











技术领域technical field
本实用新型涉及光纤接头盒监测技术领域。The utility model relates to the technical field of optical fiber splice box monitoring.
背景技术Background technique
随着信息化建设的不断进行和社会云计算、5G等大容量、高速率业务的不断涌现,对光纤的传输质量和维护要求也越来越高;而光纤接头盒因密封不严、年久老化、地质应力、工程遗留等问题,会造成接头盒进水;水进入光缆接头盒后,在短期内会使光纤的涂覆层脱落,机械强度降低,如长期得不到处理的话,所浸入的水就会在光缆的金属护层及金属加强芯间发生电离,电解为H2分子和OH-离子;其中,H2分子易于产生红外吸收而造成光纤内光信号的衰减;OH-离子则易于引起光纤的化学衰减,改变光纤的物理结构;特别是寒冷季节,易发生光纤接头盒进水结冰和结冰解冻,造成接头盒腔体变化导致纤芯出现大衰耗点,进而导致纤芯阻断、系统误码、通信中断。With the continuous development of information construction and the continuous emergence of large-capacity and high-speed services such as social cloud computing and 5G, the requirements for optical fiber transmission quality and maintenance are getting higher and higher; Aging, geological stress, engineering legacy and other problems will cause water into the splice box; after the water enters the optical cable splice box, the coating of the optical fiber will fall off in a short time, and the mechanical strength will be reduced. If it is not treated for a long time, the immersion The water will be ionized between the metal sheath and the metal reinforcing core of the optical cable, and electrolyzed into H2 molecules and OH- ions; among them, the H2 molecules are prone to infrared absorption and cause the attenuation of the optical signal in the fiber; OH- ions are It is easy to cause chemical attenuation of the optical fiber and change the physical structure of the optical fiber; especially in cold seasons, it is easy to freeze and thaw the water in the optical fiber splice box, resulting in the change of the cavity of the splice box and the large attenuation point of the fiber core, which in turn leads to the fiber Core blocking, system bit error, communication interruption.
现阶段主要通过维修人员测试金属监测线的对地绝缘电阻阻值的大小或定期使用光时域反射仪(OTDR)监测备用光纤是否存在高损耗点来判断光纤接头盒是否进水;以上两种方式主要采取人工测量的方法,开销大、费时费力且对光纤绝缘电阻检测技术容易被垄断,这种定期的人工测量很难及时掌握光缆接线盒的完整状况;无法做到实时监测目前的技术手段,只有达到光纤损坏、中断通信的程度才可发现故障,维护工作极为被动;同时,进水故障定位较难,无GPS信息,不能自动生成数据报表,且仪器昂贵,自动化程度比较低,硬件资源功能比较专一,无法对仪器的功能和结构进行二次开发和改造;操作界面、步骤过于复杂,测试人员不易上手且易出错,不适用于寒冷环境使用;因此,无法满足现有的需求。At this stage, it is mainly judged whether the fiber optic splice box has entered the water through the maintenance personnel testing the resistance value of the insulation resistance to ground of the metal monitoring line or regularly using an optical time domain reflectometer (OTDR) to monitor whether there is a high loss point in the spare fiber; the above two The method mainly adopts manual measurement, which is expensive, time-consuming and labor-intensive, and the detection technology of optical fiber insulation resistance is easy to be monopolized. This kind of regular manual measurement is difficult to grasp the complete status of the optical cable junction box in time; it is impossible to monitor the current technical means in real time. , the fault can be found only when the optical fiber is damaged and the communication is interrupted, and the maintenance work is extremely passive; at the same time, it is difficult to locate the water inlet fault, there is no GPS information, and the data report cannot be automatically generated, and the instrument is expensive, the degree of automation is relatively low, and the hardware resources The function is relatively specific, and it is impossible to carry out secondary development and transformation of the function and structure of the instrument; the operation interface and steps are too complicated, the tester is not easy to use and prone to errors, and it is not suitable for use in cold environments; therefore, it cannot meet the existing needs.
实用新型内容Utility model content
本实用新型的目的是为了解决现有的光缆电路中光纤接头盒监测难、故障预警难和定位难的问题,提出了一种光纤接头盒内环境遥感监测装置。The purpose of the utility model is to solve the problems of difficulty in monitoring the optical fiber splice box, difficult fault early warning and difficult positioning in the existing optical cable circuit, and proposes a remote sensing monitoring device for the environment in the optical fiber splice box.
本实用新型所述的一种光纤接头盒内环境遥感监测装置包括数据采集器、电源管理器、温湿度传感器、窄带物联网模块、4G通信器、锂电池、无线充电装置和手持设备;The remote sensing monitoring device for the environment in an optical fiber splice box according to the utility model comprises a data collector, a power manager, a temperature and humidity sensor, a narrow-band Internet of Things module, a 4G communicator, a lithium battery, a wireless charging device and a handheld device;
所述数据采集器、电源管理器、温湿度传感器和锂电池均设置在光纤接头盒内部;The data collector, the power manager, the temperature and humidity sensor and the lithium battery are all arranged inside the optical fiber splice box;
所述无线充电装置设置在与光纤接头盒相对应的地面标石的信息盒内;The wireless charging device is arranged in the information box of the ground marker corresponding to the optical fiber splice box;
锂电池的电压信号输出端通过电源管理器与数据采集器的电压信号输入端相连,锂电池的电压信号输入端通过电源管理器与无线充电装置的电压信号输出端相连;The voltage signal output end of the lithium battery is connected to the voltage signal input end of the data collector through the power manager, and the voltage signal input end of the lithium battery is connected to the voltage signal output end of the wireless charging device through the power manager;
温湿度传感器的温湿度信号输出端与数据采集器的温湿度信号输入端相连;The temperature and humidity signal output end of the temperature and humidity sensor is connected with the temperature and humidity signal input end of the data collector;
数据采集器的温湿度信号输出端与窄带物联网模块的温湿度信号输入端以及4G通信器的温湿度信号输入端分别相连;窄带物联网模块的通信信号输出端以无线网络的形式与上位机的通信信号输入端相连;4G通信器的通信信号输出端以串口的形式与手持设备的通信信号输入端相连。The temperature and humidity signal output end of the data collector is respectively connected with the temperature and humidity signal input end of the narrowband IoT module and the temperature and humidity signal input end of the 4G communicator; the communication signal output end of the narrowband IoT module is connected to the host computer in the form of a wireless network. The communication signal input end of the 4G communicator is connected to the communication signal input end of the handheld device; the communication signal output end of the 4G communicator is connected to the communication signal input end of the handheld device in the form of serial port.
本实用新型的工作流程为:温湿度传感器接收光纤接头盒内的温湿度信号,将光纤接头盒内的温湿度信号传入数据采集器中;数据采集器对温湿度信号进行处理,得出温湿度数据和进水等级,将温湿度数据、进水等级和位置信息传输至接头盒上方的地面标石顶部内的信息盒;通过定期人工巡检,传输到手持设备,并通过窄带物联网技术将温湿度、进水等级与位置信息等数据实时传输到上位机的预警云平台;在上位机中通过搭建的实时监测、数据处理、预警预报、信息管理、辅助决策的光纤接头盒防护监测平台系统对光纤接头盒内的温湿度数据进行实时分析处理,对光缆线路中各处接头盒信息统筹分析与管理,实现光纤接头盒故障的监护智能化、传输网络化、预警自动化。The working process of the utility model is as follows: the temperature and humidity sensor receives the temperature and humidity signals in the optical fiber splice box, and transmits the temperature and humidity signals in the optical fiber splice box into the data collector; the data collector processes the temperature and humidity signals to obtain the temperature and humidity signal. Humidity data and water ingress level, transmit the temperature and humidity data, water ingress level and location information to the information box on the top of the ground marker above the connector box; through regular manual inspections, transmit to handheld devices, and through narrow-band Internet of Things technology Real-time transmission of data such as temperature and humidity, water intake level and location information to the early warning cloud platform of the host computer; the optical fiber splice box protection monitoring platform built in the host computer for real-time monitoring, data processing, early warning and forecasting, information management, and decision-making assistance The system analyzes and processes the temperature and humidity data in the optical fiber splice box in real time, analyzes and manages the information of each splice box in the optical cable line as a whole, and realizes the intelligent monitoring, transmission network, and early warning automation of the fault of the optical fiber splice box.
本实用新型的有益效果是:通过数据采集器与窄带物联网模块的设置,实现了对温湿度信号的智能计算并发出预警信息,实现光缆接头盒进水及结冰的遥感预判断,提醒维护人员提前介入,处理接头盒进水故障,避免阻断发生,实现光纤接头盒故障的监护智能化、传输网络化、预警自动化。The beneficial effects of the utility model are: through the setting of the data collector and the narrow-band Internet of Things module, the intelligent calculation of the temperature and humidity signals is realized and the early warning information is issued, the remote sensing pre-judgment of the water ingress and freezing of the optical cable joint box is realized, and the maintenance is reminded. Personnel intervene in advance to deal with the water inflow failure of the splice box, avoid blocking, and realize the intelligent monitoring, transmission network, and early warning automation of the failure of the optical fiber splice box.
附图说明Description of drawings
图1为具体实施方式一中光纤接头盒正面结构示意图;Fig. 1 is the front structure schematic diagram of the optical fiber splice box in the specific embodiment one;
图2为具体实施方式一中光纤接头盒背面结构示意图;2 is a schematic view of the back structure of the optical fiber splice box in the specific embodiment one;
图3为具体实施方式一中地面标石的结构示意图;3 is a schematic structural diagram of a ground marker in
图4为具体实施方式一中一种光纤接头盒内环境遥感监测装置的结构示意图;4 is a schematic structural diagram of an environmental remote sensing monitoring device in an optical fiber splice box in
图5为具体实施方式二中充放电电路的电路图;5 is a circuit diagram of a charging and discharging circuit in
图6为具体实施方式三中发射电路的电路图;6 is a circuit diagram of a transmitting circuit in
图7为具体实施方式三中接收电路的电路图;7 is a circuit diagram of a receiving circuit in
图8为具体实施方式四中手持设备的结构示意图;8 is a schematic structural diagram of a handheld device in
图9为具体实施方式四中处理电路的电路图;9 is a circuit diagram of a processing circuit in
图10为具体实施方式五中数据采集电路的电路图;10 is a circuit diagram of a data acquisition circuit in
图11为具体实施方式六中第一通信电路的电路图;11 is a circuit diagram of a first communication circuit in
图12为具体实施方式七中第二通信电路的电路图。FIG. 12 is a circuit diagram of the second communication circuit in the seventh embodiment.
具体实施方式Detailed ways
具体实施方式一:结合图1至图4说明本实施方式,本实施方式所述的一种光纤接头盒内环境遥感监测装置包括数据采集器1、电源管理器2、温湿度传感器3、窄带物联网模块4、4G通信器5、锂电池6、无线充电装置7和手持设备10;Embodiment 1: This embodiment is described with reference to FIG. 1 to FIG. 4 . An environment remote sensing monitoring device in an optical fiber splice box described in this embodiment includes a
所述数据采集器1、电源管理器2、温湿度传感器3和锂电池6均设置在光纤接头盒8内部;The
所述无线充电装置7设置在与光纤接头盒相对应的地面标石9的信息盒内;The
锂电池6的电压信号输出端通过电源管理器2与数据采集器1的电压信号输入端相连,锂电池6的电压信号输入端通过电源管理器2与无线充电装置7的电压信号输出端相连;The voltage signal output end of the
温湿度传感器3的温湿度信号输出端与数据采集器1的温湿度信号输入端相连;The temperature and humidity signal output end of the temperature and
数据采集器1的温湿度信号输出端与窄带物联网模块4的温湿度信号输入端以及4G通信器5的温湿度信号输入端分别相连;窄带物联网模块4的通信信号输出端以无线网络的形式与上位机的通信信号输入端相连;4G通信器5的通信信号输出端以串口的形式与手持设备10的通信信号输入端相连。The temperature and humidity signal output end of the
在本实施方式中,地面标石9的信息盒为3D打印的长方形盒体;温湿度传感器采用SHT11型数字式温湿度传感器,并实现校准后的数字信号输出;数据采集器1通过单总线通信方式与温湿度传感器3进行数据传送,实现温湿度的实时采集、报警、数据无线发送;窄带物联网模块4采用WH-NB73低功耗NB-IOT模块,基于窄NB-IOT短传和远传技术将温湿度数据传入云端数据库,进行温湿度数据的云端监测和处理;在上位机中搭建云平台,对光缆线路中各位置光纤接头盒8上传的温湿度数据、进水等级与位置信息应用卡尔曼滤波、故障预测等算法,进行实时分析及预警处理,做好对故障的预防和定位,并将所得数据存储到云端数据库中。温湿度传感器3中的温度传感器采用采用接触式测量和非接触式测量;具体测温方式视测量条件而定,若测温点处材料表面平整,测温节点可以用接触式温度测量;若测温点处材料表面不平整或震动较强,则测温节点用非接触式温度测量;对温度要求为:精度±0.5℃,误差范围在1.5%,检测范围为-4℃~6℃。温湿度传感器3中的环境湿度传感器:定时采集环境中湿度值,配合水浸传感器对漏水、水浸等异常进行可靠监测,其采用SHT11型数字式温湿度传感器,该芯片可实现校准后的数字信号输出,测量精度可编程调节并支持CRC传输校验,功耗低,响应时间短,传输可靠性高,抗干扰能力强,测量误差小;SHT11温湿度传感器的湿度测量范围为%RH~1%RH,测湿精度高达±3.%RH测湿分辨率可达.3%RH,其温度的测量范围为-4℃~123.8℃,在25℃时,测温精度可达±.4℃,测温分辨率达.1℃。数据上传到云端后,在云端数据库对上传的数据进行卡尔曼滤波,设计故障预测算法。在算法优化阶段,建立环境变化与参数的对应关系,进行算法设计及参数的对应关系,进行算法设计及优化相关参数的工作。In this embodiment, the information box of the
具体实施方式二:结合图5说明本实施方式,本实施方式是对具体实施方式一所述的一种光纤接头盒内环境遥感监测装置进一步限定,在本实施方式中,所述电源管理器2采用充放电电路实现;Embodiment 2: This embodiment is described with reference to FIG. 5. This embodiment further defines the remote sensing monitoring device for the environment in an optical fiber splice box described in
所述充放电电路包括充电管理芯片U1、电压调节器U2、三极管Q1、电容C1至电容C6、电阻R1至电阻R8、热敏电阻R9、二极管D1至二极管D3和发光二极管D4;The charging and discharging circuit includes a charging management chip U1, a voltage regulator U2, a transistor Q1, a capacitor C1 to a capacitor C6, a resistor R1 to a resistor R8, a thermistor R9, a diode D1 to a diode D3 and a light emitting diode D4;
充电管理芯片U1的型号为:BQ2057;电压调节器U2的型号为:MIC29302;The model of the charging management chip U1 is: BQ2057; the model of the voltage regulator U2 is: MIC29302;
无线充电装置7的正极输出端同时与电容C6的一端、电容C5的一端、电阻R3的一端以及电压调节器U2的4号引脚相连;无线充电装置7的负极输出端同时与电容C6的另一端、电容C5的另一端以及电阻R4的一端相连;The positive output end of the
电压调节器U2的5号引脚同时与电阻R3的另一端以及电阻R4的另一端相连;The No. 5 pin of the voltage regulator U2 is connected to the other end of the resistor R3 and the other end of the resistor R4 at the same time;
电压调节器U2的1号引脚为电源管理器2的电压信号输出端,与数据采集器1的电压信号输入端相连;The No. 1 pin of the voltage regulator U2 is the voltage signal output terminal of the
电压调节器U2的2号引脚同时与电容C4的一端、二极管D1的阴极以及二极管D3的阴极相连;电压调节器U2的3号引脚与电容C4的另一端相连;The No. 2 pin of the voltage regulator U2 is connected to one end of the capacitor C4, the cathode of the diode D1 and the cathode of the diode D3 at the same time; the No. 3 pin of the voltage regulator U2 is connected to the other end of the capacitor C4;
充电管理芯片U1的7号引脚与电阻R1的一端相连;电阻R1的另一端与三极管Q1的基极相连;三极管Q1的集电极同时与电阻R5的一端、电阻R6的一端以及充电管理芯片U1的1号引脚相连;The No. 7 pin of the charging management chip U1 is connected to one end of the resistor R1; the other end of the resistor R1 is connected to the base of the transistor Q1; the collector of the transistor Q1 is simultaneously connected to one end of the resistor R5, one end of the resistor R6 and the charging management chip U1 connected to
充电管理芯片U1的3号引脚同时与二极管D1的阳极、电阻R5的另一端、电阻R6的另一端、电容C3的一端以及电容C2的一端相连,并接12V电源的供电端;The No. 3 pin of the charging management chip U1 is simultaneously connected to the anode of the diode D1, the other end of the resistor R5, the other end of the resistor R6, one end of the capacitor C3 and one end of the capacitor C2, and is connected to the power supply end of the 12V power supply;
充电管理芯片U1的6号引脚同时与电容C2的另一端以及电容C3的另一端相连;The No. 6 pin of the charging management chip U1 is connected to the other end of the capacitor C2 and the other end of the capacitor C3 at the same time;
充电管理芯片U1的2号引脚同时与二极管D2的阴极、电容C1的一端、二极管D3的阳极以及锂电池6的正极相连;三极管Q1的发射极与二极管D2的阳极相连;The No. 2 pin of the charging management chip U1 is simultaneously connected to the cathode of the diode D2, one end of the capacitor C1, the anode of the diode D3 and the anode of the
锂电池6的负极同时与电容C1的另一端、发光二极管D4的阴极、热敏电阻R9的一端以及电阻R8的一端相连,并接地;The negative electrode of the
充电管理芯片U1的8号引脚接12V电源的供电端;The No. 8 pin of the charging management chip U1 is connected to the power supply end of the 12V power supply;
充电管理芯片U1的5号引脚与电阻R2的一端相连,电阻R2的另一端与发光二极管D4的阳极相连;The No. 5 pin of the charging management chip U1 is connected to one end of the resistor R2, and the other end of the resistor R2 is connected to the anode of the light-emitting diode D4;
充电管理芯片U1的4号引脚同时与热敏电阻R9的另一端、电阻R8的另一端以及电阻R7的一端相连;电阻R7的另一端接12V电源的供电端。The No. 4 pin of the charging management chip U1 is connected to the other end of the thermistor R9, the other end of the resistor R8 and one end of the resistor R7 at the same time; the other end of the resistor R7 is connected to the power supply end of the 12V power supply.
结合图5进行说明,电容C1至电容C6都是退偶电容,保证在寒冷的环境下,充电管理芯片U1的输入和输出电压稳定。热敏电阻R9为NTC型热敏电阻;其与电阻R8并联,并联后再和电阻R7一起串联接入电源VCC和GND之间,此时充电管理芯片U1的4号引脚和GND之间的电压VTS等于热敏电阻的电压,电压值会随温度变化而变化,而TS引脚检测VTS值的变化并反馈给充电管理芯片U1,充电管理芯片U1判断VTS是否在预设的上下限(VTS1、VTS2)电压值内,只有VTS1>VTS>VTS2时,充电管理芯片U1才允许对锂电池6充电。5, the capacitors C1 to C6 are decoupling capacitors to ensure that the input and output voltages of the charging management chip U1 are stable in a cold environment. Thermistor R9 is an NTC thermistor; it is connected in parallel with the resistor R8, and then connected in series with the resistor R7 between the power supply VCC and GND. At this time, the connection between
具体实施方式三:结合图6至图7说明本实施方式,本实施方式是对具体实施方式一所述的一种光纤接头盒内环境遥感监测装置进一步限定,在本实施方式中,所述无线充电装置7包括发射电路和接收电路;Embodiment 3: This embodiment is described with reference to FIGS. 6 to 7 . This embodiment further defines the remote sensing monitoring device for the environment in an optical fiber splice box described in
所述发射电路包括振荡芯片U3、电阻R10至电阻R16、电容C7至电容C14、三极管Q2、三极管Q3、场效应管M1、二极管D5、发光二极管D6、电感L1和稳压管DW1;The transmitting circuit includes an oscillating chip U3, a resistor R10 to a resistor R16, a capacitor C7 to a capacitor C14, a triode Q2, a triode Q3, a field effect transistor M1, a diode D5, a light emitting diode D6, an inductor L1 and a voltage regulator DW1;
振荡芯片U3的型号为:NE555;The model of the oscillation chip U3 is: NE555;
振荡芯片U3的1号引脚同时与三极管Q3的发射极、二极管D5的阳极、场效应管M1的源极、电容C13的一端以及电容C14的一端相连,并接地;The No. 1 pin of the oscillation chip U3 is connected to the emitter of the transistor Q3, the anode of the diode D5, the source of the field effect transistor M1, one end of the capacitor C13 and one end of the capacitor C14 at the same time, and is grounded;
振荡芯片U3的2号引脚同时与振荡芯片U3的6号引脚、电容C14的另一端以及电阻R16的一端相连;The No. 2 pin of the oscillation chip U3 is connected to the No. 6 pin of the oscillation chip U3, the other end of the capacitor C14 and one end of the resistor R16 at the same time;
振荡芯片U3的3号引脚同时与电容C12的一端以及电阻R14的一端相连;The No. 3 pin of the oscillation chip U3 is connected to one end of the capacitor C12 and one end of the resistor R14 at the same time;
振荡芯片U3的4号引脚同时与电阻R15的一端、振荡芯片U3的8号引脚、电容C7的一端、电容C8的一端、稳压管DW1的负极以及电阻R10的一端相连;电容C7的另一端同时与电容C8的另一端以及稳压管DW1的正极相连,并接地;The No. 4 pin of the oscillation chip U3 is connected to one end of the resistor R15, the No. 8 pin of the oscillation chip U3, one end of the capacitor C7, one end of the capacitor C8, the negative electrode of the voltage regulator tube DW1 and one end of the resistor R10. The other end is connected to the other end of the capacitor C8 and the positive electrode of the voltage regulator tube DW1 at the same time, and is grounded;
振荡芯片U3的5号引脚与电容C13的另一端相连;The No. 5 pin of the oscillation chip U3 is connected to the other end of the capacitor C13;
振荡芯片U3的7号引脚同时与电阻R15的另一端以及电阻R16的另一端相连;The No. 7 pin of the oscillation chip U3 is connected to the other end of the resistor R15 and the other end of the resistor R16 at the same time;
电阻R10的另一端同时与电阻R12的一端、电感L1的一端、电容C9的一端、电容C10的一端、电容C11的一端以及电阻R11的一端相连,并接电源VCC;电阻R11的另一端与发光二极管D6的阳极相连;发光二极管D6的阴极同时与电容C11的另一端以及电容C10的另一端相连,并接地;The other end of the resistor R10 is simultaneously connected to one end of the resistor R12, one end of the inductor L1, one end of the capacitor C9, one end of the capacitor C10, one end of the capacitor C11 and one end of the resistor R11, and is connected to the power supply VCC; the other end of the resistor R11 is connected to the light The anode of the diode D6 is connected; the cathode of the light-emitting diode D6 is connected to the other end of the capacitor C11 and the other end of the capacitor C10 at the same time, and is grounded;
电容C9的另一端同时与电感L1的另一端、二极管D5的阴极以及场效应管M1的漏极相连;The other end of the capacitor C9 is connected to the other end of the inductor L1, the cathode of the diode D5 and the drain of the field effect transistor M1 at the same time;
场效应管M1的栅极与电阻R13的一端相连;电阻R13的另一端同时与三极管Q3的集电极以及三极管Q2的发射极相连;三极管Q2的集电极与电阻R12的另一端相连;The grid of the field effect transistor M1 is connected with one end of the resistor R13; the other end of the resistor R13 is connected with the collector of the transistor Q3 and the emitter of the transistor Q2 at the same time; the collector of the transistor Q2 is connected with the other end of the resistor R12;
三极管Q2的基极同时与三极管Q3的基极、电容C12的另一端以及电阻R14的另一端相连;The base of the transistor Q2 is connected to the base of the transistor Q3, the other end of the capacitor C12 and the other end of the resistor R14 at the same time;
所述接收电路包括电感L2、二极管D7至二极管D10、发光二极管D11、发光二极管D12、蓄电池H、电阻R17至电阻R22、电感C15至电感C18、稳压二极管DW2、稳压二极管DW3、三极管Q4和三极管Q5;The receiving circuit includes an inductor L2, a diode D7 to a diode D10, a light emitting diode D11, a light emitting diode D12, a battery H, a resistor R17 to a resistor R22, an inductor C15 to an inductor C18, a Zener diode DW2, a Zener diode DW3, a transistor Q4 and transistor Q5;
所述电感L2的一端同时与电容C15的一端、电容C16的一端、二极管D7的阴极以及二极管D8的阳极相连;One end of the inductor L2 is simultaneously connected to one end of the capacitor C15, one end of the capacitor C16, the cathode of the diode D7 and the anode of the diode D8;
所述电感L2的另一端同时与电容C15的另一端、电容C16的另一端、二极管D9的阳极以及二极管D10的阴极相连;The other end of the inductor L2 is simultaneously connected to the other end of the capacitor C15, the other end of the capacitor C16, the anode of the diode D9 and the cathode of the diode D10;
二极管D7的阳极与二极管D10的阳极相连,并且该公共端为无线充电装置7的负极;The anode of the diode D7 is connected to the anode of the diode D10, and the common terminal is the cathode of the
二极管D8的阴极同时与二极管D9的阴极、稳压二极管DW2的负极、电容C17的一端、电容C18的一端、电阻R17的一端、电阻R20的一端、三极管Q4的集电极以及发光二极管D11的阳极相连,并且该公共端为无线充电装置7的正极;The cathode of diode D8 is simultaneously connected to the cathode of diode D9, the cathode of Zener diode DW2, one end of capacitor C17, one end of capacitor C18, one end of resistor R17, one end of resistor R20, the collector of transistor Q4 and the anode of light-emitting diode D11. , and the common terminal is the positive pole of the
稳压二极管DW2的正极同时与电容C17的另一端以及电容C18的另一端相连,并接地;The positive pole of the Zener diode DW2 is connected to the other end of the capacitor C17 and the other end of the capacitor C18 at the same time, and is grounded;
电阻R17的另一端同时与稳压二极管DW2的负极、电阻R18的一端、电阻R19的一端以及三极管Q5的基极相连;稳压二极管DW2的正极同时与电阻R19的另一端、电阻R22的一端以及蓄电池H的负极相连,并接地;蓄电池H的正极同时与电阻R18的另一端以及三极管Q5的发射极相连;三极管Q5的集电极同时与电阻R20的另一端以及电阻R21的一端相连;电阻R21的另一端与三极管Q4的基极相连;三极管Q4的发射极与发光二极管D12的阳极相连;发光二极管D12的阴极同时与发光二极管D11的阴极以及电阻R22的另一端相连。The other end of the resistor R17 is connected to the negative electrode of the zener diode DW2, one end of the resistor R18, one end of the resistor R19 and the base of the transistor Q5 at the same time; the positive electrode of the zener diode DW2 is simultaneously connected to the other end of the resistor R19, one end of the resistor R22 and The negative electrode of the battery H is connected and grounded; the positive electrode of the battery H is connected to the other end of the resistor R18 and the emitter of the transistor Q5 at the same time; the collector of the transistor Q5 is connected to the other end of the resistor R20 and one end of the resistor R21 at the same time; The other end is connected to the base of the transistor Q4; the emitter of the transistor Q4 is connected to the anode of the light-emitting diode D12; the cathode of the light-emitting diode D12 is connected to the cathode of the light-emitting diode D11 and the other end of the resistor R22 at the same time.
在本实施方式中,电感L2设置在光纤接头盒相对应的地面标石9的信息盒内;In this embodiment, the inductor L2 is arranged in the information box of the
采用振荡芯片U3构成频率可调的多谐振荡器;输出PWM波驱动MOS开关;振荡芯片U3工作在振荡状态下,根据自身激励,在高输出水平和低输出水平两种状态下来回切换;发射电路如图6所示;接收电路考虑锂电池6充电时的电压稳定性限定,避免充电过程中过电流和过充电。Oscillating chip U3 is used to form a frequency-adjustable multivibrator; the output PWM wave drives the MOS switch; the oscillating chip U3 works in an oscillating state, and switches back and forth between two states of high output level and low output level according to its own excitation; The circuit is shown in Figure 6; the receiving circuit considers the limitation of voltage stability during charging of the
具体实施方式四:结合图8至图9说明本实施方式,本实施方式是对具体实施方式一所述的一种光纤接头盒内环境遥感监测装置进一步限定,在本实施方式中,所述手持设备10包括壳体10-1、显示屏10-2、处理电路10-3、开关机按键10-4和Type C接口10-5;Embodiment 4: This embodiment is described with reference to FIG. 8 to FIG. 9 . This embodiment further defines the remote sensing monitoring device for the environment in an optical fiber splice box described in
所述壳体10-1为长方体结构,显示屏10-2设置在壳体10-1的上表面,处理电路10-3设置在壳体10-1内部;开关机按键10-4设置在壳体10-1的侧壁上;Type C接口10-5设置在壳体10-1的底端;The casing 10-1 has a rectangular parallelepiped structure, the display screen 10-2 is arranged on the upper surface of the casing 10-1, the processing circuit 10-3 is arranged inside the casing 10-1, and the switch button 10-4 is arranged on the casing on the side wall of the body 10-1; the Type C interface 10-5 is arranged on the bottom end of the housing 10-1;
所述处理电路10-3包括微控制器U4、晶振Y1、SWD调试接口J1、UART1接口J2、复位开关S1和电容C19至电容C28;The processing circuit 10-3 includes a microcontroller U4, a crystal oscillator Y1, a SWD debugging interface J1, a UART1 interface J2, a reset switch S1, and capacitors C19 to C28;
微控制器U4的型号为:STM32L152CBT6;The model of the microcontroller U4 is: STM32L152CBT6;
微控制器U4的8号引脚接地;
微控制器U4的9号引脚接电源VCC;
微控制器U4的23号引脚同时与微控制器U4的35号引脚以及微控制器U47号引脚相连,并接地;Pin No. 23 of the microcontroller U4 is connected to the pin No. 35 of the microcontroller U4 and pin No. U47 of the microcontroller at the same time, and is grounded;
微控制器U4的24号引脚同时与微控制器U4的36号引脚以及微控制器U48号引脚相连,并接电源VCC;The
微控制器U4的1号引脚接电源VCC;The No. 1 pin of the microcontroller U4 is connected to the power supply VCC;
微控制器U4的3号引脚同时与电容C19的一端以及晶振Y1的一端相连;
微控制器U4的4号引脚同时与电容C20的一端以及晶振Y1的另一端相连;电容C19的另一端与电容C20的另一端相连,并接地;The No. 4 pin of the microcontroller U4 is connected to one end of the capacitor C20 and the other end of the crystal oscillator Y1 at the same time; the other end of the capacitor C19 is connected to the other end of the capacitor C20 and grounded;
微控制器U4的7号引脚同时与复位开关S1的一端以及电容C21的一端相连;复位开关S1的另一端与电容C21的另一端相连,并接地;The No. 7 pin of the microcontroller U4 is connected to one end of the reset switch S1 and one end of the capacitor C21 at the same time; the other end of the reset switch S1 is connected to the other end of the capacitor C21 and grounded;
微控制器U4的44号引脚接地;
微控制器U4的8号引脚接地;
微控制器U4的37号引脚与SWD调试接口J1的3号引脚相连;The 37th pin of the microcontroller U4 is connected to the 3rd pin of the SWD debug interface J1;
微控制器U4的34号引脚与SWD调试接口J1的2号引脚相连;SWD调试接口J1的1号引脚与电源VCC相连;SWD调试接口J1的4号引脚接地;The No. 34 pin of the microcontroller U4 is connected to the No. 2 pin of the SWD debugging interface J1; the No. 1 pin of the SWD debugging interface J1 is connected to the power supply VCC; the No. 4 pin of the SWD debugging interface J1 is grounded;
微控制器U4的31号引脚与UART1接口J2的3号引脚相连;The 31st pin of the microcontroller U4 is connected with the 3rd pin of the UART1 interface J2;
微控制器U4的30号引脚与UART1接口J2的2号引脚相连;UART1接口J2的1号引脚与电源VCC相连;UART1接口J2的4号引脚接地;The 30th pin of the microcontroller U4 is connected with the 2nd pin of the UART1 interface J2; the 1st pin of the UART1 interface J2 is connected with the power supply VCC; the 4th pin of the UART1 interface J2 is grounded;
电容C22的一端同时与电容C23的一端、电容C24的一端、电容C25的一端、电容C26的一端、电容C27的一端以及电容C28的一端相连,并同时接电源VCC;One end of capacitor C22 is simultaneously connected to one end of capacitor C23, one end of capacitor C24, one end of capacitor C25, one end of capacitor C26, one end of capacitor C27 and one end of capacitor C28, and is connected to power supply VCC at the same time;
电容C22的另一端同时与电容C23的另一端、电容C24的另一端、电容C25的另一端、电容C26的另一端、电容C27的另一端以及电容C28的另一端相连,并接地。The other end of the capacitor C22 is simultaneously connected to the other end of the capacitor C23, the other end of the capacitor C24, the other end of the capacitor C25, the other end of the capacitor C26, the other end of the capacitor C27 and the other end of the capacitor C28, and is grounded.
在本实施方式中,电容C22至电容C28为微控制器U4的电源引脚的滤波电容;SWD调试接口J1用于连接JLINK;UART1接口J2用于调试;晶振Y1为32.768kHz的晶振,晶振Y1与电容C19以及电容C20构成晶振电路,为微控制器U4提供低速时钟信号;微控制器U4高速时钟信号使用的是内部的RC振荡电路产生的时钟信号;复位开关S1用于给微控制器U4发送复位信号。In this embodiment, capacitors C22 to C28 are filter capacitors of the power supply pin of microcontroller U4; SWD debugging interface J1 is used to connect JLINK; UART1 interface J2 is used for debugging; crystal oscillator Y1 is a 32.768kHz crystal oscillator, and crystal oscillator Y1 It forms a crystal oscillator circuit with capacitor C19 and capacitor C20 to provide low-speed clock signal for microcontroller U4; the high-speed clock signal of microcontroller U4 uses the clock signal generated by the internal RC oscillator circuit; reset switch S1 is used for microcontroller U4 Send reset signal.
具体实施方式五:结合图10说明本实施方式,本实施方式是对具体实施方式一所述的一种光纤接头盒内环境遥感监测装置进一步限定,在本实施方式中,数据采集器1通过数据采集电路实现;Embodiment 5: This embodiment is described with reference to FIG. 10. This embodiment further defines the remote sensing monitoring device for the environment in an optical fiber splice box described in
所述数据采集电路包括主控芯片U5、传感器接口J3、无线通信接口J4、复位开关S2、电阻R23、晶振Y2和电容C29至电容C31;The data acquisition circuit includes a main control chip U5, a sensor interface J3, a wireless communication interface J4, a reset switch S2, a resistor R23, a crystal oscillator Y2, and capacitors C29 to C31;
主控芯片U5的型号为:STC8C52;The model of the main control chip U5 is: STC8C52;
主控芯片U5的1号引脚与无线通信接口J4的3号引脚相连;The No. 1 pin of the main control chip U5 is connected to the No. 3 pin of the wireless communication interface J4;
主控芯片U5的2号引脚与无线通信接口J4的4号引脚相连;The No. 2 pin of the main control chip U5 is connected to the No. 4 pin of the wireless communication interface J4;
主控芯片U5的3号引脚与无线通信接口J4的5号引脚相连;The No. 3 pin of the main control chip U5 is connected to the No. 5 pin of the wireless communication interface J4;
主控芯片U5的4号引脚与无线通信接口J4的6号引脚相连;The No. 4 pin of the main control chip U5 is connected to the No. 6 pin of the wireless communication interface J4;
主控芯片U5的5号引脚与无线通信接口J4的7号引脚相连;The No. 5 pin of the main control chip U5 is connected to the No. 7 pin of the wireless communication interface J4;
主控芯片U5的6号引脚与无线通信接口J4的8号引脚相连;无线通信接口J4的1号引脚接电源VCC,无线通信接口J4的2号引脚接地;The No. 6 pin of the main control chip U5 is connected to the No. 8 pin of the wireless communication interface J4; the No. 1 pin of the wireless communication interface J4 is connected to the power supply VCC, and the No. 2 pin of the wireless communication interface J4 is grounded;
主控芯片U5的8号引脚为数据采集器1的温湿度信号输出端;The No. 8 pin of the main control chip U5 is the temperature and humidity signal output terminal of the
主控芯片U5的9号引脚同时与电阻R23的一端、复位开关S2的一端以及电容C29的一端相连;电容C29的另一端与复位开关S2的另一端相连,并接电源VCC;电阻R23的另一端接地;The No. 9 pin of the main control chip U5 is connected to one end of the resistor R23, one end of the reset switch S2 and one end of the capacitor C29 at the same time; the other end of the capacitor C29 is connected to the other end of the reset switch S2, and is connected to the power supply VCC; The other end is grounded;
主控芯片U5的17号引脚与传感器接口J3的2号引脚相连,传感器接口J3的1号引脚接电源VCC,传感器接口J3的3号引脚接地;The No. 17 pin of the main control chip U5 is connected to the No. 2 pin of the sensor interface J3, the No. 1 pin of the sensor interface J3 is connected to the power supply VCC, and the No. 3 pin of the sensor interface J3 is grounded;
主控芯片U5的18号引脚同时与晶振Y2的一端以及电容C30的一端相连;The No. 18 pin of the main control chip U5 is connected to one end of the crystal oscillator Y2 and one end of the capacitor C30 at the same time;
主控芯片U5的19号引脚同时与晶振Y2的另一端以及电容C31的一端相连;电容C31的另一端与电容C30的另一端相连,并接地;The No. 19 pin of the main control chip U5 is connected to the other end of the crystal oscillator Y2 and one end of the capacitor C31 at the same time; the other end of the capacitor C31 is connected to the other end of the capacitor C30 and grounded;
主控芯片U5的20号引脚接地。
在本实施方式中,基于主控芯片U5的休眠与唤醒机制,在装置空闲时暂停外部晶振Y2、以及串行口的工作,仅维持外部中断继续工作,使主控芯片U5进入低功耗休眠模式;需要唤醒时,由外部中断低电平触发或由下降沿触发单片机恢复工作,程序从原来停止处继续运行;其优点在于线路简单,测量精度高,误差小,抗干扰性强,体积小,实用性强。In this embodiment, based on the sleep and wake-up mechanism of the main control chip U5, when the device is idle, the external crystal oscillator Y2 and the operation of the serial port are suspended, and only the external interrupt is maintained to continue to work, so that the main control chip U5 enters a low-power sleep mode Mode; when it needs to wake up, it is triggered by an external interrupt low level or triggered by a falling edge to resume work, and the program continues to run from the original stop; its advantages are simple lines, high measurement accuracy, small errors, strong anti-interference, and small size , strong practicability.
具体实施方式六:结合图11说明本实施方式,本实施方式是对具体实施方式五所述的一种光纤接头盒内环境遥感监测装置进一步限定,在本实施方式中,所述窄带物联网模块4的型号为:WH-NB73;其包括第一通信电路和通信天线;Embodiment 6: This embodiment is described with reference to FIG. 11. This embodiment further defines the remote sensing monitoring device for the environment in an optical fiber splice box described in
所述第一通信电路设置在光纤接头盒8内部,天线设置在与光纤接头盒相对应的地面标石9的信息盒内;The first communication circuit is arranged inside the optical
第一通信电路包括芯片U6和超声波模块的接口J5;The first communication circuit includes the chip U6 and the interface J5 of the ultrasonic module;
芯片U6的型号为:NB-IOT;The model of the chip U6 is: NB-IOT;
芯片U6的1号引脚与芯片U6的2号引脚相连,并接电源VCC;The No. 1 pin of the chip U6 is connected to the No. 2 pin of the chip U6, and is connected to the power supply VCC;
芯片U6的3号引脚与芯片U6的4号引脚相连,并接地;The No. 3 pin of the chip U6 is connected to the No. 4 pin of the chip U6 and is grounded;
芯片U6的35号引脚与超声波模块的接口J5的3号引脚相连;The 35th pin of the chip U6 is connected with the 3rd pin of the interface J5 of the ultrasonic module;
芯片U6的36号引脚与超声波模块的接口J5的2号引脚相连;超声波模块的接口J5的1号引脚接地;超声波模块的接口J5的4号引脚接电源VCC。The No. 36 pin of the chip U6 is connected to the No. 2 pin of the interface J5 of the ultrasonic module; the No. 1 pin of the interface J5 of the ultrasonic module is grounded; the No. 4 pin of the interface J5 of the ultrasonic module is connected to the power supply VCC.
具体实施方式七:结合图12说明本实施方式,本实施方式是对具体实施方式五所述的一种光纤接头盒内环境遥感监测装置进一步限定,在本实施方式中,所述4G通信器5包括第二通信电路和通信串口;Embodiment 7: This embodiment is described with reference to FIG. 12. This embodiment further defines the remote sensing monitoring device for the environment in an optical fiber splice box described in
所述第二通信电路设置在光纤接头盒8内部,通信串口设置在与光纤接头盒相对应的地面标石9的信息盒内;The second communication circuit is arranged inside the optical
第二通信电路包括4G芯片U7、电容C32和电容C33;The second communication circuit includes a 4G chip U7, a capacitor C32 and a capacitor C33;
所述4G芯片U7的型号为:USR-LTE-7S4;The model of the 4G chip U7 is: USR-LTE-7S4;
4G芯片U7的3号引脚与通信串口的正极输入端相连;The No. 3 pin of the 4G chip U7 is connected to the positive input terminal of the communication serial port;
4G芯片U7的4号引脚与通信串口的负极输入端相连;The No. 4 pin of the 4G chip U7 is connected to the negative input terminal of the communication serial port;
4G芯片U7的11号引脚与4G芯片U7的12号引脚相连,并接地;The 11th pin of the 4G chip U7 is connected to the 12th pin of the 4G chip U7 and grounded;
4G芯片U7的13号引脚同时与4G芯片U7的14号引脚电容C33的一端以及电容C32的一端相连,并接电源VCC;The No. 13 pin of the 4G chip U7 is connected to one end of the capacitor C33 and one end of the capacitor C32 of the No. 14 pin of the 4G chip U7 at the same time, and is connected to the power supply VCC;
电容C33的另一端与电容C32的另一端相连,并接地。The other end of the capacitor C33 is connected to the other end of the capacitor C32 and grounded.
在本实施方式中,数据远传使用4G通信器5,该4G通信器5是一种可用于多种网络制式的多功能模块,具有高速率,低延时的特点;模块支持串口AT指令、网络AT指令和短信AT指令三种AT指令;本实施方式中使用串口AT指令模式,该模式要求模块工作在透传方式下,通过串口或者网络使用AT指令以及密码对模块进行查询与配置操作。In this embodiment, the
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202123047758.5UCN216283695U (en) | 2021-12-06 | 2021-12-06 | Remote sensing monitoring device for environment in optical fiber connector box |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202123047758.5UCN216283695U (en) | 2021-12-06 | 2021-12-06 | Remote sensing monitoring device for environment in optical fiber connector box |
| Publication Number | Publication Date |
|---|---|
| CN216283695Utrue CN216283695U (en) | 2022-04-12 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202123047758.5UExpired - Fee RelatedCN216283695U (en) | 2021-12-06 | 2021-12-06 | Remote sensing monitoring device for environment in optical fiber connector box |
| Country | Link |
|---|---|
| CN (1) | CN216283695U (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115273647A (en)* | 2022-08-10 | 2022-11-01 | 中国电信股份有限公司 | Intelligent markstone and processing method based on intelligent markstone |
| CN116299611A (en)* | 2023-03-17 | 2023-06-23 | 武汉清源智慧水务科技有限公司 | Floating type electronic boundary pile capable of being charged wirelessly and monitoring method |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN115273647A (en)* | 2022-08-10 | 2022-11-01 | 中国电信股份有限公司 | Intelligent markstone and processing method based on intelligent markstone |
| CN116299611A (en)* | 2023-03-17 | 2023-06-23 | 武汉清源智慧水务科技有限公司 | Floating type electronic boundary pile capable of being charged wirelessly and monitoring method |
| CN116299611B (en)* | 2023-03-17 | 2025-09-05 | 武汉清源智慧水务科技有限公司 | A wireless charging floating electronic boundary stake and monitoring method |
| Publication | Publication Date | Title |
|---|---|---|
| CN216283695U (en) | Remote sensing monitoring device for environment in optical fiber connector box | |
| CN209296831U (en) | A substation monitoring system | |
| CN204178533U (en) | Remote intelligent monitoring instrument | |
| CN203350459U (en) | A quick reporting instrument for ground motion parameters | |
| CN104599445A (en) | Multifunctional broadcast early warning rainfall monitoring system and monitoring method | |
| CN204924455U (en) | Photovoltaic power supply temperature transmitter based on WIA -PA communication | |
| CN111245100A (en) | A single-phase multi-function power monitoring terminal and method for intelligent Internet of Things | |
| CN104330109A (en) | Method of automatically detecting multiple parameters of architectural physical environment | |
| CN201117066Y (en) | Pumping well automatic monitoring and anti-theft system | |
| CN206210063U (en) | A kind of highway High and dangerous slope monitoring system based on a Big Dipper generation | |
| CN102621919B (en) | Intelligent monitoring device and method for mainboard of electronic advertisement player | |
| CN205563332U (en) | Capacitor chamber supervisor system of temperature and humidity with long -range radio communication function | |
| CN209132882U (en) | An intelligent water management system | |
| CN204375116U (en) | Multifunctional broadcast early warning rainfall monitoring system | |
| CN208156870U (en) | A kind of Outdoor Parking detection system based on earth induction | |
| CN208010403U (en) | Coal mine underground environmental safety monitors and personnel location system | |
| CN206638804U (en) | A kind of intelligent electric meter supervising device | |
| CN116753154A (en) | Digital performance monitoring system of water pump | |
| CN214958885U (en) | an internet of things system | |
| CN116073517A (en) | Visual sensor intelligent image monitoring system, method, electronic equipment and medium | |
| CN204269157U (en) | A kind of multiparameter hydrographic information detection system based on wireless self-networking | |
| CN204117343U (en) | Arcola security of operation IDT | |
| CN104197903B (en) | Laser sea tide register and tidal observation method thereof | |
| CN212009004U (en) | A rain gauge outdoor detection device based on weighing and constant volume | |
| CN218885021U (en) | A transformer oil leakage fault on-line monitoring device |
| Date | Code | Title | Description |
|---|---|---|---|
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee | Granted publication date:20220412 | |
| CF01 | Termination of patent right due to non-payment of annual fee |