














技术领域technical field
本实用新型属于一种触控面板的技术领域,具体而言是指一种在同一水平或垂直的不同触点阻抗产生梯度现象、且能防止电流互相抵消的表面电容式的触控面板,以使该触控面板具有多触点判定的功能。 The utility model belongs to the technical field of a touch panel, and specifically refers to a surface capacitive touch panel that produces a gradient phenomenon at different contact impedances at the same level or vertically and can prevent currents from canceling each other out. The touch panel has the function of multi-touch determination. the
背景技术Background technique
电子设备发展史中,键盘、鼠标与触控板等输入界面的出现,解决了输入控制的问题。不过,这些输入界面所占空间不小,例如,笔记型电脑或手机一半体积都被键盘占据。若能省下键盘空间,自然能提升产品可携性,最可行的方式,就是直接于面板以触控方式进行操作。触控面板确实能取代大多数键盘、鼠标功能,并赋与使用者更直觉、便利的操作体验;以更大的面板替代键盘,还能设计出更轻薄、时尚造型;加上完全采用固态面板技术,不需担心键盘、滑轮等机械零件故障的问题。 In the history of electronic equipment development, the emergence of input interfaces such as keyboards, mice, and touch panels has solved the problem of input control. However, these input interfaces take up a lot of space. For example, half of the volume of a notebook computer or a mobile phone is occupied by a keyboard. If the keyboard space can be saved, the portability of the product can be improved naturally. The most feasible way is to operate directly on the panel by touch. The touch panel can indeed replace most of the keyboard and mouse functions, and give users a more intuitive and convenient operation experience; replacing the keyboard with a larger panel can also design a thinner, lighter and more stylish shape; plus the use of solid-state panels technology, there is no need to worry about the failure of mechanical parts such as keyboards and pulleys. the
从技术原理来区别触控面板,其可分为电阻技术触控面板、电容技术触控面板、红外线技术触控面板、表面声波技术触控面板、电磁技术触控面板与光学技术触控面板等。其中电阻式触控面板的定位准确,但其价格颇高,且怕刮易损。红外线技术触控面板的价格低廉,但其外框易碎,容易产生光干扰,曲面情况下失真;而表面声波触控面板解决了以往触控式萤幕的各种缺陷,清晰抗暴,适于各种场合,缺憾是面板表面的水滴、尘土会使触控面板变的迟钝,甚至不工作。因此目前触控面板开发的在考量兼具耐用性、成本、反应速度与便利性下,电阻式触控面板与电容式触控面板成为市场上的主力产品。 To distinguish touch panels from the technical principles, they can be divided into resistive technology touch panels, capacitive technology touch panels, infrared technology touch panels, surface acoustic wave technology touch panels, electromagnetic technology touch panels and optical technology touch panels, etc. . Among them, the positioning of the resistive touch panel is accurate, but its price is quite high, and it is afraid of being scratched and easily damaged. Infrared technology touch panels are cheap, but their frames are fragile, prone to light interference, and distortion under curved surfaces; while surface acoustic wave touch panels solve various defects of previous touch screens, are clear and resistant to violence, and are suitable for various applications. In this case, the disadvantage is that water droplets and dust on the surface of the panel will make the touch panel dull or even not work. Therefore, under considerations of durability, cost, response speed and convenience in the development of touch panels, resistive touch panels and capacitive touch panels have become the main products in the market. the
近年来,受到智能手机贴心的触控界面,让智能手机有机会赢得更多人的青睐。而多点触控功能的出现(如iPhone、HTC等智能手机),更造成使用界面的新革命,用户能以更直观的方式使用应用该多点触控面板的电子产品。 In recent years, thanks to the intimate touch interface of smartphones, smartphones have the opportunity to win the favor of more people. The emergence of multi-touch functions (such as smart phones such as iPhone and HTC) has caused a new revolution in the user interface, and users can use electronic products using the multi-touch panel in a more intuitive manner. the
不过,在前述多点触控式智能手机推出已有一段时间,但仍未见到市场上接二连三的相似概念产品出现,可见得在技术的实践上确实存在着一道颇高的 门槛。目前在市场上存在多种触控技术,只有电容式技术可望实现多点触控的功能。再进一步看,电容式触控又可分为表面电容式(Surface Capacitive)和投射电容式(Projective Capacitive)两种作法; However, it has been a while since the aforementioned multi-touch smart phone was launched, but there are still no similar concept products appearing on the market one after another. It can be seen that there is indeed a rather high threshold in the practice of technology. Currently, there are many touch technologies in the market, and only the capacitive technology is expected to realize the function of multi-touch. Looking further, capacitive touch can be divided into surface capacitive (Surface Capacitive) and projected capacitive (Projective Capacitive) two approaches;
以其中表面电容式的技术作法来看,如图1所示其为一传统表面电容式触控面板。该触控面板10由一透明基板11、一透明导电层12、一电极图案层13及一绝缘保护用的硬化层14所构成,其中该透明基板11可为玻璃、塑胶,该电极图案层13由形成围绕成矩形的两相对X侧电极131与两相对Y侧电极132形成于该透明导电层12的周缘部份,用以补偿该透明导电层12上的一电场的曲线分布。此外,如图2所示,该触控面板10的四角落处各与一连外的导线151、152、153、154相接,用以分别接收一交流感测信号(AC1、AC2、AC3、AC4),以供量测触控面板10上的一个触点P的位置用。在实际工作时,该等交流感测信号AC1、AC2、AC3、AC4为振幅大小相同的交流方波或弦波电压信号,此时各连外导线151、152、153、154上各有一电流I1、I2、I3及I4通过。藉由量取每一连外导线151、152、153、154的在该触点P出现前与出现时的电流变化量ΔI1、ΔI2、ΔI3及ΔI4,该触点P位置的X、Y坐标便可依下式被计算出: In view of the surface capacitive technology, it is a traditional surface capacitive touch panel as shown in FIG. 1 . The
X=(ΔI3+ΔI4-ΔI1-ΔI2)/(ΔI1+ΔI2+ΔI3+ΔI4) X=(ΔI3+ΔI4-ΔI1-ΔI2)/(ΔI1+ΔI2+ΔI3+ΔI4)
Y=(ΔI1+ΔI4-ΔI3-ΔI2)/(ΔI1+ΔI2+ΔI3+ΔI4) Y=(ΔI1+ΔI4-ΔI3-ΔI2)/(ΔI1+ΔI2+ΔI3+ΔI4)
因此在运作架构上,系统会在透明导电层12产生一个均匀电场,当手指接触面板会出现电容充电效应,面板上电极图案层13的各透明X、Y侧电极131、132与手指间形成电容耦合,进而产生电容变化,控制器只要量测四个角落电流强度,就可依电流大小计算接触位置。 Therefore, in terms of operating structure, the system will generate a uniform electric field on the transparent
由于其通过手指接触触控面板造成静电场改变进行侦测,其中单点触控电容式技术,其实已相当成熟,也就是表面电容式(Surface Capacitive)。此技术架构较单纯,只需一面透明导电层12即可实现,而且此透明导电层12不需特殊感测通道设计,周边只需接4条导线151、152、153、154和接地线即可,生产难度及成本都可降低。而其最大的限制则是,它无法实现多点触控功能,主要是因为其在实际工作业时,如同时施于二个以上触点,而进行两触点间的手势动作时(如缩放、旋转或拖拉等),其可能因两指位置呈对应状而使输出的电流 相互抵消,造成其触点或动作的误判,故现有表面电容式触控面板并不是多点触控的理想技术。 Since it detects changes in the electrostatic field caused by touching the touch panel with a finger, the single-touch capacitive technology is actually quite mature, that is, Surface Capacitive. This technical framework is relatively simple, only one side of the transparent
也因此。投射电容式(Projected Capacitive)技术就成了实现多点触控的希望所在。如图3为一传统投射电容式触控面板的立体分解图。该电容式触控面板20由一透明基板21、一X透明电极图案层22、一透明介电层23及一Y透明电极图案层24由下往上迭合形成,其中X与Y透明电极图案层22、24上各形成行/列的感测图案25(sensing element),用以与其它元件配合为用而判定该触控面板20上一或多个触点的存在,其中X与Y透明电极图案层22、24的感测图案25并与复数条外接导线28相接。 So. Projected Capacitive (Projected Capacitive) technology has become the hope of realizing multi-touch. FIG. 3 is a three-dimensional exploded view of a conventional projected capacitive touch panel. The
相较于表面电容式,投射电容式采单层或多层样式化(patterned)形成行/列交错感测图案25(sensing element)矩阵。如此一来,整个使用生命周期中,不需通过校准就能得到精确触控位置,而且可以使用较厚的覆盖层,也能做到多点触控操作。但这在市场上仍属于相当先进且复杂的技术,其萤幕的感测方式必须采用多栏(column)和多列(row)的矩阵(Matrix)扫描模式,又可分为轴交错式(Axis Intersect)和所有触点可定位式(All Points Addressable,APA)两种感测萤幕。前者的实践上较为容易,对于运算及储存资源的要求也较低,不过如果想实现精确的两点触控定位,还是得采用APA的感测技术。 Compared with the surface capacitive method, the projected capacitive method adopts single-layer or multi-layer patterned to form a row/column interlaced sensing pattern 25 (sensing element) matrix. In this way, the precise touch position can be obtained without calibration throughout the entire use life cycle, and thicker overlays can be used, and multi-touch operations can also be achieved. However, this is still a very advanced and complex technology in the market. The sensing method of the screen must adopt a multi-column and multi-row (Matrix) scanning mode, which can also be divided into axis-staggered (Axis Intersect) and All Points Addressable (APA) sensing screens. The former is easier in practice and has lower requirements for computing and storage resources, but if you want to achieve accurate two-point touch positioning, you still have to use APA sensing technology. the
但不论何者,就目前的制造技术而言,其均需使用到较高的制造技术,因此其制造成本极高,不符实际使用的需求,更甚者受到其运算、储存资源不足与感测准确度的影响,目前投射电容式触控面板的只能用于小尺寸面板的量产上,对于使用中、大尺寸面板的产业(如笔记型电脑、工业电脑、POS系统、ATM、医疗器材、监视器、游戏机等等),尚无法有效的满足其多点触控的需求。 But no matter what, as far as the current manufacturing technology is concerned, it needs to use higher manufacturing technology, so its manufacturing cost is extremely high, which does not meet the needs of actual use, and what is more limited by its computing, storage resources and accurate sensing. The current projected capacitive touch panel can only be used in the mass production of small-sized panels. For industries using medium and large-sized panels (such as notebook computers, industrial computers, POS systems, ATMs, medical equipment, Monitors, game consoles, etc.), cannot effectively meet the needs of its multi-touch. the
换言之,由于表面电容式触控面板具有架构简易、且易于制成及低成本的生产优势,同时表面电容式触控产品更具防尘、防火、防刮、强固耐用及具有高解析度等优点,故如能开发出具有多触点判定功能的表面电容式触控面板,则可兼具使用的便利性与低成本之效。 In other words, because the surface capacitive touch panel has the advantages of simple structure, easy manufacture and low cost, and the surface capacitive touch products are more dust-proof, fire-proof, scratch-proof, durable and high-resolution. , so if a surface capacitive touch panel with a multi-touch determination function can be developed, it can be both convenient to use and low cost. the
实用新型内容Utility model content
因此,本实用新型的主要目的在提供一种表面电容式触控面板的多点触控 结构,其能让触控面板在同一水平或垂直的触点阻抗产生梯度现象,防止两触点移动时的电流互相抵消,进而可有效地判定触控面板上不同的触点的坐标,以满足表面电容式触控面板的多触点需求。 Therefore, the main purpose of this utility model is to provide a multi-touch structure of a surface capacitive touch panel, which can allow the touch panel to produce a gradient phenomenon in the same horizontal or vertical contact impedance, and prevent the two contacts from moving The currents cancel each other out, so that the coordinates of different touch points on the touch panel can be effectively determined, so as to meet the multi-touch requirements of the surface capacitive touch panel. the
又,本实用新型的另一主要目的在于提供一种表面电容式触控面板的多点触控结构,以能大幅简化多点式触控面板的构成,且降低其制造难度,而能有效降低其成本。 Moreover, another main purpose of the present utility model is to provide a multi-touch structure of a surface capacitive touch panel, so as to greatly simplify the composition of the multi-touch panel, reduce its manufacturing difficulty, and effectively reduce the its cost. the
本实用新型主要通过下列的技术手段,来具体实现前述的目的与功效: The utility model mainly realizes the foregoing purpose and effect through the following technical means:
该触控面板至少由一透明基板、一透明导电层及一电极图案层所构成,其中电极图案层是于触控面板上、下边缘分设有相对的至少一第一X侧电极与至少一第二X侧电极,又电极图案层是于触控面板左、右边缘分设有相对的至少一第一Y侧电极与至少一第一Y侧电极,且第一、二X侧电极与第一、二Y侧电极以矩形围绕于触控面板表面周缘而成,其中第一、二X侧电极呈阻抗以等差或等比方式而递减或递增,又第一、二Y侧电极并呈阻抗以等差或等比方式而递减或递增,且第一、二X侧电极与第一、二Y侧电极的端部分别电气连接有一供量测输出电流的导线。其中,该电极图案层的第一、二X侧电极,其分别由两段以上相对平行的第一、二X侧电极所串接而成。该电极图案层的第一、二Y侧电极,其分别由两段以上相对平行的第一、二Y侧电极所串接而成。 The touch panel is at least composed of a transparent substrate, a transparent conductive layer and an electrode pattern layer, wherein the electrode pattern layer is provided with at least one first X-side electrode and at least one first X-side electrode opposite to each other on the upper and lower edges of the touch panel. Two X-side electrodes, and the electrode pattern layer is at least one first Y-side electrode and at least one first Y-side electrode opposite to each other on the left and right edges of the touch panel, and the first and second X-side electrodes are connected to the first and second X-side electrodes. The two Y-side electrodes are formed around the periphery of the touch panel surface in a rectangular shape, wherein the impedance of the first and second X-side electrodes decreases or increases in an equal-difference or proportional manner, and the first and second Y-side electrodes present impedances equal to or equal to each other. The difference or proportional method decreases or increases, and the ends of the first and second X-side electrodes and the first and second Y-side electrodes are respectively electrically connected to a wire for measuring the output current. Wherein, the first and second X-side electrodes of the electrode pattern layer are respectively connected in series by more than two relatively parallel first and second X-side electrodes. The first and second Y-side electrodes of the electrode pattern layer are respectively connected in series by more than two relatively parallel first and second Y-side electrodes. the
以此,通过本实用新型前述技术手段的具体实现,让本实用新型的触控面板在同一水平或垂直的触点阻抗产生梯度现象,以有效两个不同触点的电流在相对缩放、旋转或拖拉的移动过程中互相抵消,从而可有效地判定触控面板上不同的触点的坐标,以满足表面电容式触控面板的多触点需求,且能大幅简化多点式触控面板的构成,以降低其制造难度与成本。 In this way, through the specific realization of the aforementioned technical means of the utility model, the touch panel of the utility model can produce a gradient phenomenon in the same horizontal or vertical contact impedance, so that the currents of two different contacts can be relatively scaled, rotated or The dragging movement cancels each other out, so that the coordinates of different touch points on the touch panel can be effectively determined to meet the multi-touch requirements of the surface capacitive touch panel, and can greatly simplify the composition of the multi-point touch panel , in order to reduce its manufacturing difficulty and cost. the
附图说明Description of drawings
图1为已知的表面电容式触控面板简要架构的立体分解示意图; Fig. 1 is a three-dimensional exploded schematic diagram of a brief structure of a known surface capacitive touch panel;
图2为已知的表面电容式触控面板于接收感测信号以判定触点位置的示意图; FIG. 2 is a schematic diagram of a known surface capacitive touch panel receiving a sensing signal to determine a contact position;
图3为已知的投射电容式触控面板简要架构的立体分解示意图; FIG. 3 is a three-dimensional exploded schematic diagram of a brief structure of a known projected capacitive touch panel;
图4为本实用新型的表面电容式触控面板结构的立体分解示意图; Fig. 4 is the three-dimensional exploded schematic view of the structure of the surface capacitive touch panel of the present invention;
图5为本实用新型的表面电容式触控面板结构的平面示意图; Fig. 5 is the schematic plan view of the surface capacitive touch panel structure of the present utility model;
图6A~图6F为本实用新型的电极图案层的电极平面示意图,供说明其不同实施方式; Fig. 6A~Fig. 6F are the electrode plane schematic diagrams of the electrode pattern layer of the present invention, for explaining its different implementation modes;
图7为本实用新型的表面电容式触控面板于接收感测信号以判定多触点位置的示意图; 7 is a schematic diagram of the surface capacitive touch panel of the present invention receiving sensing signals to determine the position of multiple contacts;
图8为本实用新型的表面电容式触控面板于接收感测信号时制作校正表的校正触点位置示意图; Fig. 8 is a schematic diagram of the correction contact position of the surface capacitive touch panel of the present invention to make a correction table when receiving the sensing signal;
图9为本实用新型的表面电容式触控面板结构另一实施例的平面示意图;以及 9 is a schematic plan view of another embodiment of the surface capacitive touch panel structure of the present invention; and
图10为本实用新型的表面电容式触控面板结构再一实施例之平面示意图。 10 is a schematic plan view of another embodiment of the surface capacitive touch panel structure of the present invention. the
【主要元件符号说明】 【Description of main component symbols】
10 触控面板 11 透明基板 10
12 透明导电层 13 电极图案层 12 Transparent
131 X侧电极 132 Y侧电极 131 X-side electrode 132 Y-side electrode
14 硬化层 151 导线 14
152 导线 153 导线 152
154 导线 20 触控面板 154
21 透明基板 22 X透明电极图案层 21 Transparent substrate 22 X transparent electrode pattern layer
23 透明介电层 24 Y透明电极图案层 23 Transparent dielectric layer 24 Y transparent electrode pattern layer
25 感测图案 28 导线 25
50 触控面板 51 透明基板 50
52 透明导电层 54 硬化层 52 Transparent
60 电极图案层 61 第一X侧电极 60
611 第一X侧电极 612 第一X侧电极 611
62 第二X侧电极 621 第二X侧电极 62 Second
622 第二X侧电极 63 第一Y侧电极 622
631 第一Y侧电极 632 第一Y侧电极 631 First Y-
64 第二Y侧电极 641 第二Y侧电极 64 Second Y-
642 第二Y侧电极 65 导线 642 Second
651 导线 652 导线 651
66 导线 661 导线 66
662 导线 67 导线 662
671 导线 672 导线 671
68 导线 681 导线 68
682 导线 69 连接部 682
691 连接部 692 连接部 691
具体实施方式Detailed ways
为使贵审查委员能进一步了解本实用新型的构成、特征及其他目的,以下乃举本实用新型的较佳实施例,并配合图式详细说明如后,同时让熟悉该项技术领域者能够具体实施。 In order to enable your examiner to further understand the structure, features and other purposes of the utility model, the following is a preferred embodiment of the utility model, and is described in detail in conjunction with the drawings, and at the same time allows those familiar with the technical field to be able to specifically implement. the
本实用新型是一种表面电容式触控面板的多点触控结构,随附图例示的本实用新型的具体实施例及其构件中,所有关于前与后、左与右、顶部与底部、上部与下部、以及水平与垂直的参考,仅用于方便进行描述,并非限制本实用新型,亦非将其构件限制于任何位置或空间方向。附图与说明书中所指定的尺寸,当可在不离开本实用新型的专利保护范围内,根据本实用新型的具体实施例的设计与需求而进行变化。 The utility model is a multi-touch structure of a surface capacitive touch panel. Among the specific embodiments of the utility model and its components illustrated in the accompanying drawings, all about front and rear, left and right, top and bottom, The references of upper and lower, as well as horizontal and vertical, are used for convenience of description only, and do not limit the present invention, nor limit its components to any position or spatial direction. The dimensions specified in the accompanying drawings and the description can be changed according to the design and requirements of the specific embodiments of the utility model without departing from the patent protection scope of the utility model. the
本实用新型是一种表面电容式触控面板,如图4所示,该触控面板50至少由一透明基板51、一透明导电层52、一电极图案层60及一绝缘保护用的硬化层54所构成,其中电极图案层60是以实质矩形围绕于触控面板50透明导电层52表面周缘而成,且电极图案层60各相对平行的边缘的阻抗向同侧以等差或等比方式递增或递减布设,使触控面板50在同一水平或垂直的触点阻抗产生梯 度的现象,防止两触点移动时电极图案层60输出的电流互相抵消,而利用控制器(图中未示)量测四个角落电流强度,就可依电流大小计算求得两个不同触点的X坐标、Y坐标; The utility model is a surface capacitive touch panel, as shown in Figure 4, the
至于本实用新型较佳实施例的详细构成,则如图4、图5所示,其中透明基板51可为透明玻璃、透明塑胶,而透明导电层52可选自透明的氧化铟锡膜(Indium Tin Oxide;ITO)、氧化锑锡膜(Antimony doped Tin Oxide;ATO),至于硬化层54则选自二氧化硅(SiO2)等,以保护触控面板50,又电极图案层60由相对平行的一或多数第一、二X侧电极61、62与相对平行的一或多数第一、二Y侧电极63、64以矩形围绕于触控面板50透明导电层52表面周缘而成,且电极图案层60内缘于触控面板50上围绕成实质矩形的工作区,该电极图案层60的第一、二X侧电极61、62与第一、二Y侧电极63、64的阻抗分别设计成向同侧以等差或等比方式递增或递减布设; As for the detailed structure of the preferred embodiment of the present utility model, as shown in Figure 4 and Figure 5, the
而本实用新型电极图案层60的最佳实施例为:其是于触控面板50的上、下两侧缘分设有一个第一X侧电极61与一个第二X侧电极62,且第一、二X侧电极61、62的阻抗呈等差或等比方式而递减或递增,而其可利用改变斜率(如图5)、宽度(如图6A)、间距(如图6B)、面积(如图6C)、圈数(如图6D)、材料(如图6E)、厚度(如图6F)或其混合等方式,来达到令其阻抗可以等差或等比方式而递减或递增的物理条件,而本实用新型的最佳实施例则令该第一、二X侧电极61、62的斜率以等差方式向右同侧渐缩延伸,来达到使其阻抗以等差递减的目的。又电极图案层60并于触控面板50的左、右两端缘分设有一第一Y侧电极63与一第二Y侧电极64,且第一、二Y侧电极63、64的阻抗呈等差或等比方式而递减或递增,而其可利用改变斜率(如图5)、宽度(如图6A)、间距(如图6B)、面积(如图6C)、圈数(如图6D)、材料(如图6E)、厚度(如图6F)或其混合等方式,来达到令其阻抗可以等差或等比方式而递减或递增的物理条件,而本实用新型该第一、二Y侧电极63、64的最佳实施例是令其斜率以等差方式向下同侧渐缩延伸,来达到使其阻抗以等差递减的目的; And the preferred embodiment of the
另电极图案层60的第一、二X侧电极61、62与第一、二Y侧电极63、64则是以蚀刻、网版印刷、电转印等技术形成于触控面板50的透明导电层52周缘上,再者电极图案层60的第一、二X侧电极61、62与第一、二Y侧电极63、64并选自导电性材料,如碳胶、银胶、铜胶或其混合等,本实用新型以碳 胶为主要实施例,使本实用新型的电极图案层60以网版印刷方式形成于触控面板50表面周缘; The first and second
再者,前述电极图案层60可为四个输出端点(如图5所示)或八个输出端点(如图9所示),本实用新型以四个输出端点为主要实施例,该电极图案层60的第一X侧电极61与第一Y侧电极63的相对端点共同设有一用于量测电压、电流的导线65,而第一Y侧电极63与第二X侧电极62的相对端点共同设有一用于量测电压、电流的导线66,又第二X侧电极62与第二Y侧电极64的相对端点共同设有一用于量测电压、电流的导线67,至于第二Y侧电极64与第一Y侧电极63的相对端点共同设有一用于量测电压、电流的导线68,前述导线65、66、67及68选自导电性材料,如碳胶、银胶、铜胶或其混合等,本实用新型以银胶为主要实施例,且导线65、66、67及68并以网版印刷方式布设于触控面板50的非工作区表面,又触控面板50上并具有一供导线65、66、67及68另侧端点布设的连接部69,以供导线65、66、67及68分别电气串接触控面板50的一控制器(图中未示); Furthermore, the aforementioned
以此,可利用其电极图案层60的第一、二X侧电极61、62与第一、二Y侧电极63、64的阻抗向同侧以等差或等比方式递增或递减布设,使触控面板50在同一水平或垂直的触点阻抗产生梯度的现象,防止两触点移动时电极图案层60输出的电流互相抵消,而组构成一表面电容式触控面板结构。 In this way, the impedances of the first and second
而关于本实用新型的实际运用,则仍请参看图7所示,在实际工作时,该触控面板50的电极图案层60的第一、二X侧电极61、62与第一、二Y侧电极63、64相对四角落处各与一连外的导线65、66、67、68相接,用以分别接收一交流感测信号(AC1、AC2、AC3及AC4),以供量测触控面板50上两个不同触点PA、PB的位置用,以计算可进行手势操作的两个不同触点PA、PB的位置为例: As for the actual application of the present utility model, please refer to FIG. 7 . During actual operation, the first and second
首先,于触控面板50的工作区上设定复数等等距布设有校正点,且各相邻校正点的X轴距与Y轴距分别呈等距状,如图8所示,本实用新型以25点为主要实施例,校正点被分别定义为P1~P25; First, a plurality of equidistant calibration points are set on the working area of the
接着,利用相同面积的感测件(其大小为模拟手指碰触时的面积)依序置于前述校正点P1~P25上,并分别量测各校正点P1~P25的电流值,并求得两 两相邻的校正点P1~P25的中心点;且通过前述量测的校正点P1~P25电流值,而计算求得总能量(即电流总和)及电极图案层60的第一、二X侧电极61、62与第一、二Y侧电极63、64的各别能量(即各别电流总和),而制作成对应各校正点P1~P25的校正表,其包含两两相邻之校正点P1~P25的中心点、电流总和、电极的各别电流; Next, use sensing elements of the same area (the size of which is the area when a simulated finger touches) to be sequentially placed on the aforementioned calibration points P1-P25, and measure the current values of each calibration point P1-P25 respectively, and obtain The center points of two adjacent correction points P1-P25; and the total energy (i.e. the sum of the currents) and the first and second X of the
之后,通过前述已知的校正点P1~P25的中心点、电流总和、电极的各别电流可以求得前述两个不同触点PA、PB的距离(即开度)与相对角度的计算公式; Afterwards, the calculation formulas for the distance (that is, the opening degree) and the relative angle of the aforementioned two different contacts PA and PB can be obtained through the center points of the aforementioned known calibration points P1 to P25, the sum of the currents, and the individual currents of the electrodes;
紧接着,将求得的两个不同触点PA、PB的距离与相对角度配合前述的校正表,依比例计算出两触点PA、PB的电流中心; Next, combine the calculated distance and relative angle of the two different contacts PA and PB with the aforementioned correction table to calculate the current center of the two contacts PA and PB in proportion;
最后,通过前述的两个不同触点PA、PB的距离、角度及电流中心,而进一步分别求得两个不同触点PA、PB的X坐标与Y坐标。 Finally, according to the aforementioned distance, angle and current center of the two different contacts PA and PB, the X coordinate and the Y coordinate of the two different contacts PA and PB are further obtained respectively. the
在运作架构上,系统会在触控面板50的透明导电层52的不均匀电场,当手指接触触控面板50会出现电容充电效应,使触控面板50上电极图案层60的各第一、二X侧电极61、62与第一、二Y侧电极63、64与手指间形成电容耦合,进而产生电容变化,控制器通过前述方式量测四个角落电流强度,且利用其电极图案层60的第一、二X侧电极61、62与第一、二Y侧电极63、64的阻抗向同侧以等差或等比方式递增或递减布设,使触控面板50上两个在同一水平或垂直的触点阻抗产生梯度的现象,有效防止两个不同触点PA、PB移动时,电极图案层60输出的电流互相抵消,如此就可依电流大小计算出两个不同触点PA、PB的位置,以便于控制器判断其后续的缩放、旋转与拖拉动作,以满足表面电容式触控面板的多触点需求,且能大幅简化多点式触控面板的构成与制造难度,进而降低其制造成本,有效大幅提升表面电容式触控面板的附加价值与经济效益。 In terms of operating structure, the system will have a non-uniform electric field on the transparent
又本实用新型另有一实施例,前述电极图案层60为八个输出端点的设计,其如图9所示,该电极图案层60的第一X侧电极61的两端分设有一供量测电压、电流的导线651、652,而第一Y侧电极63的两端分设有一供量测电压、电流的导线661、662,又第二X侧电极62的两端分设有一供量测电压、电流的导线671、672,至于第二Y侧电极64的两端分设有一供量测电压、电流的 导线681、682,前述导线651、652、661、662、671、672、681、682选自导电性的银胶,且导线651、652、661、662、671、672、681及682并以网版印刷方式布设于触控面板50的非工作区表面,又触控面板50上并具有两供导线651、652、661、662、671、672、681、682另侧端点布设的连接部691、692,以供分别电气串接触控面板50的控制器(图中未示)。 Another embodiment of the present utility model, the above-mentioned
再者,如图10所示,为本实用新型的再一实施例,前述电极图案层60的第一、二X侧电极61、62与第一、二Y侧电极63、64呈多段式,使电极图案层60于触控面板50围绕形成复数对应的虚拟工作区,且各段相对的第一、二X侧电极61、62与各段相对的第一、二Y侧电极63、64的阻抗向同侧以等差或等比方式递增或递减布设,以本实施例的较佳状态,是令该第一、二X侧电极61、62具有两段第一X侧电极611、612与两段第二X侧电极621、622,且两段第一X侧电极611、612与两段第二X侧电极621、622的斜率由相接点以等差方式由中心向左右两端渐缩延伸,使第一、二X侧电极61、62的阻抗由中心向两端递减,而达到使其阻抗呈等差递减的目的,至于该第一、二Y侧电极63、64具有两段第一Y侧电极631、632与两段第二Y侧电极641、642,且两段第一Y侧电极631、632与两段第二Y侧电极641、642的斜率由相接点以等差方式由中心向上下两端渐缩延伸,使第一、二Y侧电极63、64的阻抗由中心向两端递减,而达到使其阻抗呈等差递减的目的,使触控面板50在同一水平或垂直的触点阻抗产生梯度的现象,防止两触点移动时电流互相抵消,进而依电流大小计算求得不同触点的位置,使表面电容式触控面板能满足多触点的需求,同时兼具可降低生产成本之效。 Furthermore, as shown in FIG. 10 , which is another embodiment of the present invention, the first and second
以此,可以理解到本实用新型为一创意极佳的创作,除了有效解决已知技术所面临的问题,更大幅增进功效。 From this, it can be understood that the utility model is an excellent creation, which not only effectively solves the problems faced by the known technologies, but also greatly improves the efficacy. the
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2010205041857UCN201837984U (en) | 2010-08-25 | 2010-08-25 | A multi-touch structure of a surface capacitive touch panel |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2010205041857UCN201837984U (en) | 2010-08-25 | 2010-08-25 | A multi-touch structure of a surface capacitive touch panel |
| Publication Number | Publication Date |
|---|---|
| CN201837984Utrue CN201837984U (en) | 2011-05-18 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN2010205041857UExpired - Fee RelatedCN201837984U (en) | 2010-08-25 | 2010-08-25 | A multi-touch structure of a surface capacitive touch panel |
| Country | Link |
|---|---|
| CN (1) | CN201837984U (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102375633A (en)* | 2010-08-25 | 2012-03-14 | 毅齐科技股份有限公司 | A multi-touch structure and method for a surface capacitive touch panel |
| TWI514213B (en)* | 2013-10-01 | 2015-12-21 | E Ink Holdings Inc | Touch structure and manufacturing method for the same |
| US9519361B2 (en) | 2011-06-22 | 2016-12-13 | Apple Inc. | Active stylus |
| US9557845B2 (en) | 2012-07-27 | 2017-01-31 | Apple Inc. | Input device for and method of communication with capacitive devices through frequency variation |
| TWI570607B (en)* | 2014-12-04 | 2017-02-11 | 蘋果公司 | Coarse scan and targeted active mode scan for touch |
| US9582105B2 (en) | 2012-07-27 | 2017-02-28 | Apple Inc. | Input device for touch sensitive devices |
| US9652090B2 (en) | 2012-07-27 | 2017-05-16 | Apple Inc. | Device for digital communication through capacitive coupling |
| US9921684B2 (en) | 2011-06-22 | 2018-03-20 | Apple Inc. | Intelligent stylus |
| US9939935B2 (en) | 2013-07-31 | 2018-04-10 | Apple Inc. | Scan engine for touch controller architecture |
| US10048775B2 (en) | 2013-03-14 | 2018-08-14 | Apple Inc. | Stylus detection and demodulation |
| US10474277B2 (en) | 2016-05-31 | 2019-11-12 | Apple Inc. | Position-based stylus communication |
| US12153764B1 (en) | 2020-09-25 | 2024-11-26 | Apple Inc. | Stylus with receive architecture for position determination |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102375633A (en)* | 2010-08-25 | 2012-03-14 | 毅齐科技股份有限公司 | A multi-touch structure and method for a surface capacitive touch panel |
| US9921684B2 (en) | 2011-06-22 | 2018-03-20 | Apple Inc. | Intelligent stylus |
| US9519361B2 (en) | 2011-06-22 | 2016-12-13 | Apple Inc. | Active stylus |
| US9652090B2 (en) | 2012-07-27 | 2017-05-16 | Apple Inc. | Device for digital communication through capacitive coupling |
| US9582105B2 (en) | 2012-07-27 | 2017-02-28 | Apple Inc. | Input device for touch sensitive devices |
| US9557845B2 (en) | 2012-07-27 | 2017-01-31 | Apple Inc. | Input device for and method of communication with capacitive devices through frequency variation |
| US10048775B2 (en) | 2013-03-14 | 2018-08-14 | Apple Inc. | Stylus detection and demodulation |
| US12340048B2 (en) | 2013-07-31 | 2025-06-24 | Apple Inc. | Touch controller architecture |
| US10845901B2 (en) | 2013-07-31 | 2020-11-24 | Apple Inc. | Touch controller architecture |
| US9939935B2 (en) | 2013-07-31 | 2018-04-10 | Apple Inc. | Scan engine for touch controller architecture |
| US11687192B2 (en) | 2013-07-31 | 2023-06-27 | Apple Inc. | Touch controller architecture |
| US10067580B2 (en) | 2013-07-31 | 2018-09-04 | Apple Inc. | Active stylus for use with touch controller architecture |
| TWI514213B (en)* | 2013-10-01 | 2015-12-21 | E Ink Holdings Inc | Touch structure and manufacturing method for the same |
| US10061450B2 (en) | 2014-12-04 | 2018-08-28 | Apple Inc. | Coarse scan and targeted active mode scan for touch |
| US10664113B2 (en) | 2014-12-04 | 2020-05-26 | Apple Inc. | Coarse scan and targeted active mode scan for touch and stylus |
| US10067618B2 (en) | 2014-12-04 | 2018-09-04 | Apple Inc. | Coarse scan and targeted active mode scan for touch |
| US10061449B2 (en) | 2014-12-04 | 2018-08-28 | Apple Inc. | Coarse scan and targeted active mode scan for touch and stylus |
| TWI570607B (en)* | 2014-12-04 | 2017-02-11 | 蘋果公司 | Coarse scan and targeted active mode scan for touch |
| US10474277B2 (en) | 2016-05-31 | 2019-11-12 | Apple Inc. | Position-based stylus communication |
| US12153764B1 (en) | 2020-09-25 | 2024-11-26 | Apple Inc. | Stylus with receive architecture for position determination |
| Publication | Publication Date | Title |
|---|---|---|
| CN201837984U (en) | A multi-touch structure of a surface capacitive touch panel | |
| JP5039747B2 (en) | Input device and display device including the same | |
| CN101833387A (en) | Pressure sensing type touch device | |
| KR101304891B1 (en) | Capacitive touch sensitive panel and mobile terminal using the same | |
| US9535554B2 (en) | Capacitive type touch panel | |
| CN102662513B (en) | Sensing structure of touch panel | |
| CN103455227B (en) | Capacitive touch screen and display device | |
| CN201489506U (en) | Capacitive touch panel | |
| CN104951161A (en) | Liquid crystal display with touch function and conducting layer structure thereof | |
| CN102375633A (en) | A multi-touch structure and method for a surface capacitive touch panel | |
| TWM403700U (en) | Multi-point touch structure of surface capacitive touch panel | |
| CN101464743A (en) | Hybrid touch panel and forming method thereof | |
| CN102331892A (en) | Capacitive touch screen | |
| TWI395121B (en) | Pressure detectable touch device | |
| CN204215125U (en) | Touch-control liquid crystal display panel and device | |
| CN104346009B (en) | Touch position detecting method on capacitance touching control screen and capacitance touching control screen | |
| KR101585934B1 (en) | Capacitive type touch panel | |
| CN201436625U (en) | Pressure sensing type touch control structure | |
| TW201207705A (en) | Multi-point touch structure and method of surface capacitive touch panel | |
| CN201867775U (en) | Impedance Adjustment Structure of Touch Panel | |
| TWM626838U (en) | Suspension touch panel and suspension touch device | |
| CN201867783U (en) | Display Touch Panel Lamination Structure | |
| CN102375593A (en) | Impedance adjusting structure of touch panel and method thereof | |
| US20120050202A1 (en) | Surface capacitive touch panel with multi-point touch structure and multi-point touch method thereof | |
| TWI399685B (en) | Resistance-type touch panel |
| Date | Code | Title | Description |
|---|---|---|---|
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| C17 | Cessation of patent right | ||
| CF01 | Termination of patent right due to non-payment of annual fee | Granted publication date:20110518 Termination date:20130825 |