Movatterモバイル変換


[0]ホーム

URL:


CN1790846A - Method for making laser-electric absorption modulator-spot-size converter single chip integration - Google Patents

Method for making laser-electric absorption modulator-spot-size converter single chip integration
Download PDF

Info

Publication number
CN1790846A
CN1790846ACN 200410098493CN200410098493ACN1790846ACN 1790846 ACN1790846 ACN 1790846ACN 200410098493CN200410098493CN 200410098493CN 200410098493 ACN200410098493 ACN 200410098493ACN 1790846 ACN1790846 ACN 1790846A
Authority
CN
China
Prior art keywords
layer
laser
electroabsorption modulator
spot
mode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 200410098493
Other languages
Chinese (zh)
Other versions
CN100342601C (en
Inventor
侯廉平
王圩
朱洪亮
周帆
王鲁峰
边静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Semiconductors of CAS
Original Assignee
Institute of Semiconductors of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Semiconductors of CASfiledCriticalInstitute of Semiconductors of CAS
Priority to CNB2004100984933ApriorityCriticalpatent/CN100342601C/en
Publication of CN1790846ApublicationCriticalpatent/CN1790846A/en
Application grantedgrantedCritical
Publication of CN100342601CpublicationCriticalpatent/CN100342601C/en
Anticipated expirationlegal-statusCritical
Expired - Fee Relatedlegal-statusCriticalCurrent

Links

Images

Landscapes

Abstract

Translated fromChinese

一种激光器-电吸收调制器-模斑转换器的制作方法,包括:在衬底上依次外延生长缓冲层、下波导层、空间层、本征层;用PECVD技术在本征层上生长二氧化硅;去掉本征层,第二次生长有源区及本征层,同时刻出模斑转换器的上波导结构;刻出模斑转换器的下波导结构;第三次外延生长薄的p型磷化铟层和盖层,欧姆接触层;重新刻出激光器及电吸收调制器部分的单脊条形波导结构;刻出隔离沟,进行He+注入;去掉模斑转换器区的铟镓砷接触层;用热氧化方法生长二氧化硅绝缘层;在电吸收调制器两侧淀积聚酰亚胺;开出激光器和电吸收调制器的电极窗口;刻出激光器和电吸收调制器的电极图形;溅射p电极;外延片衬底减薄,溅射n电极后,经划片解理成管芯。

Figure 200410098493

A method for manufacturing a laser-electroabsorption modulator-mode-spot converter, comprising: sequentially growing a buffer layer, a lower waveguide layer, a space layer, and an intrinsic layer on a substrate; Silicon oxide; remove the intrinsic layer, grow the active region and the intrinsic layer for the second time, and at the same time carve out the upper waveguide structure of the spot converter; carve the lower waveguide structure of the spot converter; third epitaxially grow a thin P-type indium phosphide layer and cover layer, ohmic contact layer; re-engraving the single-ridge strip waveguide structure of the laser and electro-absorption modulator; engraving isolation trenches, performing He+ implantation; removing indium in the spot converter area Gallium arsenic contact layer; growing silicon dioxide insulating layer by thermal oxidation; depositing polyimide on both sides of the electroabsorption modulator; opening the electrode window of the laser and the electroabsorption modulator; Electrode pattern; sputtering p-electrode; epitaxial wafer substrate thinning, after sputtering n-electrode, cleavage into die by dicing.

Figure 200410098493

Description

Translated fromChinese
激光器-电吸收调制器-模斑转换器单片集成的制作方法Fabrication method of laser-electroabsorption modulator-mode spot converter monolithic integration

技术领域technical field

本发明涉及通过常用的湿法腐蚀和光刻工艺制作一种新型的半导体激光器和电吸收调制器及模斑转换器单片集成器件的方法。The invention relates to a method for manufacturing a novel semiconductor laser, an electroabsorption modulator and a spot converter single-chip integrated device through common wet etching and photolithography techniques.

背景技术Background technique

随着现代信息社会的发展,超大容量和长距离信息的高速传输、处理和存储是十分关键的技术。无论是长途通信的干线网、广域网、还是短途通信的局域网、接入网、短途数据联接光交换等都需要大量的高性能、低成本的光电子器件来支撑网络的功能。在接入网应用中,对光发射模块的具体要求是(参见Optical and quantumElectronics,Vol30,1998,pp.3284-3293):(1)低成本的模块,包括:a、新颖的器件、模块结构,b、全片制作工艺,c、耦合封装技术以减小封装时间和封装的工艺过程,d、可靠的验证方法;在现存的技术中,使用的器件数量多和所用的耦合时间长是限制成本降低的主要因素,此外必须采用突破性的工艺来进行大规模的生产,采用低成本的材料、器件,减少使用器件的数量,采用标准化的器件、扩大市场对降低成本都非常重要;(2)环境的使用性和可靠性,即能够在高温、高湿及宽温区内温度的工作。从上述的要求来看,近来发展的低成本的混合集成光模块适合接入网的应用。With the development of modern information society, the high-speed transmission, processing and storage of ultra-large capacity and long-distance information is a key technology. Whether it is the backbone network of long-distance communication, wide area network, or local area network of short-distance communication, access network, short-distance data connection optical switching, etc., a large number of high-performance and low-cost optoelectronic devices are required to support the network functions. In the application of the access network, the specific requirements for the optical transmission module are (see Optical and quantumElectronics, Vol30, 1998, pp.3284-3293): (1) low-cost modules, including: a, novel devices, module structure , b. Full-chip manufacturing process, c. Coupling packaging technology to reduce packaging time and packaging process, d. Reliable verification method; in the existing technology, the number of devices used and the long coupling time used are limitations The main factor of cost reduction. In addition, breakthrough technology must be used for large-scale production. Low-cost materials and devices are used to reduce the number of devices used. Standardized devices and market expansion are very important to reduce costs; (2 ) The usability and reliability of the environment, that is, it can work at high temperature, high humidity and wide temperature range. From the above requirements, the recently developed low-cost hybrid integrated optical module is suitable for the application of the access network.

为提高模块产量,下列技术是必要的:无源对准技术、平面光波回路平台(PLC),激光器与模斑转换器(SSC)集成。同时基于硅(Si)衬底的带V型沟道和带有绝热楔型模斑转换器的波导平台也得到了发展。无源对准技术可以减少对准的时间,它只需要对准器件上的标记而不必检测功率的变化。PLC技术,可以同时提供耦合用的大数值孔径的二氧化硅(SiO2)波导(可减小与单模光纤的耦合效率)和Si的台面(提供高频耦合、固定等),采用倒装焊技术在PLC上焊接LD和PD而组成光收发模块,同时采用倒装焊技术,可以抛弃传统封装技术所必要的透镜、反射镜、棱镜等光学器件。带有横向、纵向或混合形状模式转换器的LD与SiO2波导之间有高的耦合效率,而且耦合的容差也增加了,因此可以降低耦合的成本(参见IEEE Photon Technol.Lett.,Vol.6(12),1994,pp.1412-1414 and Appl.Phys.Lett.,vol.64(5),1994,pp.539-541 andProc.SPIE,Vol.3286,1998,pp.2-16)。In order to increase the module yield, the following technologies are necessary: passive alignment technology, planar lightwave loop platform (PLC), integration of laser and speckle converter (SSC). At the same time, waveguide platforms with V-shaped channels and adiabatic wedge-type spot converters based on silicon (Si) substrates have also been developed. Passive alignment technology can reduce alignment time, it only needs to align the marks on the device without detecting power changes. PLC technology can simultaneously provide a silicon dioxide (SiO2 ) waveguide with a large numerical aperture for coupling (which can reduce the coupling efficiency with single-mode fiber) and a Si table (provide high-frequency coupling, fixing, etc.), using flip-chip Soldering technology welds LD and PD on the PLC to form an optical transceiver module. At the same time, flip-chip welding technology can be used to discard optical devices such as lenses, reflectors, and prisms necessary for traditional packaging technologies. LDs with transverse, longitudinal, or mixed-shape mode converters have high coupling efficiency with SiO2 waveguides, and the tolerance of coupling is increased, so the cost of coupling can be reduced (see IEEE Photon Technol. Lett., Vol. .6(12), 1994, pp.1412-1414 and Appl.Phys.Lett., vol.64(5), 1994, pp.539-541 and Proc.SPIE, Vol.3286, 1998, pp.2-16 ).

半导体光激光器(LD),电吸收调制器(EA)及模斑转换器(SSC)的单片集成功能器件(以下简称LD-EA-SSC)的制作和封装,则综合运用了上述各种技术。该器件对光网络特别是密集波分复用(DWDW)系统的发展意义重大:(1)随着能带工程研究的不断深入,通过改变多量子阱(MQW)的能带结构,可制作出低阈值、高效率、高速率、低啁啾、大功率、长寿命的激光器(参见Bell labs Technical J.,Jan.-Mar.1999,pp.150-167),这些在以WDM技术为核心的全光网络中具有独到的应用。(2)EA具有高速、高的消光比和低的啁啾噪声,体积小,驱动电压低以及易于集成的优点,可用于DWDM系统和时分复用(OTDM)的外调制器和信号发生器,也可以做成光开关(参见OFC’2002,pp338 and OFC’98,pp287 and IEEE Photon.Technol.Lett.,Vol.14,No.6,pp792,2002 and Appl.Phys.Lett.,Vol.69,No.18,1996,pp2626,)。(3)模斑转换器可以将LD和EA输出的椭圆光斑变成和单模光纤(SMF)的本征光斑相匹配的圆光斑,从而提高器件与SiO2波导(光纤)的耦合效率,增加耦合容差,降低耦合成本。对于大功率半导体激光器(放大器)来说,集成了模斑转换器还有另外一个好处,除了提高耦合效率和偏调容差外,还可以提高工作寿命和最大输出功率(参见IEEE J.of Quantum Electron.Vol.23,No.6,1987,pp712-719)。The production and packaging of monolithic integrated functional devices (hereinafter referred to as LD-EA-SSC) of semiconductor optical lasers (LD), electroabsorption modulators (EA) and speckle converters (SSC) use the above-mentioned technologies comprehensively. . This device is of great significance to the development of optical networks, especially dense wavelength division multiplexing (DWDW) systems: (1) With the deepening of energy band engineering research, by changing the energy band structure of multiple quantum wells (MQW), it is possible to produce Lasers with low threshold, high efficiency, high rate, low chirp, high power, and long life (see Bell labs Technical J., Jan.-Mar.1999, pp.150-167), these are in the core of WDM technology It has unique application in all-optical network. (2) EA has the advantages of high speed, high extinction ratio and low chirp noise, small size, low driving voltage and easy integration, and can be used for external modulators and signal generators of DWDM systems and time division multiplexing (OTDM), It can also be made into an optical switch (see OFC'2002, pp338 and OFC'98, pp287 and IEEE Photon.Technol.Lett., Vol.14, No.6, pp792, 2002 and Appl.Phys.Lett., Vol.69 , No.18, 1996, pp2626,). (3) The mode spot converter can change the elliptical spot output by LD and EA into a circular spot matching the intrinsic spot of single-mode fiber (SMF), thereby improving the coupling efficiency of the device andSiO2 waveguide (optical fiber), increasing Coupling tolerance reduces coupling cost. For high-power semiconductor lasers (amplifiers), the integration of mode-spot converters has another benefit. In addition to improving coupling efficiency and offset tolerance, it can also improve operating life and maximum output power (see IEEE J.of Quantum Electron. Vol. 23, No. 6, 1987, pp712-719).

国际上有名的公司,如AT&T,NTT,Lucent均推出了各自的LD-EA-SSC器件(参见Electron.Lett,1996,32:111 and IEEE J.Select.TopicsQuantum Electron,2000,6:19 and J.Lightwave Technol,2002,20:2052 andIEEE Photon.Technol.Lett,2002,14:27and IEEE Photon.Technol.Lett,2003,15:679)。制作的方法有选择区域生长(SAG)及对接(butt-joint)生长等工艺技术。结构上分,有脊型波导结构及掩埋结构两种。butt-joint可以对激光器和调制器及模斑转换器分别进行优化,可以得到性能很好的LD-EA-SSC集成器件。但是制作工艺比较复杂,外延次数较多、成本高,激光器和调制器连接处,调制器和模斑转换器连接处的晶体质量较差,不容易获得高耦合效率的对接波导。相比之下,SAG方法通过控制掩膜宽度、间隔、生长压力、生长温度等可以通过一次简单的外延生长来获得不同带隙能量的波导层,不需要复杂的多次生长过程。因此使用SAG方法可以一次形成LD,EA及SSC的波导结构,制作工艺简单,激光器与调制器耦合效率高,但需要精心优化材料的生长。Famous companies in the world, such as AT&T, NTT, and Lucent have released their own LD-EA-SSC devices (see Electron.Lett, 1996, 32: 111 and IEEE J.Select.TopicsQuantum Electron, 2000, 6: 19 and J . Lightwave Technol, 2002, 20: 2052 and IEEE Photon. Technol. Lett, 2002, 14: 27 and IEEE Photon. Technol. Lett, 2003, 15: 679). The fabrication methods include process technologies such as selective area growth (SAG) and butt-joint growth. In terms of structure, there are two types of ridge waveguide structure and buried structure. Butt-joint can optimize the laser, modulator and speckle converter separately, and can get LD-EA-SSC integrated device with good performance. However, the manufacturing process is more complicated, the number of epitaxy is more, the cost is high, the crystal quality at the junction of the laser and the modulator, and the junction of the modulator and the modulator is poor, and it is not easy to obtain a docking waveguide with high coupling efficiency. In contrast, the SAG method can obtain waveguide layers with different bandgap energies through one simple epitaxial growth by controlling the mask width, spacing, growth pressure, growth temperature, etc., without complicated multiple growth processes. Therefore, the waveguide structure of LD, EA and SSC can be formed at one time by using the SAG method, the manufacturing process is simple, and the coupling efficiency of the laser and the modulator is high, but the growth of the material needs to be carefully optimized.

常见的模斑转换器有三种形式:垂直楔形(vertical taper)(参见J.Lightwave Technology,1999,17:1255),水平楔形(lateral taper)(参见IEEE Photon.Technol.Lett,1994,6:170),双波导结构(double core)(参见IEEE Photon.Technol.Lett,1997,9:1084)。三种模斑转换器具有各自的优缺点:垂直楔形波导厚度从有源区到输出端面是逐渐变化的。水平楔形的波导宽度从有源区到端面是逐渐减小的。双波导结构是上面有源波导呈水平楔形状,下面无源波导负责和光纤耦合。对于水平方向的楔形波导来说,可以通过常规的光刻和腐蚀工艺来制作。但是垂直方向的楔形波导却不行,必须应用特殊的生长或腐蚀方法才能得到。例如采用选择性对接(SAG butt-joint)或采用逐渐腐蚀的工艺才能达到,采用此方法,外延次数较多,EA和SSC的对接界面过渡不好,耦合损耗大,器件的重复性比较差,不适合大规模生产。而双波导结构是有源器件和无源器件集成的一个平台,可以采用一次性外延生长而成,同时可以分别优化上下波导层及空间层的组分或尺寸,即可以对有源器件和无源器件的带隙和尺寸分别进行优化。上波导层的光通过空间层和下波导进行相位耦合:上波导层在纵向做成楔形状,传输一定的距离后,上波导达到截止条件使上波导的光绝热地耦合到下波导。优化楔形尺寸,既可以减小传输损耗,又可以使器件的长度缩短。There are three types of common pattern converters: vertical taper (see J.Lightwave Technology, 1999, 17: 1255), horizontal taper (see IEEE Photon.Technol.Lett, 1994, 6: 170 ), double core (see IEEE Photon.Technol.Lett, 1997, 9:1084). The three kinds of speckle converters have their own advantages and disadvantages: the thickness of the vertical wedge-shaped waveguide changes gradually from the active area to the output end face. The waveguide width of the horizontal wedge gradually decreases from the active region to the end face. The dual waveguide structure is that the upper active waveguide is in the shape of a horizontal wedge, and the lower passive waveguide is responsible for coupling with the fiber. For horizontal wedge-shaped waveguides, it can be fabricated by conventional photolithography and etching processes. But the wedge-shaped waveguide in the vertical direction is not good, and it must be obtained by applying a special growth or erosion method. For example, it can only be achieved by using selective butt-joint (SAG butt-joint) or gradual corrosion process. With this method, the number of epitaxy is more, the transition between EA and SSC is not good, the coupling loss is large, and the repeatability of the device is relatively poor. Not suitable for mass production. The dual waveguide structure is a platform for the integration of active devices and passive devices. The bandgap and dimensions of the source devices are optimized separately. The light of the upper waveguide layer is phase-coupled through the space layer and the lower waveguide: the upper waveguide layer is made into a wedge shape in the longitudinal direction, and after a certain distance is transmitted, the upper waveguide reaches the cut-off condition so that the light of the upper waveguide is adiabatically coupled to the lower waveguide. Optimizing the wedge size can not only reduce the transmission loss, but also shorten the length of the device.

尽管国际上有许多激光器、电吸收调制器和模斑转换器单片集成器件的报道,但是普遍存在如下缺点:Although there are many reports on monolithic integrated devices of lasers, electroabsorption modulators and mode spot converters in the world, the following shortcomings are common:

(1)激光器和调制器大部分采用掩埋结构,外延次数多,工艺复杂,器件的可靠性低。(1) Most of the lasers and modulators use buried structures, with many epitaxy times, complex processes, and low device reliability.

(2)模斑转换器采用垂直楔形,采用选择对接外延技术或者逐渐腐蚀等工艺,调制器和模斑转换器联接处的晶体质量较差,不容易获得高耦合效率的对接波导,同时,界面处理非常困难,光斑模式很容易在对接界面变差,器件制作的重复性差,工艺容差小。(2) The speckle converter adopts vertical wedge shape, adopts selective butt joint epitaxy technology or gradual corrosion process, the quality of the crystal at the junction of the modulator and the speckle converter is poor, and it is not easy to obtain a docking waveguide with high coupling efficiency. At the same time, the interface It is very difficult to handle, the light spot pattern is easy to deteriorate at the docking interface, the repeatability of device fabrication is poor, and the process tolerance is small.

(3)有的虽然激光器和电吸收调制器亦采用对接生长技术,同样存在怎样获得良好的对接界面的问题。(3) Although some lasers and electro-absorption modulators also use docking growth technology, there is also the problem of how to obtain a good docking interface.

(4)激光器和调制器采用掩埋结构,难以得到电容很小的电吸收调制器,调制带宽受到限制。(4) The laser and the modulator adopt a buried structure, and it is difficult to obtain an electroabsorption modulator with a small capacitance, and the modulation bandwidth is limited.

发明内容Contents of the invention

为了克服上述缺点,本发明的目的在于,提供一种激光器-电吸收调制器-模斑转换器单片集成的制作方法,利用选择区域生长(SAG)技术及双波导技术设计和制作了一种新型的半导体激光器,电吸收调制器及模斑转换器单片集成器件。该器件具有工艺简单成熟、外延次数少、制作成本低、器件性能好等优点。In order to overcome the above-mentioned shortcomings, the object of the present invention is to provide a method for monolithically integrating a laser-electroabsorption modulator-mode spot converter, and to design and manufacture a laser-electroabsorption modulator-mode spot converter monolithically integrated A new monolithic integrated device of semiconductor laser, electroabsorption modulator and mode spot converter. The device has the advantages of simple and mature process, less epitaxy times, low manufacturing cost, good device performance and the like.

本发明一种激光器-电吸收调制器-模斑转换器单片集成的制作方法,其特征在于,包括以下制作步骤:A manufacturing method of a laser-electroabsorption modulator-mode spot converter monolithic integration of the present invention is characterized in that it comprises the following manufacturing steps:

步骤1:在n型磷化铟衬底上依次外延生长n型磷化铟缓冲层、下波导层、InP空间层、1.1Q较薄的铟镓砷磷本征层;Step 1: On the n-type indium phosphide substrate, epitaxially grow n-type indium phosphide buffer layer, lower waveguide layer, InP space layer, and 1.1Q thinner InGaAsP intrinsic layer in sequence;

步骤2:用PECVD技术在1.1Q的铟镓砷磷本征层上生长二氧化硅,并且刻出选择区域生长的掩膜对;Step 2: Using PECVD technology to grow silicon dioxide on the 1.1Q InGaAsP intrinsic layer, and carve out a mask pair for selective area growth;

步骤3:去掉最上面的1.1Q的铟镓砷磷本征层,第二次生长有源区及薄的磷化铟本征层;Step 3: Remove the top 1.1Q InGaAsP intrinsic layer, and grow the active region and thin InP intrinsic layer for the second time;

步骤4:去掉最上面的磷化铟本征层,同时刻出模斑转换器的上波导结构;Step 4: remove the uppermost intrinsic layer of indium phosphide, and at the same time carve out the upper waveguide structure of the speckle converter;

步骤5:然后利用自对准工艺刻出模斑转换器的下波导结构;Step 5: Then use the self-alignment process to carve the lower waveguide structure of the speckle converter;

步骤6:第三次外延生长薄的p型磷化铟层和1.1Q刻蚀停止层,p型磷化铟盖层,高掺杂p型铟镓砷欧姆接触层;Step 6: The third epitaxial growth of a thin p-type indium phosphide layer and a 1.1Q etch stop layer, a p-type indium phosphide capping layer, and a highly doped p-type indium gallium arsenide ohmic contact layer;

步骤7:重新刻出激光器及电吸收调制器部分的单脊条形波导结构;Step 7: Re-engraving the single-ridge strip waveguide structure of the laser and electro-absorption modulator;

步骤8:刻出激光器和电吸收调制器之间的隔离沟,并对隔离沟及激光器和电吸收调制器脊型台面两侧进行He+注入;Step 8: Carve out the isolation trench between the laser and the electroabsorption modulator, and perform He+ implantation on both sides of the isolation trench and the ridge mesa of the laser and the electroabsorption modulator;

步骤9:去掉模斑转换器区的铟镓砷接触层;Step 9: removing the InGaAs contact layer in the spot converter region;

步骤10:用热氧化方法生长二氧化硅绝缘层;Step 10: growing a silicon dioxide insulating layer by thermal oxidation;

步骤11:在电吸收调制器两侧淀积聚酰亚胺,并且对其进行固化;Step 11: Depositing polyimide on both sides of the electroabsorption modulator, and curing it;

步骤12:开出激光器和电吸收调制器的电极窗口;Step 12: opening the electrode windows of the laser and the electroabsorption modulator;

步骤13:刻出激光器和电吸收调制器的电极图形;Step 13: Engraving the electrode pattern of the laser and the electroabsorption modulator;

步骤14:溅射p电极;Step 14: sputtering the p-electrode;

步骤15:外延片衬底减薄,溅射n电极后,经划片解理成管芯。Step 15: Thinning the epitaxial wafer substrate, sputtering the n-electrode, and cleaving it into tube cores by dicing.

其中步骤1所生长的下波导层的厚度要在45~50nm之间,带隙波长为1.1μm;而且必须和铟磷衬底的晶格常数匹配,n型掺杂浓度在1018/cm3量级;空间层的厚度应该在0.15~0.3μm,n型掺杂浓度在1017/cm3量级。The thickness of the lower waveguide layer grown in step 1 should be between 45 and 50 nm, and the band gap wavelength should be 1.1 μm; and it must match the lattice constant of the indium phosphorus substrate, and the n-type doping concentration should be 1018 /cm3 order of magnitude; the thickness of the space layer should be in the range of 0.15-0.3 μm, and the n-type doping concentration should be in the order of 1017 /cm3 .

其中步骤2中用PECVD生长的二氧化硅的均匀性及致密度必须得到保证,否则在随后的SAG生长质量将得不到保证;二氧化硅的厚度为150nm,掩膜宽度为30μm,间隔为15μm;激光器区的和大面积区的波长偏调量可达60nm;在生长温度、生长压力及掩膜对的间隔一定的情况下,只有通过调节掩膜的宽度来调节激光器的波长,宽度越宽,激光器越长,和大面积区的波长偏调量越大。Among them, the homogeneity and density of silicon dioxide grown by PECVD in step 2 must be guaranteed, otherwise the quality of the subsequent SAG growth will not be guaranteed; the thickness of silicon dioxide is 150nm, the mask width is 30 μm, and the interval is 15μm; the wavelength offset of the laser region and the large-area region can reach 60nm; in the case of constant growth temperature, growth pressure and mask pairs, the wavelength of the laser can only be adjusted by adjusting the width of the mask. Wide, the longer the laser, and the larger the wavelength shift in the large area.

其中有源区包括10个周期的量子阱,在大面积区,每个压应变铟镓砷磷量子阱的厚度为6~7nm,应变量在0.3%~0.4%之间;此外垒为四元铟镓砷磷,应变量在-0.3%~-0.4%之间,带隙波长为1.2μm,垒厚为5~7nm之间;光限制层的厚度在80~100nm;有源区及上下光限制层不掺杂。The active area includes 10 periods of quantum wells. In the large-area area, the thickness of each compressively strained InGaAsP quantum well is 6-7nm, and the strain is between 0.3% and 0.4%. The outer barrier is a quaternary InGaAsP, the strain is between -0.3% and -0.4%, the band gap wavelength is 1.2 μm, the barrier thickness is between 5 and 7 nm; the thickness of the optical confinement layer is 80 to 100 nm; the active area and the upper and lower light The confinement layer is not doped.

其中在一次外延有源结构上面生长一层铟镓砷磷本征层,其厚度在30nm左右;在二次生长前,必须把它去掉,以保持新鲜的生长界面。Among them, a layer of InGaAsP intrinsic layer is grown on the primary epitaxial active structure, and its thickness is about 30nm; before the secondary growth, it must be removed to maintain a fresh growth interface.

其中在步骤4中必须采用过腐蚀技术使模斑转换器有源区输出末端的宽度要小于0.5μm。Among them, in step 4, the over-etching technique must be used to make the width of the output end of the active region of the spot converter smaller than 0.5 μm.

其中在步骤8中,必须在激光器和电吸收调制器之间采用开隔离沟及离子注入的方法才能满足两者之间的电隔离的要求,采用此方法后,隔离电阻至少达到100KΩ。Among them, in step 8, the method of opening an isolation trench and ion implantation must be adopted between the laser and the electroabsorption modulator to meet the requirement of electrical isolation between the two. After adopting this method, the isolation resistance reaches at least 100KΩ.

其中在步骤9中,必须去掉模斑转换器区的铟镓砷接触层,由于铟镓砷接触层的吸收边为1.67μm,如果不去掉该层,在模斑转换器区,随着光斑的逐渐增大,铟镓砷的吸收损耗越来越明显;同理,要求在步骤6中的P型盖层厚度必须大于1.8μm。Among them, in step 9, the InGaAs contact layer in the spot converter area must be removed. Since the absorption edge of the InGaAs contact layer is 1.67 μm, if this layer is not removed, in the spot converter area, along with the spot Gradually increasing, the absorption loss of InGaAs becomes more and more obvious; similarly, it is required that the thickness of the P-type capping layer in step 6 must be greater than 1.8 μm.

其中在光刻激光器和电吸收调制器部分的脊型结构时,尽量和第一次刻模斑转换器的上下脊对齐,这样可以减少光的辐射损耗。When lithography the ridge structure of the laser and the electroabsorption modulator part, try to align with the upper and lower ridges of the spot converter for the first time, so as to reduce the radiation loss of light.

附图说明Description of drawings

为进一步说明本发明的具体技术内容,以下结合实施例及附图详细说明如后,其中:In order to further illustrate the specific technical content of the present invention, below in conjunction with embodiment and accompanying drawing detailed description as follows, wherein:

图1是LD-EA-SSC的结构示意图;Fig. 1 is the structural representation of LD-EA-SSC;

图2是LD区和EA区的PL谱图;Fig. 2 is the PL spectrogram of LD area and EA area;

图3是调制器加反向偏压时的光-电流曲线图;Fig. 3 is the light-current graph when modulator adds reverse bias voltage;

图4是激光器后端面(a)及模斑转换器端面(b)的远场分布图;Fig. 4 is the far-field distribution diagram of the rear end face (a) of the laser and the end face (b) of the mode spot converter;

图5是器件电容与反向电压的关系曲线图;Fig. 5 is a graph showing the relationship between device capacitance and reverse voltage;

图6是选择外延生长所用的mask图。FIG. 6 is a mask diagram for selective epitaxial growth.

具体实施方式Detailed ways

本发明是利用双波导技术和选择区域生长技术开发出一种新的结构来制作半导体激光器(LD),电吸收调制器(EA)和模斑转换器(SSC)单片集成器件(以下简称LD-EA-SSC)。LD-EA-SSC的结构见图1。由图1可以看出,该器件只需三次低压有机金属气相外延(简称LP-MOVPE)。其中一次为选择区域生长。利用选择区域生长技术,可以在LD和EA得到不同的生长速率,其中LD是富In生长,生长速率高于EA区,而带隙宽度小于EA区,即LD区的PL谱波长比EA区长。通过选择不同的mask宽度和不同的生长压力和温度,可以得到你所需要的波长偏调量。在我们的实验中,mask的宽度为30μm,间隔为15μm,生长压力22mbar,生长温度655℃。EA区的PL谱波长1500nm,而LD为1560nm,偏调60nm左右。LD和EA采用单脊条形结构,而SSC采用掩埋双波导结构。脊形波导工艺简单,外延次数少,可靠性高,同时EA的电容可以做得很低,调制速率可以很高;而掩埋结构可以大大改善光斑模式特性。整个器件兼容了脊型波导和掩埋波导的优点,同时克服了各自的缺点。LD的长度为300μm,LD和EA的隔离沟的长度为50μm,EA的长度为200μm,而SSC的长度300μm,整个器件的长度为850μm。在SSC部分,有源上波导条宽从3μm线性变化到0μm,呈楔形;无源下波导条宽8μm,厚度为50nm左右,空间层的厚度均为0.2μm。在SSC区,上波导层的光通过空间层和下波导进行相位耦合:上波导层在横向呈楔形状,传输一定的距离后,上波导达到截止条件使上波导的光绝热地耦合到下波导。一旦光传输到下波导,则光斑模式完全由下波导决定。由于下波导的厚度比较薄,带隙波长短(1.1μm),与InP的折射率差小,属于弱限制波导,光斑的尺寸逐渐变大。到达SSC的输出端面时,其光斑尺寸可以和单模光纤的模式尺寸匹配(单模光纤本征光斑半径约5μm左右)。从而提高器件和单模光纤的耦合效率。The present invention utilizes double-waveguide technology and selective region growth technology to develop a kind of new structure to make semiconductor laser (LD), electroabsorption modulator (EA) and mode speckle converter (SSC) monolithic integrated device (hereinafter referred to as LD -EA-SSC). The structure of LD-EA-SSC is shown in Figure 1. It can be seen from Figure 1 that the device only needs three low-pressure metal-organic vapor phase epitaxy (LP-MOVPE for short). One of them is to select the region to grow. Using the selective area growth technology, different growth rates can be obtained in LD and EA, where LD is In-rich growth, the growth rate is higher than that of EA region, and the bandgap width is smaller than that of EA region, that is, the PL spectrum wavelength of LD region is longer than that of EA region . By choosing different mask widths and different growth pressures and temperatures, you can get the wavelength offset you need. In our experiment, the width of the mask is 30 μm, the interval is 15 μm, the growth pressure is 22 mbar, and the growth temperature is 655 °C. The wavelength of the PL spectrum in the EA region is 1500nm, while that of the LD is 1560nm, and the offset is about 60nm. LD and EA adopt single ridge strip structure, while SSC adopts buried double waveguide structure. The ridge waveguide has a simple process, fewer epitaxy times, and high reliability. At the same time, the capacitance of the EA can be made very low, and the modulation rate can be high; and the buried structure can greatly improve the characteristics of the spot mode. The whole device is compatible with the advantages of the ridge waveguide and the buried waveguide, while overcoming their respective disadvantages. The length of the LD is 300 μm, the length of the isolation trench of the LD and EA is 50 μm, the length of the EA is 200 μm, and the length of the SSC is 300 μm, and the length of the whole device is 850 μm. In the SSC part, the width of the active upper waveguide linearly changes from 3 μm to 0 μm, showing a wedge shape; the width of the passive lower waveguide is 8 μm, the thickness is about 50 nm, and the thickness of the space layer is 0.2 μm. In the SSC region, the light of the upper waveguide layer is phase-coupled through the space layer and the lower waveguide: the upper waveguide layer is wedge-shaped in the lateral direction, and after a certain distance is transmitted, the upper waveguide reaches the cut-off condition so that the light of the upper waveguide is adiabatically coupled to the lower waveguide . Once the light is transmitted to the lower waveguide, the spot pattern is completely determined by the lower waveguide. Because the thickness of the lower waveguide is relatively thin, the bandgap wavelength is short (1.1 μm), and the refractive index difference with InP is small, it belongs to the weak confinement waveguide, and the size of the spot gradually increases. When reaching the output end face of the SSC, its spot size can match the mode size of the single-mode fiber (the intrinsic spot radius of the single-mode fiber is about 5 μm). Therefore, the coupling efficiency between the device and the single-mode fiber is improved.

该结构综合利用了脊型波导、掩埋波导、量子阱效应、应变效应以及双波导技术和选择区域生长技术的优点。利用该结构制作的LD-EA-SSC,具有输出功率大、斜率效率高、消光比大、远场发散角小等优点。同时制作方法非常简便,仅需要三次LP-MOVPE,利用常规的光刻和湿法腐蚀工艺就可以完成。利用该结构还可以制作模斑转换器+光放大器+电吸收调制器+模斑转换器的单片集成器件。The structure utilizes the advantages of ridge waveguide, buried waveguide, quantum well effect, strain effect, double waveguide technology and selective area growth technology comprehensively. The LD-EA-SSC fabricated with this structure has the advantages of large output power, high slope efficiency, large extinction ratio, and small far-field divergence angle. At the same time, the manufacturing method is very simple, only three times of LP-MOVPE are needed, and it can be completed by conventional photolithography and wet etching processes. The structure can also be used to make a monolithic integrated device of a speckle converter + an optical amplifier + an electroabsorption modulator + a speckle converter.

请参阅图1,本发明利用LP-MOVPE生长方法及常规的光刻和湿法腐蚀工艺,制作一种能在局域网上充当光发射模块的LD-EA-SSC,制作步骤如下:Please refer to Fig. 1, the present invention utilizes LP-MOVPE growth method and conventional photolithography and wet etching process to produce a kind of LD-EA-SSC that can serve as light emission module on the local area network, and the production steps are as follows:

(1)在n型磷化铟衬底10上外延生长一层n型磷化铟缓冲层11和下波导层12(厚度50nm,带隙波长为1.1μm);(1) epitaxially grow a layer of n-type indiumphosphide buffer layer 11 andlower waveguide layer 12 on the n-type indium phosphide substrate 10 (thickness 50nm, bandgap wavelength is 1.1 μm);

(2)生长一层0.2μm磷化铟空间层13;(2) growing a 0.2 μm indiumphosphide spacer layer 13;

(3)生长一层30nm厚的铟镓砷磷本征层(未图示)(带隙波长为1.1μm,简称1.1Q层);(3) grow a 30nm-thick InGaAsP intrinsic layer (not shown) (bandgap wavelength is 1.1 μm, referred to as 1.1Q layer);

(4)利用PECVD技术在1.1Q层生长150nm厚的SiO2(4) Using PECVD technology to grow 150nm thick SiO2 on the 1.1Q layer;

(5)利用相应的光刻板在LD区刻出SiO2掩膜对(未图示),mask的宽度为30μm,间隔15μm,周期300μm;(5) Use the corresponding photolithography plate to carve a pair of SiO2 masks (not shown) in the LD area. The width of the mask is 30 μm, the interval is 15 μm, and the period is 300 μm;

(6)在刻有mask对的外延片上面生长下光限制层(厚度100nm,带隙波长为1.2μm);(6) grow a lower light confinement layer (thickness 100nm, bandgap wavelength 1.2μm) on the epitaxial wafer engraved with mask pairs;

(7)在下光限制层上生长压应变多量子阱14(简称MQW)有源区;(7) growing a compressively strained multiple quantum well 14 (referred to as MQW) active region on the lower optical confinement layer;

(8)接着在MQW上生长上光限制层(厚度100nm,带隙波长1.2μm)和较薄的磷化铟本征层(未图示);(8) Then grow an upper optical confinement layer (thickness 100nm, bandgap wavelength 1.2μm) and a thinner indium phosphide intrinsic layer (not shown) on the MQW;

(9)利用4∶1的盐酸溶液腐蚀掉薄的磷化铟本征层,利用HF酸腐蚀SiO2掩膜对;(9) Utilize 4:1 hydrochloric acid solution to etch away the thin indium phosphide intrinsic layer, and utilize HF acid to etch the SiO2 mask pair;

(10)利用相应的光刻板把LD和EA部分进行掩蔽,采用湿法腐蚀工艺刻出SSC 30上脊形状;(10) Mask the LD and EA parts with the corresponding photolithography plate, and use the wet etching process to carve the shape of the upper ridge of theSSC 30;

(11)然后利用自对准工艺刻出SSC 30区的下波导;(11) Then use the self-alignment process to carve out the lower waveguide of theSSC 30 area;

(12)再生长p型磷化铟盖层15和高掺杂p型铟镓砷(InGaAs)欧姆电极接触层23;(12) regrowing the p-type indiumphosphide capping layer 15 and the highly doped p-type indium gallium arsenide (InGaAs) ohmicelectrode contact layer 23;

(13)采用相应的光刻板,把SSC30部分掩蔽,重新刻出LD50部分的脊型波导结构;(13) Use the corresponding photolithography board to mask the SSC30 part, and re-carve the ridge waveguide structure of the LD50 part;

(14)刻出激光器50和电吸收调制器40之间的电隔离沟16,用311溶液腐蚀掉隔离沟16的InGaAs接触层;(14) Carve out theelectrical isolation ditch 16 between thelaser 50 and theelectroabsorption modulator 40, and corrode the InGaAs contact layer of theisolation ditch 16 with 311 solution;

(15)在激光器50和电吸收调制器40的隔离沟16及激光器50和电吸收调制器40的脊形台面两侧进行He+的注入17;(15)Implantation 17 of He+ is carried out on both sides of theisolation trench 16 of thelaser 50 and theelectroabsorption modulator 40 and the ridge-shaped mesa of thelaser 50 and theelectroabsorption modulator 40;

(16)利用热氧化技术生长SiO2绝缘层21;(16) using thermal oxidation technology to grow SiO2 insulating layer 21;

(17)在EA两边淀积聚酰亚胺(polyamide)20,并进行固化。(17) Deposit polyimide (polyamide) 20 on both sides of the EA, and perform curing.

(18)开电极窗口(未图示);(18) Open electrode window (not shown);

(19)光刻电极图形;(19) Photolithographic electrode pattern;

(20)溅射P电极(Ti/Pt/Au);(20) sputtering P electrode (Ti/Pt/Au);

(21)带胶剥离出P电极18;(21) Peel off theP electrode 18 with glue;

(22)外延片衬底减薄至100μm、溅射n(Au/Ge/Ni)电极19后,经划片解理成300μm×850μm的管芯。(22) After thinning the epitaxial wafer substrate to 100 μm and sputtering the n(Au/Ge/Ni)electrode 19, it is diced and cleaved into tube cores of 300 μm×850 μm.

其中下波导层12、上、下光限制层均为与衬底磷化铟晶格常数相匹配的四元铟镓砷磷材料。有源区包括10个周期的量子阱。每个压应变铟镓砷磷量子阱的厚度在EA及SSC区约为6~7nm,应变量在0.3%~0.4%之间。此外垒为四元铟镓砷磷,在EA及SSC区的垒厚为6~7nm之间,应变量在-0.3%~-0.4%之间,带隙波长为1.2μm。采用的生长条件保证SAG区的生长速度增长因子(t2/t1,t2,:SAG的生长速率,t1:平面区的生长速率)达到1.3~1.4。p型磷化铟包层15的厚度应该厚于1.8μm。否则在SSC区有很大一部分光进入铟镓砷欧姆电极接触层23,增加吸收损耗,同时对SSC输出光斑模式影响很大。Wherein thelower waveguide layer 12 , the upper and lower optical confinement layers are all quaternary InGaAsP materials that match the lattice constant of the substrate InP. The active region consists of 10 periods of quantum wells. The thickness of each compressively strained InGaAsP quantum well is about 6-7 nm in the EA and SSC regions, and the strain is between 0.3% and 0.4%. The outer barrier is quaternary InGaAsP, the barrier thickness in the EA and SSC regions is between 6 and 7 nm, the strain is between -0.3% and -0.4%, and the band gap wavelength is 1.2 μm. The growth conditions adopted ensure that the growth rate growth factor (t2/t1, t2,: the growth rate of the SAG, t1: the growth rate of the planar area) of the SAG region reaches 1.3-1.4. The thickness of the p-type indiumphosphide cladding layer 15 should be thicker than 1.8 μm. Otherwise, a large part of the light in the SSC region enters the InGaAs ohmicelectrode contact layer 23, which increases the absorption loss, and at the same time has a great influence on the output spot mode of the SSC.

其中SSC上下脊形状及LD和EA的脊型波导结构既可采用湿法腐蚀或干法刻蚀,也可采用干法刻蚀与湿法腐蚀相结合的方式。Among them, the upper and lower ridge shape of SSC and the ridge waveguide structure of LD and EA can be etched by wet etching or dry etching, or a combination of dry etching and wet etching can be used.

该结构的优点是:The advantages of this structure are:

1、兼容了脊型波导和掩埋波导的优点,同时克服了各自的缺点;1. Compatible with the advantages of ridge waveguide and buried waveguide, while overcoming their respective shortcomings;

2、下波导不需要进行多次InP和InGaAsP的多次生长来调整下波导的带隙波长,减少了LP-MOVPE的生长次数。2. The lower waveguide does not need multiple growths of InP and InGaAsP to adjust the bandgap wavelength of the lower waveguide, which reduces the number of growths of LP-MOVPE.

3、无需特意增加刻蚀停止层,波导结构中各层以及InP空间层在湿法腐蚀时,均自然起到了刻蚀停止层的作用。3. There is no need to add an etch stop layer deliberately, and each layer in the waveguide structure and the InP space layer naturally play the role of an etch stop layer during wet etching.

4、利用常规的湿法腐蚀和光刻工艺便可完成器件的制作,无需采用电子束图形曝光等昂贵的光刻和腐蚀工艺,器件成本大大降低。4. The fabrication of the device can be completed using conventional wet etching and photolithography processes, without the need for expensive photolithography and etching processes such as electron beam pattern exposure, and the cost of the device is greatly reduced.

5、利用选择区域生长MOCVD技术,一次外延就可以把LD、EA及SSC的波导结构生长出来,同时可以精确控制他们之间的波长偏调量,器件的整个外延次数只需要三次;5. Using selective area growth MOCVD technology, the waveguide structure of LD, EA and SSC can be grown in one epitaxy, and the wavelength offset between them can be precisely controlled, and the entire epitaxy of the device only needs three times;

6、采用在EA两边淀积polyimide,可以使EA总电容降低,同时提高EA的调制速率。6. By depositing polyimide on both sides of the EA, the total capacitance of the EA can be reduced, and the modulation rate of the EA can be increased at the same time.

7、充分利用了量子尺寸效应,即能级是分立的,态密度为阶梯状分布,因此其内量子效率较高,微分增益较大。7. The quantum size effect is fully utilized, that is, the energy levels are discrete, and the density of states is distributed in a ladder shape, so the internal quantum efficiency is high and the differential gain is large.

8、充分利用了应变能带工程,量子阱中引入压应变,进一步分离价带中的重空穴带和轻空穴带,大大减少了价带之间的相互吸收和俄歇复合;此外,压应变的引入,使重空穴有效质量变小,从而减小态密度,导致粒子数易于反转,从而降低LD的阈值和噪声指数。8. Make full use of the strain energy band engineering, introduce compressive strain in the quantum well, further separate the heavy hole band and light hole band in the valence band, greatly reduce the mutual absorption and Auger recombination between the valence bands; in addition, The introduction of compressive strain reduces the effective mass of heavy holes, thereby reducing the density of states, making the number of particles easy to reverse, thereby reducing the threshold and noise index of LD.

9、LD及EA的光限制因子较大,因此LD在适度的电流下便可获得高增益,因此该器件的LD的阈值电流小、输出功率大,斜率效率高,而EA在直流和RF下均具有较大的消光比。9. The light confinement factor of LD and EA is relatively large, so LD can obtain high gain under moderate current, so the threshold current of LD of this device is small, the output power is large, and the slope efficiency is high, while EA can obtain high gain under DC and RF Both have a large extinction ratio.

10、该结构的优化设计自由度较大,对有源波导和无源波导的带隙和尺寸分别进行优化,SSC输出端面几乎可以得到近似圆形的且和单模光纤本征光斑模式几乎匹配的光斑。远场发散角在水平和垂直方向分别可以达到18°和20°,和单模光纤耦合效率可达3dB,1-dB偏调容差在水平和垂直方向达±2.8μm和±2.4μm。10. The optimization design of this structure has a large degree of freedom. The bandgap and size of the active waveguide and passive waveguide are optimized separately, and the output end face of the SSC can be almost circular and almost matches the intrinsic spot mode of the single-mode fiber. of light spots. The far-field divergence angle can reach 18° and 20° in the horizontal and vertical directions, respectively, and the single-mode fiber coupling efficiency can reach 3dB, and the 1-dB offset tolerance can reach ±2.8μm and ±2.4μm in the horizontal and vertical directions.

由图1可以看出该器件包括激光器(LD)、电吸收调制器(EA)和模斑转换器(SSC)。其中LD和EA区采用的是单脊条形结构,而SSC采用的是掩埋双波导结构。整个器件只需三次LP-MOVPE生长。其中LD有源区采用SAG生长。It can be seen from Figure 1 that the device includes a laser (LD), an electroabsorption modulator (EA) and a speckle converter (SSC). Among them, the LD and EA regions adopt a single-ridge strip structure, while the SSC adopts a buried double-waveguide structure. The entire device requires only three LP-MOVPE growths. Among them, the LD active region is grown by SAG.

由图2知,激光器区的PL谱波长为1.56μm,而调制器及模斑转换器区为1.50μm,偏调60nm。两者的强度及半宽均相差不大,说明在SAG区生长的晶体质量和大面积区一样好。From Figure 2, we know that the wavelength of the PL spectrum in the laser area is 1.56 μm, while that of the modulator and mode spot converter is 1.50 μm, and the offset is 60 nm. The intensity and half-width of the two are not much different, indicating that the quality of crystals grown in the SAG region is as good as that in the large-area region.

由图3知,当调制器反向偏压为0时,器件的出光功率在4.5mW,阈值电流为80mA左右。随着反向偏压的增加,激光器的阈值亦随着增加。当调制器的反向偏压为2.5V时,器件的消光比为16.2dB。It can be known from Figure 3 that when the reverse bias voltage of the modulator is 0, the output power of the device is 4.5mW, and the threshold current is about 80mA. As the reverse bias voltage increases, the threshold of the laser also increases. When the reverse bias voltage of the modulator is 2.5V, the extinction ratio of the device is 16.2dB.

由图4可知,LD后端的远场发散角在水平和垂直方向分别为微32.0°和48°。SSC端为18°和20°。由此可知,在LD后端面的光斑近场呈椭圆,而在SSC端面几乎呈圆形。It can be seen from Figure 4 that the far-field divergence angle of the LD rear end is slightly 32.0° and 48° in the horizontal and vertical directions, respectively. The SSC ends are 18° and 20°. It can be seen that the near field of the light spot on the rear end face of the LD is elliptical, but it is almost circular on the end face of the SSC.

由图5知,器件在1MHz的频率下测得的总电容在-2V下为-0.5pF其中p-n结电容为0.36pF,电极压焊点的电容为0.14pF。因此该器件的调制速率可达12GHz。From Figure 5, the total capacitance of the device measured at a frequency of 1MHz is -0.5pF at -2V, where the capacitance of the p-n junction is 0.36pF, and the capacitance of the electrode pad is 0.14pF. Therefore, the modulation rate of this device can reach 12GHz.

由图6可知,选择生长所用的mask宽度为30μm,间隔15μm,长度为600μm。这些尺寸是通过多次SAG外延生长而优化出来的。在MOCVD生长压力22mbar,生长温度655℃的条件下,可以在SAG区和大面积区同时生长出好的晶体质量。同时SAG区和大面积区的波长偏调量为60nm。It can be seen from FIG. 6 that the mask used for selective growth has a width of 30 μm, an interval of 15 μm, and a length of 600 μm. These dimensions are optimized by multiple SAG epitaxial growths. Under the conditions of MOCVD growth pressure of 22mbar and growth temperature of 655°C, good crystal quality can be grown simultaneously in the SAG region and the large area region. At the same time, the wavelength offset of the SAG region and the large area region is 60nm.

由此可知,该器件制作方法简便,性能良好,很适合在光纤通信的局域网中作为光发射模块。如果在SSC端镀高反膜(HR),LD后端面镀增透膜(AR)或不镀膜(自然解理面),该器件又可以作为超短脉冲光源或锁模激光器使用。It can be seen that the fabrication method of the device is simple and the performance is good, and it is very suitable as an optical transmitting module in a local area network of optical fiber communication. If the SSC end is coated with a high reflection coating (HR), and the rear end of the LD is coated with an anti-reflective coating (AR) or not coated (natural cleavage plane), the device can be used as an ultrashort pulse light source or a mode-locked laser.

实施例:Example:

本发明涉及一种LD-EA-SSC的制作方法,包括如下制作步骤:The present invention relates to a kind of preparation method of LD-EA-SSC, comprises following preparation steps:

1、取2英寸的n-InP衬底经严格的去污(依次使用乙醇、三氯乙烯、丙酮、乙醇加热煮沸)→酸洗(浓硫酸浸泡1~2分钟)→水洗(去离子水冲洗50遍以上)→甩干处理后,放入生长室,生长温度655℃,生长压力22mbar,石墨舟转速75~80转/分。生长速度0.4~0.7nm/s。1. Take a 2-inch n-InP substrate and undergo strict decontamination (heating and boiling with ethanol, trichlorethylene, acetone, and ethanol in sequence) → pickling (soak in concentrated sulfuric acid for 1 to 2 minutes) → water washing (rinse with deionized water More than 50 times) → after drying treatment, put it into the growth chamber, the growth temperature is 655°C, the growth pressure is 22mbar, and the graphite boat rotates at 75-80 rpm. The growth rate is 0.4-0.7nm/s.

2、在n型磷化铟衬底(100)面上外延生长n型磷化铟缓冲层(0.5μm厚)、下波导层(厚度50nm,带隙波长为1.1μm)、0.2μm磷化铟空间层、薄的1.1Q层(30nm);2. On the n-type indium phosphide substrate (100) epitaxially grow n-type indium phosphide buffer layer (0.5μm thick), lower waveguide layer (thickness 50nm, bandgap wavelength 1.1μm), 0.2μm indium phosphide Space layer, thin 1.1Q layer (30nm);

3、利用PECVD技术在1.1Q层生长150nm厚的SiO2,同时利用相应的光刻板在LD区刻出SAG生长的mask对,mask宽度30μm,间隔为15μm;3. Use PECVD technology to grow 150nm-thick SiO2 on the 1.1Q layer, and use the corresponding photolithography plate to carve SAG-grown mask pairs in the LD area, with a mask width of 30 μm and an interval of 15 μm;

4、用311溶液腐蚀掉最上面的1.1Q层,对晶片重新进行清洗;4. Etch the top 1.1Q layer with 311 solution, and clean the wafer again;

5、利用LP-MOCVD第二次生长下光限制层(厚度100nm,带隙波长为1.2μm)、压应变量子阱有源区、上光限制层(厚度100nm,带隙波长为1.2μm)和较薄的磷化铟本征层(30nm厚);5. Use LP-MOCVD to grow the lower optical confinement layer (thickness 100nm, bandgap wavelength 1.2μm), compressive strain quantum well active region, upper optical confinement layer (thickness 100nm, bandgap wavelength 1.2μm) and Thin InP intrinsic layer (30nm thick);

6、用4HCl∶1H2O溶液去掉最上面的磷化铟本征层,用HF酸溶液去掉mask条,利用相应的光刻板刻出SSC上波导形状,用311溶液(3H2SO4∶1H2O∶1H2O2)腐蚀SSC区有源层InGaAsP。利用过腐蚀技术实际上得到的SSC部分的上波导的宽度从3μm线性地变化到0.3μm左右,符合设计要求;6. Use 4HCl: 1H2 O solution to remove the uppermost indium phosphide intrinsic layer, use HF acid solution to remove the mask strip, use the corresponding photolithography plate to carve the shape of the waveguide on the SSC, use 311 solution (3H2 SO4 : 1H2 O:1H2 O2 ) etch the active layer InGaAsP in the SSC region. The width of the upper waveguide of the SSC part actually obtained by using the over-etching technology changes linearly from 3 μm to about 0.3 μm, which meets the design requirements;

7、用丙酮去胶后,重新涂甩厚胶,利用相应的光刻板进行曝光、显影后,采用1Br∶25HBr∶80H2O的溶液去InGaAsP及InP,腐蚀出SSC的下脊形状。由于上述溶液为非选择性腐蚀液,因此可以通过多次腐蚀实验和台阶仪测量来精确估算腐蚀速度,确保腐蚀到InP-buffer为止。当然,我们也可以利用器件结构的自然刻蚀停止层,分别用311溶液腐蚀InGaAsP层,4HCl∶1H2O的溶液腐蚀InP。不过这样分层腐蚀效率低,特别是311溶液腐蚀下波导1.1Q时,腐蚀时间比较长;7. After removing the glue with acetone, reapply the thick glue, use the corresponding photolithography plate to expose and develop, use the solution of 1Br: 25HBr: 80H2 O to remove InGaAsP and InP, and etch the lower ridge shape of the SSC. Since the above solution is a non-selective etching solution, the corrosion rate can be accurately estimated through multiple corrosion experiments and step meter measurements to ensure that the corrosion reaches the InP-buffer. Of course, we can also use the natural etching stop layer of the device structure to etch the InGaAsP layer with 311 solution and the InP layer with 4HCl:1H2 O solution. However, the layered corrosion efficiency is low, especially when the 311 solution corrodes the lower waveguide 1.1Q, the corrosion time is relatively long;

8、把样品严格清洗干净后,放在MOCVD室生长p型磷化铟(100nm),1.1Q刻蚀停止层(20nm),P型磷化铟包层(1.8μm)和高掺杂p型铟镓砷欧姆电极接触层(0.2μm);8. After strictly cleaning the sample, place it in the MOCVD chamber to grow p-type indium phosphide (100nm), 1.1Q etch stop layer (20nm), p-type indium phosphide cladding (1.8μm) and highly doped p-type InGaAs ohmic electrode contact layer (0.2μm);

9、采用相应的光刻板,把SSC部分掩蔽,刻出LD及EA区的单脊条形结构,其中InGaAs接触层采用311溶液腐蚀,p型InP用4HCl:1H2O溶液腐蚀,一直腐蚀到1.1Q的刻蚀停止层;9. Use the corresponding photolithography plate to mask the SSC part, and carve out the single ridge strip structure in the LD and EA areas, where the InGaAs contact layer is etched with 311 solution, and the p-type InP is etched with 4HCl: 1H2 O solution until 1.1Q etch stop layer;

10、刻出激光器和电吸收调制器之间的电隔离沟,用311溶液腐蚀掉隔离沟的InGaAs接触层;10. Carve out the electrical isolation trench between the laser and the electroabsorption modulator, and use 311 solution to etch the InGaAs contact layer of the isolation trench;

11、在晶片上面涂甩5μm的厚胶,利用相应的光刻板刻出He+的注入的图形:在激光器和电吸收调制器的隔离沟及激光器和电吸收调制器的单脊台面两侧均进行He+的注入,注入条件为50kev/4×1013cm-3,100kev/4×1013cm-3,180kev/4×1013cm-3,注入方向和晶片的[0,0,1]方向倾斜7°;11. Spread a 5 μm thick glue on the wafer, and use the corresponding photolithography plate to carve out the pattern of He+ injection: on both sides of the isolation groove of the laser and the electroabsorption modulator and the single ridge mesa of the laser and the electroabsorption modulator Perform He+ implantation, the implantation conditions are 50kev/4×1013 cm-3 , 100kev/4×1013 cm-3 , 180kev/4×1013 cm-3 , the implantation direction and the [0, 0, 1 ] direction is inclined 7°;

12、利用等离子打胶机打胶20分钟,取出片子,放进煮沸的丙酮溶液中去除光刻胶,把片子清洗干净;12. Use a plasma glue machine to apply glue for 20 minutes, take out the film, put it into a boiled acetone solution to remove the photoresist, and clean the film;

13、移用相应的光刻板,把SSC区顶层的InGaAs接触层用311溶液腐蚀掉,同时把片子清洗干净;13. Use the corresponding photolithography plate to etch the InGaAs contact layer on the top layer of the SSC area with 311 solution, and clean the film at the same time;

14、用热氧化CVD设备在样品表面生长厚350nm的SiO2绝缘层,生长温度350℃;14. Use thermal oxidation CVD equipment to grow a SiO2 insulating layer with a thickness of 350 nm on the surface of the sample, and the growth temperature is 350 ° C;

15、在晶片上涂甩polyimide,厚度约2μm,利用相应的光刻板刻出polyimide的图形,随后在保温炉中进行固化,固化条件为从室温升到200℃,保温30分钟,再从200℃升到300℃,保温30分钟。随后从300℃自然冷却到室温。固化期间通N2保护;15. Coat polyimide on the wafer with a thickness of about 2 μm. Use the corresponding photolithography plate to engrave the polyimide pattern, and then cure it in a holding furnace. The temperature was raised to 300°C and the temperature was maintained for 30 minutes. Then it was naturally cooled from 300°C to room temperature. PassN2 protection during curing;

16、利用8μm直条的光刻板开出激光器和调制器的SiO2电极窗口;16. Open the SiO2 electrode window of the laser and the modulator using the 8 μm straight photolithography plate;

17、在片子上甩胶,光刻电极图形,并且反转。反转过程是把光刻后的片子放在通着氨气的保温炉中,加热到110℃,取出片子重新在光刻机下曝光;17. Spray the glue on the film, photo-etch the electrode pattern, and reverse it. The inversion process is to place the photolithographic film in a holding furnace with ammonia gas, heat it to 110°C, take out the film and expose it again under the photolithography machine;

18、溅射P电极(Ti/Pt/Au);18. Sputtering P electrode (Ti/Pt/Au);

19、带胶剥离出P电极;19. Peel off the P electrode with glue;

20、外延片衬底减薄至100μm、溅射n电极(Au/Ge/Ni)后,经划片解理成300μm×850μm的管芯,出光端面为[011]方向。至此,完成整个器件的工艺制作。20. After thinning the epitaxial wafer substrate to 100 μm and sputtering the n-electrode (Au/Ge/Ni), it is cleaved into 300 μm×850 μm tube cores by dicing, and the light-emitting end surface is in the [011] direction. So far, the fabrication of the entire device is completed.

Claims (9)

Translated fromChinese
1.一种激光器-电吸收调制器-模斑转换器单片集成的制作方法,其特征在于,包括以下制作步骤:1. A manufacturing method of laser-electroabsorption modulator-mode spot converter monolithic integration, is characterized in that, comprises following manufacturing steps:步骤1:在n型磷化铟衬底上依次外延生长n型磷化铟缓冲层、下波导层、InP空间层、1.1Q较薄的铟镓砷磷本征层;Step 1: On the n-type indium phosphide substrate, epitaxially grow n-type indium phosphide buffer layer, lower waveguide layer, InP space layer, and 1.1Q thinner InGaAsP intrinsic layer in sequence;步骤2:用PECVD技术在1.1Q的铟镓砷磷本征层上生长二氧化硅,并且刻出选择区域生长的掩膜对;Step 2: Using PECVD technology to grow silicon dioxide on the 1.1Q InGaAsP intrinsic layer, and carve out a mask pair for selective area growth;步骤3:去掉最上面的1.1Q的铟镓砷磷本征层,第二次生长有源区及薄的磷化铟本征层;Step 3: Remove the top 1.1Q InGaAsP intrinsic layer, and grow the active region and thin InP intrinsic layer for the second time;步骤4:去掉最上面的磷化铟本征层,同时刻出模斑转换器的上波导结构;Step 4: remove the uppermost intrinsic layer of indium phosphide, and at the same time carve out the upper waveguide structure of the speckle converter;步骤5:然后利用自对准工艺刻出模斑转换器的下波导结构;Step 5: Then use the self-alignment process to carve the lower waveguide structure of the speckle converter;步骤6:第三次外延生长薄的p型磷化铟层和1.1Q刻蚀停止层,p型磷化铟盖层,高掺杂p型铟镓砷欧姆接触层;Step 6: The third epitaxial growth of a thin p-type indium phosphide layer and a 1.1Q etch stop layer, a p-type indium phosphide capping layer, and a highly doped p-type indium gallium arsenide ohmic contact layer;步骤7:重新刻出激光器及电吸收调制器部分的单脊条形波导结构;Step 7: Re-engraving the single-ridge strip waveguide structure of the laser and electro-absorption modulator;步骤8:刻出激光器和电吸收调制器之间的隔离沟,并对隔离沟及激光器和电吸收调制器脊型台面两侧进行He+注入;Step 8: Carve out the isolation trench between the laser and the electroabsorption modulator, and perform He+ implantation on both sides of the isolation trench and the ridge mesa of the laser and the electroabsorption modulator;步骤9:去掉模斑转换器区的铟镓砷接触层;Step 9: removing the InGaAs contact layer in the spot converter region;步骤10:用热氧化方法生长二氧化硅绝缘层;Step 10: growing a silicon dioxide insulating layer by thermal oxidation;步骤11:在电吸收调制器两侧淀积聚酰亚胺,并且对其进行固化;Step 11: Depositing polyimide on both sides of the electroabsorption modulator, and curing it;步骤12:开出激光器和电吸收调制器的电极窗口;Step 12: opening the electrode windows of the laser and the electroabsorption modulator;步骤13:刻出激光器和电吸收调制器的电极图形;Step 13: Engraving the electrode pattern of the laser and the electroabsorption modulator;步骤14:溅射p电极;Step 14: sputtering the p-electrode;步骤15:外延片衬底减薄,溅射n电极后,经划片解理成管芯。Step 15: Thinning the epitaxial wafer substrate, sputtering the n-electrode, and cleaving it into tube cores by dicing.2.根据权利要求1所述的激光器-电吸收调制器-模斑转换器单片集成的制作方法,其特征在于,其中步骤1所生长的下波导层的厚度要在45~50nm之间,带隙波长为1.1μm;而且必须和铟磷衬底的晶格常数匹配,n型掺杂浓度在1018/cm3量级;空间层的厚度应该在0.15~0.3μm,n型掺杂浓度在1017/cm3量级。2. The manufacturing method of laser-electroabsorption modulator-mode-spot converter monolithic integration according to claim 1, wherein the thickness of the lower waveguide layer grown in step 1 is between 45-50nm, The bandgap wavelength is 1.1 μm; and it must match the lattice constant of the indium phosphorus substrate, and the n-type doping concentration is on the order of 1018 /cm3 ; the thickness of the space layer should be 0.15-0.3 μm, and the n-type doping concentration On the order of 1017 /cm3 .3.根据权利要求1所述的激光器-电吸收调制器-模斑转换器单片集成的制作方法,其特征在于,其中步骤2中用PECVD生长的二氧化硅的均匀性及致密度必须得到保证,否则在随后的SAG生长质量将得不到保证;二氧化硅的厚度为150nm,掩膜宽度为30μm,间隔为15μm;激光器区的和大面积区的波长偏调量可达60nm;在生长温度、生长压力及掩膜对的间隔一定的情况下,只有通过调节掩膜的宽度来调节激光器的波长,宽度越宽,激光器越长,和大面积区的波长偏调量越大。3. the manufacturing method of laser device-electroabsorption modulator-mode spot converter monolithic integration according to claim 1, is characterized in that, wherein in step 2, the homogeneity and compactness of the silicon dioxide grown with PECVD must obtain Guarantee, otherwise the quality of subsequent SAG growth will not be guaranteed; the thickness of silicon dioxide is 150nm, the mask width is 30μm, and the interval is 15μm; the wavelength offset of the laser area and the large area area can reach 60nm; When the growth temperature, growth pressure, and the distance between mask pairs are constant, the wavelength of the laser can only be adjusted by adjusting the width of the mask. The wider the width, the longer the laser, and the greater the wavelength offset of the large area.4.根据权利要求1所述的激光器-电吸收调制器-模斑转换器单片集成的制作方法,其特征在于,其中有源区包括10个周期的量子阱,在大面积区,每个压应变铟镓砷磷量子阱的厚度为6~7nm,应变量在0.3%~0.4%之间;此外垒为四元铟镓砷磷,应变量在-0.3%~-0.4%之间,带隙波长为1.2μm,垒厚为5~7nm之间;光限制层的厚度在80~100nm;有源区及上下光限制层不掺杂。4. The manufacturing method of laser-electroabsorption modulator-mode-spot converter monolithic integration according to claim 1, wherein the active region comprises quantum wells of 10 periods, and in the large-area region, each The thickness of the compressively strained InGaAsP quantum well is 6-7nm, and the strain is between 0.3% and 0.4%. The outer barrier is quaternary InGaAsP, and the strain is between -0.3% and -0.4%. The wavelength of the gap is 1.2 μm, and the thickness of the barrier is between 5 and 7 nm; the thickness of the optical confinement layer is 80 to 100 nm; the active region and the upper and lower optical confinement layers are not doped.5.根据权利要求1所述的激光器-电吸收调制器-模斑转换器单片集成的制作方法,其特征在于,其中在一次外延有源结构上面生长一层铟镓砷磷本征层,其厚度在30nm左右;在二次生长前,必须把它去掉,以保持新鲜的生长界面。5. The manufacturing method of laser-electroabsorption modulator-mode-spot converter monolithic integration according to claim 1, wherein a layer of InGaAsP intrinsic layer is grown on the primary epitaxial active structure, Its thickness is about 30nm; before secondary growth, it must be removed to maintain a fresh growth interface.6.根据权利要求1所述的激光器-电吸收调制器-模斑转换器单片集成的制作方法,其特征在于,在步骤4中必须采用过腐蚀技术使模斑转换器有源区输出末端的宽度要小于0.5μm。6. The manufacturing method of laser-electroabsorption modulator-mode spot converter monolithic integration according to claim 1, characterized in that, in step 4, over-etching technology must be used to make the output terminal of the mode spot converter active region The width should be less than 0.5 μm.7.根据权利要求1所述的激光器-电吸收调制器-模斑转换器单片集成的制作方法,其特征在于,其中在步骤8中,必须在激光器和电吸收调制器之间采用开隔离沟及离子注入的方法才能满足两者之间的电隔离的要求,采用此方法后,隔离电阻至少达到100KΩ。7. The manufacturing method of laser-electroabsorption modulator-mode-spot converter monolithic integration according to claim 1, wherein in step 8, an open isolation must be used between the laser and the electroabsorption modulator The method of trench and ion implantation can meet the requirements of electrical isolation between the two. After using this method, the isolation resistance can reach at least 100KΩ.8.根据权利要求1所述的激光器-电吸收调制器-模斑转换器单片集成的制作方法,其特征在于,其中在步骤9中,必须去掉模斑转换器区的铟镓砷接触层,由于铟镓砷接触层的吸收边为1.67μm,如果不去掉该层,在模斑转换器区,随着光斑的逐渐增大,铟镓砷的吸收损耗越来越明显;同理,要求在步骤6中的P型盖层厚度必须大于1.8μm。8. The manufacturing method of laser-electro-absorption modulator-mode-spot converter monolithic integration according to claim 1, wherein in step 9, the InGaAs contact layer in the mode-spot converter area must be removed , since the absorption edge of the InGaAs contact layer is 1.67 μm, if this layer is not removed, the absorption loss of InGaAs will become more and more obvious with the gradual increase of the spot in the spot converter region; similarly, the requirement The thickness of the P-type capping layer in step 6 must be greater than 1.8 μm.9.根据权利要求1所述的激光器-电吸收调制器-模斑转换器单片集成的制作方法,其特征在于,其中在光刻激光器和电吸收调制器部分的脊型结构时,尽量和第一次刻模斑转换器的上下脊对齐,这样可以减少光的辐射损耗。9. The manufacturing method of laser-electroabsorption modulator-mode-spot converter monolithic integration according to claim 1, wherein when the ridge structure of the photolithographic laser and the electroabsorption modulator part is as close as possible to For the first time, the upper and lower ridges of the spot converter are aligned, which reduces the radiation loss of light.
CNB2004100984933A2004-12-132004-12-13Method for making laser-electric absorption modulator-spot-size converter single chip integrationExpired - Fee RelatedCN100342601C (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CNB2004100984933ACN100342601C (en)2004-12-132004-12-13Method for making laser-electric absorption modulator-spot-size converter single chip integration

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CNB2004100984933ACN100342601C (en)2004-12-132004-12-13Method for making laser-electric absorption modulator-spot-size converter single chip integration

Publications (2)

Publication NumberPublication Date
CN1790846Atrue CN1790846A (en)2006-06-21
CN100342601C CN100342601C (en)2007-10-10

Family

ID=36788434

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CNB2004100984933AExpired - Fee RelatedCN100342601C (en)2004-12-132004-12-13Method for making laser-electric absorption modulator-spot-size converter single chip integration

Country Status (1)

CountryLink
CN (1)CN100342601C (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN101303459B (en)*2007-05-102010-04-07中国科学院半导体研究所 Fabrication method of traveling wave electrode electroabsorption modulator and mode spot converter integrated device
CN102593709A (en)*2006-12-262012-07-18宾奥普迪克斯股份有限公司Photonic device manufacturing technology
CN105305231A (en)*2015-11-302016-02-03武汉邮电科学研究院High-efficiency wide spectrum output single-chip multi-wavelength silicon-based laser
CN106058639A (en)*2016-06-202016-10-26中国科学院半导体研究所Method for manufacturing semiconductor mode-locked laser based full quantum well selective area epitaxy
CN106129809A (en)*2016-08-252016-11-16武汉华工正源光子技术有限公司Electroabsorption modulator and side-coupled grating laser method for integrating monolithic and device
CN109709643A (en)*2019-01-242019-05-03浙江大学 A dual-polarization mode multiplexing-demultiplexing chip based on monolithic integration
CN110854679A (en)*2019-09-302020-02-28武汉云岭光电有限公司Selective epitaxial growth strain measurement method, quantum well laser manufacturing method and quantum well laser
CN111244756A (en)*2020-03-122020-06-05中国科学院半导体研究所Semiconductor laser and method for manufacturing the same
CN112072461A (en)*2020-09-142020-12-11中国科学院半导体研究所Electroabsorption modulated laser and manufacturing method thereof
CN113113839A (en)*2021-03-192021-07-13武汉光迅科技股份有限公司Laser chip
CN114512896A (en)*2020-10-232022-05-17苏州洛合镭信光电科技有限公司Semiconductor light source and preparation method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPH0667043A (en)*1992-08-241994-03-11Nippon Telegr & Teleph Corp <Ntt>Spot conversion element and its production
CN1114977C (en)*2000-07-062003-07-16中国科学院半导体研究所Selective areal epitaxy process of producing electrically absorption modulation and distributing feedback laser
KR20020077567A (en)*2001-04-022002-10-12한국전자통신연구원Spot-size-converter integrated semiconductor laser and fabricating the same
CN1209859C (en)*2002-10-252005-07-06中国科学院半导体研究所Method for producing adjustable wave length distribution Bragg reflective laser
KR100471383B1 (en)*2002-12-162005-03-10한국전자통신연구원Spot size converter, Method for manufacturing the same and spot size converter intergrated photodetector

Cited By (16)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN102593709A (en)*2006-12-262012-07-18宾奥普迪克斯股份有限公司Photonic device manufacturing technology
CN102593709B (en)*2006-12-262015-04-01宾奥普迪克斯股份有限公司Photonic device manufacturing technology
CN101303459B (en)*2007-05-102010-04-07中国科学院半导体研究所 Fabrication method of traveling wave electrode electroabsorption modulator and mode spot converter integrated device
CN105305231A (en)*2015-11-302016-02-03武汉邮电科学研究院High-efficiency wide spectrum output single-chip multi-wavelength silicon-based laser
CN106058639B (en)*2016-06-202019-01-18中国科学院半导体研究所Semiconductor mode-locked laser production method based on full Quantum Well selection region extension
CN106058639A (en)*2016-06-202016-10-26中国科学院半导体研究所Method for manufacturing semiconductor mode-locked laser based full quantum well selective area epitaxy
CN106129809B (en)*2016-08-252019-08-09武汉华工正源光子技术有限公司Electroabsorption modulator and side-coupled grating laser method for integrating monolithic and device
CN106129809A (en)*2016-08-252016-11-16武汉华工正源光子技术有限公司Electroabsorption modulator and side-coupled grating laser method for integrating monolithic and device
CN109709643A (en)*2019-01-242019-05-03浙江大学 A dual-polarization mode multiplexing-demultiplexing chip based on monolithic integration
CN110854679A (en)*2019-09-302020-02-28武汉云岭光电有限公司Selective epitaxial growth strain measurement method, quantum well laser manufacturing method and quantum well laser
CN111244756A (en)*2020-03-122020-06-05中国科学院半导体研究所Semiconductor laser and method for manufacturing the same
CN111244756B (en)*2020-03-122021-04-23中国科学院半导体研究所 Semiconductor laser and method of making the same
CN112072461A (en)*2020-09-142020-12-11中国科学院半导体研究所Electroabsorption modulated laser and manufacturing method thereof
CN114512896A (en)*2020-10-232022-05-17苏州洛合镭信光电科技有限公司Semiconductor light source and preparation method
CN113113839A (en)*2021-03-192021-07-13武汉光迅科技股份有限公司Laser chip
CN113113839B (en)*2021-03-192022-05-13武汉光迅科技股份有限公司Laser chip

Also Published As

Publication numberPublication date
CN100342601C (en)2007-10-10

Similar Documents

PublicationPublication DateTitle
CN104769467B (en)Semiconductor device
US9653639B2 (en)Laser using locally strained germanium on silicon for opto-electronic applications
CN102684069B (en)Hybrid silicone monomode laser based on evanescent field coupling and period microstructural frequency selecting
CN112290382B (en)Semiconductor laser and manufacturing method thereof
CN111711074B (en)Laser and manufacturing method thereof
CN111883524B (en)Method for monolithic integration of photonic device based on silicon-based quantum dots
CN106961071A (en)A kind of semiconductor optical amplifier led based on ridged active area smooth sea
CN111711071B (en) Tunable laser and method of making the same
CN112072466A (en)Semiconductor laser and preparation method thereof
US20130207140A1 (en)Semiconductor Optical Element Semiconductor Optical Module and Manufacturing Method Thereof
CN103887705A (en)Method for manufacturing silicon-based mixing laser achieving complete metal limitation
CN115832868A (en) Manufacturing method of double grating semiconductor laser
CN1790846A (en)Method for making laser-electric absorption modulator-spot-size converter single chip integration
CN115275768A (en)High-speed electric absorption modulation laser chip and preparation method thereof
CN114188823A (en)Preparation method of refrigeration-free anti-reflection InP-based quantum dot/quantum well coupled EML epitaxial wafer
CN100349337C (en)Method for making semiconductor laser and spot-size converter by double waveguide technology
CN1909309B (en) Integrated method of electroabsorption modulated laser and mode spot converter
CN119134046B (en)Electroabsorption modulation laser chip and manufacturing method thereof
JP2012014002A (en)Semiconductor device, method for manufacturing the same, integrated substrate, optical module, and optical communication device
CN1207827C (en)Multi-quantum well waveguide butt coupling method
CN100375348C (en) Method for Forming Semiconductor Laser and Mode Spot Converter by Single Epitaxy
CN1238937C (en)Integration of continuous self-aligning semiconductor photoelectronic device and mode spot converter
CN103794985A (en)Semiconductor device and fabrication method thereof
CN1854877A (en)Monochip integrating method for electric absorbing modulator of light amplifier and moulding spot converter
JP2005215395A (en) Semiconductor waveguide type light control element

Legal Events

DateCodeTitleDescription
C06Publication
PB01Publication
C10Entry into substantive examination
SE01Entry into force of request for substantive examination
C14Grant of patent or utility model
GR01Patent grant
C17Cessation of patent right
CF01Termination of patent right due to non-payment of annual fee

Granted publication date:20071010

Termination date:20121213


[8]ページ先頭

©2009-2025 Movatter.jp