Movatterモバイル変換


[0]ホーム

URL:


CN2672668Y - Lithium power battery formation measuring and controlling device - Google Patents

Lithium power battery formation measuring and controlling device
Download PDF

Info

Publication number
CN2672668Y
CN2672668YCN200420030172.5UCN200420030172UCN2672668YCN 2672668 YCN2672668 YCN 2672668YCN 200420030172 UCN200420030172 UCN 200420030172UCN 2672668 YCN2672668 YCN 2672668Y
Authority
CN
China
Prior art keywords
module
formation
battery
digital signal
signal processor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200420030172.5U
Other languages
Chinese (zh)
Inventor
贾凯
杜鹏
刘华
徐方
庞晓东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang Siasun Robot and Automation Co Ltd
Original Assignee
Shenyang Siasun Robot and Automation Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang Siasun Robot and Automation Co LtdfiledCriticalShenyang Siasun Robot and Automation Co Ltd
Priority to CN200420030172.5UpriorityCriticalpatent/CN2672668Y/en
Application grantedgrantedCritical
Publication of CN2672668YpublicationCriticalpatent/CN2672668Y/en
Anticipated expirationlegal-statusCritical
Expired - Fee Relatedlegal-statusCriticalCurrent

Links

Images

Classifications

Landscapes

Abstract

Translated fromChinese

一种锂动力电池化成测控装置,包括上位机和至少一个现场控制单元,两者之间采用现场总线CAN进行通信;其中现场控制单元主要由化成变送模块、数字信号处理器、控制驱动电路、存储模块以及D/A转换器、DC/DC转换模块、放电模块、保护模块组成,其中化成变送模块的输入接化成电池,输出为保护模块的输入信号,并分别与数字信号处理器相连,保护模块至数字信号处理器,数字信号处理器输出接D/A转换器,D/A转换器的输出经控制驱动电路与DC/DC转换模块、放电模块相连,放电模块电源输入至化成电池,DC/DC转换模块输出至化成电池。它具有大容量(大电流)、可编程的化成参数设置以及充放电电流、电压的高精度控制特点。

Figure 200420030172

A lithium power battery formation measurement and control device comprises a host computer and at least one field control unit, and the two communicate with each other using a field bus CAN; wherein the field control unit is mainly composed of a formation transmission module, a digital signal processor, a control drive circuit, a storage module, a D/A converter, a DC/DC conversion module, a discharge module, and a protection module, wherein the input of the formation transmission module is connected to the formation battery, and the output is the input signal of the protection module, and is respectively connected to the digital signal processor, the protection module to the digital signal processor, the output of the digital signal processor is connected to the D/A converter, the output of the D/A converter is connected to the DC/DC conversion module and the discharge module through the control drive circuit, the power input of the discharge module is to the formation battery, and the DC/DC conversion module output is to the formation battery. It has the characteristics of large capacity (large current), programmable formation parameter setting, and high-precision control of charge and discharge current and voltage.

Figure 200420030172

Description

Translated fromChinese
锂动力电池化成测控装置Lithium power battery formation measurement and control device

技术领域technical field

本实用新型涉及一种锂动力电池化成测控装置,实现对锂动力电池充电、放电过程的全数字化控制。The utility model relates to a lithium power battery forming measurement and control device, which realizes full digital control of the charging and discharging process of the lithium power battery.

背景技术Background technique

锂离子电池的化成,除了是使电池作用物质借第一次充电转成正常电化学作用外,也是使负极极板生成钝化膜的重要程序。锂离子电池比较“娇气”,对充电的温度、电流和电压都有严格要求。如:单节电芯上限电压为4.2V,电压超限会损坏电池,甚至爆炸,因此锂离子电池充电设备必须装有保护电路,对电池的充电电压、电流和温度进行监测保护。而传统的镍氢、镍铬电池充电器控制精度较低,保护功能差,长时间使用这种充电器会损坏锂离子电池,因此锂离子电池化成测试时应采用专用充电设备。The formation of a lithium-ion battery is not only an important procedure for making the active material of the battery convert to normal electrochemical action by the first charge, but also for forming a passivation film on the negative plate. Lithium-ion batteries are relatively "delicate" and have strict requirements on charging temperature, current and voltage. For example, the upper limit voltage of a single battery cell is 4.2V. If the voltage exceeds the limit, the battery will be damaged or even explode. Therefore, the lithium-ion battery charging equipment must be equipped with a protection circuit to monitor and protect the charging voltage, current and temperature of the battery. However, the traditional Ni-MH and Ni-Cr battery chargers have low control accuracy and poor protection function. Using this charger for a long time will damage the Li-ion battery. Therefore, special charging equipment should be used for the Li-ion battery formation test.

目前,中小容量的锂电池化成大都采用专用的锂电池充电芯片或普通的单片机来完成,但这种方式在大容量的锂电池复杂的化成工艺中,要求多段参数完全可编程,专用芯片无法实现,而且由于其监控的参数及控制精度、实时性要求都很高,因此普通单片机的控制效果也不是十分理想。At present, the formation of small and medium-capacity lithium batteries is mostly completed by dedicated lithium battery charging chips or ordinary single-chip microcomputers, but this method requires multi-stage parameters to be fully programmable in the complex formation process of large-capacity lithium batteries, which cannot be realized by dedicated chips. , and because of its monitoring parameters, control accuracy, and real-time requirements are very high, so the control effect of ordinary single-chip microcomputer is not very ideal.

实用新型内容Utility model content

本实用新型的目的是提供一种锂动力电池化成测控装置,它能实现大容量动力型锂离子电池(也适用于NiH电池、铅酸蓄电池等)生产研制过程的化成、充放电检测,解决了如下几个关键技术问题:1)大容量(大电流)锂电池化成测控问题;2)可编程的化成参数设置;以及3)充放电电流、电压的高精度控制。The purpose of this utility model is to provide a lithium power battery formation measurement and control device, which can realize the formation, charge and discharge detection of the production and development process of large-capacity power lithium-ion batteries (also applicable to NiH batteries, lead-acid batteries, etc.), and solve the problem of The key technical issues are as follows: 1) large-capacity (high-current) lithium battery formation measurement and control issues; 2) programmable formation parameter settings; and 3) high-precision control of charge and discharge current and voltage.

为了实现上述目的,本实用新型技术方案是:包括上位机和至少一个现场控制单元,两者之间采用现场总线CAN进行通信;其中现场控制单元由化成变送模块、数字信号处理器、控制驱动电路、存储模块、CAN总线通信模块以及D/A转换器、DC/DC转换模块、放电模块、保护模块组成,其中以所述数字信号处理器作为核心处理器,化成变送模块的输入端来自化成电池,输出信号为保护模块的输入信号,并与数字信号处理器相连,保护模块与数字信号处理器的A/D输入引脚相连,数字信号处理器的同步串行总线与D/A转换器相连,D/A转换器的输出经控制驱动电路与DC/DC转换模块、放电模块相连,放电模块的电源输入信号接至化成电池,DC/DC转换模块的输出接至化成电池;数字信号处理器的CAN端口与CAN总线通信模块相连;In order to achieve the above object, the technical solution of the utility model is: comprising a host computer and at least one field control unit, and the field bus CAN is used for communication between the two; wherein the field control unit is composed of a transformation and transmission module, a digital signal processor, a control drive Circuit, storage module, CAN bus communication module, D/A converter, DC/DC conversion module, discharge module, and protection module, wherein the digital signal processor is used as the core processor, and the input terminal of the transformation and transmission module comes from Formed into a battery, the output signal is the input signal of the protection module, and connected to the digital signal processor, the protection module is connected to the A/D input pin of the digital signal processor, and the synchronous serial bus of the digital signal processor is converted to D/A The output of the D/A converter is connected to the DC/DC conversion module and the discharge module through the control drive circuit, the power input signal of the discharge module is connected to the formation battery, and the output of the DC/DC conversion module is connected to the formation battery; the digital signal The CAN port of the processor is connected with the CAN bus communication module;

所述化成变送模块由化成电压变送模块、化成电流变送模块、化成电池温度变送模块和化成箱体温度变送模块组成,输入端分别来自化成电池,输出信号分别为保护模块的输入信号,并与数字信号处理器的A/D引脚相连;具有多个现场控制单元时,与上位机的连接方式为并联;所述化成电池的充电电路由DC/DC转换模块构成,所述放电电路由放电模块构成。The formation transmission module is composed of a formation voltage transmission module, a formation current transmission module, a formation battery temperature transmission module and a formation box temperature transmission module, the input terminals are respectively from the formation batteries, and the output signals are respectively the input of the protection module signal, and connected to the A/D pin of the digital signal processor; when there are multiple on-site control units, the connection mode with the upper computer is parallel connection; the charging circuit of the formed battery is composed of a DC/DC conversion module, and the The discharge circuit is composed of discharge modules.

与现有技术相比,本实用新型具有如下优点:Compared with the prior art, the utility model has the following advantages:

1.本实用新型以全新的高速数字信号处理器(DSP)为核心,结合新型DC/DC电源模块(直流-直流转换模块)形成了高性能高效率控制灵活方便的充放电设备。具有采样速度快、控制精度高、保护功能完善、操作灵活方便及实现全过程自动化控制的特点,为大容量(大电流)锂电池化成测控提出一条新的技术路线。1. The utility model takes a new high-speed digital signal processor (DSP) as the core, and combines a new DC/DC power supply module (DC-DC conversion module) to form a high-performance, high-efficiency, flexible and convenient charging and discharging device. It has the characteristics of fast sampling speed, high control precision, perfect protection function, flexible and convenient operation, and automatic control of the whole process. It proposes a new technical route for large-capacity (high-current) lithium battery formation measurement and control.

2.具有可编程的化成参数设置功能。由于本实用新型采用数字信号处理器,可以实现灵活的编程、方便地进行改进与升级,保证设计具有很强的通用性,充放电电流、电压的高精度控制使充电过程稳定可靠。2. It has a programmable parameter setting function. Because the utility model adopts a digital signal processor, it can realize flexible programming, conveniently improve and upgrade, and ensure that the design has strong versatility, and the high-precision control of charging and discharging current and voltage makes the charging process stable and reliable.

3.具有多种功能、操作灵活的特点。采用本实用新型,能够按照电池生产厂家的化成工艺进行自由设置,如在充电阶段中可以实现恒流充电、恒压充电,在放电阶段中可以实现恒流放电、恒压放电等。本实用新型不但可以通过CAN总线接口实现对每一电池单体进行自动控制,设置的系统参数及化成工艺可以自动永久保存在EEPROM中,而且还可以利用CAN总线实现群控。在整个化成过程中可以做到对充放电电流、电池电压、电池温度、机箱温度、充电/放电时间进行实时监控。3. It has the characteristics of multiple functions and flexible operation. The utility model can be freely set according to the formation process of the battery manufacturer. For example, constant current charging and constant voltage charging can be realized in the charging stage, and constant current discharging and constant voltage discharging can be realized in the discharging stage. The utility model not only realizes the automatic control of each battery cell through the CAN bus interface, the set system parameters and formation process can be automatically and permanently stored in the EEPROM, but also realizes the group control by using the CAN bus. Real-time monitoring of charging and discharging current, battery voltage, battery temperature, chassis temperature, and charging/discharging time can be achieved during the entire formation process.

4.适用范围广。本实用新型特别适用大规模锂电池测试,具备安全特性同时也适合其他类型电池测试。为锂电池测试提供安全保护,即为充放电提供电压箝位和电流保护,这样就不会出现电池过度充电或过度放电;可应用于不同型号锂动力电池的化成控制。4. Wide application range. The utility model is particularly suitable for testing large-scale lithium batteries, has safety features and is also suitable for testing other types of batteries. Provide safety protection for lithium battery testing, that is, provide voltage clamping and current protection for charging and discharging, so that the battery will not be overcharged or overdischarged; it can be applied to the formation control of different types of lithium power batteries.

附图说明Description of drawings

图1为本实用新型的总体原理框图;Fig. 1 is the overall principle block diagram of the utility model;

图2为本实用新型的现场控制单元的电路原理图。Fig. 2 is a schematic circuit diagram of the field control unit of the present invention.

具体实施方式Detailed ways

以下结合附图对本实用新型进行详细描述。Below in conjunction with accompanying drawing, the utility model is described in detail.

参照图1,本实用新型为模块式结构,包括作为监控单元的上位机15、至少一个并联的现场控制单元14(本实施例可以采用3个现场控制单元14)。每个现场控制单元14包括:化成电压变送模块1、化成电流变送模块2、化成电池温度变送模块3、化成箱体温度变送模块4、数字信号处理器(DSP)5、控制驱动电路6、存储模块7、CAN总线通信模块8以及D/A转换器9、DC/DC转换模块10、放电模块11、保护模块12(作为防止被化成电池过电流、过电压、温度过高的保护模块)。其相互间的连接关系(参见附图2)为:所述化成电压变送模块1、化成电流变送模块2、化成电池温度变送模块3和化成箱体温度变送模块4的输入端来自化成电池13,输出信号为保护模块12的输入信号,并分别与数字信号处理器5的A/D引脚相连,保护模块12与数字信号处理器5的A/D输入引脚相连,数字信号处理器5的同步串行总线与D/A转换器9相连,D/A转换器9的输出经控制驱动电路6与DC/DC转换模块10、放电模块11相连,放电模块11的电源输入接至化成电池13,DC/DC转换模块10的输出接至化成电池13;数字信号处理器5的CAN端口与CAN总线通信模块8相连;所述化成电池13的充电电路由DC/DC转换模块10构成,其放电电路由放电模块11构成。With reference to Fig. 1, the utility model is a modular structure, including a host computer 15 as a monitoring unit, at least one parallel field control unit 14 (the present embodiment can adopt 3 field control units 14). Each field control unit 14 includes: formationvoltage transmission module 1, formationcurrent transmission module 2, formation batterytemperature transmission module 3, formation boxtemperature transmission module 4, digital signal processor (DSP) 5,control drive Circuit 6,storage module 7, CANbus communication module 8 and D/A converter 9, DC/DC conversion module 10,discharge module 11, protection module 12 (as preventing from being turned into battery overcurrent, overvoltage, excessive temperature protection module). The connection relationship between them (see accompanying drawing 2) is: the input terminals of the formationvoltage transmission module 1, formationcurrent transmission module 2, formation batterytemperature transmission module 3 and formation boxtemperature transmission module 4 are from The battery 13 is formed, and the output signal is the input signal of theprotection module 12, and is connected with the A/D pin of thedigital signal processor 5 respectively, and theprotection module 12 is connected with the A/D input pin of thedigital signal processor 5, and the digital signal The synchronous serial bus of theprocessor 5 is connected with the D/A converter 9, the output of the D/A converter 9 is connected with the DC/DC conversion module 10 and thedischarge module 11 through thecontrol drive circuit 6, and the power input of thedischarge module 11 is connected To the formation battery 13, the output of the DC/DC conversion module 10 is connected to the formation battery 13; the CAN port of thedigital signal processor 5 is connected to the CANbus communication module 8; the charging circuit of the formation battery 13 is controlled by the DC/DC conversion module 10 Composition, its discharge circuit is constituted bydischarge module 11.

系统总体由上位机15和至少一个现场控制单元14共同构成,彼此之间通过CAN总线进行通信。上位机15由普通PC机构成,负责系统的实时监控和参数设定,并对电池13的化成数据和操作历史事件进行记录,用于系统数据分析和电池分选。现场控制单元14的处理器采用数字信号处理器5,接收上位机15的设定参数并将其存储在存储模块7中(现场控制单元14的存储模块7由EEPROM组成),在工作方式下现场控制单元14接收并执行上位机1 5发来的指令,对化成通道内的电池13进行化成控制。并将电池13的运行参数(电流、电压、温度)采集到数字信号处理器5内部的数据存储器中进行数字滤波、工程量转化,然后经由CAN总线发送给上位机15,由上位机15进行显示和储存。The system as a whole is composed of a host computer 15 and at least one field control unit 14, which communicate with each other through the CAN bus. The upper computer 15 is composed of a common PC, responsible for real-time monitoring and parameter setting of the system, and records the formation data and operation history events of the battery 13 for system data analysis and battery sorting. The processor of the field control unit 14 adopts adigital signal processor 5, receives the set parameters of the host computer 15 and stores it in the storage module 7 (thestorage module 7 of the field control unit 14 is made up of EEPROM). The control unit 14 receives and executes the instructions sent by the host computer 15, and controls the formation of the battery 13 in the formation channel. And the operating parameters (current, voltage, temperature) of the battery 13 are collected in the data memory inside thedigital signal processor 5 for digital filtering and engineering quantity conversion, and then sent to the host computer 15 via the CAN bus for display by the host computer 15 and storage.

现场控制单元14启动后,各通道的数字信号处理器5按照上位机15设定在存储模块7中的参数初始化后,便进入工作状态,在工作状态下,数字信号处理器5将来自电流变送模块1和电压变送模块2的信号进行模数转换,根据上位机15设定的工作方式进行运算,产生控制输出信号,经数模转换后送往DC/DC转换模块10(充电方式下)或放电模块11的控制输入端(放电方式下),从而形成电池化成电流(电压)的闭环控制,其中由于在充电回路中使用了DC/DC转换模块10,而DC/DC模块10是一种开关电源,从而真正意义上节省了充电时电路中的电能损失,也降低了散热系统的设计要求。After the on-site control unit 14 is started, thedigital signal processor 5 of each channel is initialized according to the parameters set in thestorage module 7 by the host computer 15, and then enters the working state. Signals from thetransmission module 1 and thevoltage transmission module 2 are subjected to analog-to-digital conversion, and are calculated according to the working mode set by the host computer 15 to generate control output signals, which are sent to the DC/DC conversion module 10 after digital-to-analog conversion (in charging mode) ) or the control input terminal of the discharge module 11 (in the discharge mode), thereby forming a closed-loop control of the battery formation current (voltage), wherein the DC/DC conversion module 10 is used in the charging circuit, and the DC/DC module 10 is a A switching power supply, thus saving the power loss in the circuit during charging in a real sense, and also reducing the design requirements of the heat dissipation system.

当运行中电池的电流、电压或(和)温度超过系统的设定的限值时,由保护模块12向数字信号处理器5发出报警信息,数字信号处理器5通过中断服务程序迅速关断DC/DC转换模块10的输出(充电方式下)或放电模块11的输出(放电方式下),从而防止化成电池1 3的意外损坏或爆炸。When the current, voltage or (and) temperature of the battery in operation exceeds the limit value set by the system, theprotection module 12 sends an alarm message to thedigital signal processor 5, and thedigital signal processor 5 quickly turns off the DC through the interrupt service program. The output of the /DC conversion module 10 (in the charging mode) or the output of the discharging module 11 (in the discharging mode), thereby preventing accidental damage or explosion of the battery 13.

锂电池的化成有多种工作方式,如恒流充电、恒压充电、静置以及恒流放电等,由数字信号处理器5进行控制。现场控制单元14通过数字信号处理器5根据各种工作方式在软件中设立了不同的保护方式:恒流充电时,对化成电压进行实时监视,当电压达到规定值时便停止恒流充电,转入恒压充电或其它工作模式;恒压充电时,对化成电流进行实时监视,当电流减小到上位机预先给定的设定值后,停止恒压充电,转入下一工作模式,防止电池的过充;恒流放电时,对化成电压进行实时监视,当电压降到预设值时,则停止放电,防止电池13的过放电。There are many working modes for the formation of lithium batteries, such as constant current charging, constant voltage charging, standing still and constant current discharging, etc., which are controlled by thedigital signal processor 5 . The on-site control unit 14 sets up different protection methods in the software according to various working modes through the digital signal processor 5: during constant current charging, real-time monitoring of the formation voltage is carried out, and when the voltage reaches a specified value, the constant current charging is stopped and the switch is turned on. Enter constant voltage charging or other working modes; during constant voltage charging, the formation current is monitored in real time, and when the current decreases to the preset value of the host computer, the constant voltage charging is stopped and the next working mode is switched to prevent Overcharge of the battery; during constant current discharge, the formation voltage is monitored in real time, and when the voltage drops to a preset value, the discharge is stopped to prevent overdischarge of the battery 13 .

无论在哪一种工作方式下,数字信号处理器5都对电池13的参数进行实时采集,按照上位机15的要求通过CAN通信接口模块8实时地将这些数据传输到上位机15。Regardless of the working mode, thedigital signal processor 5 collects the parameters of the battery 13 in real time, and transmits these data to the host computer 15 in real time through the CANcommunication interface module 8 according to the requirements of the host computer 15 .

本实施例所述化成电压变送模块1、化成电流变送模块2、化成电池温度变送模块3、化成箱体温度变送模块4、控制驱动电路6以及保护模块12均采用芯片运算放大器OP-07,存储模块7采用存储器X5045,CAN总线通信模块8采用CAN总线驱动器82C250,以及D/A转换器9采用DAC75 12,DC/DC转换模块10采用V300B5C200A,放电模块11采用大功率三极管2N5686。本实用新型采用全新的高速数字信号处理器5(采用TMS320F2XX芯片)为核心,结合新型DC/DC电源模块(直流-直流转换模块)形成了高性能高效率控制灵活方便的充放电设备。The formationvoltage transmission module 1, formationcurrent transmission module 2, formation batterytemperature transmission module 3, formation boxtemperature transmission module 4,control drive circuit 6 andprotection module 12 described in this embodiment all use the chip operational amplifier OP -07,storage module 7 adopts memory X5045, CANbus communication module 8 adopts CAN bus driver 82C250, and D/A converter 9 adoptsDAC75 12, DC/DC conversion module 10 adopts V300B5C200A,discharge module 11 adopts high-power triode 2N5686. The utility model adopts a brand-new high-speed digital signal processor 5 (using TMS320F2XX chip) as the core, combined with a new DC/DC power supply module (DC-DC conversion module) to form a high-performance, high-efficiency, flexible and convenient charge and discharge device.

采用本实用新型能够按照电池生产厂家的化成工艺进行自由设置,设置化成过程、次数、时间,任意顺序的充电放电及静置阶段,在充电阶段中可以实现恒流充电、恒压充电,充电的截止条件包括充电时间、电池电压上限、充电电流、电池电压在单位时间内的变化量ΔV/ΔT、充电容量等等,在放电阶段中可以实现恒流放电、恒压放电,放电的截止条件包括放电时间、电池电压、放电容量等等。The utility model can be freely set according to the formation process of the battery manufacturer, and the formation process, times, time, charging, discharging and standing stages in any order can be set, and constant current charging, constant voltage charging and charging can be realized in the charging stage. Cut-off conditions include charging time, battery voltage upper limit, charging current, battery voltage change ΔV/ΔT per unit time, charging capacity, etc. Constant current discharge and constant voltage discharge can be realized in the discharge stage. The discharge cut-off conditions include Discharge time, battery voltage, discharge capacity, etc.

本实用新型不但可以通过CAN总线接口实现对每一电池单体进行自动控制,设置的系统参数及化成工艺可以自动永久保存在EEPROM中,而且还可以利用CAN总线实现群控。通过一台上位机实现多台设备的同时监控,在整个化成过程中可以做到对充放电电流、电池电压、电池温度、机箱温度、充电/放电时间进行实时监控,可以绘制电流/电压的实时曲线等等。本装置特别为大规模锂电池测试设计,具备安全特性同时也适合其他类型电池测试。为锂电池测试提供安全保护,即为充放电提供电压箝位和电流保护,这样就不会出现电池过度充电或过度放电。The utility model not only realizes the automatic control of each battery cell through the CAN bus interface, the set system parameters and formation process can be automatically and permanently stored in the EEPROM, but also realizes the group control by using the CAN bus. Simultaneous monitoring of multiple devices is realized through a host computer, real-time monitoring of charging and discharging current, battery voltage, battery temperature, chassis temperature, charging/discharging time can be achieved during the entire formation process, and real-time current/voltage can be drawn curves and more. This device is specially designed for large-scale lithium battery testing. It has safety features and is also suitable for other types of battery testing. Provide safety protection for lithium battery testing, that is, provide voltage clamping and current protection for charging and discharging, so that the battery will not be overcharged or overdischarged.

Claims (4)

Translated fromChinese
1.一种锂动力电池    化成测控装置,其特征是:包括上位机(15)和至少一个现场控制单元(14),两者之间采用现场总线CAN进行通信;其中现场控制单元(14)由化成变送模块、数字信号处理器(5)、控制驱动电路(6)、存储模块(7)、CAN总线通信模块(8)以及D/A转换器(9)、DC/DC转换模块(10)、放电模块(11)、保护模块(12)组成,其中以所述数字信号处理器(5)作为核心处理器,化成变送模块的输入端来自化成电池(13),输出信号为保护模块(12)的输入信号,并与数字信号处理器(5)相连,保护模块(12)与数字信号处理器(5)的A/D输入引脚相连,数字信号处理器(5)的同步串行总线与D/A转换器(9)相连,D/A转换器(9)的输出经控制驱动电路(6)与DC/DC转换模块(10)、放电模块(11)相连,放电模块(11)的电源输入信号接至化成电池(13),DC/DC转换模块(10)的输出接至化成电池(13);数字信号处理器(5)的CAN端口与CAN总线通信模块(8)相连。1. A lithium power battery formation measurement and control device is characterized in that it includes a host computer (15) and at least one field control unit (14), and the field bus CAN is used for communication between the two; wherein the field control unit (14) is composed of Formation transmission module, digital signal processor (5), control drive circuit (6), storage module (7), CAN bus communication module (8), D/A converter (9), DC/DC conversion module (10 ), a discharge module (11), and a protection module (12), wherein the digital signal processor (5) is used as the core processor, and the input terminal of the transformation and transmission module comes from the formation battery (13), and the output signal is the protection module The input signal of (12) is connected with the digital signal processor (5), the protection module (12) is connected with the A/D input pin of the digital signal processor (5), and the synchronous string of the digital signal processor (5) The row bus is connected with the D/A converter (9), and the output of the D/A converter (9) is connected with the DC/DC conversion module (10) and the discharge module (11) through the control drive circuit (6), and the discharge module ( The power input signal of 11) is connected to the formation battery (13), and the output of the DC/DC conversion module (10) is connected to the formation battery (13); the CAN port of the digital signal processor (5) and the CAN bus communication module (8) connected.2.按权利要求1所述的动力锂电池    化成测控装置,其特征是:所述化成变送模块由化成电压变送模块(1)、化成电流变送模块(2)、化成电池温度变送模块(3)和化成箱体温度变送模块(4)组成,输入端分别来自化成电池(13),输出信号分别为保护模块(12)的输入信号,并与数字信号处理器(5)的A/D引脚相连。2. The power lithium battery formation measurement and control device according to claim 1, characterized in that: the formation transmission module consists of a formation voltage transmission module (1), a formation current transmission module (2), and a formation battery temperature transmission module The module (3) and the temperature transmission module (4) of the formation box body are composed, the input terminals are respectively from the formation batteries (13), and the output signals are respectively the input signals of the protection module (12), and are connected with the digital signal processor (5) A/D pin connected.3.按权利要求1所述的动力锂电池    化成测控装置,其特征是:具有多个现场控制单元(14)时,与上位机(15)的连接方式为并联。3. The power lithium battery formation measurement and control device according to claim 1, characterized in that: when there are multiple on-site control units (14), the connection mode with the host computer (15) is parallel.4.按权利要求1所述的动力锂电池    化成测控装置,其特征是:所述化成电池(13)的充电电路由DC/DC转换模块(10)构成,所述放电电路由放电模块(11)构成。4. The power lithium battery formation measurement and control device according to claim 1, characterized in that: the charging circuit of the formation battery (13) is composed of a DC/DC conversion module (10), and the discharge circuit is composed of a discharge module (11 )constitute.
CN200420030172.5U2004-01-172004-01-17Lithium power battery formation measuring and controlling deviceExpired - Fee RelatedCN2672668Y (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN200420030172.5UCN2672668Y (en)2004-01-172004-01-17Lithium power battery formation measuring and controlling device

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN200420030172.5UCN2672668Y (en)2004-01-172004-01-17Lithium power battery formation measuring and controlling device

Publications (1)

Publication NumberPublication Date
CN2672668Ytrue CN2672668Y (en)2005-01-19

Family

ID=34483645

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN200420030172.5UExpired - Fee RelatedCN2672668Y (en)2004-01-172004-01-17Lithium power battery formation measuring and controlling device

Country Status (1)

CountryLink
CN (1)CN2672668Y (en)

Cited By (44)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN101263396B (en)*2005-07-142011-04-27波士顿电力公司Control electronics for Li-ion batteries
CN102162837A (en)*2011-04-022011-08-24深圳市豪鹏科技有限公司Voltage detection device of nickel-metal hydride battery
CN102680898A (en)*2011-03-172012-09-19洛阳嘉盛电源科技有限公司Formation detection system and method for secondary batteries
CN103064031A (en)*2012-12-282013-04-24深圳职业技术学院Battery formation detecting system and absorption and protection circuit parameter selection method thereof
CN103682457A (en)*2013-12-102014-03-26广州市沃希信息科技有限公司Method and device for controlling lithium battery formation
CN103838167A (en)*2012-11-272014-06-04上海航天有线电厂Power lithium ion battery formation control system based on FPGA
CN107508332A (en)*2017-07-142017-12-22电子科技大学A kind of battery impulse formation charging machine and method of work
CN108306385A (en)*2018-02-022018-07-20电子科技大学The monitoring system of formation charging machine
CN111725577A (en)*2019-03-222020-09-29深圳市瑞能实业股份有限公司Battery formation circuit and battery formation device
CN111799497A (en)*2020-06-302020-10-20欣旺达电子股份有限公司Battery formation system and battery formation method
CN112114267A (en)*2020-09-232020-12-22广州擎天实业有限公司Method for detecting power-off parameters of multi-string and variable-string-number batteries
CN113777490A (en)*2021-08-262021-12-10福建星云电子股份有限公司Current synchronization system and method for battery test equipment
US11309832B2 (en)2006-12-062022-04-19Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
US11349432B2 (en)2010-11-092022-05-31Solaredge Technologies Ltd.Arc detection and prevention in a power generation system
US11424616B2 (en)2008-05-052022-08-23Solaredge Technologies Ltd.Direct current power combiner
CN115149131A (en)*2022-06-292022-10-04东莞光亚智能科技有限公司Monitoring system and monitoring method for lithium battery formation and capacity-grading power supply
US11476799B2 (en)2006-12-062022-10-18Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
US11489330B2 (en)2010-11-092022-11-01Solaredge Technologies Ltd.Arc detection and prevention in a power generation system
US11569659B2 (en)2006-12-062023-01-31Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
US11569660B2 (en)2006-12-062023-01-31Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
US11579235B2 (en)2006-12-062023-02-14Solaredge Technologies Ltd.Safety mechanisms, wake up and shutdown methods in distributed power installations
US11594968B2 (en)2007-08-062023-02-28Solaredge Technologies Ltd.Digital average input current control in power converter
US11598652B2 (en)2006-12-062023-03-07Solaredge Technologies Ltd.Monitoring of distributed power harvesting systems using DC power sources
US11620885B2 (en)2012-01-302023-04-04Solaredge Technologies Ltd.Photovoltaic panel circuitry
CN116047336A (en)*2023-03-272023-05-02深圳市铂纳特斯自动化科技有限公司Battery formation monitoring method and device
US11682918B2 (en)2006-12-062023-06-20Solaredge Technologies Ltd.Battery power delivery module
US11687112B2 (en)2006-12-062023-06-27Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
US11728768B2 (en)2006-12-062023-08-15Solaredge Technologies Ltd.Pairing of components in a direct current distributed power generation system
US11735910B2 (en)2006-12-062023-08-22Solaredge Technologies Ltd.Distributed power system using direct current power sources
US11855231B2 (en)2006-12-062023-12-26Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
US11870250B2 (en)2016-04-052024-01-09Solaredge Technologies Ltd.Chain of power devices
US11867729B2 (en)2009-05-262024-01-09Solaredge Technologies Ltd.Theft detection and prevention in a power generation system
US11888387B2 (en)2006-12-062024-01-30Solaredge Technologies Ltd.Safety mechanisms, wake up and shutdown methods in distributed power installations
US11929620B2 (en)2012-01-302024-03-12Solaredge Technologies Ltd.Maximizing power in a photovoltaic distributed power system
US11962243B2 (en)2006-12-062024-04-16Solaredge Technologies Ltd.Method for distributed power harvesting using DC power sources
US11979037B2 (en)2012-01-112024-05-07Solaredge Technologies Ltd.Photovoltaic module
US12003107B2 (en)2013-03-142024-06-04Solaredge Technologies Ltd.Method and apparatus for storing and depleting energy
US12027849B2 (en)2006-12-062024-07-02Solaredge Technologies Ltd.Distributed power system using direct current power sources
US12057807B2 (en)2016-04-052024-08-06Solaredge Technologies Ltd.Chain of power devices
US12068599B2 (en)2006-12-062024-08-20Solaredge Technologies Ltd.System and method for protection during inverter shutdown in distributed power installations
US12191668B2 (en)2012-01-302025-01-07Solaredge Technologies Ltd.Maximizing power in a photovoltaic distributed power system
US12218505B2 (en)2011-01-122025-02-04Solaredge Technologies Ltd.Serially connected inverters
US12348182B2 (en)2016-04-052025-07-01Solaredge Technologies Ltd.Safety switch for photovoltaic systems
US12418177B2 (en)2009-10-242025-09-16Solaredge Technologies Ltd.Distributed power system using direct current power sources

Cited By (69)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN101263396B (en)*2005-07-142011-04-27波士顿电力公司Control electronics for Li-ion batteries
US12046940B2 (en)2006-12-062024-07-23Solaredge Technologies Ltd.Battery power control
US11962243B2 (en)2006-12-062024-04-16Solaredge Technologies Ltd.Method for distributed power harvesting using DC power sources
US12388492B2 (en)2006-12-062025-08-12Solaredge Technologies Ltd.Safety mechanisms, wake up and shutdown methods in distributed power installations
US12316274B2 (en)2006-12-062025-05-27Solaredge Technologies Ltd.Pairing of components in a direct current distributed power generation system
US11658482B2 (en)2006-12-062023-05-23Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
US12281919B2 (en)2006-12-062025-04-22Solaredge Technologies Ltd.Monitoring of distributed power harvesting systems using DC power sources
US12276997B2 (en)2006-12-062025-04-15Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
US12224706B2 (en)2006-12-062025-02-11Solaredge Technologies Ltd.Pairing of components in a direct current distributed power generation system
US11687112B2 (en)2006-12-062023-06-27Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
US12107417B2 (en)2006-12-062024-10-01Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
US12068599B2 (en)2006-12-062024-08-20Solaredge Technologies Ltd.System and method for protection during inverter shutdown in distributed power installations
US12032080B2 (en)2006-12-062024-07-09Solaredge Technologies Ltd.Safety mechanisms, wake up and shutdown methods in distributed power installations
US12027970B2 (en)2006-12-062024-07-02Solaredge Technologies Ltd.Safety mechanisms, wake up and shutdown methods in distributed power installations
US12027849B2 (en)2006-12-062024-07-02Solaredge Technologies Ltd.Distributed power system using direct current power sources
US11309832B2 (en)2006-12-062022-04-19Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
US11728768B2 (en)2006-12-062023-08-15Solaredge Technologies Ltd.Pairing of components in a direct current distributed power generation system
US11961922B2 (en)2006-12-062024-04-16Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
US11888387B2 (en)2006-12-062024-01-30Solaredge Technologies Ltd.Safety mechanisms, wake up and shutdown methods in distributed power installations
US11476799B2 (en)2006-12-062022-10-18Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
US11855231B2 (en)2006-12-062023-12-26Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
US11569659B2 (en)2006-12-062023-01-31Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
US11569660B2 (en)2006-12-062023-01-31Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
US11575260B2 (en)2006-12-062023-02-07Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
US11575261B2 (en)2006-12-062023-02-07Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
US11579235B2 (en)2006-12-062023-02-14Solaredge Technologies Ltd.Safety mechanisms, wake up and shutdown methods in distributed power installations
US11594880B2 (en)2006-12-062023-02-28Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
US11682918B2 (en)2006-12-062023-06-20Solaredge Technologies Ltd.Battery power delivery module
US11594882B2 (en)2006-12-062023-02-28Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
US11594881B2 (en)2006-12-062023-02-28Solaredge Technologies Ltd.Distributed power harvesting systems using DC power sources
US11598652B2 (en)2006-12-062023-03-07Solaredge Technologies Ltd.Monitoring of distributed power harvesting systems using DC power sources
US11735910B2 (en)2006-12-062023-08-22Solaredge Technologies Ltd.Distributed power system using direct current power sources
US11594968B2 (en)2007-08-062023-02-28Solaredge Technologies Ltd.Digital average input current control in power converter
US11424616B2 (en)2008-05-052022-08-23Solaredge Technologies Ltd.Direct current power combiner
US12218498B2 (en)2008-05-052025-02-04Solaredge Technologies Ltd.Direct current power combiner
US11867729B2 (en)2009-05-262024-01-09Solaredge Technologies Ltd.Theft detection and prevention in a power generation system
US12306215B2 (en)2009-05-262025-05-20Solaredge Technologies Ltd.Theft detection and prevention in a power generation system
US12418177B2 (en)2009-10-242025-09-16Solaredge Technologies Ltd.Distributed power system using direct current power sources
US12003215B2 (en)2010-11-092024-06-04Solaredge Technologies Ltd.Arc detection and prevention in a power generation system
US11489330B2 (en)2010-11-092022-11-01Solaredge Technologies Ltd.Arc detection and prevention in a power generation system
US12407158B2 (en)2010-11-092025-09-02Solaredge Technologies Ltd.Arc detection and prevention in a power generation system
US11349432B2 (en)2010-11-092022-05-31Solaredge Technologies Ltd.Arc detection and prevention in a power generation system
US12218505B2 (en)2011-01-122025-02-04Solaredge Technologies Ltd.Serially connected inverters
CN102680898A (en)*2011-03-172012-09-19洛阳嘉盛电源科技有限公司Formation detection system and method for secondary batteries
CN102680898B (en)*2011-03-172014-12-17洛阳嘉盛电源科技有限公司Formation detection system and method for secondary batteries
CN102162837A (en)*2011-04-022011-08-24深圳市豪鹏科技有限公司Voltage detection device of nickel-metal hydride battery
US11979037B2 (en)2012-01-112024-05-07Solaredge Technologies Ltd.Photovoltaic module
US12094306B2 (en)2012-01-302024-09-17Solaredge Technologies Ltd.Photovoltaic panel circuitry
US11620885B2 (en)2012-01-302023-04-04Solaredge Technologies Ltd.Photovoltaic panel circuitry
US11929620B2 (en)2012-01-302024-03-12Solaredge Technologies Ltd.Maximizing power in a photovoltaic distributed power system
US12191668B2 (en)2012-01-302025-01-07Solaredge Technologies Ltd.Maximizing power in a photovoltaic distributed power system
CN103838167A (en)*2012-11-272014-06-04上海航天有线电厂Power lithium ion battery formation control system based on FPGA
CN103064031A (en)*2012-12-282013-04-24深圳职业技术学院Battery formation detecting system and absorption and protection circuit parameter selection method thereof
US12003107B2 (en)2013-03-142024-06-04Solaredge Technologies Ltd.Method and apparatus for storing and depleting energy
US12255457B2 (en)2013-03-142025-03-18Solaredge Technologies Ltd.Method and apparatus for storing and depleting energy
CN103682457B (en)*2013-12-102016-04-27广州市沃希信息科技有限公司A kind of method and device thereof controlling formation of Li-ion batteries
CN103682457A (en)*2013-12-102014-03-26广州市沃希信息科技有限公司Method and device for controlling lithium battery formation
US11870250B2 (en)2016-04-052024-01-09Solaredge Technologies Ltd.Chain of power devices
US12057807B2 (en)2016-04-052024-08-06Solaredge Technologies Ltd.Chain of power devices
US12348182B2 (en)2016-04-052025-07-01Solaredge Technologies Ltd.Safety switch for photovoltaic systems
CN107508332A (en)*2017-07-142017-12-22电子科技大学A kind of battery impulse formation charging machine and method of work
CN108306385A (en)*2018-02-022018-07-20电子科技大学The monitoring system of formation charging machine
CN111725577A (en)*2019-03-222020-09-29深圳市瑞能实业股份有限公司Battery formation circuit and battery formation device
CN111799497A (en)*2020-06-302020-10-20欣旺达电子股份有限公司Battery formation system and battery formation method
CN111799497B (en)*2020-06-302022-04-15欣旺达电子股份有限公司Battery formation system and battery formation method
CN112114267A (en)*2020-09-232020-12-22广州擎天实业有限公司Method for detecting power-off parameters of multi-string and variable-string-number batteries
CN113777490A (en)*2021-08-262021-12-10福建星云电子股份有限公司Current synchronization system and method for battery test equipment
CN115149131A (en)*2022-06-292022-10-04东莞光亚智能科技有限公司Monitoring system and monitoring method for lithium battery formation and capacity-grading power supply
CN116047336A (en)*2023-03-272023-05-02深圳市铂纳特斯自动化科技有限公司Battery formation monitoring method and device

Similar Documents

PublicationPublication DateTitle
CN2672668Y (en)Lithium power battery formation measuring and controlling device
CN113922438B (en) A high-power active balancing battery management system
CN102280912B (en)Equalization circuit of charge and discharge circuit of battery pack
CN102364744B (en)Lithium ion battery pack charging and discharging cycle control method and system
CN102255352A (en)Distributed intelligent power battery pack management system
CN100392942C (en) Device and method for controlling battery charging process
CN103701171A (en)Equalizing charge control system for battery pack of HEV (Hybrid Electric Vehicle)
CN210984891U (en)Intelligent temperature control system for lithium battery protection board
CN108063480B (en)Autonomous activation and charge-discharge management system and method for terminal nickel-metal hydride battery
WO2021134829A1 (en)Battery testing system
CN108242842B (en) A management device and method for parallel connection of different types of battery packs
CN205195249U (en)Digit BMS protection shield with data storage function
CN106655301A (en)Power management system and method suitable for electric fork-lift truck
CN116973781A (en)Battery performance testing device and method based on battery opposite-dragging test
CN205388997U (en)Module detection device of secondary lithium battery group
CN100505466C (en) Distributed battery management system and management method
CN118665265A (en)Low-voltage lithium battery management system and method for electric automobile
CN203645375U (en)Portable battery state of charge regulating equipment
CN118826220A (en) A charging management system for multiple lithium battery packs
CN201238069Y (en)Low-temperature polymer lithium accumulator pack
CN2824320Y (en)Intelligent cell pack
CN114172233B (en)Lithium battery management system and method
CN211528521U (en)Current detection system of storage battery pack
CN212810383U (en)Circuit board of intelligent battery pack management system
CN214124859U (en)Battery management system for lithium battery

Legal Events

DateCodeTitleDescription
C14Grant of patent or utility model
GR01Patent grant
C17Cessation of patent right
CF01Termination of patent right due to non-payment of annual fee

Granted publication date:20050119


[8]ページ先頭

©2009-2025 Movatter.jp