006-12-06 | 2023-02-28 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11575260B2 (en) | 2006-12-06 | 2023-02-07 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11575261B2 (en) | 2006-12-06 | 2023-02-07 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11569660B2 (en) | 2006-12-06 | 2023-01-31 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US12281919B2 (en) | 2006-12-06 | 2025-04-22 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
| US9590526B2 (en) | 2006-12-06 | 2017-03-07 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
| US12276997B2 (en) | 2006-12-06 | 2025-04-15 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US12224706B2 (en) | 2006-12-06 | 2025-02-11 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
| US11569659B2 (en) | 2006-12-06 | 2023-01-31 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11031861B2 (en) | 2006-12-06 | 2021-06-08 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
| US11598652B2 (en) | 2006-12-06 | 2023-03-07 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
| US12107417B2 (en) | 2006-12-06 | 2024-10-01 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11888387B2 (en) | 2006-12-06 | 2024-01-30 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
| US9853490B2 (en) | 2006-12-06 | 2017-12-26 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
| US12068599B2 (en) | 2006-12-06 | 2024-08-20 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
| US11476799B2 (en) | 2006-12-06 | 2022-10-18 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11658482B2 (en) | 2006-12-06 | 2023-05-23 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11309832B2 (en) | 2006-12-06 | 2022-04-19 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US9948233B2 (en) | 2006-12-06 | 2018-04-17 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11855231B2 (en) | 2006-12-06 | 2023-12-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11043820B2 (en) | 2006-12-06 | 2021-06-22 | Solaredge Technologies Ltd. | Battery power delivery module |
| US11735910B2 (en) | 2006-12-06 | 2023-08-22 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
| US9966766B2 (en) | 2006-12-06 | 2018-05-08 | Solaredge Technologies Ltd. | Battery power delivery module |
| US12046940B2 (en) | 2006-12-06 | 2024-07-23 | Solaredge Technologies Ltd. | Battery power control |
| US10097007B2 (en) | 2006-12-06 | 2018-10-09 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
| US10673253B2 (en) | 2006-12-06 | 2020-06-02 | Solaredge Technologies Ltd. | Battery power delivery module |
| US12032080B2 (en) | 2006-12-06 | 2024-07-09 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
| US10230245B2 (en) | 2006-12-06 | 2019-03-12 | Solaredge Technologies Ltd | Battery power delivery module |
| US12027849B2 (en) | 2006-12-06 | 2024-07-02 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
| US12027970B2 (en) | 2006-12-06 | 2024-07-02 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
| US10447150B2 (en) | 2006-12-06 | 2019-10-15 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11594881B2 (en) | 2006-12-06 | 2023-02-28 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11183922B2 (en) | 2006-12-06 | 2021-11-23 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11063440B2 (en) | 2006-12-06 | 2021-07-13 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
| US11687112B2 (en) | 2006-12-06 | 2023-06-27 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11594880B2 (en) | 2006-12-06 | 2023-02-28 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11961922B2 (en) | 2006-12-06 | 2024-04-16 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US10637393B2 (en) | 2006-12-06 | 2020-04-28 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11728768B2 (en) | 2006-12-06 | 2023-08-15 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
| US11962243B2 (en) | 2006-12-06 | 2024-04-16 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
| US11296650B2 (en) | 2006-12-06 | 2022-04-05 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
| CN100446390C (en)* | 2007-03-05 | 2008-12-24 | 浙江大学 | Active-clamp zero-voltage soft-switching high-gain step-up interleaved parallel converter |
| US10516336B2 (en) | 2007-08-06 | 2019-12-24 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
| US10116217B2 (en) | 2007-08-06 | 2018-10-30 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
| US11594968B2 (en) | 2007-08-06 | 2023-02-28 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
| US9673711B2 (en) | 2007-08-06 | 2017-06-06 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
| US9853538B2 (en) | 2007-12-04 | 2017-12-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11693080B2 (en) | 2007-12-05 | 2023-07-04 | Solaredge Technologies Ltd. | Parallel connected inverters |
| US12055647B2 (en) | 2007-12-05 | 2024-08-06 | Solaredge Technologies Ltd. | Parallel connected inverters |
| US9407161B2 (en) | 2007-12-05 | 2016-08-02 | Solaredge Technologies Ltd. | Parallel connected inverters |
| US9979280B2 (en) | 2007-12-05 | 2018-05-22 | Solaredge Technologies Ltd. | Parallel connected inverters |
| US11264947B2 (en) | 2007-12-05 | 2022-03-01 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
| US11183923B2 (en) | 2007-12-05 | 2021-11-23 | Solaredge Technologies Ltd. | Parallel connected inverters |
| US11183969B2 (en) | 2007-12-05 | 2021-11-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
| US11894806B2 (en) | 2007-12-05 | 2024-02-06 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
| US10644589B2 (en) | 2007-12-05 | 2020-05-05 | Solaredge Technologies Ltd. | Parallel connected inverters |
| US9876430B2 (en) | 2008-03-24 | 2018-01-23 | Solaredge Technologies Ltd. | Zero voltage switching |
| US11424616B2 (en) | 2008-05-05 | 2022-08-23 | Solaredge Technologies Ltd. | Direct current power combiner |
| US10468878B2 (en) | 2008-05-05 | 2019-11-05 | Solaredge Technologies Ltd. | Direct current power combiner |
| US12218498B2 (en) | 2008-05-05 | 2025-02-04 | Solaredge Technologies Ltd. | Direct current power combiner |
| US9537445B2 (en) | 2008-12-04 | 2017-01-03 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
| US10461687B2 (en) | 2008-12-04 | 2019-10-29 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
| US10969412B2 (en) | 2009-05-26 | 2021-04-06 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
| US12306215B2 (en) | 2009-05-26 | 2025-05-20 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
| US9869701B2 (en) | 2009-05-26 | 2018-01-16 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
| US11867729B2 (en) | 2009-05-26 | 2024-01-09 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
| US12418177B2 (en) | 2009-10-24 | 2025-09-16 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
| US12407158B2 (en) | 2010-11-09 | 2025-09-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
| US11349432B2 (en) | 2010-11-09 | 2022-05-31 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
| US10931228B2 (en) | 2010-11-09 | 2021-02-23 | Solaredge Technologies Ftd. | Arc detection and prevention in a power generation system |
| US10673229B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
| US11489330B2 (en) | 2010-11-09 | 2022-11-01 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
| US10673222B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
| US9647442B2 (en) | 2010-11-09 | 2017-05-09 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
| US12003215B2 (en) | 2010-11-09 | 2024-06-04 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
| US11070051B2 (en) | 2010-11-09 | 2021-07-20 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
| US11996488B2 (en) | 2010-12-09 | 2024-05-28 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
| US12295184B2 (en) | 2010-12-09 | 2025-05-06 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
| US9935458B2 (en) | 2010-12-09 | 2018-04-03 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
| US11271394B2 (en) | 2010-12-09 | 2022-03-08 | Solaredge Technologies Ltd. | Disconnection of a string carrying direct current power |
| US11205946B2 (en) | 2011-01-12 | 2021-12-21 | Solaredge Technologies Ltd. | Serially connected inverters |
| US9866098B2 (en) | 2011-01-12 | 2018-01-09 | Solaredge Technologies Ltd. | Serially connected inverters |
| US10666125B2 (en) | 2011-01-12 | 2020-05-26 | Solaredge Technologies Ltd. | Serially connected inverters |
| US12218505B2 (en) | 2011-01-12 | 2025-02-04 | Solaredge Technologies Ltd. | Serially connected inverters |
| CN102223058A (en)* | 2011-06-03 | 2011-10-19 | 浙江源创电子科技有限公司 | Interlaced on-line isolated double-cuk circuit |
| CN102223058B (en)* | 2011-06-03 | 2014-02-12 | 浙江源创电子科技有限公司 | Interlaced on-line isolated double-cuk circuit |
| US10396662B2 (en) | 2011-09-12 | 2019-08-27 | Solaredge Technologies Ltd | Direct current link circuit |
| US11979037B2 (en) | 2012-01-11 | 2024-05-07 | Solaredge Technologies Ltd. | Photovoltaic module |
| US10931119B2 (en) | 2012-01-11 | 2021-02-23 | Solaredge Technologies Ltd. | Photovoltaic module |
| US11183968B2 (en) | 2012-01-30 | 2021-11-23 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
| US12094306B2 (en) | 2012-01-30 | 2024-09-17 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
| US9853565B2 (en) | 2012-01-30 | 2017-12-26 | Solaredge Technologies Ltd. | Maximized power in a photovoltaic distributed power system |
| US10992238B2 (en) | 2012-01-30 | 2021-04-27 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
| US12191668B2 (en) | 2012-01-30 | 2025-01-07 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
| US10381977B2 (en) | 2012-01-30 | 2019-08-13 | Solaredge Technologies Ltd | Photovoltaic panel circuitry |
| US9812984B2 (en) | 2012-01-30 | 2017-11-07 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
| US11929620B2 (en) | 2012-01-30 | 2024-03-12 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
| US11620885B2 (en) | 2012-01-30 | 2023-04-04 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
| US10608553B2 (en) | 2012-01-30 | 2020-03-31 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
| US9639106B2 (en) | 2012-03-05 | 2017-05-02 | Solaredge Technologies Ltd. | Direct current link circuit |
| US10007288B2 (en) | 2012-03-05 | 2018-06-26 | Solaredge Technologies Ltd. | Direct current link circuit |
| CN103312151A (en)* | 2012-03-05 | 2013-09-18 | 太阳能安吉科技有限公司 | Direct current link circuit |
| US11177768B2 (en) | 2012-06-04 | 2021-11-16 | Solaredge Technologies Ltd. | Integrated photovoltaic panel circuitry |
| US12218628B2 (en) | 2012-06-04 | 2025-02-04 | Solaredge Technologies Ltd. | Integrated photovoltaic panel circuitry |
| US9312749B2 (en) | 2012-12-05 | 2016-04-12 | Samsung Electro-Mechanics Co., Ltd. | Driver device for power factor correction circuit |
| CN103856037B (en)* | 2012-12-05 | 2017-04-12 | 三星电机株式会社 | Driver device for power factor correction circuit |
| CN103856037A (en)* | 2012-12-05 | 2014-06-11 | 三星电机株式会社 | Driver device for power factor correction circuit |
| US10778025B2 (en) | 2013-03-14 | 2020-09-15 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
| US9548619B2 (en) | 2013-03-14 | 2017-01-17 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
| US12003107B2 (en) | 2013-03-14 | 2024-06-04 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
| US12255457B2 (en) | 2013-03-14 | 2025-03-18 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
| US11424617B2 (en) | 2013-03-15 | 2022-08-23 | Solaredge Technologies Ltd. | Bypass mechanism |
| US12132125B2 (en) | 2013-03-15 | 2024-10-29 | Solaredge Technologies Ltd. | Bypass mechanism |
| US10651647B2 (en) | 2013-03-15 | 2020-05-12 | Solaredge Technologies Ltd. | Bypass mechanism |
| CN104716821A (en)* | 2013-12-12 | 2015-06-17 | 杭州先途电子有限公司 | Air conditioner controller, power conversion circuit of air conditioner controller, and power factor correction circuit |
| US10540530B2 (en) | 2016-03-03 | 2020-01-21 | Solaredge Technologies Ltd. | Methods for mapping power generation installations |
| US11081608B2 (en) | 2016-03-03 | 2021-08-03 | Solaredge Technologies Ltd. | Apparatus and method for determining an order of power devices in power generation systems |
| US11538951B2 (en) | 2016-03-03 | 2022-12-27 | Solaredge Technologies Ltd. | Apparatus and method for determining an order of power devices in power generation systems |
| US12224365B2 (en) | 2016-03-03 | 2025-02-11 | Solaredge Technologies Ltd. | Apparatus and method for determining an order of power devices in power generation systems |
| US11824131B2 (en) | 2016-03-03 | 2023-11-21 | Solaredge Technologies Ltd. | Apparatus and method for determining an order of power devices in power generation systems |
| US10599113B2 (en) | 2016-03-03 | 2020-03-24 | Solaredge Technologies Ltd. | Apparatus and method for determining an order of power devices in power generation systems |
| US10061957B2 (en) | 2016-03-03 | 2018-08-28 | Solaredge Technologies Ltd. | Methods for mapping power generation installations |
| US11870250B2 (en) | 2016-04-05 | 2024-01-09 | Solaredge Technologies Ltd. | Chain of power devices |
| US11201476B2 (en) | 2016-04-05 | 2021-12-14 | Solaredge Technologies Ltd. | Photovoltaic power device and wiring |
| US11177663B2 (en) | 2016-04-05 | 2021-11-16 | Solaredge Technologies Ltd. | Chain of power devices |
| US12348182B2 (en) | 2016-04-05 | 2025-07-01 | Solaredge Technologies Ltd. | Safety switch for photovoltaic systems |
| US11018623B2 (en) | 2016-04-05 | 2021-05-25 | Solaredge Technologies Ltd. | Safety switch for photovoltaic systems |
| US12057807B2 (en) | 2016-04-05 | 2024-08-06 | Solaredge Technologies Ltd. | Chain of power devices |
| US10230310B2 (en) | 2016-04-05 | 2019-03-12 | Solaredge Technologies Ltd | Safety switch for photovoltaic systems |
| Publication | Publication Date | Title |
|---|---|---|
| CN2706955Y (en) | Boost type active staggered parallel soft switch DC-DC converter | |
| CN1588773A (en) | Boost type active interlaced parallel soft switch circuit | |
| CN100446390C (en) | Active-clamp zero-voltage soft-switching high-gain step-up interleaved parallel converter | |
| CN101714815B (en) | Boost type converter for realizing high-gain voltage multiplication by coupling inductors | |
| CN100581033C (en) | An Active Clamp High Gain Interleaved Parallel Boost Converter | |
| CN201383753Y (en) | A Passive Clamp Boost Interleaved Parallel Converter with Coupled Inductor and Switched Capacitor | |
| CN1169280C (en) | Three-level passive soft-switching DC converter circuit | |
| CN106487232B (en) | A ZVS Isolated Three-Level Buck Converter | |
| CN108365746A (en) | A kind of two-way four phase DC-DC converter of high-gain based on coupling inductance and control method | |
| CN100499337C (en) | High gain isolating active clamping boost transducer | |
| CN203243222U (en) | High-gain converter containing voltage multiplying unit and improved interleaved Boost | |
| CN111725993A (en) | A high-efficiency Sepic soft-switching converter and its control method | |
| CN203119763U (en) | Quasi-interweaving parallel high-gain converter with voltage multiplication unit | |
| CN101247085B (en) | A Passive Clamp Interleaved Parallel Boost Converter | |
| CN100403637C (en) | Passive Clamp Soft Switching High Gain Boost Interleaved Parallel Converter | |
| CN201018410Y (en) | An active-clamp zero-voltage soft-switching high-gain step-up interleaved parallel converter | |
| CN103595257A (en) | Isolation type direct-current buck converter with soft switching function and control method of isolation type direct-current buck converter | |
| CN100553093C (en) | Active clamping stagger parallel connection voltage boosting-type converter | |
| CN201985757U (en) | Boost converter of voltage doubling unit of built-in transformer and switched capacitor | |
| CN100563087C (en) | An Isolated Active Clamp Interleaved Parallel DC/DC Converter | |
| CN201167287Y (en) | Active Clamp High Gain Interleaved Parallel Boost Converter | |
| CN101325368A (en) | Interleaved Parallel Step-Down Converter Realized by Three Windings Coupled Inductors | |
| CN102158090A (en) | Boost converter with built-in transformer and voltage-doubling unit of switching capacitor | |
| CN203775030U (en) | DC-module-used high-voltage-boost-ratio converter based on coupling inductors | |
| CN117277824A (en) | A high-gain isolation quasi-Z source soft-switching DC-DC converter |
| Date | Code | Title | Description |
|---|---|---|---|
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| AV01 | Patent right actively abandoned | Effective date of abandoning:20040708 | |
| C25 | Abandonment of patent right or utility model to avoid double patenting |