




技术领域technical field
本实用新型涉及一种测量压实度的装置,具体涉及一种用于测量路基土压实度的装置。The utility model relates to a device for measuring the degree of compaction, in particular to a device for measuring the degree of compaction of roadbed soil.
背景技术Background technique
在公路工程施工中,灌砂法是最常用的测量密实度的方法,但是该方法存在许多缺点,主要有取土的工具较为落后,通常用铁锤和凿子挖土,工作效率低而且精度很差;此外,灌砂法是利用均匀颗粒的砂去置换试洞的体积,需要携带较多量的砂,而砂子在使用的过程中要回收利用,这就有可能使坑中的泥土混进去导致砂子的成分和密度等发生一些改变影响测量结果的精度;而且称量次数较多,用砂量大测试速度较慢;另外,在挖坑时试坑周壁很难保证笔直,往往出现不完全是圆柱形的坑使得测量结果有偏差。In highway engineering construction, the sand filling method is the most commonly used method to measure the compactness, but this method has many shortcomings. The main tools for taking soil are relatively backward. Usually, hammers and chisels are used to dig the soil, which has low work efficiency and low accuracy. Poor; in addition, the sand filling method uses uniform sand to replace the volume of the test hole, which needs to carry a large amount of sand, and the sand needs to be recycled during the use process, which may cause the soil in the pit to mix in and cause Some changes in the composition and density of the sand affect the accuracy of the measurement results; and the number of weighings is large, and the test speed is slow when the amount of sand used is large; Cylindrical pits bias the measurement results.
发明内容Contents of the invention
本实用新型专利要解决的技术问题在于针对现有技术的不足,提供一种结构简单、操作方便,在能够保证测量精度的条件下,提高测量效率,减少劳动强度的测量路基土压实度的装置。The technical problem to be solved by this utility model patent is to provide a simple structure, convenient operation, and under the condition of ensuring the measurement accuracy, it can improve the measurement efficiency and reduce the labor intensity to measure the compactness of subgrade soil. device.
为了实现上述任务,本实用新型专利采用的技术方案为:In order to realize above-mentioned task, the technical scheme that the utility model patent adopts is:
一种用于测量路基土压实度的装置,包括:A device for measuring the degree of compaction of subgrade soil, comprising:
无底面的外套筒,外套筒的顶端固结有直线丝杆步进电机,直线丝杆步进电机的输出轴竖直向下伸入外套筒中,与外套筒的轴心线重合;外套筒中同轴设置有无顶面和底面的内套筒,内套筒的轴心线上设置有转杆,转杆与内套筒通过固定片固结,转杆的上端与直线丝杆步进电机的输出轴固结,转杆的下端与内套筒的下端面齐平,且安装有刀片;在内套筒的内壁上设置有螺旋形第一滑槽,外套筒的内壁上设置有螺旋形第二滑槽,第二滑槽的下端与设置在外套筒侧壁上的开口连接;There is no bottom outer sleeve, the top of the outer sleeve is fixed with a linear screw stepping motor, the output shaft of the linear screw stepping motor extends vertically downward into the outer sleeve, and the axis line of the outer sleeve coincidence; the outer sleeve is coaxially provided with an inner sleeve without a top surface and a bottom surface, and a rotating rod is arranged on the axis of the inner sleeve. The output shaft of the linear screw stepping motor is consolidated, the lower end of the rotating rod is flush with the lower end surface of the inner sleeve, and a blade is installed; the inner wall of the inner sleeve is provided with a spiral first chute, and the outer sleeve The inner wall of the inner wall is provided with a spiral second chute, and the lower end of the second chute is connected with the opening provided on the side wall of the outer sleeve;
该装置还包括一个基板,基板上开设有直径与内套筒外径相同的中心孔,基板上还设置有与中心孔同中心,且内径与外套筒外径相同的卡盘。The device also includes a base plate, on which a center hole with the same diameter as the outer diameter of the inner sleeve is opened, and a chuck which is concentric with the center hole and whose inner diameter is the same as the outer diameter of the outer sleeve is arranged on the base plate.
进一步地,所述的第一滑槽和第二滑槽的横切面为L形,第二滑槽的宽度为外套筒内径的三分之一。Further, the cross section of the first chute and the second chute is L-shaped, and the width of the second chute is one-third of the inner diameter of the outer sleeve.
进一步地,所述的直线丝杆步进电机的底面上设置有控制盘,控制盘上设置有用于控制直线丝杆步进电机的启动按钮、复位按钮和停止按钮。Further, a control panel is arranged on the bottom surface of the linear screw stepping motor, and a start button, a reset button and a stop button for controlling the linear screw stepping motor are arranged on the control panel.
进一步地,基板的边缘设置有挡板。Further, baffles are provided on the edge of the substrate.
进一步地,在直线丝杆步进电机上安装有把手。Further, a handle is installed on the linear screw stepping motor.
本实用新型结构简单,操作简单大大简化了原来灌砂法繁琐的操作步骤;本装置在测量过程中由于钻出来的孔正好是圆柱体,体积可以直接由钻孔深度和测量钢桶的直径得知,省略了用沙子替换挖出来的坑测量体积的步骤,并且省去了利用灌砂过程中测量挖出孔的体积,还省去了人工挖孔的繁琐过程,有效地提高了工作效率。The utility model has simple structure and simple operation, which greatly simplifies the cumbersome operation steps of the original sand filling method; during the measurement process of the device, since the drilled hole is just a cylinder, the volume can be obtained directly from the drilling depth and the diameter of the steel drum. It is known that the step of replacing the excavated pit with sand to measure the volume is omitted, and the volume of the excavated hole is measured during the sand filling process, and the tedious process of manually digging the hole is omitted, which effectively improves the work efficiency.
附图说明Description of drawings
图1为本实用新型的整体结构示意图;Fig. 1 is the overall structural representation of the utility model;
图2为外套筒和内套筒的工作状态示意图;Fig. 2 is the working state schematic diagram of outer sleeve and inner sleeve;
图3为外套筒的外观示意图;Fig. 3 is the appearance schematic diagram of outer sleeve;
图4为内套筒的结构示意图;Fig. 4 is the structural representation of inner sleeve;
图5为第一滑槽/第二滑槽的结构示意图;Fig. 5 is the structural representation of the first chute/second chute;
图中标号代表:1—把手,2—控制盘,3—直线丝杆步进电机,4—转杆,5—第二滑槽,6—开口,7—第一滑槽,8—内套筒,9—刀片,10—固定片,11—中心孔,12—卡盘,13—基板,14—外套筒;The symbols in the figure represent: 1—handle, 2—control panel, 3—linear screw stepping motor, 4—rotary rod, 5—second chute, 6—opening, 7—first chute, 8—inner sleeve Sleeve, 9—blade, 10—fixed piece, 11—center hole, 12—chuck, 13—base plate, 14—outer sleeve;
具体实施方式Detailed ways
以下结合附图对本实用新型做进一步说明。Below in conjunction with accompanying drawing, the utility model is further described.
如图1所示,本实用新型的主体结构为同轴设置的外套筒14和内套筒8,外套筒14顶端设置有直线丝杆步进电机3,直线丝杆步进电机3的输出轴与转杆4固结,该电机可以使转杆4跟随输出轴自转的同时,沿转杆4的轴向运动。直线丝杆步进电机3的底面上设置有控制盘2,控制盘2上设置有用于控制直线丝杆步进电机3的启动按钮、复位按钮和停止按钮;为了便于携带,在直线丝杆步进电机3上安装有把手1。As shown in Figure 1, the main structure of the present utility model is the
转杆4与内套筒8通过固定片10固结,转杆4旋转时,可带动内套筒8一起旋转。转杆4下端部与内套筒8的下端面齐平,在转杆4下端安装有刀片9,刀片9随转杆4一起旋转,可对接触到的土体进行切割。内套筒8内壁由下至上设置有螺旋形第一滑槽7,用于协助刀片9将切割下来的土体向上部运送。内套筒8的结构见图4。刀片9高速旋转对土体进行切割后,由于内套筒8也在旋转,则切割下来的土体会随着第一滑槽7向上运动,而内套筒8没有顶面,土体最终从内套筒8顶部被推出;刀片9随着电机的运转一直竖直向下运动,最终可在接触面旋转挖出直径与内套筒8相同的圆柱形坑,内套筒8的运动状态如图2所示。The rotating
外套筒14的内壁上设置螺旋形第二滑槽5,如图3所示;第二滑槽5和第一滑槽7的结构相同,均是横切面为L形的滑槽,如图5所示;沿外套筒14内壁由上至下设置。土体从内套筒8顶部推出后,一部分落在两个套筒之间,而大部分则会随着第二滑道滑出,并最终从外套筒14侧壁上的开口6处排出。为了保证土体的输送畅通,第二滑槽5的宽度宜设置为外套筒14内径的三分之一。The inner wall of the
与外套筒14和内套筒8相配合的是一个基板13,基板13上开设有中心孔11,中心孔11的直径与内套筒8的外径相同,刚好容纳内套筒8进入其中。而中心孔11外侧同轴设置的卡盘12,则是为了固定外套筒14,其内径与外套筒14的外径相同,可将外套筒14牢牢卡住。从外套筒14侧壁上开口6处排出的土体,落在基板13上,为了便于收集,在基板13边缘还设置有挡板。Cooperating with the
利用该装置测量土体压实度的步骤主要有:The steps to measure soil compaction with this device mainly include:
①在试验地点,选一块平坦的路面,并将其清扫干净,其面积不得小于基板13面积;① At the test site, select a flat road surface and clean it up, the area of which shall not be smaller than the area of the
②将基板13放置在清扫过的路面上,固定基板13四周,以防直线丝杆步进电机3工作时基板13的位置发生变化,影响测量精度;②Place the
③把外套筒14放在基板13上,使得外套筒14下部正好卡在基板13的卡盘12上,并使内套筒8与基板13的中心孔11正对;然后按下控制盘2上的启动按钮;③ Put the
④待内套筒8下移到指定位置时按下停止按钮,在该过程中挖出的土体由外套筒14侧壁上的开口6落在基板13中,随后把基板13上的土体,和外套筒14与内套筒8之间的土体用塑料袋收集,称重得到质量m;而内套筒8的体积是一定的,根据内套筒8下移的距离,可得到挖出土体的体积v;④ Press the stop button when the
⑤从挖出的土体中取出有代表性的样品,放在铝盒或洁净的搪瓷盘中,测定其含水量(w,以%计);⑤ Take a representative sample from the excavated soil, put it in an aluminum box or a clean enamel plate, and measure its water content (w, in %);
⑥计算该土体的干密度ρ:⑥ Calculate the dry density ρ of the soil:
⑦计算该路基土体的压实度:⑦ Calculate the degree of compaction of the subgrade soil:
根据该土体的干密度和室内试验得到的最大干密度的比值便可获得该路基土体的压实度。The degree of compaction of the subgrade soil can be obtained according to the ratio of the dry density of the soil to the maximum dry density obtained from the laboratory test.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201320807142.XUCN203658201U (en) | 2013-12-09 | 2013-12-09 | Device for measuring subgrade soil compactness |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN201320807142.XUCN203658201U (en) | 2013-12-09 | 2013-12-09 | Device for measuring subgrade soil compactness |
| Publication Number | Publication Date |
|---|---|
| CN203658201Utrue CN203658201U (en) | 2014-06-18 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN201320807142.XUExpired - Fee RelatedCN203658201U (en) | 2013-12-09 | 2013-12-09 | Device for measuring subgrade soil compactness |
| Country | Link |
|---|---|
| CN (1) | CN203658201U (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105823707A (en)* | 2016-05-09 | 2016-08-03 | 北京华夏力鸿商品检验有限公司 | Coal pile density determination device and method |
| CN109537561A (en)* | 2018-12-07 | 2019-03-29 | 山东交通职业学院 | A kind of auxiliary borehole device of sand replacement method detection roadbed solidity |
| CN110346242A (en)* | 2019-07-20 | 2019-10-18 | 深圳市实瑞建筑技术有限公司 | A kind of sand replacement method compactness detection system and its detection method |
| US11079725B2 (en) | 2019-04-10 | 2021-08-03 | Deere & Company | Machine control using real-time model |
| US11178818B2 (en) | 2018-10-26 | 2021-11-23 | Deere & Company | Harvesting machine control system with fill level processing based on yield data |
| US11234366B2 (en) | 2019-04-10 | 2022-02-01 | Deere & Company | Image selection for machine control |
| US11240961B2 (en) | 2018-10-26 | 2022-02-08 | Deere & Company | Controlling a harvesting machine based on a geo-spatial representation indicating where the harvesting machine is likely to reach capacity |
| US20220110251A1 (en) | 2020-10-09 | 2022-04-14 | Deere & Company | Crop moisture map generation and control system |
| US11467605B2 (en) | 2019-04-10 | 2022-10-11 | Deere & Company | Zonal machine control |
| US11474523B2 (en) | 2020-10-09 | 2022-10-18 | Deere & Company | Machine control using a predictive speed map |
| US11477940B2 (en) | 2020-03-26 | 2022-10-25 | Deere & Company | Mobile work machine control based on zone parameter modification |
| US11589509B2 (en) | 2018-10-26 | 2023-02-28 | Deere & Company | Predictive machine characteristic map generation and control system |
| US11592822B2 (en) | 2020-10-09 | 2023-02-28 | Deere & Company | Machine control using a predictive map |
| US11635765B2 (en) | 2020-10-09 | 2023-04-25 | Deere & Company | Crop state map generation and control system |
| US11641800B2 (en) | 2020-02-06 | 2023-05-09 | Deere & Company | Agricultural harvesting machine with pre-emergence weed detection and mitigation system |
| US11650587B2 (en) | 2020-10-09 | 2023-05-16 | Deere & Company | Predictive power map generation and control system |
| US11672203B2 (en) | 2018-10-26 | 2023-06-13 | Deere & Company | Predictive map generation and control |
| US11675354B2 (en) | 2020-10-09 | 2023-06-13 | Deere & Company | Machine control using a predictive map |
| US11711995B2 (en) | 2020-10-09 | 2023-08-01 | Deere & Company | Machine control using a predictive map |
| US11727680B2 (en) | 2020-10-09 | 2023-08-15 | Deere & Company | Predictive map generation based on seeding characteristics and control |
| US11778945B2 (en) | 2019-04-10 | 2023-10-10 | Deere & Company | Machine control using real-time model |
| US11825768B2 (en) | 2020-10-09 | 2023-11-28 | Deere & Company | Machine control using a predictive map |
| US11845449B2 (en) | 2020-10-09 | 2023-12-19 | Deere & Company | Map generation and control system |
| US11844311B2 (en) | 2020-10-09 | 2023-12-19 | Deere & Company | Machine control using a predictive map |
| US11849672B2 (en) | 2020-10-09 | 2023-12-26 | Deere & Company | Machine control using a predictive map |
| US11864483B2 (en) | 2020-10-09 | 2024-01-09 | Deere & Company | Predictive map generation and control system |
| US11874669B2 (en) | 2020-10-09 | 2024-01-16 | Deere & Company | Map generation and control system |
| US11889788B2 (en) | 2020-10-09 | 2024-02-06 | Deere & Company | Predictive biomass map generation and control |
| US11889787B2 (en) | 2020-10-09 | 2024-02-06 | Deere & Company | Predictive speed map generation and control system |
| US11895948B2 (en) | 2020-10-09 | 2024-02-13 | Deere & Company | Predictive map generation and control based on soil properties |
| US11927459B2 (en) | 2020-10-09 | 2024-03-12 | Deere & Company | Machine control using a predictive map |
| US11946747B2 (en) | 2020-10-09 | 2024-04-02 | Deere & Company | Crop constituent map generation and control system |
| US11957072B2 (en) | 2020-02-06 | 2024-04-16 | Deere & Company | Pre-emergence weed detection and mitigation system |
| US11983009B2 (en) | 2020-10-09 | 2024-05-14 | Deere & Company | Map generation and control system |
| US12013245B2 (en) | 2020-10-09 | 2024-06-18 | Deere & Company | Predictive map generation and control system |
| US12035648B2 (en) | 2020-02-06 | 2024-07-16 | Deere & Company | Predictive weed map generation and control system |
| US12058951B2 (en) | 2022-04-08 | 2024-08-13 | Deere & Company | Predictive nutrient map and control |
| US12069978B2 (en) | 2018-10-26 | 2024-08-27 | Deere & Company | Predictive environmental characteristic map generation and control system |
| US12069986B2 (en) | 2020-10-09 | 2024-08-27 | Deere & Company | Map generation and control system |
| US12082531B2 (en) | 2022-01-26 | 2024-09-10 | Deere & Company | Systems and methods for predicting material dynamics |
| US12127500B2 (en) | 2021-01-27 | 2024-10-29 | Deere & Company | Machine control using a map with regime zones |
| US12171153B2 (en) | 2018-10-26 | 2024-12-24 | Deere & Company | Yield map generation and control system |
| US12178158B2 (en) | 2020-10-09 | 2024-12-31 | Deere & Company | Predictive map generation and control system for an agricultural work machine |
| US12225846B2 (en) | 2020-02-06 | 2025-02-18 | Deere & Company | Machine control using a predictive map |
| US12229886B2 (en) | 2021-10-01 | 2025-02-18 | Deere & Company | Historical crop state model, predictive crop state map generation and control system |
| US12245549B2 (en) | 2022-01-11 | 2025-03-11 | Deere & Company | Predictive response map generation and control system |
| US12250905B2 (en) | 2020-10-09 | 2025-03-18 | Deere & Company | Machine control using a predictive map |
| US12284934B2 (en) | 2022-04-08 | 2025-04-29 | Deere & Company | Systems and methods for predictive tractive characteristics and control |
| US12298767B2 (en) | 2022-04-08 | 2025-05-13 | Deere & Company | Predictive material consumption map and control |
| US12295288B2 (en) | 2022-04-05 | 2025-05-13 | Deere &Company | Predictive machine setting map generation and control system |
| US12302791B2 (en) | 2021-12-20 | 2025-05-20 | Deere & Company | Crop constituents, predictive mapping, and agricultural harvester control |
| US12310286B2 (en) | 2021-12-14 | 2025-05-27 | Deere & Company | Crop constituent sensing |
| US12329050B2 (en) | 2020-10-09 | 2025-06-17 | Deere & Company | Machine control using a predictive map |
| US12329148B2 (en) | 2020-02-06 | 2025-06-17 | Deere & Company | Predictive weed map and material application machine control |
| US12358493B2 (en) | 2022-04-08 | 2025-07-15 | Deere & Company | Systems and methods for predictive power requirements and control |
| US12386354B2 (en) | 2020-10-09 | 2025-08-12 | Deere & Company | Predictive power map generation and control system |
| US12422847B2 (en) | 2020-10-09 | 2025-09-23 | Deere & Company | Predictive agricultural model and map generation |
| US12419220B2 (en) | 2020-10-09 | 2025-09-23 | Deere & Company | Predictive map generation and control system |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN105823707A (en)* | 2016-05-09 | 2016-08-03 | 北京华夏力鸿商品检验有限公司 | Coal pile density determination device and method |
| CN105823707B (en)* | 2016-05-09 | 2018-11-13 | 北京华夏力鸿商品检验有限公司 | A kind of coal heap density measuring device and method |
| US11672203B2 (en) | 2018-10-26 | 2023-06-13 | Deere & Company | Predictive map generation and control |
| US12171153B2 (en) | 2018-10-26 | 2024-12-24 | Deere & Company | Yield map generation and control system |
| US11178818B2 (en) | 2018-10-26 | 2021-11-23 | Deere & Company | Harvesting machine control system with fill level processing based on yield data |
| US12010947B2 (en) | 2018-10-26 | 2024-06-18 | Deere & Company | Predictive machine characteristic map generation and control system |
| US11240961B2 (en) | 2018-10-26 | 2022-02-08 | Deere & Company | Controlling a harvesting machine based on a geo-spatial representation indicating where the harvesting machine is likely to reach capacity |
| US11589509B2 (en) | 2018-10-26 | 2023-02-28 | Deere & Company | Predictive machine characteristic map generation and control system |
| US12069978B2 (en) | 2018-10-26 | 2024-08-27 | Deere & Company | Predictive environmental characteristic map generation and control system |
| US12178156B2 (en) | 2018-10-26 | 2024-12-31 | Deere & Company | Predictive map generation and control |
| CN109537561A (en)* | 2018-12-07 | 2019-03-29 | 山东交通职业学院 | A kind of auxiliary borehole device of sand replacement method detection roadbed solidity |
| US11829112B2 (en) | 2019-04-10 | 2023-11-28 | Deere & Company | Machine control using real-time model |
| US11650553B2 (en) | 2019-04-10 | 2023-05-16 | Deere & Company | Machine control using real-time model |
| US11467605B2 (en) | 2019-04-10 | 2022-10-11 | Deere & Company | Zonal machine control |
| US11234366B2 (en) | 2019-04-10 | 2022-02-01 | Deere & Company | Image selection for machine control |
| US11778945B2 (en) | 2019-04-10 | 2023-10-10 | Deere & Company | Machine control using real-time model |
| US11079725B2 (en) | 2019-04-10 | 2021-08-03 | Deere & Company | Machine control using real-time model |
| CN110346242A (en)* | 2019-07-20 | 2019-10-18 | 深圳市实瑞建筑技术有限公司 | A kind of sand replacement method compactness detection system and its detection method |
| US12225846B2 (en) | 2020-02-06 | 2025-02-18 | Deere & Company | Machine control using a predictive map |
| US11641800B2 (en) | 2020-02-06 | 2023-05-09 | Deere & Company | Agricultural harvesting machine with pre-emergence weed detection and mitigation system |
| US12329148B2 (en) | 2020-02-06 | 2025-06-17 | Deere & Company | Predictive weed map and material application machine control |
| US12035648B2 (en) | 2020-02-06 | 2024-07-16 | Deere & Company | Predictive weed map generation and control system |
| US11957072B2 (en) | 2020-02-06 | 2024-04-16 | Deere & Company | Pre-emergence weed detection and mitigation system |
| US11477940B2 (en) | 2020-03-26 | 2022-10-25 | Deere & Company | Mobile work machine control based on zone parameter modification |
| US11927459B2 (en) | 2020-10-09 | 2024-03-12 | Deere & Company | Machine control using a predictive map |
| US12271196B2 (en) | 2020-10-09 | 2025-04-08 | Deere &Company | Machine control using a predictive map |
| US11844311B2 (en) | 2020-10-09 | 2023-12-19 | Deere & Company | Machine control using a predictive map |
| US11849672B2 (en) | 2020-10-09 | 2023-12-26 | Deere & Company | Machine control using a predictive map |
| US11864483B2 (en) | 2020-10-09 | 2024-01-09 | Deere & Company | Predictive map generation and control system |
| US11871697B2 (en) | 2020-10-09 | 2024-01-16 | Deere & Company | Crop moisture map generation and control system |
| US11874669B2 (en) | 2020-10-09 | 2024-01-16 | Deere & Company | Map generation and control system |
| US11889788B2 (en) | 2020-10-09 | 2024-02-06 | Deere & Company | Predictive biomass map generation and control |
| US11889787B2 (en) | 2020-10-09 | 2024-02-06 | Deere & Company | Predictive speed map generation and control system |
| US11895948B2 (en) | 2020-10-09 | 2024-02-13 | Deere & Company | Predictive map generation and control based on soil properties |
| US11825768B2 (en) | 2020-10-09 | 2023-11-28 | Deere & Company | Machine control using a predictive map |
| US11946747B2 (en) | 2020-10-09 | 2024-04-02 | Deere & Company | Crop constituent map generation and control system |
| US11727680B2 (en) | 2020-10-09 | 2023-08-15 | Deere & Company | Predictive map generation based on seeding characteristics and control |
| US11983009B2 (en) | 2020-10-09 | 2024-05-14 | Deere & Company | Map generation and control system |
| US11711995B2 (en) | 2020-10-09 | 2023-08-01 | Deere & Company | Machine control using a predictive map |
| US12013698B2 (en) | 2020-10-09 | 2024-06-18 | Deere & Company | Machine control using a predictive map |
| US12013245B2 (en) | 2020-10-09 | 2024-06-18 | Deere & Company | Predictive map generation and control system |
| US11675354B2 (en) | 2020-10-09 | 2023-06-13 | Deere & Company | Machine control using a predictive map |
| US12048271B2 (en) | 2020-10-09 | 2024-07-30 | Deere &Company | Crop moisture map generation and control system |
| US12419220B2 (en) | 2020-10-09 | 2025-09-23 | Deere & Company | Predictive map generation and control system |
| US11650587B2 (en) | 2020-10-09 | 2023-05-16 | Deere & Company | Predictive power map generation and control system |
| US12069986B2 (en) | 2020-10-09 | 2024-08-27 | Deere & Company | Map generation and control system |
| US12080062B2 (en) | 2020-10-09 | 2024-09-03 | Deere & Company | Predictive map generation based on seeding characteristics and control |
| US12422847B2 (en) | 2020-10-09 | 2025-09-23 | Deere & Company | Predictive agricultural model and map generation |
| US12386354B2 (en) | 2020-10-09 | 2025-08-12 | Deere & Company | Predictive power map generation and control system |
| US11635765B2 (en) | 2020-10-09 | 2023-04-25 | Deere & Company | Crop state map generation and control system |
| US11592822B2 (en) | 2020-10-09 | 2023-02-28 | Deere & Company | Machine control using a predictive map |
| US12178158B2 (en) | 2020-10-09 | 2024-12-31 | Deere & Company | Predictive map generation and control system for an agricultural work machine |
| US12193350B2 (en) | 2020-10-09 | 2025-01-14 | Deere & Company | Machine control using a predictive map |
| US12216472B2 (en) | 2020-10-09 | 2025-02-04 | Deere & Company | Map generation and control system |
| US11474523B2 (en) | 2020-10-09 | 2022-10-18 | Deere & Company | Machine control using a predictive speed map |
| US20220110251A1 (en) | 2020-10-09 | 2022-04-14 | Deere & Company | Crop moisture map generation and control system |
| US12329050B2 (en) | 2020-10-09 | 2025-06-17 | Deere & Company | Machine control using a predictive map |
| US12250905B2 (en) | 2020-10-09 | 2025-03-18 | Deere & Company | Machine control using a predictive map |
| US11845449B2 (en) | 2020-10-09 | 2023-12-19 | Deere & Company | Map generation and control system |
| US12127500B2 (en) | 2021-01-27 | 2024-10-29 | Deere & Company | Machine control using a map with regime zones |
| US12229886B2 (en) | 2021-10-01 | 2025-02-18 | Deere & Company | Historical crop state model, predictive crop state map generation and control system |
| US12310286B2 (en) | 2021-12-14 | 2025-05-27 | Deere & Company | Crop constituent sensing |
| US12302791B2 (en) | 2021-12-20 | 2025-05-20 | Deere & Company | Crop constituents, predictive mapping, and agricultural harvester control |
| US12245549B2 (en) | 2022-01-11 | 2025-03-11 | Deere & Company | Predictive response map generation and control system |
| US12082531B2 (en) | 2022-01-26 | 2024-09-10 | Deere & Company | Systems and methods for predicting material dynamics |
| US12295288B2 (en) | 2022-04-05 | 2025-05-13 | Deere &Company | Predictive machine setting map generation and control system |
| US12284934B2 (en) | 2022-04-08 | 2025-04-29 | Deere & Company | Systems and methods for predictive tractive characteristics and control |
| US12298767B2 (en) | 2022-04-08 | 2025-05-13 | Deere & Company | Predictive material consumption map and control |
| US12358493B2 (en) | 2022-04-08 | 2025-07-15 | Deere & Company | Systems and methods for predictive power requirements and control |
| US12058951B2 (en) | 2022-04-08 | 2024-08-13 | Deere & Company | Predictive nutrient map and control |
| Publication | Publication Date | Title |
|---|---|---|
| CN203658201U (en) | Device for measuring subgrade soil compactness | |
| CN208803451U (en) | An auxiliary device for detecting the compaction degree of roadbed soil | |
| CN207231822U (en) | A kind of soil collection device | |
| CN212228640U (en) | A kind of highway compaction test detection equipment | |
| CN117308739B (en) | Thickness detection equipment for highway engineering construction | |
| CN110346242A (en) | A kind of sand replacement method compactness detection system and its detection method | |
| CN104631421B (en) | A kind of device and method being applicable to roadbed deep layer sampling survey density | |
| CN114279746B (en) | A portable sampling device for geological layering for geological prospecting | |
| CN115839864A (en) | Geological mineral exploration device convenient for layered sampling | |
| CN206859293U (en) | A kind of borehole device for sand replacement method detection compactness | |
| CN203034432U (en) | Roadbed detection sampler | |
| CN219527753U (en) | A kind of detection equipment for the degree of compaction of highway engineering subgrade | |
| CN212134141U (en) | Laborsaving and soil sampling device of being convenient for get soil | |
| CN211143040U (en) | Highway basic unit compactness test sampler | |
| CN207964415U (en) | Sand replacement method detects fill subgrade compactness excavating device of testing pits | |
| CN219046022U (en) | An environmental detection sampling device with a weighing function | |
| CN218098400U (en) | Roadbed test detection soil sampling device | |
| CN214621774U (en) | Fine soil sampler | |
| CN215105204U (en) | Portable soil matrix compactness detection device | |
| CN217276966U (en) | Sample collection system is used in rock engineering geological testing | |
| CN216205867U (en) | Pavement thickness detection device | |
| CN215165444U (en) | A roadbed detection device for road engineering | |
| CN214463877U (en) | Drilling device for geotechnical engineering construction | |
| CN206700996U (en) | Dust-proof corning machine | |
| CN204174601U (en) | A kind of portable soil property measuring instrument |
| Date | Code | Title | Description |
|---|---|---|---|
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| CF01 | Termination of patent right due to non-payment of annual fee | Granted publication date:20140618 Termination date:20161209 | |
| CF01 | Termination of patent right due to non-payment of annual fee |