
技术领域technical field
本实用新型涉及一种锂动力电池化成测控装置,实现对锂动力电池充电、放电过程的全数字化控制。The utility model relates to a lithium power battery forming measurement and control device, which realizes full digital control of the charging and discharging process of the lithium power battery.
背景技术Background technique
锂离子电池的化成,除了是使电池作用物质借第一次充电转成正常电化学作用外,也是使负极极板生成钝化膜的重要程序。锂离子电池比较“娇气”,对充电的温度、电流和电压都有严格要求。如:单节电芯上限电压为4.2V,电压超限会损坏电池,甚至爆炸,因此锂离子电池充电设备必须装有保护电路,对电池的充电电压、电流和温度进行监测保护。而传统的镍氢、镍铬电池充电器控制精度较低,保护功能差,长时间使用这种充电器会损坏锂离子电池,因此锂离子电池化成测试时应采用专用充电设备。The formation of a lithium-ion battery is not only an important procedure for making the active material of the battery convert to normal electrochemical action by the first charge, but also for forming a passivation film on the negative plate. Lithium-ion batteries are relatively "delicate" and have strict requirements on charging temperature, current and voltage. For example, the upper limit voltage of a single battery cell is 4.2V. If the voltage exceeds the limit, the battery will be damaged or even explode. Therefore, the lithium-ion battery charging equipment must be equipped with a protection circuit to monitor and protect the charging voltage, current and temperature of the battery. However, the traditional Ni-MH and Ni-Cr battery chargers have low control accuracy and poor protection function. Using this charger for a long time will damage the Li-ion battery. Therefore, special charging equipment should be used for the Li-ion battery formation test.
目前,中小容量的锂电池化成大都采用专用的锂电池充电芯片或普通的单片机来完成,但这种方式在大容量的锂电池复杂的化成工艺中,要求多段参数完全可编程,专用芯片无法实现,而且由于其监控的参数及控制精度、实时性要求都很高,因此普通单片机的控制效果也不是十分理想。At present, the formation of small and medium-capacity lithium batteries is mostly completed by dedicated lithium battery charging chips or ordinary single-chip microcomputers, but this method requires multi-stage parameters to be fully programmable in the complex formation process of large-capacity lithium batteries, which cannot be realized by dedicated chips. , and because of its monitoring parameters, control accuracy, and real-time requirements are very high, so the control effect of ordinary single-chip microcomputer is not very ideal.
实用新型内容Utility model content
本实用新型的目的是提供一种锂动力电池化成测控装置,它能实现大容量动力型锂离子电池(也适用于NiH电池、铅酸蓄电池等)生产研制过程的化成、充放电检测,解决了如下几个关键技术问题:1)大容量(大电流)锂电池化成测控问题;2)可编程的化成参数设置;以及3)充放电电流、电压的高精度控制。The purpose of this utility model is to provide a lithium power battery formation measurement and control device, which can realize the formation, charge and discharge detection of the production and development process of large-capacity power lithium-ion batteries (also applicable to NiH batteries, lead-acid batteries, etc.), and solve the problem of The key technical issues are as follows: 1) large-capacity (high-current) lithium battery formation measurement and control issues; 2) programmable formation parameter settings; and 3) high-precision control of charge and discharge current and voltage.
为了实现上述目的,本实用新型技术方案是:包括上位机和至少一个现场控制单元,两者之间采用现场总线CAN进行通信;其中现场控制单元由化成变送模块、数字信号处理器、控制驱动电路、存储模块、CAN总线通信模块以及D/A转换器、DC/DC转换模块、放电模块、保护模块组成,其中以所述数字信号处理器作为核心处理器,化成变送模块的输入端来自化成电池,输出信号为保护模块的输入信号,并与数字信号处理器相连,保护模块与数字信号处理器的A/D输入引脚相连,数字信号处理器的同步串行总线与D/A转换器相连,D/A转换器的输出经控制驱动电路与DC/DC转换模块、放电模块相连,放电模块的电源输入信号接至化成电池,DC/DC转换模块的输出接至化成电池;数字信号处理器的CAN端口与CAN总线通信模块相连;In order to achieve the above object, the technical solution of the utility model is: comprising a host computer and at least one field control unit, and the field bus CAN is used for communication between the two; wherein the field control unit is composed of a transformation and transmission module, a digital signal processor, a control drive Circuit, storage module, CAN bus communication module, D/A converter, DC/DC conversion module, discharge module, and protection module, wherein the digital signal processor is used as the core processor, and the input terminal of the transformation and transmission module comes from Formed into a battery, the output signal is the input signal of the protection module, and connected to the digital signal processor, the protection module is connected to the A/D input pin of the digital signal processor, and the synchronous serial bus of the digital signal processor is converted to D/A The output of the D/A converter is connected to the DC/DC conversion module and the discharge module through the control drive circuit, the power input signal of the discharge module is connected to the formation battery, and the output of the DC/DC conversion module is connected to the formation battery; the digital signal The CAN port of the processor is connected with the CAN bus communication module;
所述化成变送模块由化成电压变送模块、化成电流变送模块、化成电池温度变送模块和化成箱体温度变送模块组成,输入端分别来自化成电池,输出信号分别为保护模块的输入信号,并与数字信号处理器的A/D引脚相连;具有多个现场控制单元时,与上位机的连接方式为并联;所述化成电池的充电电路由DC/DC转换模块构成,所述放电电路由放电模块构成。The formation transmission module is composed of a formation voltage transmission module, a formation current transmission module, a formation battery temperature transmission module and a formation box temperature transmission module, the input terminals are respectively from the formation batteries, and the output signals are respectively the input of the protection module signal, and connected to the A/D pin of the digital signal processor; when there are multiple on-site control units, the connection mode with the upper computer is parallel connection; the charging circuit of the formed battery is composed of a DC/DC conversion module, and the The discharge circuit is composed of discharge modules.
与现有技术相比,本实用新型具有如下优点:Compared with the prior art, the utility model has the following advantages:
1.本实用新型以全新的高速数字信号处理器(DSP)为核心,结合新型DC/DC电源模块(直流-直流转换模块)形成了高性能高效率控制灵活方便的充放电设备。具有采样速度快、控制精度高、保护功能完善、操作灵活方便及实现全过程自动化控制的特点,为大容量(大电流)锂电池化成测控提出一条新的技术路线。1. The utility model takes a new high-speed digital signal processor (DSP) as the core, and combines a new DC/DC power supply module (DC-DC conversion module) to form a high-performance, high-efficiency, flexible and convenient charging and discharging device. It has the characteristics of fast sampling speed, high control precision, perfect protection function, flexible and convenient operation, and automatic control of the whole process. It proposes a new technical route for large-capacity (high-current) lithium battery formation measurement and control.
2.具有可编程的化成参数设置功能。由于本实用新型采用数字信号处理器,可以实现灵活的编程、方便地进行改进与升级,保证设计具有很强的通用性,充放电电流、电压的高精度控制使充电过程稳定可靠。2. It has a programmable parameter setting function. Because the utility model adopts a digital signal processor, it can realize flexible programming, conveniently improve and upgrade, and ensure that the design has strong versatility, and the high-precision control of charging and discharging current and voltage makes the charging process stable and reliable.
3.具有多种功能、操作灵活的特点。采用本实用新型,能够按照电池生产厂家的化成工艺进行自由设置,如在充电阶段中可以实现恒流充电、恒压充电,在放电阶段中可以实现恒流放电、恒压放电等。本实用新型不但可以通过CAN总线接口实现对每一电池单体进行自动控制,设置的系统参数及化成工艺可以自动永久保存在EEPROM中,而且还可以利用CAN总线实现群控。在整个化成过程中可以做到对充放电电流、电池电压、电池温度、机箱温度、充电/放电时间进行实时监控。3. It has the characteristics of multiple functions and flexible operation. The utility model can be freely set according to the formation process of the battery manufacturer. For example, constant current charging and constant voltage charging can be realized in the charging stage, and constant current discharging and constant voltage discharging can be realized in the discharging stage. The utility model not only realizes the automatic control of each battery cell through the CAN bus interface, the set system parameters and formation process can be automatically and permanently stored in the EEPROM, but also realizes the group control by using the CAN bus. Real-time monitoring of charging and discharging current, battery voltage, battery temperature, chassis temperature, and charging/discharging time can be achieved during the entire formation process.
4.适用范围广。本实用新型特别适用大规模锂电池测试,具备安全特性同时也适合其他类型电池测试。为锂电池测试提供安全保护,即为充放电提供电压箝位和电流保护,这样就不会出现电池过度充电或过度放电;可应用于不同型号锂动力电池的化成控制。4. Wide application range. The utility model is particularly suitable for testing large-scale lithium batteries, has safety features and is also suitable for testing other types of batteries. Provide safety protection for lithium battery testing, that is, provide voltage clamping and current protection for charging and discharging, so that the battery will not be overcharged or overdischarged; it can be applied to the formation control of different types of lithium power batteries.
附图说明Description of drawings
图1为本实用新型的总体原理框图;Fig. 1 is the overall principle block diagram of the utility model;
图2为本实用新型的现场控制单元的电路原理图。Fig. 2 is a schematic circuit diagram of the field control unit of the present invention.
具体实施方式Detailed ways
以下结合附图对本实用新型进行详细描述。Below in conjunction with accompanying drawing, the utility model is described in detail.
参照图1,本实用新型为模块式结构,包括作为监控单元的上位机15、至少一个并联的现场控制单元14(本实施例可以采用3个现场控制单元14)。每个现场控制单元14包括:化成电压变送模块1、化成电流变送模块2、化成电池温度变送模块3、化成箱体温度变送模块4、数字信号处理器(DSP)5、控制驱动电路6、存储模块7、CAN总线通信模块8以及D/A转换器9、DC/DC转换模块10、放电模块11、保护模块12(作为防止被化成电池过电流、过电压、温度过高的保护模块)。其相互间的连接关系(参见附图2)为:所述化成电压变送模块1、化成电流变送模块2、化成电池温度变送模块3和化成箱体温度变送模块4的输入端来自化成电池13,输出信号为保护模块12的输入信号,并分别与数字信号处理器5的A/D引脚相连,保护模块12与数字信号处理器5的A/D输入引脚相连,数字信号处理器5的同步串行总线与D/A转换器9相连,D/A转换器9的输出经控制驱动电路6与DC/DC转换模块10、放电模块11相连,放电模块11的电源输入接至化成电池13,DC/DC转换模块10的输出接至化成电池13;数字信号处理器5的CAN端口与CAN总线通信模块8相连;所述化成电池13的充电电路由DC/DC转换模块10构成,其放电电路由放电模块11构成。With reference to Fig. 1, the utility model is a modular structure, including a host computer 15 as a monitoring unit, at least one parallel field control unit 14 (the present embodiment can adopt 3 field control units 14). Each field control unit 14 includes: formation
系统总体由上位机15和至少一个现场控制单元14共同构成,彼此之间通过CAN总线进行通信。上位机15由普通PC机构成,负责系统的实时监控和参数设定,并对电池13的化成数据和操作历史事件进行记录,用于系统数据分析和电池分选。现场控制单元14的处理器采用数字信号处理器5,接收上位机15的设定参数并将其存储在存储模块7中(现场控制单元14的存储模块7由EEPROM组成),在工作方式下现场控制单元14接收并执行上位机1 5发来的指令,对化成通道内的电池13进行化成控制。并将电池13的运行参数(电流、电压、温度)采集到数字信号处理器5内部的数据存储器中进行数字滤波、工程量转化,然后经由CAN总线发送给上位机15,由上位机15进行显示和储存。The system as a whole is composed of a host computer 15 and at least one field control unit 14, which communicate with each other through the CAN bus. The upper computer 15 is composed of a common PC, responsible for real-time monitoring and parameter setting of the system, and records the formation data and operation history events of the battery 13 for system data analysis and battery sorting. The processor of the field control unit 14 adopts a
现场控制单元14启动后,各通道的数字信号处理器5按照上位机15设定在存储模块7中的参数初始化后,便进入工作状态,在工作状态下,数字信号处理器5将来自电流变送模块1和电压变送模块2的信号进行模数转换,根据上位机15设定的工作方式进行运算,产生控制输出信号,经数模转换后送往DC/DC转换模块10(充电方式下)或放电模块11的控制输入端(放电方式下),从而形成电池化成电流(电压)的闭环控制,其中由于在充电回路中使用了DC/DC转换模块10,而DC/DC模块10是一种开关电源,从而真正意义上节省了充电时电路中的电能损失,也降低了散热系统的设计要求。After the on-site control unit 14 is started, the
当运行中电池的电流、电压或(和)温度超过系统的设定的限值时,由保护模块12向数字信号处理器5发出报警信息,数字信号处理器5通过中断服务程序迅速关断DC/DC转换模块10的输出(充电方式下)或放电模块11的输出(放电方式下),从而防止化成电池1 3的意外损坏或爆炸。When the current, voltage or (and) temperature of the battery in operation exceeds the limit value set by the system, the
锂电池的化成有多种工作方式,如恒流充电、恒压充电、静置以及恒流放电等,由数字信号处理器5进行控制。现场控制单元14通过数字信号处理器5根据各种工作方式在软件中设立了不同的保护方式:恒流充电时,对化成电压进行实时监视,当电压达到规定值时便停止恒流充电,转入恒压充电或其它工作模式;恒压充电时,对化成电流进行实时监视,当电流减小到上位机预先给定的设定值后,停止恒压充电,转入下一工作模式,防止电池的过充;恒流放电时,对化成电压进行实时监视,当电压降到预设值时,则停止放电,防止电池13的过放电。There are many working modes for the formation of lithium batteries, such as constant current charging, constant voltage charging, standing still and constant current discharging, etc., which are controlled by the
无论在哪一种工作方式下,数字信号处理器5都对电池13的参数进行实时采集,按照上位机15的要求通过CAN通信接口模块8实时地将这些数据传输到上位机15。Regardless of the working mode, the
本实施例所述化成电压变送模块1、化成电流变送模块2、化成电池温度变送模块3、化成箱体温度变送模块4、控制驱动电路6以及保护模块12均采用芯片运算放大器OP-07,存储模块7采用存储器X5045,CAN总线通信模块8采用CAN总线驱动器82C250,以及D/A转换器9采用DAC75 12,DC/DC转换模块10采用V300B5C200A,放电模块11采用大功率三极管2N5686。本实用新型采用全新的高速数字信号处理器5(采用TMS320F2XX芯片)为核心,结合新型DC/DC电源模块(直流-直流转换模块)形成了高性能高效率控制灵活方便的充放电设备。The formation
采用本实用新型能够按照电池生产厂家的化成工艺进行自由设置,设置化成过程、次数、时间,任意顺序的充电放电及静置阶段,在充电阶段中可以实现恒流充电、恒压充电,充电的截止条件包括充电时间、电池电压上限、充电电流、电池电压在单位时间内的变化量ΔV/ΔT、充电容量等等,在放电阶段中可以实现恒流放电、恒压放电,放电的截止条件包括放电时间、电池电压、放电容量等等。The utility model can be freely set according to the formation process of the battery manufacturer, and the formation process, times, time, charging, discharging and standing stages in any order can be set, and constant current charging, constant voltage charging and charging can be realized in the charging stage. Cut-off conditions include charging time, battery voltage upper limit, charging current, battery voltage change ΔV/ΔT per unit time, charging capacity, etc. Constant current discharge and constant voltage discharge can be realized in the discharge stage. The discharge cut-off conditions include Discharge time, battery voltage, discharge capacity, etc.
本实用新型不但可以通过CAN总线接口实现对每一电池单体进行自动控制,设置的系统参数及化成工艺可以自动永久保存在EEPROM中,而且还可以利用CAN总线实现群控。通过一台上位机实现多台设备的同时监控,在整个化成过程中可以做到对充放电电流、电池电压、电池温度、机箱温度、充电/放电时间进行实时监控,可以绘制电流/电压的实时曲线等等。本装置特别为大规模锂电池测试设计,具备安全特性同时也适合其他类型电池测试。为锂电池测试提供安全保护,即为充放电提供电压箝位和电流保护,这样就不会出现电池过度充电或过度放电。The utility model not only realizes the automatic control of each battery cell through the CAN bus interface, the set system parameters and formation process can be automatically and permanently stored in the EEPROM, but also realizes the group control by using the CAN bus. Simultaneous monitoring of multiple devices is realized through a host computer, real-time monitoring of charging and discharging current, battery voltage, battery temperature, chassis temperature, charging/discharging time can be achieved during the entire formation process, and real-time current/voltage can be drawn curves and more. This device is specially designed for large-scale lithium battery testing. It has safety features and is also suitable for other types of battery testing. Provide safety protection for lithium battery testing, that is, provide voltage clamping and current protection for charging and discharging, so that the battery will not be overcharged or overdischarged.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN200420030172.5UCN2672668Y (en) | 2004-01-17 | 2004-01-17 | Lithium power battery formation measuring and controlling device |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN200420030172.5UCN2672668Y (en) | 2004-01-17 | 2004-01-17 | Lithium power battery formation measuring and controlling device |
| Publication Number | Publication Date |
|---|---|
| CN2672668Ytrue CN2672668Y (en) | 2005-01-19 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN200420030172.5UExpired - Fee RelatedCN2672668Y (en) | 2004-01-17 | 2004-01-17 | Lithium power battery formation measuring and controlling device |
| Country | Link |
|---|---|
| CN (1) | CN2672668Y (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101263396B (en)* | 2005-07-14 | 2011-04-27 | 波士顿电力公司 | Control electronics for Li-ion batteries |
| CN102162837A (en)* | 2011-04-02 | 2011-08-24 | 深圳市豪鹏科技有限公司 | Voltage detection device of nickel-metal hydride battery |
| CN102680898A (en)* | 2011-03-17 | 2012-09-19 | 洛阳嘉盛电源科技有限公司 | Formation detection system and method for secondary batteries |
| CN103064031A (en)* | 2012-12-28 | 2013-04-24 | 深圳职业技术学院 | Battery formation detecting system and absorption and protection circuit parameter selection method thereof |
| CN103682457A (en)* | 2013-12-10 | 2014-03-26 | 广州市沃希信息科技有限公司 | Method and device for controlling lithium battery formation |
| CN103838167A (en)* | 2012-11-27 | 2014-06-04 | 上海航天有线电厂 | Power lithium ion battery formation control system based on FPGA |
| CN107508332A (en)* | 2017-07-14 | 2017-12-22 | 电子科技大学 | A kind of battery impulse formation charging machine and method of work |
| CN108306385A (en)* | 2018-02-02 | 2018-07-20 | 电子科技大学 | The monitoring system of formation charging machine |
| CN111725577A (en)* | 2019-03-22 | 2020-09-29 | 深圳市瑞能实业股份有限公司 | Battery formation circuit and battery formation device |
| CN111799497A (en)* | 2020-06-30 | 2020-10-20 | 欣旺达电子股份有限公司 | Battery formation system and battery formation method |
| CN112114267A (en)* | 2020-09-23 | 2020-12-22 | 广州擎天实业有限公司 | Method for detecting power-off parameters of multi-string and variable-string-number batteries |
| CN113777490A (en)* | 2021-08-26 | 2021-12-10 | 福建星云电子股份有限公司 | Current synchronization system and method for battery test equipment |
| US11309832B2 (en) | 2006-12-06 | 2022-04-19 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11349432B2 (en) | 2010-11-09 | 2022-05-31 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
| US11424616B2 (en) | 2008-05-05 | 2022-08-23 | Solaredge Technologies Ltd. | Direct current power combiner |
| CN115149131A (en)* | 2022-06-29 | 2022-10-04 | 东莞光亚智能科技有限公司 | Monitoring system and monitoring method for lithium battery formation and capacity-grading power supply |
| US11476799B2 (en) | 2006-12-06 | 2022-10-18 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11489330B2 (en) | 2010-11-09 | 2022-11-01 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
| US11569659B2 (en) | 2006-12-06 | 2023-01-31 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11569660B2 (en) | 2006-12-06 | 2023-01-31 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11579235B2 (en) | 2006-12-06 | 2023-02-14 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
| US11594968B2 (en) | 2007-08-06 | 2023-02-28 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
| US11598652B2 (en) | 2006-12-06 | 2023-03-07 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
| US11620885B2 (en) | 2012-01-30 | 2023-04-04 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
| CN116047336A (en)* | 2023-03-27 | 2023-05-02 | 深圳市铂纳特斯自动化科技有限公司 | Battery formation monitoring method and device |
| US11682918B2 (en) | 2006-12-06 | 2023-06-20 | Solaredge Technologies Ltd. | Battery power delivery module |
| US11687112B2 (en) | 2006-12-06 | 2023-06-27 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11728768B2 (en) | 2006-12-06 | 2023-08-15 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
| US11735910B2 (en) | 2006-12-06 | 2023-08-22 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
| US11855231B2 (en) | 2006-12-06 | 2023-12-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11870250B2 (en) | 2016-04-05 | 2024-01-09 | Solaredge Technologies Ltd. | Chain of power devices |
| US11867729B2 (en) | 2009-05-26 | 2024-01-09 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
| US11888387B2 (en) | 2006-12-06 | 2024-01-30 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
| US11929620B2 (en) | 2012-01-30 | 2024-03-12 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
| US11962243B2 (en) | 2006-12-06 | 2024-04-16 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
| US11979037B2 (en) | 2012-01-11 | 2024-05-07 | Solaredge Technologies Ltd. | Photovoltaic module |
| US12003107B2 (en) | 2013-03-14 | 2024-06-04 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
| US12027849B2 (en) | 2006-12-06 | 2024-07-02 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
| US12057807B2 (en) | 2016-04-05 | 2024-08-06 | Solaredge Technologies Ltd. | Chain of power devices |
| US12068599B2 (en) | 2006-12-06 | 2024-08-20 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
| US12191668B2 (en) | 2012-01-30 | 2025-01-07 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
| US12218505B2 (en) | 2011-01-12 | 2025-02-04 | Solaredge Technologies Ltd. | Serially connected inverters |
| US12348182B2 (en) | 2016-04-05 | 2025-07-01 | Solaredge Technologies Ltd. | Safety switch for photovoltaic systems |
| US12418177B2 (en) | 2009-10-24 | 2025-09-16 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN101263396B (en)* | 2005-07-14 | 2011-04-27 | 波士顿电力公司 | Control electronics for Li-ion batteries |
| US12046940B2 (en) | 2006-12-06 | 2024-07-23 | Solaredge Technologies Ltd. | Battery power control |
| US11962243B2 (en) | 2006-12-06 | 2024-04-16 | Solaredge Technologies Ltd. | Method for distributed power harvesting using DC power sources |
| US12388492B2 (en) | 2006-12-06 | 2025-08-12 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
| US12316274B2 (en) | 2006-12-06 | 2025-05-27 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
| US11658482B2 (en) | 2006-12-06 | 2023-05-23 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US12281919B2 (en) | 2006-12-06 | 2025-04-22 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
| US12276997B2 (en) | 2006-12-06 | 2025-04-15 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US12224706B2 (en) | 2006-12-06 | 2025-02-11 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
| US11687112B2 (en) | 2006-12-06 | 2023-06-27 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US12107417B2 (en) | 2006-12-06 | 2024-10-01 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US12068599B2 (en) | 2006-12-06 | 2024-08-20 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
| US12032080B2 (en) | 2006-12-06 | 2024-07-09 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
| US12027970B2 (en) | 2006-12-06 | 2024-07-02 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
| US12027849B2 (en) | 2006-12-06 | 2024-07-02 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
| US11309832B2 (en) | 2006-12-06 | 2022-04-19 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11728768B2 (en) | 2006-12-06 | 2023-08-15 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
| US11961922B2 (en) | 2006-12-06 | 2024-04-16 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11888387B2 (en) | 2006-12-06 | 2024-01-30 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
| US11476799B2 (en) | 2006-12-06 | 2022-10-18 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11855231B2 (en) | 2006-12-06 | 2023-12-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11569659B2 (en) | 2006-12-06 | 2023-01-31 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11569660B2 (en) | 2006-12-06 | 2023-01-31 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11575260B2 (en) | 2006-12-06 | 2023-02-07 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11575261B2 (en) | 2006-12-06 | 2023-02-07 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11579235B2 (en) | 2006-12-06 | 2023-02-14 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
| US11594880B2 (en) | 2006-12-06 | 2023-02-28 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11682918B2 (en) | 2006-12-06 | 2023-06-20 | Solaredge Technologies Ltd. | Battery power delivery module |
| US11594882B2 (en) | 2006-12-06 | 2023-02-28 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11594881B2 (en) | 2006-12-06 | 2023-02-28 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
| US11598652B2 (en) | 2006-12-06 | 2023-03-07 | Solaredge Technologies Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
| US11735910B2 (en) | 2006-12-06 | 2023-08-22 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
| US11594968B2 (en) | 2007-08-06 | 2023-02-28 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
| US11424616B2 (en) | 2008-05-05 | 2022-08-23 | Solaredge Technologies Ltd. | Direct current power combiner |
| US12218498B2 (en) | 2008-05-05 | 2025-02-04 | Solaredge Technologies Ltd. | Direct current power combiner |
| US11867729B2 (en) | 2009-05-26 | 2024-01-09 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
| US12306215B2 (en) | 2009-05-26 | 2025-05-20 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
| US12418177B2 (en) | 2009-10-24 | 2025-09-16 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
| US12003215B2 (en) | 2010-11-09 | 2024-06-04 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
| US11489330B2 (en) | 2010-11-09 | 2022-11-01 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
| US12407158B2 (en) | 2010-11-09 | 2025-09-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
| US11349432B2 (en) | 2010-11-09 | 2022-05-31 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
| US12218505B2 (en) | 2011-01-12 | 2025-02-04 | Solaredge Technologies Ltd. | Serially connected inverters |
| CN102680898A (en)* | 2011-03-17 | 2012-09-19 | 洛阳嘉盛电源科技有限公司 | Formation detection system and method for secondary batteries |
| CN102680898B (en)* | 2011-03-17 | 2014-12-17 | 洛阳嘉盛电源科技有限公司 | Formation detection system and method for secondary batteries |
| CN102162837A (en)* | 2011-04-02 | 2011-08-24 | 深圳市豪鹏科技有限公司 | Voltage detection device of nickel-metal hydride battery |
| US11979037B2 (en) | 2012-01-11 | 2024-05-07 | Solaredge Technologies Ltd. | Photovoltaic module |
| US12094306B2 (en) | 2012-01-30 | 2024-09-17 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
| US11620885B2 (en) | 2012-01-30 | 2023-04-04 | Solaredge Technologies Ltd. | Photovoltaic panel circuitry |
| US11929620B2 (en) | 2012-01-30 | 2024-03-12 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
| US12191668B2 (en) | 2012-01-30 | 2025-01-07 | Solaredge Technologies Ltd. | Maximizing power in a photovoltaic distributed power system |
| CN103838167A (en)* | 2012-11-27 | 2014-06-04 | 上海航天有线电厂 | Power lithium ion battery formation control system based on FPGA |
| CN103064031A (en)* | 2012-12-28 | 2013-04-24 | 深圳职业技术学院 | Battery formation detecting system and absorption and protection circuit parameter selection method thereof |
| US12003107B2 (en) | 2013-03-14 | 2024-06-04 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
| US12255457B2 (en) | 2013-03-14 | 2025-03-18 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
| CN103682457B (en)* | 2013-12-10 | 2016-04-27 | 广州市沃希信息科技有限公司 | A kind of method and device thereof controlling formation of Li-ion batteries |
| CN103682457A (en)* | 2013-12-10 | 2014-03-26 | 广州市沃希信息科技有限公司 | Method and device for controlling lithium battery formation |
| US11870250B2 (en) | 2016-04-05 | 2024-01-09 | Solaredge Technologies Ltd. | Chain of power devices |
| US12057807B2 (en) | 2016-04-05 | 2024-08-06 | Solaredge Technologies Ltd. | Chain of power devices |
| US12348182B2 (en) | 2016-04-05 | 2025-07-01 | Solaredge Technologies Ltd. | Safety switch for photovoltaic systems |
| CN107508332A (en)* | 2017-07-14 | 2017-12-22 | 电子科技大学 | A kind of battery impulse formation charging machine and method of work |
| CN108306385A (en)* | 2018-02-02 | 2018-07-20 | 电子科技大学 | The monitoring system of formation charging machine |
| CN111725577A (en)* | 2019-03-22 | 2020-09-29 | 深圳市瑞能实业股份有限公司 | Battery formation circuit and battery formation device |
| CN111799497A (en)* | 2020-06-30 | 2020-10-20 | 欣旺达电子股份有限公司 | Battery formation system and battery formation method |
| CN111799497B (en)* | 2020-06-30 | 2022-04-15 | 欣旺达电子股份有限公司 | Battery formation system and battery formation method |
| CN112114267A (en)* | 2020-09-23 | 2020-12-22 | 广州擎天实业有限公司 | Method for detecting power-off parameters of multi-string and variable-string-number batteries |
| CN113777490A (en)* | 2021-08-26 | 2021-12-10 | 福建星云电子股份有限公司 | Current synchronization system and method for battery test equipment |
| CN115149131A (en)* | 2022-06-29 | 2022-10-04 | 东莞光亚智能科技有限公司 | Monitoring system and monitoring method for lithium battery formation and capacity-grading power supply |
| CN116047336A (en)* | 2023-03-27 | 2023-05-02 | 深圳市铂纳特斯自动化科技有限公司 | Battery formation monitoring method and device |
| Publication | Publication Date | Title |
|---|---|---|
| CN2672668Y (en) | Lithium power battery formation measuring and controlling device | |
| CN113922438B (en) | A high-power active balancing battery management system | |
| CN102280912B (en) | Equalization circuit of charge and discharge circuit of battery pack | |
| CN102364744B (en) | Lithium ion battery pack charging and discharging cycle control method and system | |
| CN102255352A (en) | Distributed intelligent power battery pack management system | |
| CN100392942C (en) | Device and method for controlling battery charging process | |
| CN103701171A (en) | Equalizing charge control system for battery pack of HEV (Hybrid Electric Vehicle) | |
| CN210984891U (en) | Intelligent temperature control system for lithium battery protection board | |
| CN108063480B (en) | Autonomous activation and charge-discharge management system and method for terminal nickel-metal hydride battery | |
| WO2021134829A1 (en) | Battery testing system | |
| CN108242842B (en) | A management device and method for parallel connection of different types of battery packs | |
| CN205195249U (en) | Digit BMS protection shield with data storage function | |
| CN106655301A (en) | Power management system and method suitable for electric fork-lift truck | |
| CN116973781A (en) | Battery performance testing device and method based on battery opposite-dragging test | |
| CN205388997U (en) | Module detection device of secondary lithium battery group | |
| CN100505466C (en) | Distributed battery management system and management method | |
| CN118665265A (en) | Low-voltage lithium battery management system and method for electric automobile | |
| CN203645375U (en) | Portable battery state of charge regulating equipment | |
| CN118826220A (en) | A charging management system for multiple lithium battery packs | |
| CN201238069Y (en) | Low-temperature polymer lithium accumulator pack | |
| CN2824320Y (en) | Intelligent cell pack | |
| CN114172233B (en) | Lithium battery management system and method | |
| CN211528521U (en) | Current detection system of storage battery pack | |
| CN212810383U (en) | Circuit board of intelligent battery pack management system | |
| CN214124859U (en) | Battery management system for lithium battery |
| Date | Code | Title | Description |
|---|---|---|---|
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| C17 | Cessation of patent right | ||
| CF01 | Termination of patent right due to non-payment of annual fee | Granted publication date:20050119 |