
【技术领域】【Technical field】
本发明涉及一种量测装置,尤其是涉及一种热管量测装置。The invention relates to a measuring device, in particular to a heat pipe measuring device.
【背景技术】【Background technique】
近年来,电子技术迅速发展,电子元件的高频、高速以及集成电路的密集及微型化,使得单位容积电子元件发热量剧增。热管技术以其高效、紧凑及灵活可靠等特点,适合解决当前电子元件因性能提升所衍生的散热问题,逐渐成为当前电子元件的主流散热方式。In recent years, with the rapid development of electronic technology, the high frequency and high speed of electronic components and the density and miniaturization of integrated circuits have caused a sharp increase in the heat generation of electronic components per unit volume. With its high efficiency, compactness, flexibility and reliability, heat pipe technology is suitable for solving the heat dissipation problems of current electronic components due to performance improvement, and has gradually become the mainstream heat dissipation method for current electronic components.
热管是一中空密封管体,通常包括管壳、紧靠管壳内壁的毛细吸液芯(毛细结构)以及密封在管壳内的工作流体,其一端为蒸发端(受热端),另一端为冷凝端(冷却端),根据应用需要可在蒸发端与冷凝端之间设置绝缘段。工作时,热管在蒸发端通过内部热管相变化吸收热量,并通过蒸气流将热量迅速输送到远离热源区的冷凝端,达到快速传送大量热能的目的。冷凝后的液态工作流体通过毛细吸液芯的毛细作用,被输送回蒸发端。然后再次重复上述过程,从而达成热管的散热功能。A heat pipe is a hollow sealed tube, usually including a shell, a capillary wick (capillary structure) close to the inner wall of the shell, and a working fluid sealed in the shell. One end is the evaporation end (heating end), and the other end is The condensing end (cooling end), according to the application needs, an insulating section can be set between the evaporating end and the condensing end. When working, the heat pipe absorbs heat through the phase change of the internal heat pipe at the evaporating end, and quickly transports the heat to the condensing end far away from the heat source area through the vapor flow, so as to achieve the purpose of quickly transferring a large amount of heat energy. The condensed liquid working fluid is transported back to the evaporation end through the capillary action of the capillary wick. Then repeat the above process again, so as to achieve the heat dissipation function of the heat pipe.
为保证热管运行时的正常工作及充分发挥其传热性能,使用前针对热管的性能参数进行测试就变得至关重要。热管的性能参数包括热管两端温差、热管最大传热量及热管内热阻等。其中,热管的最大热传量是衡量热管传热性能较为常用的参数之一,其影响因素包括工作流体的选择、毛细结构的构造及热管的壳体材料等。热管的最大热传量决定着热管所能承受的最大热负载,并直接影响该热管所能适用的场合,当作用到热管上的最大热负载大于热管的最大热传量时,将会导致热管内的工作流体过度蒸发,致使热管处于不正常的工作状态,导致缩减热管使用寿命甚至使其遭受损毁。因此,准确量测热管的最大热传量并据此选择合适的热管,是热管正常工作并保证电子组件正常散热的重要前提条件之一。In order to ensure the normal operation of the heat pipe and give full play to its heat transfer performance, it is very important to test the performance parameters of the heat pipe before use. The performance parameters of the heat pipe include the temperature difference between the two ends of the heat pipe, the maximum heat transfer of the heat pipe, and the internal thermal resistance of the heat pipe. Among them, the maximum heat transfer capacity of the heat pipe is one of the more commonly used parameters to measure the heat transfer performance of the heat pipe, and its influencing factors include the selection of the working fluid, the structure of the capillary structure, and the shell material of the heat pipe. The maximum heat transfer of the heat pipe determines the maximum heat load that the heat pipe can withstand, and directly affects the applicable occasions of the heat pipe. When the maximum heat load applied to the heat pipe is greater than the maximum heat transfer of the heat pipe, it will cause heat loss. The excessive evaporation of the working fluid in the tube causes the heat pipe to be in an abnormal working state, resulting in shortened service life of the heat pipe or even damage to it. Therefore, accurately measuring the maximum heat transfer of the heat pipe and selecting a suitable heat pipe accordingly is one of the important prerequisites for the normal operation of the heat pipe and the normal heat dissipation of the electronic components.
目前,较为常用的一种测量热管最大热传量的装置包括一用于加热热管的加热装置及用于冷凝热管的冷却装置,其中加热装置设在热管的一端对热管进行加热,而冷却装置设在热管的另一端对热管进行冷却,从而使热管处于正常的运行状态,然后通过提高加热装置的加热量至热管内的工作流体全部蒸发,此时加热装置的加热量即为热管的最大热传量。At present, a commonly used device for measuring the maximum heat transfer of a heat pipe includes a heating device for heating the heat pipe and a cooling device for condensing the heat pipe, wherein the heating device is arranged at one end of the heat pipe to heat the heat pipe, and the cooling device is set Cool the heat pipe at the other end of the heat pipe, so that the heat pipe is in a normal operating state, and then increase the heating capacity of the heating device until the working fluid in the heat pipe is completely evaporated. At this time, the heating capacity of the heating device is the maximum heat transfer of the heat pipe. quantity.
上述加热装置(冷凝装置)上端设一热管插入口、一用于插入加热棒(或通入循环冷却液体)的通孔及多个用以安装温度计(或热电偶)的孔道,该多个孔道呈线性、等间距对称排列在热管插入口两侧,其中,在该热管插入口两侧设有多个沟槽,从而形成多个具有弹性的薄壁。该加热装置(冷凝装置)的热管插入口通过上述薄壁弹性变形以夹紧热管,要求热管管径尺寸必须严格与上述热管插入口内径相配合。热管管径过粗,则导致无法插入甚至插入过程中损坏热管,热管管径过细,则导致热管与加热装置(冷凝装置)的热管插入口内壁间存在过多空气,上述二者间接触不良、热阻增大,加热装置(热管)的热量无法及时、迅速的传递到热管(冷却装置)上,直接影响对热管传热性能量测的准确性及可靠性。The upper end of the above-mentioned heating device (condensing device) is provided with a heat pipe insertion port, a through hole for inserting a heating rod (or passing through a circulating cooling liquid), and a plurality of holes for installing thermometers (or thermocouples). They are arranged linearly and symmetrically at equal intervals on both sides of the heat pipe insertion opening, wherein a plurality of grooves are provided on both sides of the heat pipe insertion opening, thereby forming a plurality of elastic thin walls. The heat pipe insertion opening of the heating device (condensing device) clamps the heat pipe through the elastic deformation of the thin wall, requiring that the diameter of the heat pipe must strictly match the inner diameter of the heat pipe insertion opening. If the diameter of the heat pipe is too thick, the heat pipe cannot be inserted or even be damaged during the insertion process. If the diameter of the heat pipe is too small, there will be too much air between the heat pipe and the inner wall of the heat pipe insertion port of the heating device (condensing device). As the thermal resistance increases, the heat from the heating device (heat pipe) cannot be transferred to the heat pipe (cooling device) in a timely and rapid manner, which directly affects the accuracy and reliability of the heat transfer performance measurement of the heat pipe.
有鉴于此,提供一种具有高度准确性及可靠性的热管量测装置实为必要。In view of this, it is necessary to provide a heat pipe measurement device with high accuracy and reliability.
【发明内容】【Content of invention】
以下,将以实施例说明一种具有高度准确性及可靠性的热管量测装置。Hereinafter, a heat pipe measurement device with high accuracy and reliability will be described with an embodiment.
一种热管量测装置包括一上夹片、一与该上夹片相对的下夹片及一热界面材料。其中,所述上夹片具有一第一凹槽,所述下夹片具有与所述第一凹槽配合以夹持一待测热管的第二凹槽,所述上夹片或下夹片上设有至少一用于插入加热棒或通入冷却流体的通孔,所述热界面材料位于所述第一凹槽和/或第二凹槽内表面。A heat pipe measurement device includes an upper clamp, a lower clamp opposite to the upper clamp and a thermal interface material. Wherein, the upper clip has a first groove, and the lower clip has a second groove that cooperates with the first groove to clamp a heat pipe to be measured. There is at least one through hole for inserting a heating rod or passing in a cooling fluid, and the thermal interface material is located on the inner surface of the first groove and/or the second groove.
与现有技术相比较,所述热管量测装置设计成两片夹紧式结构,无需现有技术中热管外径必须与加热装置(冷凝装置)的热管插入口内径严格匹配的要求,无论待测热管外径偏大或偏小,通过热界面材料即可填补所述第一凹槽和第二凹槽内壁与待测热管接触界面间的微小空隙,从而降低热管量测装置与热管的接触界面间的热阻,使得热管量测装置具有高度量测准确性及可靠性,使该热管量测装置测量更实用化。并且,所述热管量测装置使用时,热电偶与待测热管端部直接接触以测其温度,省略现有技术中用以安装多个温度计(或热电偶)的孔道,结构简单,便于测量。Compared with the prior art, the heat pipe measuring device is designed as a two-piece clamping structure, which eliminates the requirement that the outer diameter of the heat pipe must be strictly matched with the inner diameter of the heat pipe insertion port of the heating device (condensing device) in the prior art. The outer diameter of the heat pipe is too large or too small, and the thermal interface material can fill the tiny gap between the inner wall of the first groove and the second groove and the contact interface of the heat pipe to be measured, thereby reducing the contact between the heat pipe measuring device and the heat pipe The thermal resistance between the interfaces enables the heat pipe measuring device to have high measurement accuracy and reliability, making the heat pipe measuring device more practical for measurement. Moreover, when the heat pipe measurement device is in use, the thermocouple is in direct contact with the end of the heat pipe to be measured to measure its temperature, omitting the holes used to install multiple thermometers (or thermocouples) in the prior art, and the structure is simple and convenient for measurement. .
【附图说明】【Description of drawings】
图1是本发明第一实施例的热管量测装置与待测热管的装配示意图。FIG. 1 is a schematic diagram of the assembly of the heat pipe measurement device and the heat pipe to be measured according to the first embodiment of the present invention.
图2是本发明第二实施例的热管量测装置与待测热管的装配示意图。FIG. 2 is a schematic diagram of the assembly of the heat pipe measurement device and the heat pipe to be measured according to the second embodiment of the present invention.
图3是本发明第二实施例的热管量测装置的分解示意图。FIG. 3 is an exploded view of a heat pipe measurement device according to a second embodiment of the present invention.
【具体实施方式】【Detailed ways】
下面,结合附图对本发明具体实施方式进行详细说明。Hereinafter, specific embodiments of the present invention will be described in detail in conjunction with the accompanying drawings.
请参阅图1,本发明第一实施例的热管量测装置1包括一上夹片2、一与该上夹片2相对的下夹片3及一热界面材料53。该上夹片2具有第一凹槽51。该下夹片3具有与所述第一凹槽51配合以夹持该待测热管5的第二凹槽52。该上夹片2或下夹片3上设有至少一用于插入加热棒或通入冷却流体的通孔4。热界面材料53位于所述第一凹槽51和/或第二凹槽52内表面。Referring to FIG. 1 , the heat pipe measurement device 1 according to the first embodiment of the present invention includes an
所述上夹片2和下夹片3均由热传性能良好的金属或合金材料制成,如铜、铝、铜铝合金等。本实施例中选用铜制上夹片2和下夹片3。Both the
上夹片2与下夹片3夹合后外形可为板形、不规则板形、柱形、不规则柱形、梯形、阶梯形、锥形等,此时第一凹槽51与第二凹槽52配合形成一用于插入待测热管5的孔洞。本实施例中,上夹片2与下夹片3夹合后外形为板形。After the clamping of the
第一凹槽51和第二凹槽52截面形状和半径根据待测热管5截面形状和半径而设定。如待测热管5为一平板型热管、单管型热管或分离型(回路式)热管,则第一凹槽51与第二凹槽52配合后截面形状可对应设为矩形、圆形。本实施例的待测热管5采用一单管型热管,则第一凹槽51与第二凹槽52配合后截面形状为圆形,其半径与待测热管5半径大致相等。The cross-sectional shape and radius of the
优选的,本热管量测装置1还可设置至少一用于插入热电偶的沟槽511,该沟槽511位于第一凹槽51和/或第二凹槽52内壁,并沿其轴向延伸。Preferably, the heat pipe measurement device 1 can also be provided with at least one
通孔4设在上夹片2、下夹片3或由该二者夹持构成。当该热管量测装置1作为待测热管5加热装置而被使用时,该通孔4内插入加热棒;当该热管量测装置1作为待测热管5冷却装置而被使用时,该通孔4内通入冷却流体。本实施例中,两通孔4对称设在上夹片2上。The through
本实施例中,通过上夹片2的自身重力使上夹片2与下夹片3紧密固接为一体。也可采用卡扣、螺合等本技术领域技术人员所习知的固接方法将上夹片2与下夹片3紧密固接为一体。In this embodiment, the
所述热界面材料53可选用一聚合物材料或相变材料,聚合物材料可选用下列材料:硅橡胶、聚酯、聚氯乙烯、聚乙烯醇、聚乙烯、聚丙烯、环氧树脂、聚碳酸酯、聚甲醛或聚缩醛。相变材料可选用下列材料:石蜡、聚烯烃、低分子量聚酯、低分子量环氧树脂或低分子量丙烯酸。优选地,所述热界面材料53还可填充导热性颗粒,例如,铜、铝、银等金属以及氧化铝、氧化锌、氮化铝,氮化硼、石墨或奈米碳材料等材料。本实施例采用一相变材料,如石蜡,并将其较多量地贴附在凹槽51、52内壁表面,以确保凹槽51、52与待测热管5的蒸发端或冷凝端紧密接触。The
请同时参阅图2和图3,本发明第二实施例的热管量测装置1’包括一上夹片2’、一与该上夹片2’相对的下夹片3’及一热界面材料53’。该上夹片2’具有第一凹槽51’。该下夹片3’具有与所述第一凹槽51’配合以夹持该待测热管5’的第二凹槽52’。该下夹片3’上设有二用于插入加热棒或通入冷却流体的通孔4’。热界面材料53’位于所述第一凹槽51’和/或第二凹槽52’内表面。Please refer to Figure 2 and Figure 3 at the same time, the heat pipe measurement device 1' of the second embodiment of the present invention includes an upper clip 2', a lower clip 3' opposite to the upper clip 2' and a thermal interface material 53'. The upper clip 2' has a first groove 51'. The lower clip 3' has a second groove 52' that cooperates with the first groove 51' to clamp the heat pipe 5' to be tested. The lower clip 3' is provided with two through holes 4' for inserting a heating rod or feeding cooling fluid. The thermal interface material 53' is located on the inner surface of the first groove 51' and/or the second groove 52'.
所述上夹片2’和下夹片3’材质与第一实施例相同。The material of the upper clip 2' and the lower clip 3' is the same as that of the first embodiment.
本实施例中,下夹片3’设为“凸”字形,包括下夹合部31和支撑部32,第二凹槽52’位于凸起的下夹合部31顶端。上夹片2’外形与下夹片3’相配合,包括上夹合部21和水平部22。上夹片2’的上夹合部21与下夹片3’的下夹合部31夹合后整体外形也为“凸”字形,此时第一凹槽51’与第二凹槽52’配合形成一用于插入待测热管5’的孔洞。In this embodiment, the lower clip 3' is set in a "convex" shape, including the
第一凹槽51’、第二凹槽52’、沟槽511’及通孔4’的构造与第一实施例相同。The structures of the first groove 51', the second groove 52', the groove 511' and the through hole 4' are the same as those of the first embodiment.
热界面材料53’的选择同第一实施例。The selection of the thermal interface material 53' is the same as that of the first embodiment.
本热管量测装置1’还设置一螺合固接结构,具体的,在上夹片2’的水平部22和下夹片3’的支撑部32分别设置若干相互匹配的螺孔6,该螺孔6与螺钉7配合使上夹片2’与下夹片3’紧密固接为一体。也可通过任何本技术领域技术人员习知的固接方法,如卡扣或直接上压配合固接方法取代上述螺合固接结构,同样可达成使上夹片2’与下夹片3’紧密固接为一体的效果。The heat pipe measurement device 1' is also provided with a screwed and fixed structure. Specifically, a number of
使用上述实施例中热管量测装置1(1’)测量待测热管时,先将两热管量测装置1(1’)分别与待测热管的两端配合,设定待测热管一端为蒸发端,一端为冷却端。与待测热管蒸发端相配合的热管量测装置1(1’)的多个通孔4(4’)内插入加热棒,与待测热管冷却端相配合的热管量测装置1(1’)的多个通孔4(4’)内通入冷却流体。将两热电偶分别插入位于待测热管两端的沟槽511(511’)内,可分别测量待测热管的蒸发端和冷凝端的温度。When using the heat pipe measuring device 1 (1') in the above embodiment to measure the heat pipe to be measured, first match the two heat pipe measuring devices 1 (1') with the two ends of the heat pipe to be measured, and set one end of the heat pipe to be measured as evaporation end, and one end is the cooling end. Heat pipe measuring device 1 (1') matched with the evaporating end of the heat pipe to be measured inserts heating rods into multiple through holes 4 (4'), and the heat pipe measuring device 1 (1' matched with the cooling end of the heat pipe to be measured ) into a plurality of through holes 4 (4') into the cooling fluid. The two thermocouples are respectively inserted into the grooves 511 (511') located at both ends of the heat pipe to be tested, and the temperatures of the evaporation end and the condensation end of the heat pipe to be tested can be measured respectively.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN 200510100796CN1955727A (en) | 2005-10-27 | 2005-10-27 | Heat pipe measuring device |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN 200510100796CN1955727A (en) | 2005-10-27 | 2005-10-27 | Heat pipe measuring device |
| Publication Number | Publication Date |
|---|---|
| CN1955727Atrue CN1955727A (en) | 2007-05-02 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN 200510100796PendingCN1955727A (en) | 2005-10-27 | 2005-10-27 | Heat pipe measuring device |
| Country | Link |
|---|---|
| CN (1) | CN1955727A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102168843A (en)* | 2010-12-01 | 2011-08-31 | 孙闽峰 | A new type of lampshade support frame |
| CN108351313A (en)* | 2015-10-30 | 2018-07-31 | 三菱电机株式会社 | Heat conductivity measuring device and thermal conductivity measurement method |
| CN109490361A (en)* | 2019-01-09 | 2019-03-19 | 广东工业大学 | A kind of flat-plate heat pipe test device |
| USD922126S1 (en) | 2019-06-06 | 2021-06-15 | Sharkninja Operating Llc | User interface for a food preparation device |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN102168843A (en)* | 2010-12-01 | 2011-08-31 | 孙闽峰 | A new type of lampshade support frame |
| CN108351313A (en)* | 2015-10-30 | 2018-07-31 | 三菱电机株式会社 | Heat conductivity measuring device and thermal conductivity measurement method |
| CN108351313B (en)* | 2015-10-30 | 2020-09-01 | 三菱电机株式会社 | Thermal conductivity measuring device and thermal conductivity measuring method |
| CN109490361A (en)* | 2019-01-09 | 2019-03-19 | 广东工业大学 | A kind of flat-plate heat pipe test device |
| USD922126S1 (en) | 2019-06-06 | 2021-06-15 | Sharkninja Operating Llc | User interface for a food preparation device |
| Publication | Publication Date | Title |
|---|---|---|
| CN1892206A (en) | Heat-pipe measuring device | |
| WO2009137653A2 (en) | Heat transfer assembly and methods therefor | |
| CN2694269Y (en) | Heat pipe measuring device | |
| US20080291630A1 (en) | Method and apparatus for cooling computer memory | |
| CN100420912C (en) | Composite capillary structure of heat transfer component | |
| Al Sayed et al. | Two-phase immersion cooling of microprocessors with electroplated porous heat spreaders: Thermal performance and reliability | |
| CN112798645A (en) | A heating element, experimental device and experimental method for multi-angle detection of boiling heat transfer | |
| CN101566748A (en) | Radiating module and backlight module adopting same | |
| CN210070062U (en) | A radiator, air conditioner outdoor unit and air conditioner | |
| CN109729701B (en) | A pulsating heat pipe radiator specially designed for high power density servo drives | |
| CN100426494C (en) | Heat radiator of heat pipe | |
| CN1955727A (en) | Heat pipe measuring device | |
| CN115078451B (en) | A kind of tooling and method for testing heat transfer performance of temperature averaging plate | |
| CN100582637C (en) | Micro heat pipe with wedge capillaries | |
| CN2694267Y (en) | Plate-type heat pipe measuring device | |
| CN101000316B (en) | Heat pipe temperature measurement system | |
| CN107613731A (en) | Non-planar flat heat pipe cooling structure for aerospace electronics | |
| CN1917193A (en) | Heat sink | |
| CN2681341Y (en) | Heat sink using heat pipe | |
| CN115722277A (en) | Thin liquid film boiling heat transfer enhancement device | |
| CN108417543A (en) | Heat pipe radiator based on porous thermally conductive material | |
| CN100425979C (en) | Measuring device and method of heat pipe performance | |
| CN207884061U (en) | Microflute group is heat sink liquid supply device | |
| TWM241691U (en) | Holding apparatus for a rod | |
| CN220023482U (en) | Heat dissipation cold plate |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
| WD01 | Invention patent application deemed withdrawn after publication |