技术领域technical field
本实用新型涉及超导技术领域,特别涉及一种基于LNG预冷传输的超导能源管道系统。The utility model relates to the field of superconducting technology, in particular to a superconducting energy pipeline system based on LNG precooling transmission.
背景技术Background technique
天然气是一种碳氢化合物组成的清洁能源,因其清洁燃烧、热值高受到越来越广泛的应用,由于天然气产地远离天然气用户市场,一般要通过管道运输。这就导致了天然气在运输加工上的成本较高,为了解决这一问题,近年来液化天然气技术在国内得到迅速发展,储存液化天然气(LNG)所需要的压力不高,并且液化天然气的体积也小,温度也低,这使得其在储存和长距离的运输中比气态形式更加稳定,同时LNG可以作为冷媒介质;常规制冷机进行天然气液化的功耗较高,成本较高,例如完成输送LNG燃料速度大于100L/min的长输管道的设计,其对潜液泵、长轴泵等相关设备的功率、密封性、安全性、热耗散等性能都有较高要求,常规的制冷及泵送设备功耗大、成本高、安全性低。Natural gas is a clean energy composed of hydrocarbons. It is more and more widely used because of its clean combustion and high calorific value. Since the natural gas origin is far away from the natural gas user market, it is generally transported through pipelines. This leads to the high cost of natural gas transportation and processing. In order to solve this problem, liquefied natural gas technology has developed rapidly in China in recent years. The pressure required for storing liquefied natural gas (LNG) is not high, and the volume of liquefied natural gas is also small Small and low temperature, which makes it more stable than the gaseous form in storage and long-distance transportation, and LNG can be used as a cold medium; conventional refrigerators consume higher power consumption and cost for natural gas liquefaction, such as completing the transportation of LNG The design of long-distance pipelines with a fuel velocity greater than 100L/min has high requirements for the power, sealing, safety, heat dissipation and other performance of submersible pumps, long-axis pumps and other related equipment. Conventional refrigeration and pumps Sending equipment has high power consumption, high cost, and low security.
超导材料具有极低的电阻,输电损耗小,是理想的输电材质,但是目前的超导材料,均是需要极低的温度才能形成超导态,因此,在工程中需要用冷媒介质使超导输电线缆处于超导临界转变温度以下,以便超导输电。Superconducting materials have extremely low resistance and low power transmission loss, so they are ideal materials for power transmission. However, the current superconducting materials all require extremely low temperatures to form superconducting states. Therefore, cold media are required in engineering to make superconducting materials The conductive transmission cable is below the superconducting critical transition temperature for superconducting electricity transmission.
实用新型内容Utility model content
本实用新型的目的在于克服现有技术中所存在的在工程中需要使超导输电线缆处于极低温中,以便超导输电的上述不足,提供一种基于LNG预冷传输的超导能源管道系统。The purpose of this utility model is to overcome the above-mentioned shortcomings in the prior art that the superconducting power transmission cable needs to be kept at a very low temperature in order to facilitate superconducting power transmission, and to provide a superconducting energy pipeline based on LNG pre-cooling transmission system.
为了实现上述实用新型目的,本实用新型提供了以下技术方案:In order to realize the above utility model purpose, the utility model provides the following technical solutions:
一种基于LNG预冷传输的超导能源管道系统,包括:A superconducting energy pipeline system based on LNG pre-cooling transmission, including:
输送管道,用于输送LNG(液化天然气);Transmission pipelines for the transportation of LNG (liquefied natural gas);
超导电缆,设于所述输送管道内,用于输电,所述超导电缆的两端分别连接有电缆终端,两个所述电缆终端分别连接于所述输送管道的两端;A superconducting cable is arranged in the transmission pipeline for power transmission, and the two ends of the superconducting cable are respectively connected with cable terminals, and the two cable terminals are respectively connected to the two ends of the transmission pipeline;
前端冷却装置,包括LNG储存罐、LNG过冷箱和液氮罐,所述LNG储存罐和所述液氮罐分别连接所述LNG过冷箱,所述LNG过冷箱连接一个所述电缆终端,所述LNG储存罐用于储存所述LNG,并向所述LNG过冷箱输送所述LNG,所述液氮罐用于储存液氮,并向所述LNG过冷箱输送所述液氮,所述液氮在所述LNG过冷箱中将所述LNG过冷,过冷后的所述LNG由所述LNG过冷箱输送到所述输送管道中,过冷后的所述LNG在所述输送管道中将所述超导电缆冷却至超导态;The front-end cooling device includes an LNG storage tank, an LNG subcooler and a liquid nitrogen tank, the LNG storage tank and the liquid nitrogen tank are respectively connected to the LNG subcooler, and the LNG subcooler is connected to one of the cable terminals , the LNG storage tank is used to store the LNG and deliver the LNG to the LNG subcooler, the liquid nitrogen tank is used to store liquid nitrogen and deliver the liquid nitrogen to the LNG subcooler , the liquid nitrogen supercools the LNG in the LNG subcooler, and the supercooled LNG is transported from the LNG supercooler to the delivery pipeline, and the supercooled LNG is cooling the superconducting cable to a superconducting state in the delivery pipeline;
后端接收装置,包括LNG接收箱,所述LNG接收箱连接另一个所述电缆终端,所述LNG接收箱用于接收所述输送管道输送的所述LNG。The back-end receiving device includes an LNG receiving box connected to another cable terminal, and the LNG receiving box is used to receive the LNG transported by the transmission pipeline.
采用本实用新型所述的一种基于LNG预冷传输的超导能源管道系统,由于制备液氮的货源充足、工艺成熟,因而采用液氮对天然气预冷并对LNG进行保冷的工艺,能提高超导能源管道的传输效率和安全性能,同时降低生产成本,可将电力与天然气置于同一管道同路输送,在LNG过冷箱中采用液氮充分冷却LNG,利用过冷的LNG作为超导电缆的冷却工质,建立电缆与天然气输送管路的统一模型,整个系统流程简单,只需要输送电能和LNG,不运输额外物质(如液氮),效费比高,性能优良。Adopting a superconducting energy pipeline system based on LNG pre-cooling transmission described in the utility model, because the supply of liquid nitrogen is sufficient and the process is mature, the process of using liquid nitrogen to pre-cool natural gas and keep LNG cold can improve The transmission efficiency and safety performance of superconducting energy pipelines, while reducing production costs, can transport electricity and natural gas in the same pipeline, use liquid nitrogen in the LNG supercooling box to fully cool LNG, and use supercooled LNG as superconducting For the cooling medium of the cable, a unified model of the cable and natural gas transmission pipeline is established. The whole system process is simple, only need to transmit electric energy and LNG, and no additional substances (such as liquid nitrogen) are transported. The cost-effective ratio is high and the performance is excellent.
优选地,所述输送管道为真空绝热管。Preferably, the conveying pipeline is a vacuum insulated pipe.
优选地,所述LNG过冷箱包括内层箱体和外层箱体,所述LNG储存罐连接所述内层箱体,所述液氮罐连接所述外层箱体。Preferably, the LNG supercooled box includes an inner box and an outer box, the LNG storage tank is connected to the inner box, and the liquid nitrogen tank is connected to the outer box.
优选地,所述LNG过冷箱内设有低温泵,所述低温泵用于对所述LNG过冷箱内的所述液氮加压和减小换热温差,并控制其压力使其饱和温度为60K-90K。Preferably, a cryopump is provided in the LNG subcooling box, and the cryopump is used to pressurize the liquid nitrogen in the LNG subcooling box and reduce the heat exchange temperature difference, and control its pressure to make it saturated The temperature is 60K-90K.
优选地,所述超导电缆设于电缆恒温器内,所述电缆恒温器设于所述输送管道内。Preferably, the superconducting cable is arranged in a cable thermostat, and the cable thermostat is arranged in the conveying pipeline.
优选地,所述电缆终端包括真空终端恒温器,所述真空终端恒温器连接于所述输送管道的两端。Preferably, the cable terminal includes a vacuum terminal thermostat, and the vacuum terminal thermostat is connected to both ends of the delivery pipeline.
优选地,所述输送管道上设有低温流量计,所述低温流量计用于测量系统的液体流量。Preferably, the delivery pipeline is provided with a cryogenic flowmeter, and the cryogenic flowmeter is used to measure the liquid flow of the system.
优选地,所述输送管道上设有压力计,所述压力计用于检测所述输送管道承受的压力。Preferably, a pressure gauge is provided on the delivery pipeline, and the pressure gauge is used to detect the pressure on the delivery pipeline.
优选地,所述液氮罐和所述LNG过冷箱之间、所述LNG过冷箱和所述电缆终端之间分别通过真空绝热管道连通。Preferably, the liquid nitrogen tank and the LNG subcooler, and the LNG subcooler and the cable terminal are respectively communicated through vacuum insulation pipes.
优选地,该超导能源管道系统还包括液氮制备装置,所述液氮制备装置连接所述液氮罐,所述液氮制备装置用于制备液氮并向所述液氮罐输送所述液氮。Preferably, the superconducting energy pipeline system also includes a liquid nitrogen preparation device, the liquid nitrogen preparation device is connected to the liquid nitrogen tank, and the liquid nitrogen preparation device is used to prepare liquid nitrogen and deliver the liquid nitrogen to the liquid nitrogen tank. liquid nitrogen.
优选地,该超导能源管道系统还包括测量控制装置,所述测量控制装置包括与各个其它部件集成设计的测量控制组件,用于采集各个其它部件的温度、压力、流量等参数。Preferably, the superconducting energy pipeline system further includes a measurement and control device, the measurement and control device includes a measurement and control component integrated with other components for collecting parameters such as temperature, pressure, and flow of each other component.
综上所述,由于采用了上述技术方案,本实用新型的有益效果是:In summary, due to the adoption of the above technical solution, the beneficial effects of the utility model are:
运用本实用新型所述的一种基于LNG预冷传输的超导能源管道系统,由于制备液氮的货源充足、工艺成熟,因而采用液氮对天然气预冷并对LNG进行保冷的工艺,能提高超导能源管道的传输效率和安全性能,同时降低生产成本,可将电力与天然气置于同一管道同路输送,在LNG过冷箱中采用液氮充分冷却LNG,利用过冷的LNG作为超导电缆的冷却工质,建立电缆与天然气输送管路的统一模型,整个系统流程简单,只需要输送电能和LNG,不运输额外物质(如液氮),效费比高,性能优良。Using a superconducting energy pipeline system based on LNG precooling transmission described in the utility model, since the supply of liquid nitrogen is sufficient and the process is mature, the process of using liquid nitrogen to precool natural gas and keep LNG cold can improve The transmission efficiency and safety performance of superconducting energy pipelines, while reducing production costs, can transport electricity and natural gas in the same pipeline, use liquid nitrogen in the LNG supercooling box to fully cool LNG, and use supercooled LNG as superconducting For the cooling medium of the cable, a unified model of the cable and natural gas transmission pipeline is established. The whole system process is simple, only need to transmit electric energy and LNG, and no additional substances (such as liquid nitrogen) are transported. The cost-effective ratio is high and the performance is excellent.
附图说明Description of drawings
图1为本实用新型所述的一种基于LNG预冷传输的超导能源管道系统的结构示意图;Fig. 1 is a structural schematic diagram of a superconducting energy pipeline system based on LNG precooling transmission described in the present invention;
图2为输送管道和超导电缆的横截面示意图。Fig. 2 is a schematic cross-sectional view of the transmission pipeline and the superconducting cable.
图中标记:01-LNG,1-输送管道,2-超导电缆,21-电缆恒温器,3-电缆终端,4-LNG储存罐,5-LNG过冷箱,6-液氮罐,7-LNG接收箱。Markings in the figure: 01-LNG, 1-conveying pipeline, 2-superconducting cable, 21-cable thermostat, 3-cable terminal, 4-LNG storage tank, 5-LNG subcooler, 6-liquid nitrogen tank, 7 - LNG receiving tank.
具体实施方式Detailed ways
下面结合试验例及具体实施方式对本实用新型作进一步的详细描述。但不应将此理解为本实用新型上述主题的范围仅限于以下的实施例,凡基于本实用新型内容所实现的技术均属于本实用新型的范围。The utility model will be further described in detail below in conjunction with test examples and specific embodiments. However, it should not be understood that the scope of the above-mentioned themes of the present utility model is limited to the following embodiments, and all technologies realized based on the content of the present utility model belong to the scope of the present utility model.
实施例Example
如图1-2所示,本实用新型所述的一种基于LNG预冷传输的超导能源管道系统,包括:As shown in Figure 1-2, a superconducting energy pipeline system based on LNG pre-cooling transmission described in the utility model includes:
输送管道1,用于输送LNG01,所述输送管道1为真空绝热管,所述输送管道1上设有低温流量计和压力计,所述低温流量计用于测量系统的液体流量,所述压力计用于检测所述输送管道1承受的压力;The delivery pipeline 1 is used to transport LNG01. The delivery pipeline 1 is a vacuum insulated pipe. The delivery pipeline 1 is provided with a cryogenic flowmeter and a pressure gauge. The cryogenic flowmeter is used to measure the liquid flow of the system, and the pressure The meter is used to detect the pressure that the delivery pipeline 1 bears;
超导电缆2,设于电缆恒温器21内,即所述电缆恒温器21包裹所述超导电缆2,所述电缆恒温器21设于所述输送管道1内,所述输送管道1内的所述LNG01包裹所述电缆恒温器21,所述超导电缆2用于输电,所述超导电缆2的两端分别连接有电缆终端3,所述电缆终端3包括真空终端恒温器,所述真空终端恒温器连接于所述输送管道1的两端;The superconducting cable 2 is arranged in the cable thermostat 21, that is, the cable thermostat 21 wraps the superconducting cable 2, the cable thermostat 21 is arranged in the conveying pipeline 1, and the The LNG01 wraps the cable thermostat 21, the superconducting cable 2 is used for power transmission, and the two ends of the superconducting cable 2 are respectively connected with a cable terminal 3, and the cable terminal 3 includes a vacuum terminal thermostat. A vacuum terminal thermostat is connected to both ends of the delivery pipeline 1;
前端冷却装置,包括LNG储存罐4、LNG过冷箱5、液氮罐6和液氮制备装置,所述LNG储存罐4和所述液氮罐6分别连接所述LNG过冷箱5,所述LNG过冷箱5连接一个所述电缆终端3,所述LNG过冷箱5包括内层箱体和外层箱体,所述LNG储存罐4用于储存所述LNG01,并向所述LNG过冷箱5内层箱体输送所述LNG01,所述液氮制备装置连接所述液氮罐6,所述液氮制备装置用于制备液氮并向所述液氮罐6输送所述液氮,所述液氮罐6用于储存液氮,并向所述LNG过冷箱5外层箱体输送所述液氮,所述LNG过冷箱5外层箱体内设有低温泵,所述低温泵用于对所述LNG过冷箱5内的所述液氮加压,控制其压力使其饱和温度为85K,所述液氮在所述LNG过冷箱5中将所述LNG01过冷,过冷后的所述LNG01由所述LNG过冷箱5输送到所述输送管道1中,过冷后的所述LNG01在所述输送管道1中将所述超导电缆2冷却至超导态,所述液氮制备装置和所述液氮罐6之间、所述液氮罐6和所述LNG过冷箱5之间、所述LNG过冷箱5和所述电缆终端3之间分别通过真空绝热管道连通;The front-end cooling device comprises an LNG storage tank 4, an LNG subcooler 5, a liquid nitrogen tank 6 and a liquid nitrogen preparation device, the LNG storage tank 4 and the liquid nitrogen tank 6 are respectively connected to the LNG subcooler 5, and the The LNG supercooled box 5 is connected to one of the cable terminals 3, the LNG supercooled box 5 includes an inner box body and an outer box body, and the LNG storage tank 4 is used to store the LNG01 and supply the LNG The inner layer of the subcooling box 5 transports the LNG01, the liquid nitrogen preparation device is connected to the liquid nitrogen tank 6, and the liquid nitrogen preparation device is used to prepare liquid nitrogen and deliver the liquid nitrogen to the liquid nitrogen tank 6. Nitrogen, the liquid nitrogen tank 6 is used to store liquid nitrogen, and transport the liquid nitrogen to the outer casing of the LNG supercooling box 5, and the outer casing of the LNG supercooling box 5 is provided with a cryopump, The cryopump is used to pressurize the liquid nitrogen in the LNG subcooler 5, and control its pressure so that its saturation temperature is 85K. Supercooled, the supercooled LNG01 is transported into the delivery pipeline 1 by the LNG supercooler box 5, and the supercooled LNG01 cools the superconducting cable 2 in the delivery pipeline 1 to Superconducting state, between the liquid nitrogen preparation device and the liquid nitrogen tank 6, between the liquid nitrogen tank 6 and the LNG supercooling box 5, between the LNG supercooling box 5 and the cable terminal 3 They are respectively communicated with each other through vacuum insulation pipes;
后端接收装置,包括LNG接收箱7,所述LNG接收箱7通过真空绝热管道连接另一个所述电缆终端3,所述LNG接收箱7用于接收所述输送管道1输送的所述LNG01。The rear-end receiving device includes an LNG receiving box 7 connected to the other cable terminal 3 through a vacuum insulation pipeline, and the LNG receiving box 7 is used to receive the LNG01 transported by the delivery pipeline 1 .
运用本实用新型所述的一种基于LNG预冷传输的超导能源管道系统,由于制备液氮的货源充足、工艺成熟,因而采用液氮对天然气预冷并对LNG01进行保冷的工艺,能提高超导能源管道的传输效率和安全性能,同时降低生产成本,可将电力与天然气置于同一管道同路输送,在LNG过冷箱5中采用液氮充分冷却LNG01,利用过冷的LNG01作为超导电缆的冷却工质,建立电缆与天然气输送管路的统一模型,整个系统流程简单,只需要输送电能和LNG01,不运输额外物质(如液氮),效费比高,性能优良。Using a superconducting energy pipeline system based on LNG pre-cooling transmission described in the utility model, since the supply of liquid nitrogen is sufficient and the process is mature, the process of using liquid nitrogen to pre-cool natural gas and keep LNG01 cold can improve The transmission efficiency and safety performance of superconducting energy pipelines can reduce production costs at the same time. Electricity and natural gas can be transported in the same pipeline. In the LNG supercooling box 5, liquid nitrogen is used to fully cool LNG01, and the supercooled LNG01 is used as supercooled For the cooling medium of the conductive cable, a unified model of the cable and natural gas transmission pipeline is established. The whole system process is simple, only need to transmit electric energy and LNG01, and no additional substances (such as liquid nitrogen) are transported. The cost-effective ratio is high and the performance is excellent.
以上所述仅为本实用新型的较佳实施例而已,并不用以限制本实用新型,凡在本实用新型的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本实用新型的保护范围之内。The above descriptions are only preferred embodiments of the present utility model, and are not intended to limit the present utility model. Any modifications, equivalent replacements and improvements made within the spirit and principles of the present utility model shall be included in this utility model. within the scope of protection of utility models.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201910002494 | 2019-01-02 | ||
| CN201910002494X | 2019-01-02 |
| Publication Number | Publication Date |
|---|---|
| CN209340880Utrue CN209340880U (en) | 2019-09-03 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201920088973.3UActiveCN209340880U (en) | 2019-01-02 | 2019-01-17 | A superconducting energy pipeline system based on LNG pre-cooling transmission |
| CN201910045193.5APendingCN109654376A (en) | 2019-01-02 | 2019-01-17 | A kind of superconducting energy pipe-line system based on LNG pre-cooling transmission |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201910045193.5APendingCN109654376A (en) | 2019-01-02 | 2019-01-17 | A kind of superconducting energy pipe-line system based on LNG pre-cooling transmission |
| Country | Link |
|---|---|
| CN (2) | CN209340880U (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN110021460B (en)* | 2019-04-29 | 2020-10-16 | 中国科学院电工研究所 | A shock-resistant and ablation-resistant superconducting energy pipeline |
| CN110163443B (en)* | 2019-05-27 | 2022-09-09 | 西南石油大学 | Optimal scheduling method for micro-energy network of natural gas pressure regulating station considering electricity-gas integrated demand response |
| CN110847989A (en)* | 2019-11-15 | 2020-02-28 | 中国科学院理化技术研究所 | Cold energy utilization system |
| CN110848563B (en)* | 2019-11-18 | 2021-07-16 | 中国科学院理化技术研究所 | A kind of operation control system of superconducting energy pipeline |
| CN110853833B (en)* | 2019-11-18 | 2021-02-12 | 中国科学院理化技术研究所 | A device for cooling superconducting cables |
| CN114992519B (en)* | 2021-03-01 | 2024-05-14 | 中国石化工程建设有限公司 | LNG and superconductive energy source same-pipeline conveying long-distance conveying system |
| CN114992516A (en)* | 2021-03-01 | 2022-09-02 | 中国石化工程建设有限公司 | A terminal structure of LNG and superconducting energy co-transportation system |
| CN115307062A (en)* | 2022-08-08 | 2022-11-08 | 成都精智艺科技有限责任公司 | Direct-current superconducting liquid hydrogen energy pipeline system with liquid nitrogen cold screen |
| CN115325287B (en)* | 2022-09-13 | 2024-07-30 | 西南石油大学 | Composite energy pipeline transmission characteristic analysis method |
| CN115978444B (en)* | 2023-03-21 | 2023-05-23 | 北京中科富海低温科技有限公司 | Low-temperature transmission system |
| CN119438315A (en)* | 2025-01-10 | 2025-02-14 | 杭州市北京航空航天大学国际创新研究院(北京航空航天大学国际创新学院) | A cryogenic liquefied natural gas spray cooling performance test system and test method |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP3385384B2 (en)* | 1992-03-23 | 2003-03-10 | 大阪瓦斯株式会社 | Method and apparatus for storing and effectively utilizing LNG cold energy |
| CN100524546C (en)* | 2004-07-29 | 2009-08-05 | 住友电气工业株式会社 | Superconducting cable line |
| CN2819575Y (en)* | 2005-08-01 | 2006-09-20 | 肖英佳 | Maintenance-free superconductor low-temperature deep cooling power transmission device |
| CN102679152B (en)* | 2012-04-20 | 2014-05-28 | 西安交通大学 | United long-range transmission system for liquefied natural gas and high-temperature superconducting electric energy |
| EP2685469B1 (en)* | 2012-07-11 | 2017-05-03 | Nexans | Assembly with at least one superconducting cable |
| KR20160135519A (en)* | 2015-05-18 | 2016-11-28 | 현대중공업 주식회사 | Treatment system of liquefied natural gas |
| CN204704607U (en)* | 2015-06-24 | 2015-10-14 | 青岛泰能汽车燃气发展有限公司 | A kind of cold compensation type liquefied natural gas filling device |
| CN105715952B (en)* | 2016-02-19 | 2018-10-12 | 新奥科技发展有限公司 | Moving energy station and its energy utilization method |
| Publication number | Publication date |
|---|---|
| CN109654376A (en) | 2019-04-19 |
| Publication | Publication Date | Title |
|---|---|---|
| CN209340880U (en) | A superconducting energy pipeline system based on LNG pre-cooling transmission | |
| CN103759497B (en) | Installation structure of small skid-mounted LNG boil-off gas reliquefaction recovery device | |
| CN105324601A (en) | Device for cooling a consumer with a super-cooled liquid in a cooling circuit | |
| CN101619914A (en) | Refrigerant phase transformation-free refrigerator for recovering liquefied natural gas (LNG) cold energy | |
| CN203731088U (en) | LNG receiving station process system for recovering BOG based on normal temperature compressor | |
| CN104295889B (en) | LNG receiving stations terminal boil-off gas recovery system | |
| CN102679152A (en) | United long-range transmission system for liquefied natural gas and high-temperature superconducting electric energy | |
| CN111412695A (en) | Super supercooled liquid oxygen acquisition system based on liquid oxygen and liquid nitrogen mixing and vacuumizing | |
| AU2004285058B2 (en) | Conduit component for a power supply network, use thereof, method for transporting cryogenic energy carriers in conduits and devices suitable therefor | |
| CN101975335A (en) | Reliquefaction device for boil-off gas from liquefied natural gas vehicle gas filling station | |
| CN113108549B (en) | Offshore natural gas liquefaction system integrating nitrogen expansion cycle with mixed refrigerant | |
| CN118602273A (en) | Boil-off gas reliquefaction system for cryogenic vessels | |
| CN104913593B (en) | A kind of liquefied technique of BOG and device | |
| CN102881381A (en) | Superconducting cable cooling system | |
| CN106441964B (en) | A kind of test platform of floating natural gas liquefaction system | |
| CN115247643A (en) | A liquid hydrogen booster pump performance test platform and test method | |
| CN205227999U (en) | Take cold energy to retrieve reliquefaction system of function | |
| CN201680657U (en) | Heat pipe type cold energy utilization device based on liquefied natural gas station and refrigeration house | |
| US20060150639A1 (en) | Cable cooling system | |
| CN112393486B (en) | Method for utilizing cold energy of liquefied natural gas | |
| CN101709912B (en) | Natural gas liquefying device based on low-temperature liquid refrigeration | |
| CN213178918U (en) | A equipment that is used for LNG receiving station and big jar flash distillation gas of transfer station to retrieve | |
| CN208566183U (en) | A kind of novel B OG processing system for LNG low-temperature tanker | |
| CN203893525U (en) | Cold storage refrigerating cabinet system fully utilizing cold energy of liquefied natural gas | |
| CN207393332U (en) | LPG power generation air supply systems |
| Date | Code | Title | Description |
|---|---|---|---|
| GR01 | Patent grant | ||
| GR01 | Patent grant |