技术领域technical field
本实用新型涉及一种内视镜系统,尤其涉及一种能够得知插入深度信息与插管旋转角度信息的内视镜系统。The utility model relates to an endoscope system, in particular to an endoscope system capable of knowing the information of the insertion depth and the rotation angle of the cannula.
背景技术Background technique
内视镜是一种可插入人体以诊察器官内部的仪器。一般来说,内视镜通过将插管的一端设置镜头,供医护人员通过插管将镜头导入人体中,而拍摄人体内部的图像。但现有内视镜并没有办法检测插管的插入深度与旋转角度,医护人员难以得知病灶的确切位置,而必须通过其他系统的辅助而可得到上述信息。因此,当病患在下一次诊疗时,医护人员需要花费较多的时间来去寻找上次诊疗所发现的病灶,单就现有内视镜是难以实现精确医疗,且诊断时效性亦不理想。An endoscope is an instrument that can be inserted into the body to examine the inside of an organ. Generally speaking, an endoscope is provided with a lens at one end of the intubation tube, so that the medical staff can introduce the lens into the human body through the intubation tube to capture images of the inside of the human body. However, the existing endoscope cannot detect the insertion depth and rotation angle of the cannula, and it is difficult for medical staff to know the exact location of the lesion, and the above information must be obtained with the assistance of other systems. Therefore, when the patient has the next diagnosis and treatment, the medical staff needs to spend more time to find the lesions found in the previous diagnosis and treatment. The existing endoscopy alone is difficult to achieve precise medical treatment, and the diagnosis timeliness is not ideal.
实用新型内容Utility model content
本实用新型提供一种内视镜系统,其能够得知可挠式插管的插入深度与旋转角度等相关信息,而可实现精确医疗并具有良好的诊断时效性。The utility model provides an endoscope system, which can know the relevant information such as the insertion depth and the rotation angle of the flexible cannula, so as to realize precise medical treatment and have good diagnosis timeliness.
本实用新型提供一种内视镜系统,包括可挠式插管、运动感测模块与成像装置。可挠式插管具有中心轴。运动感测模块包括壳体、多个图案、多个信号传感器与处理器。壳体具有导引孔。这些图案依据中心轴为基准的一轴向间距分布以及一角度分布设置于可挠式插管的表面。这些传感器设置于壳体内且位于导引孔旁。处理器设置于壳体内且电性连接于这些传感器。在可挠式插管经由导引孔对运动感测模块进行相对运动的期间中,这些传感器用以感测这些图案的运动状态而得一运动状态感测结果。处理器根据运动状态感测结果、轴向间距分布与角度分布决定插入深度信息与插管旋转角度信息。成像装置设置于可挠式插管的一端。The utility model provides an endoscope system, which comprises a flexible cannula, a motion sensing module and an imaging device. The flexible cannula has a central axis. The motion sensing module includes a housing, a plurality of patterns, a plurality of signal sensors and a processor. The housing has guide holes. The patterns are arranged on the surface of the flexible cannula according to an axial spacing distribution and an angular distribution based on the central axis. These sensors are arranged in the casing and beside the guide holes. The processor is arranged in the casing and is electrically connected to the sensors. During the relative movement of the motion sensing module by the flexible cannula through the guide hole, the sensors are used to sense the motion states of the patterns to obtain a motion state sensing result. The processor determines the insertion depth information and the cannula rotation angle information according to the motion state sensing result, the axial spacing distribution and the angle distribution. The imaging device is arranged at one end of the flexible cannula.
在本实用新型的一实施例中,上述的这些传感器还包括多个深度传感器以及多个旋转角度传感器。这些深度传感器沿着导引孔的延伸方向设置,这些旋转角度传感器环绕导引孔设置。这些深度传感器用以感测这些图案的沿着中心轴轴向的轴向运动状态,以得到这些图案的一轴向运动感测结果。处理器根据轴向运动感测结果与轴向间距分布以决定插入深度信息。这些旋转角度传感器用以感测这些图案对运动感测模块旋转的旋转运动状态,以得到这些图案的一旋转运动感测结果。处理器根据旋转运动感测结果与角度分布以决定插管旋转角度信息。In an embodiment of the present invention, the above-mentioned sensors further include a plurality of depth sensors and a plurality of rotation angle sensors. The depth sensors are arranged along the extending direction of the guide hole, and the rotation angle sensors are arranged around the guide hole. The depth sensors are used to sense the axial motion states of the patterns along the axial direction of the central axis, so as to obtain an axial motion sensing result of the patterns. The processor determines the insertion depth information according to the axial motion sensing result and the axial spacing distribution. The rotation angle sensors are used to sense the rotational motion states of the patterns to the rotation of the motion sensing module, so as to obtain a rotational motion sensing result of the patterns. The processor determines the rotation angle information of the cannula according to the rotational motion sensing result and the angle distribution.
在本实用新型的一实施例中,上述的运动感测模块还包括多个第一发光件。这些传感器为多个光传感器。各发光件用以发出一感测光束。In an embodiment of the present invention, the above-mentioned motion sensing module further includes a plurality of first light-emitting elements. These sensors are multiple light sensors. Each light-emitting element is used for emitting a sensing beam.
在本实用新型的一实施例中,上述的这些第一发光件分别整合于这些图案而使这些图案为多个发光图案。在可挠式插管经由导引孔对运动感测模块进行相对运动的期间中,这些发光图案由可挠式插管发出这些感测光束,以传递至这些深度传感器与这些旋转角度传感器得到轴向运动感测结果与旋转运动感测结果。In an embodiment of the present invention, the above-mentioned first light-emitting elements are respectively integrated into the patterns so that the patterns are a plurality of light-emitting patterns. During the relative movement of the motion sensing module by the flexible cannula through the guide hole, the light-emitting patterns are emitted by the flexible cannula to transmit the sensing beams to the axes of the depth sensors and the rotation angle sensors. Motion sensing results and rotational motion sensing results.
在本实用新型的一实施例中,上述的这些第一发光件分别整合于这些光传感器。这些图案为多个反射图案。在可挠式插管经由导引孔对运动感测模块进行相对运动的期间中,这些第一发光件由这些光传感器的所在处发出这些感测光束至这些反射图案。而这些反射图案反射这些感测光束,反射后的这些感测光束传递至这些深度传感器与这些旋转角度传感器得到轴向运动感测结果与旋转运动感测结果。In an embodiment of the present invention, the above-mentioned first light-emitting elements are respectively integrated with the light sensors. These patterns are multiple reflection patterns. During the relative movement of the motion sensing module by the flexible cannula through the guide hole, the first light-emitting elements emit the sensing beams to the reflection patterns from the locations of the light sensors. The reflection patterns reflect the sensing beams, and the reflected sensing beams are transmitted to the depth sensors and the rotation angle sensors to obtain axial motion sensing results and rotational motion sensing results.
在本实用新型的一实施例中,上述的这些图案为多个磁性图案,这些传感器为多个感应线圈,且这些深度传感器为多个深度感应线圈,这些旋转角度传感器为多个旋转角度感应线圈。在可挠式插管经由导引孔对运动感测模块进行相对运动的期间中,这些深度感应线圈与这些旋转角度传感器感测这些磁性图案的一磁场变化而感应出至少一感应电流,且这些深度传感器与这些旋转角度传感器根据至少一感应电流而得到轴向运动感测结果与旋转运动感测结果。In an embodiment of the present invention, the above-mentioned patterns are a plurality of magnetic patterns, the sensors are a plurality of induction coils, the depth sensors are a plurality of depth induction coils, and the rotation angle sensors are a plurality of rotation angle induction coils . During the relative movement of the motion sensing module by the flexible cannula through the guide hole, the depth sensing coils and the rotation angle sensors sense a change in a magnetic field of the magnetic patterns to induce at least one induced current, and the The depth sensor and the rotation angle sensors obtain an axial motion sensing result and a rotational motion sensing result according to at least one induced current.
在本实用新型的一实施例中,上述的这些图案为多个磁性图案。这些传感器为多个霍尔传感器,且这些深度传感器为多个深度霍尔传感器,这些旋转角度传感器为多个旋转角度霍尔传感器。在可挠式插管经由导引孔对运动感测模块进行相对运动的期间中,这些深度霍尔传感器与这些旋转角度霍尔传感器感测这些磁性图案的一磁场变化而感应出至少一感应电压,且这些深度霍尔传感器与这些旋转角度霍尔传感器根据至少一感应电压而得到轴向运动感测结果与旋转运动感测结果。In an embodiment of the present invention, the above-mentioned patterns are a plurality of magnetic patterns. The sensors are Hall sensors, the depth sensors are depth Hall sensors, and the rotation angle sensors are rotation angle Hall sensors. During the relative movement of the motion sensing module by the flexible cannula through the guide hole, the depth Hall sensors and the rotation angle Hall sensors sense a change in a magnetic field of the magnetic patterns and induce at least an induced voltage , and the depth Hall sensors and the rotation angle Hall sensors obtain axial motion sensing results and rotational motion sensing results according to at least one induced voltage.
在本实用新型的一实施例中,上述的运动感测模块还包括第一角度传感器,设置于壳体内。第一角度传感器与处理器电性连接。第一角度传感器用以感测运动感测模块的第一角度信息,并将第一角度信息传递至处理器。In an embodiment of the present invention, the above-mentioned motion sensing module further includes a first angle sensor disposed in the casing. The first angle sensor is electrically connected to the processor. The first angle sensor is used for sensing the first angle information of the motion sensing module, and transmitting the first angle information to the processor.
在本实用新型的一实施例中,上述的运动感测模块还包括设置于壳体内的第一电路载板与第二电路载板。第一电路载板与这些深度传感器电性连接,且第二电路载板与这些旋转角度传感器电性连接。In an embodiment of the present invention, the above-mentioned motion sensing module further includes a first circuit carrier board and a second circuit carrier board disposed in the casing. The first circuit board is electrically connected with the depth sensors, and the second circuit board is electrically connected with the rotation angle sensors.
在本实用新型的一实施例中,上述的运动感测模块还包括计时器。计时器与处理器电性连接并用以传输一时间信息至处理器。处理器根据时间信息与插入深度信息以决定可挠式插管的速度信息。处理器根据时间信息与插管旋转角度信息以决定可挠式插管的角速度信息。In an embodiment of the present invention, the above-mentioned motion sensing module further includes a timer. The timer is electrically connected with the processor and used for transmitting a time information to the processor. The processor determines the speed information of the flexible cannula according to the time information and the insertion depth information. The processor determines the angular velocity information of the flexible cannula according to the time information and the cannula rotation angle information.
在本实用新型的一实施例中,上述的这些传感器的空间频率不同于这些图案的空间频率。In an embodiment of the present invention, the spatial frequencies of the above-mentioned sensors are different from the spatial frequencies of the patterns.
在本实用新型的一实施例中,上述的轴向间距分布为等间距分布。In an embodiment of the present invention, the above-mentioned axial spacing distribution is equal spacing distribution.
在本实用新型的一实施例中,上述的角度分布为等角度分布。In an embodiment of the present invention, the above-mentioned angular distribution is an equal angular distribution.
在本实用新型的一实施例中,上述的内视镜系统还包括第二角度传感器。第二角度传感器设置于可挠式插管的该端且位于成像装置旁。第二角度传感器与处理器电性连接,且用以感测可挠式插管的该端的第二角度信息。In an embodiment of the present invention, the above-mentioned endoscope system further includes a second angle sensor. The second angle sensor is disposed at the end of the flexible cannula and next to the imaging device. The second angle sensor is electrically connected to the processor and used for sensing the second angle information of the end of the flexible cannula.
在本实用新型的一实施例中,上述的内视镜系统还包括转向摇杆。转向摇杆设置于可挠式插管的另一端且与可挠式插管耦接。转向摇杆用以控制可挠式插管中的一末稍段的角度。In an embodiment of the present invention, the above-mentioned endoscope system further includes a steering rocker. The steering rocker is disposed at the other end of the flexible cannula and coupled with the flexible cannula. The steering rocker is used to control the angle of a distal section in the flexible cannula.
在本实用新型的一实施例中,上述的内视镜系统还包括第三角度传感器。第三角度传感器设置于转向摇杆。第三角度传感器与处理器电性连接,且用以感测转向摇杆的第三角度信息。In an embodiment of the present invention, the above-mentioned endoscope system further includes a third angle sensor. The third angle sensor is arranged on the steering rocker. The third angle sensor is electrically connected to the processor and used for sensing the third angle information of the steering stick.
在本实用新型的一实施例中,上述的成像装置还包括成像镜头、第二发光件与图像传感器。成像镜头与图像传感器光耦接,且第二发光件用以发出照明光束以照射待测物。待测物反射照明光束的至少一部分至成像镜头,而使图像传感器感测到待测物的图像。In an embodiment of the present invention, the above-mentioned imaging device further includes an imaging lens, a second light-emitting element, and an image sensor. The imaging lens is optically coupled to the image sensor, and the second light-emitting element is used for emitting an illumination beam to illuminate the object to be tested. The object to be measured reflects at least a part of the illumination beam to the imaging lens, so that the image sensor senses the image of the object to be measured.
基于上述,在本实用新型实施例的内视镜系统中,运动感测模块的多个图案以轴向间距分布与一角度分布设于可挠式插管的表面,多个传感器设置于壳体内且位于导引孔旁。因此,这些图案指定的间距或角度关系,以作为位置或运动状态描述的量化基础。当可挠式插管经由导引孔对运动感测模块进行相对运动时,这些传感器可感测这些图案的运动状态而得运动状态感测结果。处理器再根据运动状态感测结果、轴向间距分布与一角度分布来决定插入深度信息与插管旋转角度信息。医护人员可以从插入深度信息与插管旋转角度信息得知病灶的位置,因此内视镜系统可实现精确医疗并具有良好的诊断时效性。Based on the above, in the endoscope system of the embodiment of the present invention, a plurality of patterns of the motion sensing module are arranged on the surface of the flexible cannula with an axial spacing distribution and an angular distribution, and a plurality of sensors are arranged in the casing and beside the pilot hole. Thus, these patterns specify spacing or angular relationships that serve as a quantitative basis for the description of position or motion states. When the flexible cannula moves relative to the motion sensing module through the guide hole, these sensors can sense the motion states of these patterns to obtain motion state sensing results. The processor then determines the insertion depth information and the cannula rotation angle information according to the motion state sensing result, the axial distance distribution and the angle distribution. The medical staff can know the position of the lesion from the information of the insertion depth and the rotation angle of the cannula, so the endoscopic system can realize precise medical treatment and have good diagnosis timeliness.
为让本实用新型的上述特征和优点能更明显易懂,下文特举实施例,并配合附图作详细说明如下。In order to make the above-mentioned features and advantages of the present utility model more obvious and easy to understand, the following examples are given and described in detail in conjunction with the accompanying drawings as follows.
附图说明Description of drawings
图1A为本实用新型的一实施例的内视镜系统应用于人体的应用示意图;1A is a schematic diagram of the application of an endoscope system to a human body according to an embodiment of the present invention;
图1B为图1A的可挠式插管与运动感测模块的外观示意图;FIG. 1B is a schematic external view of the flexible cannula and the motion sensing module of FIG. 1A ;
图1C为图1A中的内视镜系统的局部剖面示意图;1C is a partial cross-sectional schematic diagram of the endoscope system in FIG. 1A;
图2A是图1A至图1C的可挠式插管在进行轴向运动的放大示意图与对应的深度传感器所测量到的光强度电信号时变图;2A is an enlarged schematic view of the flexible cannula of FIGS. 1A to 1C during axial movement and a time-varying diagram of the light intensity electrical signal measured by the corresponding depth sensor;
图2B是图1A至图1C的可挠式插管在进行旋转运动的放大示意图与对应的旋转角度传感器所测量到的光强度电信号时变图;2B is an enlarged schematic view of the flexible cannula of FIGS. 1A to 1C during a rotational motion and a time-varying diagram of the light intensity electrical signal measured by a corresponding rotational angle sensor;
图2C是多个深度传感器与多个图案之间的配置关系与深度传感器所感测到的光强度电信号示意图;2C is a schematic diagram of a configuration relationship between a plurality of depth sensors and a plurality of patterns and an electrical signal of light intensity sensed by the depth sensor;
图3A是本实用新型另一实施例的内视镜系统的局部剖面示意图;3A is a partial cross-sectional schematic diagram of an endoscope system according to another embodiment of the present invention;
图3B是图3A的可挠式插管在进行轴向运动的放大示意图与对应的深度传感器所测量到的电信号时变图;3B is an enlarged schematic view of the flexible cannula of FIG. 3A during axial movement and a time-varying diagram of an electrical signal measured by a corresponding depth sensor;
图3C是图3A的可挠式插管在进行旋转运动的放大示意图与对应的旋转角度传感器所测量到的电信号时变图;FIG. 3C is an enlarged schematic diagram of the flexible cannula of FIG. 3A performing a rotational motion and a time-varying diagram of an electrical signal measured by a corresponding rotational angle sensor;
图4A是本实用新型又一实施例的内视镜系统的局部剖面示意图;4A is a partial cross-sectional schematic diagram of an endoscope system according to another embodiment of the present invention;
图4B是图4A的可挠式插管在进行轴向运动的放大示意图与对应的深度传感器所测量到的电信号时变图;4B is an enlarged schematic view of the flexible cannula of FIG. 4A during axial movement and a time-varying diagram of an electrical signal measured by a corresponding depth sensor;
图4C是图4A的可挠式插管与对应的旋转角度传感器在进行旋转运动的放大示意图与对应的旋转角度传感器所测量到的电信号时变图。FIG. 4C is an enlarged schematic view of the flexible cannula and the corresponding rotation angle sensor in FIG. 4A during rotational motion and a time-varying diagram of the electrical signal measured by the corresponding rotation angle sensor.
附图标记说明Description of reference numerals
100、100a、100b:内视镜系统100, 100a, 100b: Endoscopic systems
110:可挠式插管110: Flexible cannula
120、120a、120b:运动感测模块120, 120a, 120b: motion sensing modules
122:壳体122: Shell
124、1241、1242:图案124, 1241, 1242: Pattern
124a、1241a、1242a:反射图案124a, 1241a, 1242a: reflection patterns
124b、1241b、1242b:磁性图案124b, 1241b, 1242b: Magnetic pattern
126:第一发光件126: The first light-emitting element
128、128b:传感器128, 128b: Sensors
1281、1281b、12811~12819:深度传感器1281, 1281b, 12811 to 12819: Depth sensor
1282、1282b:旋转角度传感器1282, 1282b: Rotation angle sensor
129:处理器129: Processor
130:成像装置130: Imaging device
132:成像镜头132: Imaging Lens
134:第二发光件134: Second light-emitting element
136:图像传感器136: Image Sensor
140:转向摇杆140: Steering rocker
a、b、c:时刻a, b, c: time
AG1、AG2、AG3:第一、第二、第三角度传感器AG1, AG2, AG3: first, second, and third angle sensors
AS:容置空间AS: accommodation space
BP:咬合部BP: Occlusal
BS:弯曲段BS: Bend segment
C:感应线圈C: induction coil
C1:深度感应线圈C1: Depth induction coil
C2:旋转角度感应线圈C2: Rotation angle induction coil
CA:中心轴CA: Center axis
CB1:第一电路载板CB1: first circuit carrier board
CB2:第二电路载板CB2: Second circuit carrier board
D:间距D: Spacing
DS:末梢段DS: distal segment
E1、E2:可挠式插管的两端E1, E2: Both ends of the flexible cannula
GH:导引孔GH: pilot hole
HB:人体HB: human body
I:感应电流I: Induced current
IB:照明光束IB: Lighting Beam
R:光收发感测模块R: Optical transceiver sensing module
S:表面S: surface
S1~S5:信号S1~S5: Signal
SB:感测光束SB: Sensing beam
SB’:反射后的感测光束SB’: Reflected sensing beam
T:计时器T: timer
OB:照明光束OB: Lighting Beam
θ:夹角θ: included angle
具体实施方式Detailed ways
图1A为本实用新型的一实施例的内视镜系统应用于人体的应用示意图。图1B为图1A 的可挠式插管与运动感测模块的外观示意图。图1C为图1A中的内视镜系统的局部剖面示意图。FIG. 1A is a schematic diagram of an application of an endoscope system to a human body according to an embodiment of the present invention. FIG. 1B is a schematic external view of the flexible cannula and the motion sensing module of FIG. 1A . FIG. 1C is a schematic partial cross-sectional view of the endoscope system in FIG. 1A .
请参照图1A至图1C,于本实施例中,内视镜系统100为通过插管进入人体HB以观察人体HB内部状况的医疗仪器。详细来说,内视镜系统100主要包括可挠式插管110、运动感测模块120、成像装置130与转向摇杆140。于以下的段落中会详细地说明上述元件与元件之间的配置方式。Referring to FIGS. 1A to 1C , in this embodiment, the
可挠式插管110由可挠式材料形成且具有可挠性。如图1B、图1C所示,可挠式插管110 具有中心轴CA,本实用新型实施例中所指的轴向(axial orientation)指可挠式插管110的沿着中心轴CA的延伸方向。The
运动感测模块120可通过光强度或磁场变化而感测可挠式插管110的运动状态的模块。为求方便说明,于以下的段落中会以先以光学式运动感测模块为例作为说明。于本实施例中,运动感测模块120例如是光学式运动感测模块,其包括壳体122、多个图案124、多个第一发光件126、多个传感器128、处理器129、第一电路载板CB1、第二电路载板CB2与计时器T。于以下的段落中会详细地说明运动感测模块120内部元件与元件之间的配置。The
壳体122内部具有容置空间AS,其用以容置运动感测模块120中的各元件,并提供保护功能。壳体122具有对外连通的导引孔GH。可挠式插管110可经由导引孔GH往人体HB内部以拍摄其内部图像。Inside the
这些图案124依据以中心轴CA为基准的轴向间距分布与一角度分布设置于可挠式插管 110的表面。具体来说,所谓“依据轴向间距分布设置于可挠式插管110的表面S”的意思是这些图案124沿着中心轴CA的轴向并以特定间距分布来设置于可挠式插管110的表面S,其中特定间距分布例如是等间距分布,也就是说,在平行于中心轴CA轴向的方向上,任二图案 124的间距D彼此相等,但本实用新型并不以此为限。另一方面,所谓的“依据一角度分布设置于可挠式插管110的表面S”意思是这些图案124以中心轴CA为中心进行一特定角度分布来设置于可挠式插管122的表面,其中特定角度分布例如是等角度分布,也就是说,任二图案124对于中心轴CA所夹出的夹角彼此相等,但本实用新型并不以此为限。这些图案124 可选择性地设置于可挠式插管110的外表面或内表面,本实用新型并不以此为限。因此,这些图案124彼此之间具有指定的间距或角度关系,以作为位置或运动状态描述的量化基础。The
这些第一发光件126在功能上为可发光的光学件(optical member),其可例如是受电控而发光的发光元件或不受电控而可自发光的荧光件,其中发光元件例如是发光二极管(Light Emitting Diode,LED)、有机发光二极管(Organic Light Emitting Diode,OLED)或其他合适且可发光的电控发光元件,而荧光件包括荧光材料,本实用新型并不以此为限。第一发光件126所发出的光束称为感测光束SB,这些图案124的运动状态可通过感测光束SB来感测。于本实施例中,这些第一发光件126例如分别整合于这些图案124中,因此各图案124亦可被视为是一种发光图案。These first light-emitting
这些传感器128用以感测这些图案124的运动状态,从而得到关于可挠式插管110的运动状态感测结果。于本实施例中,这些传感器128例如是可将光信号转换成电信号的光传感器,且其种类例如是光电二极管(Photodiode)。这些传感器128设置于壳体122内且位于导引孔GH旁。并且,依据测量不同的运动状态,这些传感器128可更分为多个深度传感器1281 与多个旋转角度传感器1282。这些深度传感器1281沿着导引孔GH的延伸方向设置且位于导引孔GH旁,这些旋转角度传感器1282则是环绕导引孔GH设置且位于导引孔GH旁。于下方的段落中会再详细说明如何感测图案124的运动状态。The
处理器129例如是可对各种电信号进行运算、处理或进行分析功能的电子元件,其例如是计算器、微处理器(Micro Controller Unit,MCU)、中央处理单元(CentralProcessing Unit, CPU),或是其他可程序化的控制器(Microprocessor)、数字信号处理器(Digital Signal Processor,DSP)、可程序化控制器、特殊应用集成电路(ApplicationSpecific Integrated Circuits,ASIC)、可程序化逻辑装置(Programmable LogicDevice,PLD)或其他类似装置。处理器129设置于壳体122内,且电性连接这些传感器128,并用以接收来自这些传感器128的电信号以对其结果进行分析。The
第一、第二电路载板CB1、CB2设置于壳体122内。第一电路载板CB1设置于邻近导引孔GH的开口处且导引孔GH贯穿第一电路载板CB1。第二电路载板CB2设置于邻近导引孔 GH的中间部分且导引孔GH贯穿第二电路载板CB2。第一、第二电路载板CB1、CB2彼此互为垂直摆设。这些深度传感器1281设置于第一电路载板CB1上且与第一电路载板CB1电性连接,而这些旋转角度传感器1282设置于第二电路载板CB2上且与第二电路载板CB2电性连接。处理器129与第一、第二电路载板CB1、CB2电性连接,并通过第一、第二电路载板 CB1、CB2接收来自这些深度传感器1281与这些旋转角度传感器1282的电信号。The first and second circuit boards CB1 and CB2 are disposed in the
计时器T为用以测量时间的电子元件,其与处理器129电性连接。The timer T is an electronic component for measuring time, and is electrically connected to the
成像装置130为用以获取人体HB内部的图像的光电装置,其包括成像镜头132、第二发光件134与图像传感器136。成像装置130设置于可挠式插管110的一端E1(例如是末端)。成像镜头132例如是由一或多个具有屈光度的镜片所构成的镜头,其适于接收图像并与图像传感器136光耦接。第二发光件134的说明类似于第一发光件126,于此不在赘述,其用以发出照明光束IB,用以照射人体HB内部的待测物OB(例如是器官)。The
转向摇杆140用以控制可挠式插管110中运动的机构件。转向摇杆140设置于可挠式插管110的另一端E2(即不同于成像装置130的设置端E1)且与可挠式插管110耦接。通过转向摇杆140控制末梢段DS的角度,而可改变邻近末梢段BS的成像装置130的位置,进一步探测不同器官的图像。The steering
在以下的段落中会详细地说明内视镜系统100的运作方式与运动感测模块120中的如何具体感测图案124的运动状态感测结果。In the following paragraphs, the operation of the
首先,先说明内视镜系统100的运作方式。First, the operation of the
请参照图1A,病患可咬合由壳体122下方延伸出的咬合部BP以避免使用者破坏可挠式插管110,并使运动感测模块120固定于使用者的嘴巴上方。可挠式插管110可经由导引孔 GH导入于人体HB。当可挠式插管110进入人体HB后,第二发光件134则发出照明光束IB照射人体HB内部的待测物OB(例如是器官)。待测物OB反射至少一部分的照明光束IB至成像镜头132,而使图像传感器136感测图像。图像传感器136可将图像传递至后端的显示装置(未示出),以供医护人员观测人体HB内部的动态图像。而在进入人体HB的过程中,医护人员更可通过转向摇杆140直接控制可挠式插管110弯曲段BS的角度,又因可挠式插管110的末梢段DS与弯曲段BS连接,因此转向摇杆140可间接控制末梢段DS的角度,成像装置130 可随着末梢段DS的角度变化而观测人体HB内不同的器官。Referring to FIG. 1A , the patient can engage the bite portion BP extending from the bottom of the
根据上述的说明,医护人员会将可挠式插管110经由导引孔GH往人体内部延伸,并且可通过转向摇杆140控制末梢段角度来观测人体内部不同的器官。上述的做法导致了可挠式插管110对运动感测模块120进行相对运动,其中相对运动包括可挠式插管110沿着中心轴 CA轴向的轴向运动与可挠式插管110对运动感测模块120所做的旋转运动。也就是说,这些图案124的运动感测结果包括了轴向运动感测结果与旋转运动感测结果。在以下的段落中搭配图2A至图2C而会分段说明运动感测模块120如何感测轴向运动与旋转运动。According to the above description, the medical staff will extend the
图2A是图1A至图1C的可挠式插管在进行轴向运动的放大示意图与对应的深度传感器所测量到的光强度信号时变图。图2B是图1A至图1C的可挠式插管在进行旋转运动的放大示意图与对应的旋转角度传感器所测量到的光强度信号时变图。图2C是多个深度传感器与多个图案之间的配置关系与深度传感器所感测到的信号示意图。2A is an enlarged schematic view of the flexible cannula of FIGS. 1A to 1C during axial movement and a time-varying diagram of a light intensity signal measured by a corresponding depth sensor. FIG. 2B is an enlarged schematic view of the flexible cannula of FIGS. 1A to 1C during a rotational motion and a time-varying diagram of a light intensity signal measured by a corresponding rotational angle sensor. FIG. 2C is a schematic diagram of a configuration relationship between a plurality of depth sensors and a plurality of patterns and signals sensed by the depth sensors.
针对感测轴向运动方式,先以单一个深度传感器1281的观点来看。请参照图2A,假设这些图案124所发出的感测光束SB总合而成一总合感测光束,并假设深度传感器1281的位置一开始对应于图案1241(于此处标为1241,为发光图案)的中央处,此时深度传感器1281 感测到最大的总合感测光束光强度,如图2A中的a时刻所示。随着可挠式插管110往人体 HB内部的方向行进,并假设深度传感器1281的位置对应到二图案1241、1242的中央处,深度传感器1281感测到最小的总合感测光束光强度,如图2A中的b时刻所示。接着,而随着可挠式插管110更往人体HB内部的方向行进,并假设深度传感器1281的位置对应到下一个图案1242的中央处,深度传感器1281又再次地感测到最大的总合感测光束光强度,如图2A中的c时刻所示。因此,对于单一个深度传感器1281来说,只要感测到两次最大的总合感测光束光强度,即可判定可挠式插管110往沿着轴向方向移动一间距D的大小。但是,其它的深度传感器1281则不一定是会感测到两次最大的总合感测光束光强度,因此后端的处理器129 会根据所有的深度传感器1281所测量出的信号结果后进行运算,以得到插入深度信息。Regarding the method of sensing the axial movement, let us first consider the point of view of a
针对感测旋转运动方式,请参照图2B,类似于图2A的说明,假设这些图案124所发出的感测光束SB总合而成一总合感测光束,并假设旋转角度传感器1282的位置一开始对应于图案1241(于此处标为1241,为发光图案)的中央处,此时旋转角度传感器1282感测到最大的总合感测光束光强度,如图2B中的a时刻所示。随着可挠式插管110例如是对运动感测模块120进行顺时针旋转运动,以使旋转角度传感器1282的位置对应的二图案1241、1242的中央处时,旋转角度传感器1282感测到最小的总合感测光束光强度,如图2B中的b时刻所示。接着,随着可挠式插管110例如是再对运动感测模块120进行顺时针旋转运动,以使旋转角度传感器1282的位置对应的图案1242的中央处时,旋转角度传感器1282又再次地感测到最大的总合感测光束光强度,如图2B中的c时刻所示。因此,对于单一个旋转角度传感器1282来说,只要感测到两次最大的总合感测光束光强度,即可判定可挠式插管110往顺时针方向转动角度θ的大小。但是,其它的旋转角度传感器1282则不一定是会感测到两次最大的总合感测光束光强度,因此后端的处理器129会根据所有的旋转角度传感器1282所测量出的信号结果后进行运算,以得到插管旋转角度信息。For the method of sensing rotational motion, please refer to FIG. 2B . Similar to the description of FIG. 2A , it is assumed that the sensing beams SB emitted by the
除了考量上述的因素之外,处理器129更会考虑这些传感器128所测量信号相位因素,进而得到更为精确的插入深度信息与插管旋转角度信息。请参照图1C,这些传感器128的空间频率与这些图案122的空间频率彼此不同。也就是说,对于这些深度传感器1281来说,二深度传感器1281之间的间距不同于沿着中心轴CA轴向方向设置的二图案124之间的间距。对于这些旋转角度传感器1282来说,二旋转角度传感器1282对于中心轴CA的夹角不同于二图案124对于中心轴CA的夹角。请参照图2C,以多个深度传感器1281(例如是9个,但不以此为限)与多个图案124(例如是10个,但不以此为限)作为说明的范例,于此附图可看出二深度传感器1281之间的间距不同于二图案124之间的间距。基于以上的配置,每一个深度传感器12811~12819所测量到的光强度信号相位或多或少有些不同(于此处仅以示例示出深度传感器12811~12815所感测到的信号S1~S5)。因此,处理器129还可依据信号相位不同对这些深度传感器12811~12819产生深度编码的功能,进而得到更为精确的插入深度信息。类似于图2C的做法,处理器129也还可依据信号相位不同对这些旋转角度传感器1282产生角度编码的功能,进而得到更为精确的插入旋转角度信息。In addition to considering the above factors, the
在计算出插入深度信息与插管旋转角度信息后,处理器129可整合上述信息以得知病灶的位置,并注记于图像信息内,以供医护人员参照。并且,处理器129更可通过上述的图像及相关信息输出至3D模型制造机(未示出),以供3D模型制造机建立人体HB内部模型,或者是作为进阶图像处理的基础。After calculating the insertion depth information and the cannula rotation angle information, the
应注意的是,上述的计算方式只是举例说明,在其它的实施例中亦可依据同样的参数(即轴向间距分布、角度分布、运动状态感测结果)并利用不同计算方式以得知插入深度信息与插管旋转角度信息,本实用新型并不以此为限。It should be noted that the above calculation methods are only examples, and in other embodiments, the same parameters (ie, axial spacing distribution, angular distribution, and motion state sensing results) can be used to obtain the insertion value by using different calculation methods. The depth information and the cannula rotation angle information are not limited to this in the present invention.
承上述,在本实施例的内视镜系统100中,运动感测模块120的多个图案124以轴向间距分布与一角度分布设于可挠式插管110的表面S,多个传感器128设置于壳体122内且位于导引孔GH旁。当可挠式插管110经由导引孔GH对运动感测模块120进行相对运动时,这些传感器128可感测这些图案124的运动状态而得运动状态感测结果。处理器129再根据运动状态感测结果、轴向间距分布与一角度分布来决定插入深度信息与插管旋转角度信息。医护人员可以从插入深度信息与插管旋转角度信息得知病灶的位置。当病患在下一次进行诊疗时,医护人员可根据前一次的测量结果而快速地找到病灶,因此内视镜系统100可实现精确医疗。Based on the above, in the
进一步来说,处理器129更可依据计时器T所得到的一时间信息,并分别根据插入深度信息与插管旋转角度信息以分别决定可挠式插管110的速度信息与角速度信息。Further, the
此外,在本实施例中,内视镜系统100还可选择性地包括第一至第三角度传感器AG1~AG3。于以下的段落中会详细地说明上述第一至第三角度传感器AG1~AG3设置位置与对应功能。In addition, in this embodiment, the
如图1C所示,第一角度传感器AG1设置于壳体122内且与处理器129电性连接,其中第一角度传感器AG1用以感测运动感测模块120本身的第一角度信息,并将第一角度信息传递至处理器129。因此,处理器129可根据第一角度信息以得知运动感测模块120水平角度、垂直角度、倾斜角度或震动状态,并进一步推算可挠式插管110与病患位置。并且,处理器129可依据第一角度信息并配合计时器T的时间信息,可进一步得知诊疗过程中的运动状态的改变情形。As shown in FIG. 1C , the first angle sensor AG1 is disposed in the
如图1A所示,第二角度传感器AG2设置于可挠式插管110的一端E1且位于成像装置130旁。第二角度传感器AG2与处理器129电性连接,且用以感测可挠式插管110的一端E1 的第二角度信息。由于第二角度传感器AG2更靠近成像装置130,因此其感测到的第二角度信息可使运动感测模块120的感测精度进一步提升。As shown in FIG. 1A , the second angle sensor AG2 is disposed at one end E1 of the
如图1A所示,第三角度传感器AG3设置于转向摇杆140。第三角度传感器与140与处理器129电性连接,且用以感测转向摇杆140的第三角度信息,以简易地感测可挠式插管110的旋转角度。As shown in FIG. 1A , the third angle sensor AG3 is disposed on the
在此必须说明的是,下述实施例沿用前述实施例的部分内容,省略了相同技术内容的说明,关于相同的元件名称可以参考前述实施例的部分内容,下述实施例不再重复赘述。It must be noted here that the following embodiments use parts of the previous embodiments, omitting the description of the same technical content, and the same component names can refer to part of the previous embodiments, which will not be repeated in the following embodiments.
图3A是本实用新型另一实施例的内视镜系统的局部剖面示意图。图3B是图3A的可挠式插管在进行轴向运动的放大示意图与对应的深度传感器所测量到的电信号时变图。图3C是图3A的可挠式插管在进行旋转运动的放大示意图与对应的旋转角度传感器所测量到的电信号时变图。3A is a partial cross-sectional schematic diagram of an endoscope system according to another embodiment of the present invention. FIG. 3B is an enlarged schematic view of the flexible cannula of FIG. 3A during axial movement and a time-varying diagram of an electrical signal measured by a corresponding depth sensor. FIG. 3C is an enlarged schematic view of the flexible cannula of FIG. 3A during rotational movement and a time-varying diagram of an electrical signal measured by a corresponding rotational angle sensor.
请参照图3A至图3C,图3A的内视镜系统100a大致类似于图1A至图1C的内视镜系统100,其主要差异在于:内视镜系统100a中的运动感测模块120a为反射式光学运动感测模块。详细来说,这些图案为具有反射功能的反射图案124a,而这些第一发光件(未示出于图3A) 则分别整合于这些传感器128(光传感器)。因此,各第一发光件与对应的传感器128构成一光收发感测模块R。Please refer to FIGS. 3A to 3C , the
请参照图3B与图3C,本实施例的内视镜系统100a的光学原理与内视镜系统100的光学原理稍微不同,其差异在于:在可挠式插管110经由导引孔GH对运动感测模块120进行相对运动的期间中,这些第一发光件126分别由这些光传感器128的所在处发出多个感测光束 SB(简要示意为一个),而被反射图案124a反射后的感测光束SB’传递至这些深度传感器1281 与这些旋转角度传感器1282以得到轴向运动感测结果与旋转运动感测结果。测量的说明类似于图2A至图2C的相关说明,于此不再赘述。3B and FIG. 3C , the optical principle of the
图4A是本实用新型又一实施例的内视镜系统的局部剖面示意图。图4B是图4A的可挠式插管在进行轴向运动的放大示意图与对应的深度传感器所测量到的电信号时变图。图4C是图4A的可挠式插管与对应的旋转角度传感器在进行旋转运动的放大示意图与对应的旋转角度传感器所测量到的电信号时变图。4A is a partial cross-sectional schematic diagram of an endoscope system according to another embodiment of the present invention. FIG. 4B is an enlarged schematic view of the flexible cannula of FIG. 4A during axial movement and a time-varying diagram of an electrical signal measured by a corresponding depth sensor. FIG. 4C is an enlarged schematic view of the flexible cannula and the corresponding rotation angle sensor in FIG. 4A during rotational motion and a time-varying diagram of the electrical signal measured by the corresponding rotation angle sensor.
图4A的内视镜系统100b大致类似于图1A至图1C的内视镜系统100,其主要差异在于:内视镜系统100b中的运动感测模块120b为磁场运动感测模块。详细来说,这些图案为多个磁性图案124b,而这些传感器128b为多个感应线圈C,即这些深度传感器1281b为多个深度感应线圈C1,而这些旋转角度传感器1282b为多个旋转角度感应线圈C2。磁性图案124b的磁力线画两条为示例,但不以此为限。The
请参照图4B与图4C,本实施例的内视镜系统100b的测量原理与内视镜系统100的测量原理稍微不同,其差异在于:在可挠式插管110经由导引孔GH对运动感测模块120进行相对运动的期间中,这些磁性图案124b因相对运动所产生的磁场变化导致这些深度感应线圈 1281b与这些旋转角度传感器1282b感应出至少一感应电流I,而据此得到轴向运动感测结果与旋转运动感测结果。换言之,运动感测模块120b的信号来源方式是由磁场变化而转换的电信号,而运动感测模块120的信号来源方式是由感测光束SB转换的电信号。运动感测模块 120b的测量方式大致上类似于图2A与图2B的说明,于此不再赘述。4B and FIG. 4C , the measurement principle of the
在其它未示出的实施例中,图4A的运动感测模块120b中的传感器128b也可以更换成霍尔传感器(Hall sensor),即这些深度传感器1281b为多个深度霍尔传感器,而这些旋转角度传感器1282b为多个旋转角度霍尔传感器。因此,这些深度传感器1281b与这些旋转角度传感器1282b可感测这些磁性图案124b的磁场变化而感应出至少一感应电压,而据此得到轴向运动感测结果与旋转运动感测结果。In other not-shown embodiments, the
综上所述,在本实用新型实施例的内视镜系统中,运动感测模块的多个图案以轴向间距分布与一角度分布设于可挠式插管的表面,多个传感器设置于壳体内且位于导引孔旁。因此,这些图案指定的间距或角度关系,以作为位置或运动状态描述的量化基础。当可挠式插管经由导引孔对运动感测模块进行相对运动时,这些传感器可感测这些图案的运动状态而得运动状态感测结果。这些传感器可通过这些图案的光学变化或磁场变化而感测到这些图案的运动状态。并且,这些传感器依据感测功能的不同更分为多个深度传感器与多个旋转角度传感器。这些深度传感器沿着导引孔的延伸方向而设置。这些旋转角度传感器环绕导引孔而设置。当可挠式插管对运动感测模块进行相对运动时,这些深度传感器可用来感测图案的轴向运动状态,来决定可挠式插管进入人体的插入深度信息。另一方面,这些旋转角度传感器则可用来感测这些图案的旋转运动状态,来决定可挠式插管进入人体的插管旋转角度信息。当病患在下一次进行诊疗时,医护人员可根据前一次的测量结果而快速地找到病灶,因此,医疗人员可通过本实用新型实施例的内视镜系统以实现精确医疗。To sum up, in the endoscope system of the embodiment of the present invention, a plurality of patterns of the motion sensing module are arranged on the surface of the flexible cannula with an axial spacing and an angle distribution, and a plurality of sensors are arranged on the surface of the flexible cannula. inside the housing and beside the guide hole. Thus, these patterns specify spacing or angular relationships that serve as a quantitative basis for the description of position or motion states. When the flexible cannula moves relative to the motion sensing module through the guide hole, these sensors can sense the motion states of these patterns to obtain motion state sensing results. These sensors can sense the motion state of these patterns through optical changes or magnetic field changes of these patterns. Moreover, these sensors are further classified into a plurality of depth sensors and a plurality of rotation angle sensors according to different sensing functions. These depth sensors are arranged along the extending direction of the guide holes. These rotation angle sensors are arranged around the guide holes. When the flexible cannula moves relative to the motion sensing module, these depth sensors can be used to sense the axial movement state of the pattern to determine the insertion depth information of the flexible cannula into the human body. On the other hand, these rotational angle sensors can be used to sense the rotational motion state of these patterns to determine the rotational angle information of the flexible cannula entering the human body. When the patient performs diagnosis and treatment next time, the medical staff can quickly find the lesion according to the previous measurement result. Therefore, the medical staff can achieve precise medical treatment through the endoscope system of the embodiment of the present invention.
虽然本实用新型已以实施例揭示如上,然其并非用以限定本实用新型,任何所属技术领域中技术人员,在不脱离本实用新型的精神和范围内,当可作些许的更改与润饰,故本实用新型的保护范围当视权利要求所界定的为准。Although the present utility model has been disclosed above with examples, it is not intended to limit the present utility model. Any person skilled in the art can make some changes and modifications without departing from the spirit and scope of the present utility model. Therefore, the protection scope of the present invention should be determined by the claims.
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202020167271.7UCN211834303U (en) | 2020-02-13 | 2020-02-13 | endoscopy system |
TW110104881ATWI771905B (en) | 2020-02-13 | 2021-02-09 | Endoscopy system and method of reconstructing three-dimension structure |
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202020167271.7UCN211834303U (en) | 2020-02-13 | 2020-02-13 | endoscopy system |
Publication Number | Publication Date |
---|---|
CN211834303Utrue CN211834303U (en) | 2020-11-03 |
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202020167271.7UActiveCN211834303U (en) | 2020-02-13 | 2020-02-13 | endoscopy system |
Country | Link |
---|---|
CN (1) | CN211834303U (en) |
TW (1) | TWI771905B (en) |
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7951071B2 (en)* | 1999-06-02 | 2011-05-31 | Tyco Healthcare Group Lp | Moisture-detecting shaft for use with an electro-mechanical surgical device |
US10835307B2 (en)* | 2001-06-12 | 2020-11-17 | Ethicon Llc | Modular battery powered handheld surgical instrument containing elongated multi-layered shaft |
US9993258B2 (en)* | 2015-02-27 | 2018-06-12 | Ethicon Llc | Adaptable surgical instrument handle |
EP3547947A4 (en)* | 2017-06-29 | 2020-08-05 | The Board of Regents of the University of Texas System | SURGICAL DEVICE |
WO2019139841A1 (en)* | 2018-01-09 | 2019-07-18 | Covidien Lp | Sterile interface module for robotic surgical assemblies |
Publication number | Publication date |
---|---|
TW202130320A (en) | 2021-08-16 |
TWI771905B (en) | 2022-07-21 |
Publication | Publication Date | Title |
---|---|---|
CN113243881B (en) | Endoscope system and three-dimensional structure reconstruction method | |
JP6535020B2 (en) | System for measuring 3D distance and dimensions of visible objects in endoscopic images | |
JP2018537155A (en) | Apparatus and method for tracking the position of an endoscope within a patient's body | |
US9456752B2 (en) | Full-field three-dimensional surface measurement | |
CN103228193B (en) | Tubular insertion system | |
JP6064106B1 (en) | Image processing apparatus, capsule endoscope system, and endoscope system | |
WO2015146712A1 (en) | Curved shape estimation system, tubular insert system, and method for estimating curved shape of curved member | |
JP2010534531A (en) | Endoscope system | |
US11497382B1 (en) | Apparatus and method for endoscopic image orientation control | |
US20160143509A1 (en) | System for stereo reconstruction from monoscopic endoscope images | |
US20160073854A1 (en) | Systems and methods using spatial sensor data in full-field three-dimensional surface measurement | |
US20150342500A1 (en) | Relative position detecting system of tubular device and endoscope apparatus | |
JP2019517846A (en) | Endoscope type device having a sensor for providing position information | |
TW201511727A (en) | Magnetic control system for capsule endoscope | |
WO2020165978A1 (en) | Image recording device, image recording method, and image recording program | |
WO2013063829A1 (en) | C-arm x-ray fluoroscopic machine and dedicated camera mechanism | |
CN211834303U (en) | endoscopy system | |
US20210378543A1 (en) | Endoscopy system and method of reconstructing three-dimensional structure | |
US20230124687A1 (en) | Method for calibrating endoscope and endoscope system | |
JP3943353B2 (en) | Flexible ultrasound endoscope device | |
JP3810023B2 (en) | Position measurement marker | |
CN109567864B (en) | A positionable ultrasound probe | |
US20160089032A1 (en) | Probe assembly and end cover | |
JP2018130433A (en) | Endoscope system, endoscope, and insertion assisting implement | |
JP2000189379A (en) | Endoscope shape detection system |
Date | Code | Title | Description |
---|---|---|---|
GR01 | Patent grant | ||
GR01 | Patent grant |