技术领域technical field
本实用新型涉及天线技术领域,尤其涉及一种基于SIW结构的毫米波宽带Vivaldi阵列天线。The utility model relates to the technical field of antennas, in particular to a millimeter-wave broadband Vivaldi array antenna based on an SIW structure.
背景技术Background technique
随着第五代移动通信技术(5G)的研究进展,毫米波频段作为新的频谱资源已经得到越来越高的重视。Vivaldi天线由于宽带、高增益以及低交叉极化等优势在雷达、通信以及电子对抗等领域扮演着愈加重要的角色。随着平面集成电路的发展,低剖面、易集成、低成本的印刷Vivaldi天线阵列成为了当下的研究热点。将Vivaldi阵列天线应用于毫米波频段之中有着重要意义。With the research progress of the fifth generation mobile communication technology (5G), the millimeter wave frequency band has been paid more and more attention as a new spectrum resource. Vivaldi antennas are playing an increasingly important role in the fields of radar, communication, and electronic countermeasures due to their advantages of broadband, high gain, and low cross-polarization. With the development of planar integrated circuits, low-profile, easy-to-integrate, and low-cost printed Vivaldi antenna arrays have become a current research hotspot. It is of great significance to apply the Vivaldi array antenna to the millimeter wave frequency band.
在毫米波频段中,传统的基于微带线结构的天线阵列,由于其馈电网络处于辐射状态,不但产生较大的传输损耗,也会产生不希望的辐射;而对于带状线结构的天线阵列,其传输线虽处于屏蔽状态,但馈电网络较为复杂,需要多层结构,加工成本比较高昂。除此之外,根据Vivaldi天线的辐射原理,Vivaldi天线要拓展其阻抗带宽,必须增加辐射单元的指数渐变长度以延长电流路径,这与天线的小型化需求产生了矛盾。In the millimeter-wave frequency band, the traditional antenna array based on the microstrip line structure, because its feed network is in a radiation state, not only produces a large transmission loss, but also produces undesired radiation; Array, although its transmission line is in a shielded state, but the feed network is relatively complex, requiring a multi-layer structure, and the processing cost is relatively high. In addition, according to the radiation principle of the Vivaldi antenna, in order to expand its impedance bandwidth, the Vivaldi antenna must increase the exponential gradient length of the radiation unit to extend the current path, which conflicts with the miniaturization requirements of the antenna.
基片集成波导(SIW)是具有低插损、低辐射的新型导波结构,由介质基片上的金属化通孔阵列制成,制成的毫米波部件具有高Q值,高功率容量和易集成的优点。Substrate integrated waveguide (SIW) is a new type of waveguide structure with low insertion loss and low radiation. It is made of a metallized through-hole array on a dielectric substrate. The millimeter-wave components made have high Q value, high power capacity and easy Advantages of integration.
实用新型内容Utility model content
本实用新型提供了一种可以拓展天线带宽和提高天线增益的基于SIW结构的毫米波宽带Vivaldi阵列天线。The utility model provides a millimeter-wave broadband Vivaldi array antenna based on the SIW structure, which can expand the antenna bandwidth and improve the antenna gain.
为了实现本实用新型的目的,所采用的技术方案是:基于SIW结构的毫米波宽带Vivaldi阵列天线,包括微带SIW转换结构、基于SIW的一分八功分器和八个Vivaldi天线单元,微带SIW转换结构将馈入的电磁波转换为SIW传输段的电磁波,基于SIW的一分八功分器将SIW传输段的电磁波均匀传输至八个Vivaldi天线单元,SIW转换结构包括微带线、微带渐变线和SIW传输段,微带线和SIW传输段通过微带渐变线连接,基于SIW的一分八功分器包括金属层和感性金属通孔,Vivaldi天线单元包括Vivaldi辐射单元、第一锤形槽和第二锤形槽,第一锤形槽和第二锤形槽均开设在Vivaldi辐射单元上。In order to realize the purpose of this utility model, the adopted technical scheme is: the millimeter-wave broadband Vivaldi array antenna based on SIW structure, including microstrip SIW conversion structure, 1/8 power divider based on SIW and eight Vivaldi antenna units, micro The SIW conversion structure converts the fed electromagnetic wave into the electromagnetic wave of the SIW transmission section. The SIW-based one-to-eight power splitter transmits the electromagnetic wave of the SIW transmission section to eight Vivaldi antenna units evenly. The SIW conversion structure includes microstrip lines, micro With gradient line and SIW transmission section, microstrip line and SIW transmission section are connected by microstrip gradient line, 1/8 power splitter based on SIW includes metal layer and inductive metal via, Vivaldi antenna unit includes Vivaldi radiation unit, the first The hammer-shaped slot and the second hammer-shaped slot, the first hammer-shaped slot and the second hammer-shaped slot are all provided on the Vivaldi radiation unit.
作为本实用新型的优化方案,Vivaldi天线单元还包括第一重叠区和第二重叠区,相邻Vivaldi辐射单元正面金属层和背面金属层重叠的区域为第一重叠区,单个Vivaldi辐射单元金属层重叠的区域为第二重叠区。As an optimization scheme of the present utility model, the Vivaldi antenna unit also includes a first overlapping area and a second overlapping area, and the area where the front metal layer and the back metal layer of adjacent Vivaldi radiating units overlap is the first overlapping area, and the metal layer of a single Vivaldi radiating unit The overlapping area is the second overlapping area.
作为本实用新型的优化方案,微带SIW转换结构还包括金属地,金属地位于介质板的背面,微带线和微带渐变线位于介质板的正面,SIW传输段包括SIW金属层和SIW金属通孔,SIW金属层分别覆盖在介质板的正面和背面,SIW金属通孔排布在SIW金属层的两侧。As an optimization scheme of the present invention, the microstrip SIW conversion structure also includes a metal ground, the metal ground is located on the back of the dielectric board, the microstrip line and the microstrip gradient line are located on the front of the dielectric board, and the SIW transmission section includes the SIW metal layer and the SIW metal The through holes and the SIW metal layer are respectively covered on the front and back of the dielectric board, and the SIW metal through holes are arranged on both sides of the SIW metal layer.
作为本实用新型的优化方案,介质板的厚度为0.254mm。As an optimized solution of the present invention, the thickness of the dielectric plate is 0.254mm.
本实用新型具有积极的效果:1)本实用新型可以覆盖38.4–45.6GHz频段,Vivaldi天线单元本身具有高增益的优势,本实用新型采用八个Vivaldi天线单元组成阵列更是进一步提高了天线的增益,同时减小了E面波束宽度;The utility model has positive effects: 1) the utility model can cover the 38.4-45.6GHz frequency band, and the Vivaldi antenna unit itself has the advantage of high gain, and the utility model adopts eight Vivaldi antenna units to form an array to further improve the gain of the antenna , while reducing the E-plane beamwidth;
2)本实用新型相邻Vivaldi辐射单元正面金属层和背面金属层重叠的区域第一重叠区和单个Vivaldi辐射单元金属层重叠的区域第二重叠区,第一重叠区起到了电容加载的作用,改变天线的输入电抗,向低频方向拓展了天线带宽;第二重叠区则可实现馈电网络与天线单元之间的阻抗匹配作用;2) The first overlapping area in the area where the front metal layer and the back metal layer of the adjacent Vivaldi radiation unit of the utility model overlaps and the second overlapping area in the area where the metal layer of a single Vivaldi radiation unit overlaps, the first overlapping area plays the role of capacitive loading, Changing the input reactance of the antenna expands the antenna bandwidth to the low frequency direction; the second overlapping area can realize the impedance matching function between the feed network and the antenna unit;
3)本实用新型的第一锤形槽和第二锤形槽使得Vivaldi天线单元上的表面电流路径弯曲,增加了辐射单元的有效长度,向低频方向拓展了天线的阻抗带宽;同时,锤形槽向内的延伸避免了对相邻辐射单元的电容加载产生影响,使得天线最终取得良好的带宽特性。3) The first hammer-shaped groove and the second hammer-shaped groove of the utility model make the surface current path on the Vivaldi antenna unit bend, increase the effective length of the radiation unit, and expand the impedance bandwidth of the antenna toward the low-frequency direction; at the same time, the hammer-shaped The inward extension of the slot avoids the impact on the capacitive loading of the adjacent radiating elements, so that the antenna finally obtains good bandwidth characteristics.
附图说明Description of drawings
下面结合附图和具体实施方式对本实用新型作进一步详细的说明。Below in conjunction with accompanying drawing and specific embodiment, the utility model is described in further detail.
图1是本实用新型的正面结构图;Fig. 1 is the front view of the utility model;
图2是本实用新型的背面结构图;Fig. 2 is the back structure diagram of the utility model;
图3是微带SIW转换结构的结构图;Fig. 3 is the structural diagram of microstrip SIW conversion structure;
图4是基于SIW的一分八功分器的结构图;Fig. 4 is a structural diagram of a one-to-eight power divider based on SIW;
图5是Vivaldi天线单元的结构图;Fig. 5 is a structural diagram of a Vivaldi antenna unit;
图6是本实用新型的仿真与实测的回波损耗图;Fig. 6 is the return loss figure of simulation of the present utility model and actual measurement;
图7是本实用新型的仿真与实测的带内增益图;Fig. 7 is the in-band gain figure of simulation and actual measurement of the utility model;
图8是本实用新型仿真与实测的E面(YOZ面)方向图;Fig. 8 is the E face (YOZ face) pattern of simulation of the utility model and actual measurement;
图9是本实用新型仿真与实测的H面(XOZ面)方向图;Fig. 9 is the H surface (XOZ surface) pattern of simulation and actual measurement of the utility model;
其中:1、微带SIW转换结构,2、基于SIW的一分八功分器,3、Vivaldi天线单元,4、介质板,11、微带线,12、微带渐变线,13、SIW传输段,14、金属地,21、金属层,22、感性金属通孔,31、Vivaldi辐射单元,32、第一锤形槽,33、第二锤形槽,131、SIW金属层,132、SIW金属通孔,34、第一重叠区,35、第二重叠区。Among them: 1. Microstrip SIW conversion structure, 2. One-to-eight power splitter based on SIW, 3. Vivaldi antenna unit, 4. Dielectric board, 11. Microstrip line, 12. Microstrip gradient line, 13. SIW transmission Segment, 14, metal ground, 21, metal layer, 22, inductive metal via, 31, Vivaldi radiation element, 32, first hammer slot, 33, second hammer slot, 131, SIW metal layer, 132, SIW Metal vias, 34, first overlapping area, 35, second overlapping area.
具体实施方式Detailed ways
如图1-5所示,本实用新型公开了一种基于SIW结构的毫米波宽带Vivaldi阵列天线,包括微带SIW转换结构1、基于SIW的一分八功分器2和八个Vivaldi天线单元3,微带SIW转换结构1将馈入的电磁波转换为SIW传输段的电磁波,基于SIW的一分八功分器2将SIW传输段的电磁波均匀传输至八个Vivaldi天线单元3,微带SIW转换结构1包括微带线11、微带渐变线12和SIW传输段13,微带线11和SIW传输段13通过微带渐变线12连接,基于SIW的一分八功分器2包括金属层21和感性金属通孔22,Vivaldi天线单元3包括Vivaldi辐射单元31、第一锤形槽32和第二锤形槽33,第一锤形槽32和第二锤形槽33均开设在Vivaldi辐射单元31上。其中,微带SIW转换结构1将由微带线11馈入的电磁波转换为SIW传输段的电磁波,微带渐变线12可以有效降低从微带线11到SIW传输段13的回波损耗,提高能量传输效率。As shown in Figures 1-5, the utility model discloses a millimeter-wave broadband Vivaldi array antenna based on SIW structure, including a microstrip SIW conversion structure 1, a SIW-based one-to-eight power divider 2 and eight Vivaldi antenna units 3. The microstrip SIW conversion structure 1 converts the fed electromagnetic wave into the electromagnetic wave of the SIW transmission section, and the SIW-based one-to-eight power divider 2 transmits the electromagnetic wave of the SIW transmission section to eight Vivaldi antenna units 3 evenly, and the microstrip SIW The conversion structure 1 includes a microstrip line 11, a microstrip gradient line 12 and an SIW transmission section 13, the microstrip line 11 and the SIW transmission section 13 are connected through the microstrip gradient line 12, and the 1/8 power divider 2 based on the SIW includes a metal layer 21 and inductive metal through hole 22, the Vivaldi antenna unit 3 includes a Vivaldi radiation unit 31, a first hammer-shaped slot 32 and a second hammer-shaped slot 33, and the first hammer-shaped slot 32 and the second hammer-shaped slot 33 are all opened in the Vivaldi radiation Unit 31 on. Among them, the microstrip SIW conversion structure 1 converts the electromagnetic wave fed by the microstrip line 11 into the electromagnetic wave of the SIW transmission section, and the microstrip gradient line 12 can effectively reduce the return loss from the microstrip line 11 to the SIW transmission section 13, and improve the energy transmission efficiency.
Vivaldi天线单元3还包括第一重叠区34和第二重叠区35,相邻Vivaldi辐射单元31正面金属层和背面金属层重叠的区域为第一重叠区34,单个Vivaldi辐射单元31金属层重叠的区域为第二重叠区35。The Vivaldi antenna unit 3 also includes a first overlapping area 34 and a second overlapping area 35, the area where the metal layer on the front side of the adjacent Vivaldi radiation unit 31 overlaps with the metal layer on the back side is the first overlapping area 34, and the area where the metal layer of a single Vivaldi radiation unit 31 overlaps The area is the second overlapping area 35 .
微带SIW转换结构1还包括金属地14,金属地14位于介质板4的背面,微带线11和梯形微带渐变线12位于介质板4的正面,SIW传输段13包括SIW金属层131和SIW金属通孔132,SIW金属层131分别覆盖在介质板4的正面和背面,SIW金属通孔132排布在SIW金属层131的两侧。其中,介质板4的厚度为0.254mm,介质板4为Taconic TLY-5介质板。微带线11为特性阻抗为50欧姆的微带线。金属层21覆盖在介质板4的上下表面。The microstrip SIW conversion structure 1 also includes a metal ground 14, the metal ground 14 is located on the back of the dielectric board 4, the microstrip line 11 and the trapezoidal microstrip gradient line 12 are located on the front of the dielectric board 4, and the SIW transmission section 13 includes the SIW metal layer 131 and The SIW metal vias 132 and the SIW metal layer 131 respectively cover the front and back of the dielectric board 4 , and the SIW metal vias 132 are arranged on both sides of the SIW metal layer 131 . Wherein, the thickness of the dielectric board 4 is 0.254 mm, and the dielectric board 4 is a Taconic TLY-5 dielectric board. The microstrip line 11 is a microstrip line with a characteristic impedance of 50 ohms. The metal layer 21 covers the upper and lower surfaces of the dielectric board 4 .
基于SIW的一分八功分器2将电磁能量均匀传输至八个Vivaldi天线单元3,感性金属通孔22和介质板4两侧所覆盖的金属层21构成波导结构,使电磁能量只能沿着通道传输而不产生逸散;为改善功分器在目标频带内的回波损耗和插入损耗,可通过调节基于SIW的一分八功分器2内部关键位置处的感性金属通孔22的半径与位置来实现。第一锤形槽32和第二锤形槽33使得Vivaldi天线单元3上的表面电流路径弯曲,增加了辐射单元的有效长度,向低频方向拓展了天线的阻抗带宽。由于Vivaldi辐射单元31末端开口较宽,相邻Vivaldi辐射单元31正面金属层和背面金属层重叠的区域为第一重叠区34,这在一定程度上起到了电容加载的作用,改变了天线的输入电抗,拓展了低频带宽;与此同时,单个Vivaldi辐射单元31金属层重叠的区域为第二重叠区35。这种金属层的重叠进一步提高了天线与馈电网络之间的阻抗匹配效果。The SIW-based one-to-eight power splitter 2 transmits the electromagnetic energy evenly to the eight Vivaldi antenna units 3, and the inductive metal through hole 22 and the metal layer 21 covered on both sides of the dielectric plate 4 form a waveguide structure, so that the electromagnetic energy can only be transmitted along the transmission along the channel without generating dissipation; in order to improve the return loss and insertion loss of the power splitter in the target frequency band, the inductive metal through hole 22 at the key position inside the 1/8 power splitter 2 based on SIW can be adjusted radius and position. The first hammer-shaped slot 32 and the second hammer-shaped slot 33 make the surface current path on the Vivaldi antenna unit 3 bend, increase the effective length of the radiation unit, and expand the impedance bandwidth of the antenna toward the low frequency direction. Since the opening of the end of the Vivaldi radiation unit 31 is relatively wide, the area where the front metal layer and the back metal layer of the adjacent Vivaldi radiation unit 31 overlap is the first overlapping area 34, which plays the role of capacitive loading to a certain extent and changes the input of the antenna. The reactance expands the low-frequency bandwidth; at the same time, the overlapping area of the metal layers of a single Vivaldi radiation unit 31 is the second overlapping area 35 . This overlapping of metal layers further improves the impedance matching effect between the antenna and the feeding network.
图6是基于SIW结构的毫米波宽带Vivaldi阵列天线的仿真与实测的回波损耗图,可以看出较之于仿真结果,实测回波损耗向低频与高频处均有一定的带宽拓展,且带内回波损耗均小于-10dB;图7是基于SIW结构的毫米波宽带Vivaldi阵列天线仿真与实测的带内增益图,可以看出仿真与实测增益吻合度较高,在相同频点处相差不超过0.3dB,且随频率升高而总体呈上升趋势;图8是基于SIW结构的毫米波宽带Vivaldi阵列天线仿真与实测的E面(YOZ面)方向图,可以看出天线的E面交叉极化分量比主极化分量低15dB,符合系统的应用需求;图9是基于SIW结构的毫米波宽带Vivaldi阵列天线仿真与实测的H面(XOZ面)方向图,可以看出天线的H面交叉极化分量比主极化分量低12dB,符合应用需求。Figure 6 is the simulation and measured return loss diagram of the millimeter-wave broadband Vivaldi array antenna based on the SIW structure. It can be seen that compared with the simulation results, the measured return loss has a certain bandwidth expansion to low frequency and high frequency, and The in-band return loss is less than -10dB; Figure 7 is the simulation and measured in-band gain diagram of the millimeter-wave broadband Vivaldi array antenna based on the SIW structure. It does not exceed 0.3dB, and it generally shows an upward trend with the increase of frequency; Figure 8 is the E-plane (YOZ plane) pattern based on the simulation and actual measurement of the millimeter-wave broadband Vivaldi array antenna based on the SIW structure. It can be seen that the E-plane crossing of the antenna The polarization component is 15dB lower than the main polarization component, which meets the application requirements of the system; Figure 9 is the simulated and measured H-plane (XOZ plane) pattern of the millimeter-wave broadband Vivaldi array antenna based on the SIW structure. It can be seen that the H-plane of the antenna The cross-polarization component is 12dB lower than the main polarization component, which meets the application requirements.
以上所述的具体实施例,对本实用新型的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本实用新型的具体实施例而已,并不用于限制本实用新型,凡在本实用新型的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本实用新型的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present utility model in detail. It should be understood that the above descriptions are only specific embodiments of the present utility model and are not intended to limit the present invention. For the utility model, any modification, equivalent replacement, improvement, etc. made within the spirit and principles of the utility model shall be included in the protection scope of the utility model.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201721563108.7UCN207490097U (en) | 2017-11-21 | 2017-11-21 | Millimeter wave broadband Vivaldi array antennas based on SIW structures |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201721563108.7UCN207490097U (en) | 2017-11-21 | 2017-11-21 | Millimeter wave broadband Vivaldi array antennas based on SIW structures |
| Publication Number | Publication Date |
|---|---|
| CN207490097Utrue CN207490097U (en) | 2018-06-12 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201721563108.7UExpired - Fee RelatedCN207490097U (en) | 2017-11-21 | 2017-11-21 | Millimeter wave broadband Vivaldi array antennas based on SIW structures |
| Country | Link |
|---|---|
| CN (1) | CN207490097U (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107845858A (en)* | 2017-11-21 | 2018-03-27 | 南京濠暻通讯科技有限公司 | Millimeter wave broadband Vivaldi array antennas based on SIW structures |
| CN112582808A (en)* | 2020-11-13 | 2021-03-30 | 华南理工大学 | Broadband butterfly patch antenna array suitable for millimeter wave 5G communication |
| CN113300065A (en)* | 2021-05-25 | 2021-08-24 | 南京邮电大学 | Mixed mode band-pass filter based on triangular substrate integrated waveguide |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107845858A (en)* | 2017-11-21 | 2018-03-27 | 南京濠暻通讯科技有限公司 | Millimeter wave broadband Vivaldi array antennas based on SIW structures |
| CN112582808A (en)* | 2020-11-13 | 2021-03-30 | 华南理工大学 | Broadband butterfly patch antenna array suitable for millimeter wave 5G communication |
| CN113300065A (en)* | 2021-05-25 | 2021-08-24 | 南京邮电大学 | Mixed mode band-pass filter based on triangular substrate integrated waveguide |
| Publication | Publication Date | Title |
|---|---|---|
| CN107946765A (en) | A kind of high-gain Vivaldi array antennas for loading director | |
| CN114069219B (en) | Microstrip phased array antenna unit and its array | |
| CN208923351U (en) | Medium integrated waveguide gradual change slot antenna | |
| CN108598696A (en) | A kind of high-gain millimeter wave circular polarization medium resonator array antenna | |
| CN107134651A (en) | A kind of planar horn antenna for the substrate integration wave-guide for loading dipole array | |
| CN107946752B (en) | Substrate integrated gap waveguide electromagnetic dipole antenna | |
| CN109742538B (en) | Millimeter wave phased array magnetic dipole antenna of mobile terminal and antenna array thereof | |
| CN105226395B (en) | Broad-band chip integrated waveguide electromagnetic horn without wide wall | |
| CN207490097U (en) | Millimeter wave broadband Vivaldi array antennas based on SIW structures | |
| CN113659325B (en) | Integrated substrate gap waveguide array antenna | |
| CN209266562U (en) | Dielectric Integrated Waveguide Slot Coupled Cavity Antenna | |
| CN111900542A (en) | High-frequency high-gain broadband dielectric resonator antenna | |
| CN109742515B (en) | A millimeter wave circularly polarized antenna for mobile terminals | |
| CN109560387B (en) | A millimeter wave dual-polarization antenna for mobile terminals | |
| CN104201465A (en) | Substrate integrated wave-guide antenna | |
| CN106711601A (en) | Broadband millimeter wave waveguide slot antenna adopting double parabolic cylindrical surface feeding | |
| Guo et al. | A planar shared-aperture co-polarized array antenna with a high isolation for millimeter-wave full duplex communication | |
| CN107196069B (en) | Compact Substrate Integrated Waveguide Cavity-Backed Slot Antenna | |
| CN112701455A (en) | Large-octave ultra-wide-angle scanning phased array antenna | |
| CN115863976A (en) | A Novel SIW Broadband Millimeter Wave Circularly Polarized Rectangular Loop Antenna | |
| CN115377674A (en) | A 5G millimeter-wave broadband dual-polarization antenna unit and antenna array | |
| CN114843777A (en) | Millimeter Wave Broadband Beam Scanning Antenna Array | |
| CN103531914A (en) | High-order-mode resonant slot antenna on basis of hexagonal substrate integrated waveguide | |
| CN110233329A (en) | A kind of miniaturization high-isolation common reflector based on structure multiplexing | |
| CN220604985U (en) | Back-fed millimeter wave substrate integrated waveguide slot array antenna structure and radar equipment |
| Date | Code | Title | Description |
|---|---|---|---|
| GR01 | Patent grant | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee | ||
| CF01 | Termination of patent right due to non-payment of annual fee | Granted publication date:20180612 |