

技术领域:Technical field:
本实用新型涉及一种液压管路的振动测试试验装置,特别是涉及一种模拟航空发动机液压管路振动环境的测试试验装置。The utility model relates to a vibration test device for a hydraulic pipeline, in particular to a test device for simulating the vibration environment of an aeroengine hydraulic pipeline.
背景技术:Background technique:
航空发动机液压管路振动测试试验装置是一种对航空发动机液压管路进行振动模拟试验的设备,通过这样的试验可以分析液压管路的振动特征,研究液压管路的振动机理,为分析液压管路振动故障提供合理依据;因此,该振动模拟试验设备在航空领域具有较好的应用。Aeroengine hydraulic pipeline vibration test device is a kind of equipment for vibration simulation test of aeroengine hydraulic pipeline. Through such test, the vibration characteristics of hydraulic pipeline can be analyzed, and the vibration mechanism of hydraulic pipeline can be studied. Therefore, the vibration simulation test equipment has a good application in the aviation field.
目前,现有的航空发动机液压管路振动测试试验装置的一般功能都是对液压管路本身进行振动测试,通过调节液压管路中流体的压力和流量参数,获取不同的实验数据,进行液压管路振动特性分析;但这种简化形式不能完全体现航空发动机液压管路的真实振动情况。At present, the general function of the existing aero-engine hydraulic pipeline vibration test device is to perform vibration test on the hydraulic pipeline itself. By adjusting the pressure and flow parameters of the fluid in the hydraulic pipeline, different experimental data can be obtained, and the However, this simplified form cannot fully reflect the real vibration of the hydraulic pipeline of the aeroengine.
发明内容:Invention content:
针对现有的航空发动机液压管路振动测试试验装置不能完全体现航空发动机液压管路的真实振动情况的问题,本实用新型根据航空发动机液压管路的实际工作环境,提供一种能够更加真实地反映被试液压管路的振动特征的模拟航空发动机液压管路振动环境的测试试验装置,以满足研究人员对航空发动机液压管路的振动机理和振动故障特征研究的需要。Aiming at the problem that the existing aero-engine hydraulic pipeline vibration test device cannot fully reflect the real vibration of the aero-engine hydraulic pipeline, the utility model provides a more realistic reflection of the actual working environment of the aero-engine hydraulic pipeline. The vibration characteristics of the tested hydraulic pipeline is a test device for simulating the vibration environment of the hydraulic pipeline of the aero-engine to meet the needs of researchers for the research on the vibration mechanism and vibration failure characteristics of the hydraulic pipeline of the aero-engine.
为实现上述目的,本实用新型采用如下技术方案,一种模拟航空发动机液压管路振动环境的测试试验装置,包括液压动力单元、基础环境激振单元、信号采集处理单元及控制系统;所述基础环境激振单元包括激振器,在激振器的上方设置有被测液压管路安装平台,被测液压管路安装平台的底部与激振器的上端通过压力传感器相连接,所述被测液压管路安装平台底部的两端通过弹簧与地面固定;在被测液压管路安装平台的上表面设置有两端具有滑块的滑道,在所述滑块上固定有管箍;在所述被测液压管路安装平台上设置有位移传感器,所述位移传感器和压力传感器分别通过数据信号线与信号采集处理单元的输入端相连接,信号采集处理单元的输出端与控制系统相连接,控制系统通过数据信号线与激振器的控制端相连接。In order to achieve the above object, the utility model adopts the following technical scheme, a test device for simulating the vibration environment of the hydraulic pipeline of an aeroengine, including a hydraulic power unit, a basic environment vibration unit, a signal acquisition and processing unit and a control system; the basic The environmental vibration unit includes a vibration exciter, and a tested hydraulic pipeline installation platform is arranged above the vibration exciter. The bottom of the tested hydraulic pipeline installation platform is connected to the upper end of the vibration exciter through a pressure sensor. The two ends of the bottom of the hydraulic pipeline installation platform are fixed to the ground by springs; on the upper surface of the hydraulic pipeline installation platform to be tested, there are slideways with sliders at both ends, and pipe collars are fixed on the sliders; The hydraulic pipeline installation platform to be tested is provided with a displacement sensor, the displacement sensor and the pressure sensor are respectively connected to the input end of the signal acquisition and processing unit through data signal lines, and the output end of the signal acquisition and processing unit is connected to the control system, The control system is connected with the control terminal of the exciter through the data signal line.
所述液压动力单元包括电机、叶片泵、溢流阀、单向阀、电磁换向阀、节流截止阀、压力传感器及流量传感器;所述电机与叶片泵相连接,在叶片泵的进油口与吸油口之间设置有吸油过滤器,叶片泵的出油口与单向阀的进油口相连接;单向阀的出油口与电磁换向阀的进油口相连接,溢流阀的进油口与电磁换向阀的进油口相连接,溢流阀的出油口与回油箱相连接;电磁换向阀左侧的工作油口与左侧液压软管相连接,在进油管路中连接有压力表开关、压力表和压力传感器;电磁换向阀右侧的工作油口与右侧液压软管相连接,在回油管路中连接有流量传感器、冷却器和第二节流截止阀,电磁换向阀右侧的工作油口与回油箱相连接;在电磁换向阀右侧的工作油口与左侧液压软管之间连接有第一节流截止阀;所述液压动力单元的压力传感器和流量传感器分别通过数据信号线与信号采集处理单元的输入端相连接。The hydraulic power unit includes a motor, a vane pump, an overflow valve, a one-way valve, an electromagnetic reversing valve, a throttle stop valve, a pressure sensor and a flow sensor; There is an oil-absorbing filter between the port and the oil suction port, and the oil outlet of the vane pump is connected with the oil inlet of the one-way valve; the oil outlet of the one-way valve is connected with the oil inlet of the electromagnetic reversing valve, and the overflow The oil inlet of the valve is connected to the oil inlet of the electromagnetic reversing valve, and the oil outlet of the overflow valve is connected to the oil return tank; the working oil port on the left side of the electromagnetic reversing valve is connected to the left hydraulic hose. The pressure gauge switch, pressure gauge and pressure sensor are connected to the oil inlet pipeline; the working oil port on the right side of the electromagnetic reversing valve is connected to the right hydraulic hose, and the flow sensor, cooler and second pressure sensor are connected to the oil return pipeline. Throttle cut-off valve, the working oil port on the right side of the electromagnetic reversing valve is connected to the oil return tank; the first throttling stop valve is connected between the working oil port on the right side of the electromagnetic reversing valve and the left hydraulic hose; The pressure sensor and flow sensor of the hydraulic power unit are respectively connected to the input end of the signal acquisition and processing unit through data signal lines.
所述信号采集处理单元包括高精度数据采集器、信号调理器、数模转换器及功率放大器,基础环境激振单元的位移传感器和压力传感器以及液压动力单元的压力传感器和流量传感器,分别与信号采集处理单元的信号调理器的输入端相连接,信号调理器的输出端与高精度数据采集器的输入端相连接,高精度数据采集器的输出端与控制系统相连接;控制系统经信号采集处理单元的数模转换器与功率放大器的输入端相连接,功率放大器的输出端与激振器的控制端相连接。The signal acquisition and processing unit includes a high-precision data collector, a signal conditioner, a digital-to-analog converter and a power amplifier, a displacement sensor and a pressure sensor of the basic environment excitation unit, and a pressure sensor and a flow sensor of the hydraulic power unit, respectively connected with the signal The input end of the signal conditioner of the acquisition processing unit is connected, the output end of the signal conditioner is connected with the input end of the high-precision data collector, and the output end of the high-precision data collector is connected with the control system; The digital-to-analog converter of the processing unit is connected with the input terminal of the power amplifier, and the output terminal of the power amplifier is connected with the control terminal of the exciter.
所述控制系统采用工控机。The control system adopts industrial computer.
本实用新型的有益效果:The beneficial effects of the utility model:
本实用新型通过对被测液压管路安装平台的振动控制,模拟出航空发动机液压管路安装基础环境的振动情况,更加真实地反映了液压管路的工作环境。本实用新型引入了基础环境激振单元,这与常规的航空发动机液压管路振动测试试验装置有本质区别。利用载荷谱理论,参考航空发动机机匣的真实测量数据,通过激振器和位移传感器以及反馈控制来实现模拟液压管路的实际振动环境;通过滑块带动管箍在被测液压管路的不同位置固定,模拟航空发动机液压管路的安装方式,能够更加真实的模拟航空发动机液压管路的工作环境,试验方式和效果更加科学。The utility model simulates the vibration situation of the installation base environment of the hydraulic pipeline of the aeroengine through the vibration control of the installed platform of the hydraulic pipeline under test, and more truly reflects the working environment of the hydraulic pipeline. The utility model introduces a basic environment excitation unit, which is essentially different from the conventional aeroengine hydraulic pipeline vibration test device. Using the load spectrum theory, referring to the real measurement data of the aero-engine casing, the actual vibration environment of the hydraulic pipeline is simulated through the vibrator, the displacement sensor and the feedback control; The position is fixed, and the installation method of the hydraulic pipeline of the aero-engine is simulated, which can more realistically simulate the working environment of the hydraulic pipeline of the aero-engine, and the test method and effect are more scientific.
附图说明:Description of drawings:
图1为本实用新型的测试试验装置的结构示意图;Fig. 1 is the structural representation of test device of the present utility model;
图2为本实用新型中液压动力单元的原理图;Fig. 2 is the schematic diagram of the hydraulic power unit in the utility model;
图3为本实用新型中信号采集处理单元的原理图;Fig. 3 is the schematic diagram of the signal acquisition and processing unit in the utility model;
图1中:1、液压动力单元,2、被测液压管路安装平台,3、管箍与滑块,4、第一位移传感器,5、压力传感器,6、激振器,7、弹簧,8、第三位移传感器,9、被测液压管路,10、工控机显示屏,11、工控机,12、数据信号线,13、信号采集处理单元,14、液压软管,15、第二位移传感器;In Fig. 1: 1. Hydraulic power unit, 2. Installation platform of hydraulic pipeline under test, 3. Pipe collar and slider, 4. First displacement sensor, 5. Pressure sensor, 6. Vibrator, 7. Spring, 8. The third displacement sensor, 9. The hydraulic pipeline to be tested, 10. The display screen of the industrial computer, 11. The industrial computer, 12. The data signal line, 13. The signal acquisition and processing unit, 14. The hydraulic hose, 15. The second Motion detector;
图2中:16、电机,17、叶片泵,18、单向阀,19、溢流阀,20、电磁换向阀,21、第一节流截止阀,22、第二节流截止阀,23、压力表开关,24、压力表,25、压力传感器,26、流量传感器,27、冷却器,28、空气滤清器,29、液位计,32、吸油过滤器;Among Fig. 2: 16, motor, 17, vane pump, 18, one-way valve, 19, overflow valve, 20, electromagnetic reversing valve, 21, the first throttling stop valve, 22, the second throttling stop valve, 23. Pressure gauge switch, 24. Pressure gauge, 25. Pressure sensor, 26. Flow sensor, 27. Cooler, 28. Air filter, 29. Liquid level gauge, 32. Oil suction filter;
图3中:30、高精度数据采集器,31、信号调理器,33、功率放大器,34、数模转换器。In Fig. 3: 30, high-precision data collector, 31, signal conditioner, 33, power amplifier, 34, digital-to-analog converter.
具体实施方式:Detailed ways:
如图1所示,一种模拟航空发动机液压管路振动环境的测试试验装置,包括液压动力单元1、基础环境激振单元、信号采集处理单元13及控制系统11;所述基础环境激振单元包括激振器6,在激振器6的上方设置有被测液压管路安装平台2,被测液压管路安装平台2的底部与激振器6的上端通过压力传感器5相连接,所述被测液压管路安装平台2底部的两端通过弹簧7与地面固定;在被测液压管路安装平台2的上表面设置有两端具有滑块的滑道,在所述滑块上固定有管箍;在所述被测液压管路安装平台2上设置有第一位移传感器4、第二位移传感器15和第三位移传感器8,所述第一位移传感器4、第二位移传感器15、第三位移传感器8和压力传感器5分别通过数据信号线12与信号采集处理单元13的输入端相连接,信号采集处理单元13的输出端与控制系统11相连接,控制系统11通过数据信号线12与激振器6的控制端相连接。As shown in Figure 1, a kind of test device for simulating the vibration environment of the hydraulic pipeline of an aeroengine comprises a hydraulic power unit 1, a basic environment vibration unit, a signal
通过移动滑块可带动管箍在滑道的任意位置停止,管箍的位置变化也就实现了被测液压管路固定位置的变化;同时根据一端管箍固定还是两端管箍固定可以改变被测液压管路的安装形式,也就模拟了实际航空发动机液压管路的安装形式,即两端固定式和悬臂梁固定式,还可以实现被测液压管路的中间固定等等。本实用新型的被测液压管路安装平台2可同时安装多条被测液压管路。By moving the slider, the pipe clamp can be driven to stop at any position on the slideway, and the change of the position of the pipe clamp also realizes the change of the fixed position of the hydraulic pipeline under test; The installation form of the measured hydraulic pipeline also simulates the installation form of the actual aeroengine hydraulic pipeline, that is, fixed at both ends and cantilever beam fixed, and can also realize the middle fixing of the hydraulic pipeline under test, etc. The tested hydraulic pipeline installation platform 2 of the utility model can simultaneously install a plurality of tested hydraulic pipelines.
如图2所示,所述液压动力单元1包括电机16、叶片泵17、溢流阀19、单向阀18、电磁换向阀20、节流截止阀、压力传感器25及流量传感器26;所述电机16与叶片泵17相连接,在叶片泵17的进油口与吸油口之间设置有吸油过滤器32,叶片泵17的出油口与单向阀18的进油口相连接;单向阀18的出油口与电磁换向阀20的进油口相连接,溢流阀19的进油口与电磁换向阀20的进油口相连接,溢流阀19的出油口与回油箱相连接;电磁换向阀20左侧的工作油口与左侧液压软管相连接,在进油管路中连接有压力表开关23、压力表24和压力传感器25;电磁换向阀20右侧的工作油口与右侧液压软管相连接,在回油管路中连接有流量传感器26、冷却器27和第二节流截止阀22,电磁换向阀20右侧的工作油口与回油箱相连接;在电磁换向阀20右侧的工作油口与左侧液压软管之间连接有第一节流截止阀21;所述液压动力单元1的压力传感器25和流量传感器26分别通过数据信号线12与信号采集处理单元13的输入端相连接。As shown in Figure 2, the hydraulic power unit 1 includes a
所述电机采用的型号是Y132S-4,所述叶片泵采用的型号是PV2R2-6,所述吸油过滤器采用的型号是WU-160X180,所述单向阀采用的型号是S10A,所述电磁换向阀采用的型号是4WE10D,所述压力表开关采用的型号是KF-L8,所述压力表采用的型号是YNT-60,所述压力传感器采用的型号是P51GB10,所述第一节流截止阀、第二节流截止阀采用的型号是DVP12,所述流量传感器采用的型号是0F-15A,所述冷却器采用的型号是AH0608LT。The model used by the motor is Y132S-4, the model used by the vane pump is PV2R2-6, the model used by the oil suction filter is WU-160X180, the model used by the one-way valve is S10A, the electromagnetic The model of the reversing valve is 4WE10D, the model of the pressure gauge switch is KF-L8, the model of the pressure gauge is YNT-60, the model of the pressure sensor is P51GB10, and the first throttle The cut-off valve and the second throttle cut-off valve adopt a model of DVP12, the flow sensor adopts a model of 0F-15A, and the cooler adopts a model of AH0608LT.
如图3所示,所述信号采集处理单元13包括高精度数据采集器30、信号调理器31、数模转换器34及功率放大器33,基础环境激振单元的第一位移传感器4、第二位移传感器15、第三位移传感器8和压力传感器5以及液压动力单元1的压力传感器25和流量传感器26,分别与信号采集处理单元13的信号调理器31的输入端相连接,信号调理器31的输出端与高精度数据采集器30的输入端相连接,高精度数据采集器30的输出端与控制系统11相连接;控制系统11经信号采集处理单元13的数模转换器34与功率放大器33的输入端相连接,功率放大器33的输出端与激振器6的控制端相连接。As shown in Figure 3, the signal acquisition and
所述高精度数据采集器30采用的型号为Cbook200016,所述信号调理器31采用的型号为LC0201,所述第一位移传感器4、第二位移传感器15和第三位移传感器8采用的型号为ZA210800-50-03-01-01,所述压力传感器5采用的型号为CL-YD-312,所述激振器6采用的型号为JZK-20,所述功率放大器33采用的型号为YE5873A。The model adopted by the high-precision data collector 30 is Cbook200016, the model adopted by the signal conditioner 31 is LC0201, and the model adopted by the first displacement sensor 4, the second displacement sensor 15 and the third displacement sensor 8 is ZA210800 -50-03-01-01, the model of the pressure sensor 5 is CL-YD-312, the model of the exciter 6 is JZK-20, and the model of the power amplifier 33 is YE5873A.
所述控制系统采用工控机,所述工控机的主要功能是通过载荷谱控制和反馈控制,控制激振器6的输出波形,并完成被测液压管路的振动特征分析。The control system adopts an industrial computer, and the main function of the industrial computer is to control the output waveform of the exciter 6 through load spectrum control and feedback control, and to complete the vibration characteristic analysis of the hydraulic pipeline under test.
下面结合附图和具体实施例对本实用新型作进一步描述:Below in conjunction with accompanying drawing and specific embodiment the utility model is further described:
测试前,首先,根据实际航空发动机液压管路的安装形式,确定管箍的固定位置,并通过滑块在滑道上的移动将管箍移动到固定位置处;然后,将被测液压管路通过管箍固定在被测液压管路安装平台上,将液压动力单元的液压软管通过快速接头与被测液压管路连接。测试过程中,基础环境激振单元的压力传感器用于反馈被测液压管路安装平台的振动信号,将载荷谱控制信号与反馈控制信号进行比较来控制激振器的输出波形,从而模拟航空发动机机匣的振动特征。基础环境激振单元的位移传感器用于反馈被测液压管路的振动信号。Before the test, first, according to the installation form of the actual aero-engine hydraulic pipeline, determine the fixed position of the pipe clamp, and move the pipe clamp to the fixed position by moving the slider on the slideway; then, pass the hydraulic pipeline under test through The pipe clamp is fixed on the installation platform of the hydraulic pipeline under test, and the hydraulic hose of the hydraulic power unit is connected with the hydraulic pipeline under test through a quick connector. During the test, the pressure sensor of the basic environment vibration unit is used to feed back the vibration signal of the hydraulic pipeline installation platform under test, and the load spectrum control signal is compared with the feedback control signal to control the output waveform of the vibration exciter, thereby simulating the aeroengine Vibration characteristics of the receiver. The displacement sensor of the basic environment vibration unit is used to feed back the vibration signal of the hydraulic pipeline under test.
本实用新型的液压动力单元为旁路节流控制回路,在进油管路中并联安装有第一节流截止阀21,在回油管路中安装有第二节流截止阀22。当电磁换向阀20在静止位工作时,通过第一节流截止阀21调节进入被测液压管路的流体流量,从而实现被测液压管路的流量调节;通过调节第二节流截止阀22进行压力加载,从而实现被测液压管路的压力调节。The hydraulic power unit of the utility model is a bypass throttling control circuit, a first
本实用新型利用载荷谱理论,参考航空发动机机匣的真实测量数据绘制出激振器的对比波形,通过激振器、压力传感器、位移传感器以及反馈控制来实现模拟液压管路的实际振动环境。利用工控机控制激振器的输出波形,通过设置在激振器与被测液压管路安装平台之间的压力传感器测试被测液压管路安装平台的振动信号,并反馈给工控机,工控机将激振器的输出波形与对比波形进行对比,形成闭环控制,保证激振器输出波形能够模拟航空发动机的机匣振动,即能够模拟航空发动机液压管路的工作环境。The utility model utilizes the load spectrum theory, draws the contrast waveform of the exciter with reference to the real measurement data of the aircraft engine casing, and realizes the actual vibration environment of the simulated hydraulic pipeline through the exciter, pressure sensor, displacement sensor and feedback control. Use the industrial computer to control the output waveform of the exciter, and test the vibration signal of the tested hydraulic pipeline installation platform through the pressure sensor set between the vibrator and the tested hydraulic pipeline installation platform, and feed back to the industrial computer. The output waveform of the exciter is compared with the comparison waveform to form a closed-loop control to ensure that the output waveform of the exciter can simulate the vibration of the casing of the aero-engine, that is, it can simulate the working environment of the hydraulic pipeline of the aero-engine.
本实用新型根据航空发动机液压管路实际的振动故障模式,即航空发动机机匣和液压管路耦合振动导致液压管路振动过大,液压管路内部压力冲击波和液体流动耦合导致液压管路振动过大,管箍与液压管路之间耦合共振导致液压管路振动过大等,通过本实用新型可以完成上述三种液压管路的耦合振动故障复现和振动特征分析。The utility model is based on the actual vibration failure mode of the hydraulic pipeline of the aero-engine, that is, the coupling vibration of the aero-engine casing and the hydraulic pipeline causes excessive vibration of the hydraulic pipeline, and the coupling of the pressure shock wave inside the hydraulic pipeline and the liquid flow causes the hydraulic pipeline to vibrate excessively. Large, the coupling resonance between the pipe clamp and the hydraulic pipeline leads to excessive vibration of the hydraulic pipeline, etc. The utility model can complete the coupling vibration fault reproduction and vibration characteristic analysis of the above three hydraulic pipelines.
(1)通过控制激振器输出波形激振被测液压管路安装平台,使被测液压管路安装平台模拟航空发动机机匣的振动特征,由于被测液压管路通过管箍固定在被测液压管路安装平台上,就使被测液压管路同时具有被测液压管路安装平台的振动特征,通过被测液压管路的液体的压力和流量参数的调节使被测液压管路振动,从而实现被测液压管路安装平台与被测液压管路之间的耦合振动,也就模拟了航空发动机机匣与液压管路之间的耦合振动;(1) Vibrate the installation platform of the hydraulic pipeline under test by controlling the output waveform of the exciter, so that the installation platform of the hydraulic pipeline under test can simulate the vibration characteristics of the aircraft engine casing. On the installation platform of the hydraulic pipeline, the hydraulic pipeline under test has the vibration characteristics of the installation platform of the hydraulic pipeline under test at the same time, and the hydraulic pipeline under test is vibrated by adjusting the pressure and flow parameters of the liquid in the hydraulic pipeline under test. In this way, the coupling vibration between the installation platform of the hydraulic pipeline under test and the hydraulic pipeline under test is realized, and the coupling vibration between the aero-engine casing and the hydraulic pipeline is simulated;
(2)在被测液压管路安装平台激振的情况下,通过快速调节被测液压管路内流体的压力参数,完成液压管路内部压力冲击对液压管路的振动影响,通过调节被测液压管路内流体的流量参数,实现被测液压管路与管路内流体的流动耦合;(2) Under the condition that the installation platform of the hydraulic pipeline under test is excited, by quickly adjusting the pressure parameters of the fluid in the hydraulic pipeline under test, the impact of the internal pressure shock of the hydraulic pipeline on the vibration of the hydraulic pipeline can be completed. The flow parameters of the fluid in the hydraulic pipeline realize the flow coupling between the hydraulic pipeline under test and the fluid in the pipeline;
(3)在被测液压管路安装平台激振的情况下,通过管箍将被测液压管路固定在被测液压管路安装平台上,利用被测液压管路安装平台上的滑道和滑块实现被测液压管路的任意位置固定,模拟实际液压管路的安装形式,即可以采用两端固定或悬臂梁式固定等安装形式。通过调节被测液压管路中液体的压力和流量参数,实现被测液压管路与管箍之间的耦合振动。(3) When the installation platform of the hydraulic pipeline under test is excited, the hydraulic pipeline under test is fixed on the installation platform of the hydraulic pipeline under test through pipe clamps, and the slideway on the installation platform of the hydraulic pipeline under test and the The slider realizes the fixed position of the hydraulic pipeline under test, and simulates the installation form of the actual hydraulic pipeline, that is, it can be fixed at both ends or cantilever beam. By adjusting the pressure and flow parameters of the liquid in the hydraulic pipeline under test, the coupling vibration between the hydraulic pipeline under test and the pipe collar is realized.
本实施例将模拟航空发动机液压管路振动环境引入到试验装置中,通过控制激振器的输出波形模拟航空发动机的机匣振动特征,同时模拟航空发动机液压管路的安装形式,即将被测液压管路设计为两端固定或悬臂梁式固定等安装形式。本实用新型真实的反映了被测液压管路的安装环境和振动环境,为深入研究航空发动机附件管路系统的振动机理分析和振动故障诊断提供了原理性试验条件。In this embodiment, the simulated aeroengine hydraulic pipeline vibration environment is introduced into the test device, and the vibration characteristics of the casing of the aeroengine are simulated by controlling the output waveform of the vibrator, and the installation form of the aeroengine hydraulic pipeline is simulated at the same time. The pipeline is designed to be fixed at both ends or cantilever beam fixed. The utility model truly reflects the installation environment and the vibration environment of the hydraulic pipeline under test, and provides principle test conditions for in-depth research on the vibration mechanism analysis and vibration fault diagnosis of the aero-engine accessory pipeline system.
上述实施例只为说明本实用新型的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本实用新型的内容并据以实施,并不能以此限制本实用新型的保护范围。凡根据本实用新型精神实质所作的等效变化或修饰,都应涵盖在本实用新型的保护范围之内。The above-mentioned embodiments are only to illustrate the technical concept and characteristics of the present utility model, and its purpose is to enable those familiar with this technology to understand the content of the present utility model and implement it accordingly, and not to limit the protection scope of the present utility model. All equivalent changes or modifications made according to the spirit of the utility model shall fall within the protection scope of the utility model.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2010202265396UCN201763726U (en) | 2010-06-17 | 2010-06-17 | A test device for simulating the vibration environment of hydraulic pipelines of aeroengines |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN2010202265396UCN201763726U (en) | 2010-06-17 | 2010-06-17 | A test device for simulating the vibration environment of hydraulic pipelines of aeroengines |
| Publication Number | Publication Date |
|---|---|
| CN201763726Utrue CN201763726U (en) | 2011-03-16 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN2010202265396UExpired - Fee RelatedCN201763726U (en) | 2010-06-17 | 2010-06-17 | A test device for simulating the vibration environment of hydraulic pipelines of aeroengines |
| Country | Link |
|---|---|
| CN (1) | CN201763726U (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102901838A (en)* | 2012-09-29 | 2013-01-30 | 东北大学 | Non-synchronous vibration simulation experiment table for blades and experiment operation method thereof |
| CN103742483A (en)* | 2013-12-20 | 2014-04-23 | 东北大学 | Coupled vibration simulation experiment table of aero-engine hydraulic pipeline system |
| CN103970918A (en)* | 2013-01-29 | 2014-08-06 | 中国航空工业集团公司西安飞机设计研究所 | Simulated analysis system and method for dynamic stress of hydraulic pipeline |
| CN104142218A (en)* | 2014-04-17 | 2014-11-12 | 中国航空工业集团公司沈阳飞机设计研究所 | Airplane hydraulic pipeline vibration test result judgment method |
| CN104297081A (en)* | 2014-09-12 | 2015-01-21 | 大连理工大学 | Hydraulic pipeline vibration testing device with adjustable supporting rigidity |
| CN104879348A (en)* | 2015-03-27 | 2015-09-02 | 武汉理工大学 | Hydraulic pipeline vibration test simulation experiment platform |
| CN105547859A (en)* | 2016-01-21 | 2016-05-04 | 华南理工大学 | Experiment device and method for simulating situation that natural gas pipeline bears vibration and bending moment load |
| CN105628605A (en)* | 2016-03-14 | 2016-06-01 | 哈尔滨工程大学 | Test device for researching random vibration wear of foristal collar and sliding block of synchronizer and method for analyzing influence of vibration on mechanism wear coefficient |
| CN105784396A (en)* | 2016-03-03 | 2016-07-20 | 吉林大学 | Hydraulic system component reliability test device and method including environment field |
| CN106124031A (en)* | 2016-07-08 | 2016-11-16 | 大连理工大学 | Pipe-line system vibration distribution formula home position testing method based on fiber grating |
| CN106225908A (en)* | 2016-07-08 | 2016-12-14 | 大连理工大学 | Pipe-line system vibration fault monitoring method based on fiber grating |
| CN106482953A (en)* | 2016-11-25 | 2017-03-08 | 沈阳黎明航空发动机(集团)有限责任公司 | A kind of aeroengine pipeline vibration-testing apparatus and method |
| CN107575437A (en)* | 2017-11-01 | 2018-01-12 | 燕山大学 | A kind of aerospace hydraulic pump and fluid pressure line performance test experiment table |
| CN110389036A (en)* | 2019-07-26 | 2019-10-29 | 中国航发沈阳发动机研究所 | Simulate the generic item bank of the true mounting coordinate of aero-engine exterior line |
| CN110775295A (en)* | 2019-10-24 | 2020-02-11 | 西北工业大学 | Aircraft hydraulic pipeline system ground simulation test device and test method |
| CN111156224A (en)* | 2020-02-05 | 2020-05-15 | 辽宁科技大学 | A support device for vibration test of aero-engine hydraulic pipeline |
| CN112067302A (en)* | 2020-09-17 | 2020-12-11 | 中国航发沈阳黎明航空发动机有限责任公司 | Surge pressure signal measuring structure for aircraft engine |
| CN112729686A (en)* | 2020-11-30 | 2021-04-30 | 成都飞机工业(集团)有限责任公司 | Aircraft hydraulic guide pipe sealing test bench capable of simulating working conditions and installation errors |
| CN114909362A (en)* | 2022-02-07 | 2022-08-16 | 上海大学 | A multi-parameter measurement test device and method for aero-engine hydraulic pipeline |
| CN118999979A (en)* | 2024-09-23 | 2024-11-22 | 东北大学 | Hydraulic excitation ground simulation test device for hydraulic pipeline system of aero-engine |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102901838A (en)* | 2012-09-29 | 2013-01-30 | 东北大学 | Non-synchronous vibration simulation experiment table for blades and experiment operation method thereof |
| CN103970918A (en)* | 2013-01-29 | 2014-08-06 | 中国航空工业集团公司西安飞机设计研究所 | Simulated analysis system and method for dynamic stress of hydraulic pipeline |
| CN103742483A (en)* | 2013-12-20 | 2014-04-23 | 东北大学 | Coupled vibration simulation experiment table of aero-engine hydraulic pipeline system |
| CN103742483B (en)* | 2013-12-20 | 2016-01-20 | 东北大学 | A kind of aeroengine hydraulic plumbing system coupled vibrations simulated experiment platform |
| CN104142218A (en)* | 2014-04-17 | 2014-11-12 | 中国航空工业集团公司沈阳飞机设计研究所 | Airplane hydraulic pipeline vibration test result judgment method |
| CN104142218B (en)* | 2014-04-17 | 2017-11-21 | 中国航空工业集团公司沈阳飞机设计研究所 | A kind of airplane Hydraulic Tube Results of Vibration decision method |
| CN104297081B (en)* | 2014-09-12 | 2016-07-27 | 大连理工大学 | A kind of adjustable fluid pressure line vibration testing device of support stiffness |
| CN104297081A (en)* | 2014-09-12 | 2015-01-21 | 大连理工大学 | Hydraulic pipeline vibration testing device with adjustable supporting rigidity |
| CN104879348A (en)* | 2015-03-27 | 2015-09-02 | 武汉理工大学 | Hydraulic pipeline vibration test simulation experiment platform |
| CN105547859A (en)* | 2016-01-21 | 2016-05-04 | 华南理工大学 | Experiment device and method for simulating situation that natural gas pipeline bears vibration and bending moment load |
| CN105784396A (en)* | 2016-03-03 | 2016-07-20 | 吉林大学 | Hydraulic system component reliability test device and method including environment field |
| CN105784396B (en)* | 2016-03-03 | 2018-07-31 | 吉林大学 | A kind of hydraulic system component reliability experimental rig and method comprising environment field |
| CN105628605B (en)* | 2016-03-14 | 2018-04-24 | 哈尔滨工程大学 | A kind of analysis method of the experimental rig and vibration of shift fork ring for studying synchronizer and the abrasion of sliding block random vibration to mechanism wear coefficient |
| CN105628605A (en)* | 2016-03-14 | 2016-06-01 | 哈尔滨工程大学 | Test device for researching random vibration wear of foristal collar and sliding block of synchronizer and method for analyzing influence of vibration on mechanism wear coefficient |
| CN106124031A (en)* | 2016-07-08 | 2016-11-16 | 大连理工大学 | Pipe-line system vibration distribution formula home position testing method based on fiber grating |
| CN106225908A (en)* | 2016-07-08 | 2016-12-14 | 大连理工大学 | Pipe-line system vibration fault monitoring method based on fiber grating |
| CN106482953B (en)* | 2016-11-25 | 2019-03-05 | 沈阳黎明航空发动机(集团)有限责任公司 | A kind of aeroengine pipeline vibration-testing apparatus and method |
| CN106482953A (en)* | 2016-11-25 | 2017-03-08 | 沈阳黎明航空发动机(集团)有限责任公司 | A kind of aeroengine pipeline vibration-testing apparatus and method |
| CN107575437A (en)* | 2017-11-01 | 2018-01-12 | 燕山大学 | A kind of aerospace hydraulic pump and fluid pressure line performance test experiment table |
| CN107575437B (en)* | 2017-11-01 | 2020-04-14 | 燕山大学 | An experimental bench for testing the performance of aviation hydraulic pump and hydraulic pipeline |
| CN110389036A (en)* | 2019-07-26 | 2019-10-29 | 中国航发沈阳发动机研究所 | Simulate the generic item bank of the true mounting coordinate of aero-engine exterior line |
| CN110775295A (en)* | 2019-10-24 | 2020-02-11 | 西北工业大学 | Aircraft hydraulic pipeline system ground simulation test device and test method |
| CN111156224A (en)* | 2020-02-05 | 2020-05-15 | 辽宁科技大学 | A support device for vibration test of aero-engine hydraulic pipeline |
| CN112067302A (en)* | 2020-09-17 | 2020-12-11 | 中国航发沈阳黎明航空发动机有限责任公司 | Surge pressure signal measuring structure for aircraft engine |
| CN112067302B (en)* | 2020-09-17 | 2022-10-04 | 中国航发沈阳黎明航空发动机有限责任公司 | Surge pressure signal measuring structure for aircraft engine |
| CN112729686A (en)* | 2020-11-30 | 2021-04-30 | 成都飞机工业(集团)有限责任公司 | Aircraft hydraulic guide pipe sealing test bench capable of simulating working conditions and installation errors |
| CN112729686B (en)* | 2020-11-30 | 2022-05-10 | 成都飞机工业(集团)有限责任公司 | An Aircraft Hydraulic Duct Seal Test Bench That Can Simulate Operating Conditions and Installation Errors |
| CN114909362A (en)* | 2022-02-07 | 2022-08-16 | 上海大学 | A multi-parameter measurement test device and method for aero-engine hydraulic pipeline |
| CN118999979A (en)* | 2024-09-23 | 2024-11-22 | 东北大学 | Hydraulic excitation ground simulation test device for hydraulic pipeline system of aero-engine |
| Publication | Publication Date | Title |
|---|---|---|
| CN201763726U (en) | A test device for simulating the vibration environment of hydraulic pipelines of aeroengines | |
| CN103742483B (en) | A kind of aeroengine hydraulic plumbing system coupled vibrations simulated experiment platform | |
| CN104879348A (en) | Hydraulic pipeline vibration test simulation experiment platform | |
| CN101520379B (en) | Test board for flow rate pressure of pressure regulating valve | |
| CN103743562A (en) | Electromagnetic valve test platform | |
| CN107575437A (en) | A kind of aerospace hydraulic pump and fluid pressure line performance test experiment table | |
| CN106481617A (en) | A kind of hydraulic motor test platform and method of testing | |
| CN113864289B (en) | A simulation platform for a hybrid vehicle hydraulic system and its implementation method | |
| CN100427913C (en) | Fuel pump valve performance test device | |
| CN101004161A (en) | Electric controlled tester and testing method for preformance of high-pressure oil pump in use for coaxial tracks of engines | |
| CN102966628A (en) | Load simulating and testing system and method for engineering machinery | |
| WO2021135524A1 (en) | Rolling simulation platform, test platform and test system | |
| CN103760777A (en) | Marine diesel engine governor testing stand | |
| CN203627416U (en) | Coupled vibration simulation experiment table for aero-engine hydraulic pipeline system | |
| CN203688254U (en) | Hydraulic pulsation test device | |
| CN201606352U (en) | Hydraulic motor test device | |
| CN109109852A (en) | A kind of portable trailer air-pressure brake response time parameter measuring device | |
| CN203572646U (en) | Hydraulic valve performance test rig | |
| CN204572637U (en) | Adopt the construction machinery hydraulic system of load-sensitive | |
| CN107765567A (en) | A kind of directly jetting gasoline engine high-pressure fuel oil system emulator | |
| CN106402056A (en) | Hydraulic system used for measuring airborne noise level of hydraulic motor | |
| CN114909362A (en) | A multi-parameter measurement test device and method for aero-engine hydraulic pipeline | |
| CN110107558A (en) | Hydraulic test system and test method based on control with computational intelligence | |
| CN113958574A (en) | Double-station hydraulic cylinder sealing test system with offset load and test method thereof | |
| CN216278774U (en) | Hydraulic component comprehensive test bench based on computer-aided system |
| Date | Code | Title | Description |
|---|---|---|---|
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| C17 | Cessation of patent right | ||
| CF01 | Termination of patent right due to non-payment of annual fee | Granted publication date:20110316 Termination date:20110617 |