Movatterモバイル変換


[0]ホーム

URL:


CN1743144A - Internet-based remote control method for robots - Google Patents

Internet-based remote control method for robots
Download PDF

Info

Publication number
CN1743144A
CN1743144ACN 200510015283CN200510015283ACN1743144ACN 1743144 ACN1743144 ACN 1743144ACN 200510015283CN200510015283CN 200510015283CN 200510015283 ACN200510015283 ACN 200510015283ACN 1743144 ACN1743144 ACN 1743144A
Authority
CN
China
Prior art keywords
control
robot
user
remote
delay
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 200510015283
Other languages
Chinese (zh)
Inventor
孙启湲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin University of Technology
Original Assignee
Tianjin University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin University of TechnologyfiledCriticalTianjin University of Technology
Priority to CN 200510015283priorityCriticalpatent/CN1743144A/en
Publication of CN1743144ApublicationCriticalpatent/CN1743144A/en
Pendinglegal-statusCriticalCurrent

Links

Landscapes

Abstract

A robot remote control method based on Internet is disclosed. The remote user computer is connected to the robot control website through Internet, connected to the moving robot system via LAN. When the robot control website accesses in the control requirement of the remote user computer, the system detects the delay of the user by a delay-detection module, sends the result to the control selection module, provides responding control module such as direct control, prediction control or monitoring control to the user according to the delay type. The user accesses in responding control module and controls the moving of the robot through the control interface displayed on the user terminal.

Description

Translated fromChinese
基于互联网的机器人远程控制方法Internet-based remote control method for robots

【技术领域】【Technical field】

本发明涉及机器人的控制方法,特别是一种基于互联网的机器人远程控制方法。The invention relates to a robot control method, in particular to an Internet-based robot remote control method.

【背景技术】【Background technique】

在基于互联网的远程控制系统中,机器人的远程控制系统最为复杂,涉及指令、数据、图像和环境信息的实时传输问题。其中最主要的远程控制中的问题是时延对控制的影响。现有的机器人远程控制方式一般有两种,即将传输时延按照固定时延或变化时延两种情况处理。固定时延是假定传输时延为某一个固定值或时延存在一个变化的上界。以固定时延方式设计的控制系统在时延偏离固定值较大或在零和时延上界之间变动时,系统的稳定性和模型精度很难保证。变化时延则充分考虑了网络时延的变化性和不确定性特点,认为时延是时时变化的,但不考虑时延的大小。在此基础上建立起来的控制系统,系统的稳定性得到保证,却往往难以获得好的实时性。In the remote control system based on the Internet, the remote control system of the robot is the most complex, involving the real-time transmission of instructions, data, images and environmental information. One of the most important problems in remote control is the influence of time delay on control. There are generally two types of existing robot remote control methods, that is, the transmission delay is handled as a fixed delay or a variable delay. The fixed delay is to assume that the transmission delay is a certain fixed value or there is a variable upper bound on the delay. For a control system designed with a fixed delay, when the delay deviates greatly from a fixed value or varies between zero and the upper bound of the delay, it is difficult to guarantee the stability of the system and the accuracy of the model. The variable delay fully considers the variability and uncertainty of the network delay, and considers that the delay changes from time to time, but does not consider the size of the delay. The control system established on this basis guarantees the stability of the system, but it is often difficult to obtain good real-time performance.

同时,以互联网为通讯媒介的机器人远程控制系统,由于机器人构建在互联网的一个站点上,面向不同的网络用户。网络用户接入互联网的方式不同(如普通拨号上网用户的网络连接速度为56Kbps,DDN用户的接入速度最高可达2Mbps,ADSL用户最高接入速度是下行8Mbps、上行640Kbps,而通过光纤接入互联网的用户接入速度可达100Mbps。),互联网的网络带宽和路由状况的不同,也造成不同的远程控制端与机器人端的通讯具有不同的传输时延而且时延的变化是不确定的。这种时延存在及其变化的不确定性都将使远程控制难于实现,并且会造成控制系统的不稳定性。因此时延问题是网络机器人远程控制需要解决的一个主要问题。At the same time, the robot remote control system using the Internet as the communication medium is oriented to different network users because the robot is built on a site on the Internet. Network users access the Internet in different ways (for example, the network connection speed of ordinary dial-up Internet users is 56Kbps, the access speed of DDN users can reach up to 2Mbps, and the maximum access speed of ADSL users is 8Mbps in the downlink and 640Kbps in the uplink. The user access speed of the Internet can reach 100Mbps.), the network bandwidth and routing conditions of the Internet are different, and the communication between different remote control terminals and robot terminals has different transmission delays, and the variation of delays is uncertain. The existence of this time delay and the uncertainty of its change will make the remote control difficult to realize and cause the instability of the control system. Therefore, the delay problem is a major problem that needs to be solved in the remote control of network robots.

【发明内容】【Content of invention】

本发明的目的是为了克服现有技术的问题,而提供一种基于互联网的机器人远程控制方法,该方法以时延检测为基础综合应用直接控制、预测控制和监督控制方式,从而实现对机器人的远程控制的稳定和精确。The purpose of the present invention is to overcome the problems of the prior art, and provide a kind of robot remote control method based on the Internet, this method comprehensively applies direct control, predictive control and supervisory control mode on the basis of time delay detection, thereby realizes the control of the robot Stable and precise remote control.

本发明为解决上述问题,公开了一种基于互联网的机器人远程控制方法。包括远程用户计算机由互联网连接到机器人控制网站,再由局域网连接到移动机器人系统,其特征在于所说的机器人控制网站在接入远程用户计算机用户提出的控制请求时,系统通过时延检测模块对用户的时延进行检测,完成对用户端与机器人网络服务器间的传输时延进行检测并分类,然后将结果传递给控制方式选择模块,控制方式选择模块根据时延检测模块的检测结果按时延类型为用户调用相应的直接控制、预测控制或监督控制模块,用户进入相应的控制模块,并通过用户端显示的控制界面对机器人进行运动控制;所说的移动机器人采集的机器人位置信息和环境信息通过无线网络返回给控制网站。In order to solve the above problems, the present invention discloses an internet-based robot remote control method. Including that the remote user computer is connected to the robot control website by the Internet, and then connected to the mobile robot system by the local area network. The delay of the user is detected, and the transmission delay between the client and the robot network server is detected and classified, and then the result is passed to the control mode selection module, and the control mode selection module is based on the delay type according to the detection result of the delay detection module Call the corresponding direct control, predictive control or supervisory control module for the user, the user enters the corresponding control module, and performs motion control on the robot through the control interface displayed on the user terminal; the robot position information and environmental information collected by the mobile robot are passed through The wireless network returns to the controlling website.

所说的直接控制模块是在用户提出控制请求时网络的双向传输时延RTT小于50ms条件下,实现对机器人的直接控制。The said direct control module realizes the direct control of the robot under the condition that the two-way transmission time delay RTT of the network is less than 50ms when the user makes a control request.

所说的预测控制模块是在用户提出控制请求时网络的双向传输时延RTT在50ms和200ms条件下,实现机器人的预测显示控制。The predictive control module is to realize the predictive display control of the robot under the condition that the two-way transmission time delay RTT of the network is between 50ms and 200ms when the user makes a control request.

所说的监督控制模块是在用户提出控制请求时网络的双向传输时延RTT大于200ms条件下,通过远程操作人员发送目标任务和相关指令完成对远程机器人的控制。The supervisory control module is to complete the control of the remote robot through the remote operator sending the target task and related instructions under the condition that the two-way transmission delay RTT of the network is greater than 200ms when the user makes a control request.

本发明机器人远程控制系统的设计中提出了以远程控制用户请求控制及控制中的时延为输入参数来选取控制方式的控制策略。依据不同网络用户的时延状况的不同,以检测到的用户时延提供相应的控制方式,并以机器人的环境信息为参考建立控制模型,进行控制补偿,以补偿由于网络传输时延对控制实时性的影响。根据时延大小和稳定性情况,在机器人远程控制中采用了三种控制方式:直接控制方式、预测显示方式和监督控制方式。并且为建立更为精确的系统控制模型提供了条件。本发明是面向互联网用户的机器人远程控制方法,可以根据用户的不同自主地为用户提供一种与其时延状况相适应的控制方式。因此能够在一定程度上解决针对一种时延状态设计的远程控制系统无法同时满足系统稳定性和实时性的问题。使不同用户在控制机器人时都能够得到满意的效果。In the design of the robot remote control system of the present invention, a control strategy is proposed in which the remote control user requests control and the time delay in the control as input parameters to select the control mode. According to the different delay conditions of different network users, the corresponding control method is provided based on the detected user delay, and the control model is established with the robot's environmental information as a reference, and the control compensation is performed to compensate for the impact of network transmission delay on real-time control. sexual influence. According to the time delay and stability, three control methods are used in the remote control of the robot: direct control, predictive display and supervisory control. And it provides conditions for establishing a more accurate system control model. The invention is a robot remote control method oriented to Internet users, which can autonomously provide users with a control mode suitable for their delay conditions according to different users. Therefore, the problem that the remote control system designed for a time-delay state cannot satisfy both system stability and real-time performance can be solved to a certain extent. So that different users can get satisfactory results when controlling the robot.

【附图说明】【Description of drawings】

图1控制系统组成结构示意图;Figure 1 Schematic diagram of the composition and structure of the control system;

图2机器人控制方法流程示意图。Fig. 2 Schematic flow chart of the robot control method.

【具体实施方式】【Detailed ways】

本发明基于互联网的机器人远程控制方法主要由三部分组成:远程用户计算机、机器人控制网站和移动机器人系统。网络控制部分采用浏览器/服务器网络结构设计。参见图1。The Internet-based robot remote control method of the present invention is mainly composed of three parts: a remote user computer, a robot control website and a mobile robot system. The network control part adopts browser/server network structure design. See Figure 1.

用户计算机是任何一台连接到互联网上的计算机,连接方式可以是拨号、ADSL以及宽带等任一种方式。用户使用通用浏览器登录到机器入网站上就可以对机器人进行控制。对远程用户使用的计算机没有特殊的要求,不需要安装专门的客户端软件,也不需要用户具有专业的机器人知识。A user computer is any computer connected to the Internet, and the connection method can be any one of dial-up, ADSL and broadband. Users can control the robot by logging in to the machine access website with a common browser. There is no special requirement for the computer used by the remote user, no special client software needs to be installed, and the user does not need to have professional robot knowledge.

机器人控制网站主要由网络服务器(可根据系统需要处理的信息量的大小配置一台或多台服务器,本系统配置一台服务器即可满足要求)实现,其在逻辑上分为Web服务层、业务逻辑层和后端系统层,为用户提供网络服务以及实现机器人远程控制的网络智能代理系统。智能代理系统实现对用户的管理和机器人控制的智能管理,如实现机器人控制方式、控制策略以及机器人通讯的网络管理等。数据库用于存储用户信息、环境信息和机器人的相关信息;数据库可以在网络服务器上,也可以在连接到网络上的独立的数据服务器上。网络服务器和移动机器人之间利用无线网卡通过局域网进行通讯。The robot control website is mainly implemented by a network server (one or more servers can be configured according to the amount of information that the system needs to process, and this system can be configured with one server to meet the requirements), which is logically divided into Web service layer, business The logic layer and the back-end system layer provide users with network services and a network intelligent agent system that realizes remote control of robots. The intelligent agent system realizes the management of users and the intelligent management of robot control, such as the realization of robot control mode, control strategy and network management of robot communication. The database is used to store user information, environment information and robot-related information; the database can be on a network server or an independent data server connected to the network. The network server and the mobile robot use the wireless network card to communicate through the local area network.

移动机器人和机器人服务器组成自主机器人系统。移动机器人上装有摄像机,摄像机具有监控、跟踪和环境识别的功能,并负责提供机器人现场的环境信息。机器人上还装有超声波传感器组,通过对传感器信息的获取和处理来感知识别环境,确定机器人的运动状态。用户可以实时获得移动机器人的相关信息,并且据此进行进一步的控制。机器人服务器负责处理传感器信息和执行对机器人的运动控制。The mobile robot and the robot server form an autonomous robot system. The mobile robot is equipped with a camera, which has the functions of monitoring, tracking and environment recognition, and is responsible for providing the environment information of the robot site. The robot is also equipped with an ultrasonic sensor group, through the acquisition and processing of sensor information to perceive and recognize the environment, and determine the motion state of the robot. Users can obtain relevant information of the mobile robot in real time, and further control it accordingly. The robot server is responsible for processing sensor information and performing motion control of the robot.

本发明机器人控制网站中机器人远程控制方法流程是以时延检测为基础综合应用直接控制、预测控制和监督控制方式。如图2所示:The process flow of the robot remote control method in the robot control website of the present invention is based on time delay detection and comprehensively applies direct control, predictive control and supervisory control modes. as shown in picture 2:

远程用户可以任何一种方式接入互联网的用户计算机。当用户接入机器人控制网站提出控制请求时,系统通过时延检测模块对用户端与机器人网络服务器间的传输时延进行检测并分类,然后将结果传递给控制方式选择模块。控制方式选择模块根据时延检测模块的检测结果按时延类型为用户调用相应的控制模块,用户进入相应的控制模块,并在用户端显示该控制界面,用户可对机器人开始操作,进入运动控制。运动控制则根据不同控制模块的指令对机器人运动发出相关控制指令和操作。在机器人运动的同时,机器人运动过程中的位置、姿态和速度等机器人信息,又通过机器人上安装的传感器进行检测,反馈给用户端。A remote user's computer that can access the Internet in any way. When the user accesses the robot control website to make a control request, the system detects and classifies the transmission delay between the user terminal and the robot network server through the delay detection module, and then passes the result to the control mode selection module. The control mode selection module calls the corresponding control module for the user according to the delay type according to the detection result of the delay detection module. The user enters the corresponding control module and displays the control interface on the user end. The user can start to operate the robot and enter the motion control. Motion control issues relevant control commands and operations for robot motion according to the commands of different control modules. While the robot is moving, the robot information such as the position, attitude and speed during the movement of the robot is detected by the sensors installed on the robot and fed back to the user.

上述与时延检测结果相对应的控制方式分为:直接控制、预测控制和监督控制三种。其中:The above-mentioned control methods corresponding to the delay detection results are divided into three types: direct control, predictive control and supervisory control. in:

直接控制模块用于实现机器人的直接控制,具有直观性特点,在机器人控制过程中现场感强,并能充分发挥操作者的判断能力和决策能力。但这一控制方式对网络性能的要求比较高,要求网络传输时延小波动不大。在网络存在明显的通讯时延情况下,控制过程将会形成“运动-等待”控制结果,降低控制的效率,也会对控制过程的稳定性造成影响。如果网络通讯状况好,也就是时延小且随机波动相对缓和,采用直接控制的方式将是最简单有效的方式。从前面对时延测试结果的分析中可以发现,对于局域网用户和教育网条件下的大多数用户,网络的传输时延小且在每一段时间内相对稳定,如果在用户提出控制请求时传输时延小于50ms(RTT),用户进入直接控制方式,直接向机器人发出控制指令,如前进、转弯和停止等。用户端直接显示摄像机采集的现场图像信息(不需要补偿),用户借助现场的实时环境的图像信息操作机器人。而移动机器人的自主能力在这一控制方式下体现不出来。The direct control module is used to realize the direct control of the robot, which has the characteristics of intuition, strong sense of scene in the process of robot control, and can give full play to the judgment and decision-making ability of the operator. However, this control method has relatively high requirements on network performance, requiring small network transmission delay and little fluctuation. In the case of obvious communication delay in the network, the control process will form a "motion-wait" control result, which will reduce the control efficiency and affect the stability of the control process. If the network communication is in good condition, that is, the delay is small and the random fluctuation is relatively moderate, the direct control method will be the simplest and most effective method. From the previous analysis of the delay test results, it can be found that for most users of LAN users and education network conditions, the transmission delay of the network is small and relatively stable in each period of time. When the delay is less than 50ms (RTT), the user enters the direct control mode and directly sends control commands to the robot, such as forward, turn and stop. The user end directly displays the on-site image information collected by the camera (no compensation is required), and the user operates the robot with the help of the image information of the real-time environment on site. However, the autonomy of the mobile robot cannot be reflected in this control mode.

预测控制模块实现机器人的预测显示控制。操作者通过虚拟现实的模拟仿真界面来观察机器人的运动行为进行规划,来保证实际机器人动作的准确性。在实验中对相对稳定型时延(50ms和200ms)的情况采取预测显示控制方式,用户端不再返回摄像机采集的现场实时图像,而为用户提供经过对时延进行预测补偿的虚拟仿真环境信息,以检测到的时延为参数矫正模拟仿真显示的环境信息。在这一范围内随时延的增大,控制系统将自动降低移动机器人的运动速度。预测控制方式的建模采用了虚拟现实技术,构建了环境模型和机器人控制模型,并利用传感器采集的机器人位置信息,重现机器人的运动状态,以产生临场感的效果。The predictive control module realizes the predictive display control of the robot. The operator observes the movement behavior of the robot through the simulation interface of virtual reality and plans to ensure the accuracy of the actual robot movement. In the experiment, the predictive display control method is adopted for the relatively stable time delay (50ms and 200ms), and the client no longer returns the live real-time image collected by the camera, but provides the user with the virtual simulation environment information that has been predicted and compensated for the time delay , using the detected time delay as a parameter to correct the environment information displayed by the simulation. In this range, as the delay increases, the control system will automatically reduce the moving speed of the mobile robot. The modeling of the predictive control method adopts virtual reality technology to construct the environment model and robot control model, and uses the robot position information collected by the sensor to reproduce the robot's motion state to produce the effect of presence.

监督控制模块实现在大的网络传输时延(时延从几秒到几分钟)条件下的机器人控制。时延的变化也大。在这样的网络状况下,直接控制方式的实时性要求无法保证。若采用预测控制方式,无法建立精确的控制模型。而监督控制不需要传输时延作为模型的参数,因此是一个很好的解决方案。由于监督控制把操作人员置于控制系统闭环之外,远程操作人员只需要发送目标任务和相关指令,而具体任务由远程机器人控制回路自主完成。故要求机器人自身是具有一定自主能力的独立闭环控制系统,即将时延环节置于闭环控制之外,采用人工智能的算法使机器人具有自主避障、路径规划的能力。在控制中只需要给定机器人所要运动到的目标点位置,机器人就可以利用本身的智能运动到目标位置。时延环节不存在于这个闭环控制系统之内,从而减小时延对整个系统稳定性的影响。The supervisory control module realizes the robot control under the condition of large network transmission delay (the delay is from several seconds to several minutes). Latency also varies greatly. Under such network conditions, the real-time requirements of the direct control method cannot be guaranteed. If the predictive control method is adopted, an accurate control model cannot be established. Supervisory control does not require transmission delay as a parameter of the model, so it is a good solution. Since the supervisory control puts the operator outside the closed loop of the control system, the remote operator only needs to send the target task and related instructions, and the specific task is completed autonomously by the remote robot control loop. Therefore, the robot itself is required to be an independent closed-loop control system with certain autonomy, that is, the time delay link is placed outside the closed-loop control, and artificial intelligence algorithms are used to enable the robot to have the ability to autonomously avoid obstacles and plan paths. In the control, it only needs to give the target point position that the robot wants to move to, and the robot can use its own intelligence to move to the target position. The delay link does not exist in this closed-loop control system, thereby reducing the impact of delay on the stability of the entire system.

本发明远程用户通过连接到互联网上的计算机,利用通用浏览器(如IE、Netscape等)登录到机器人控制网站,即可进入机器人控制网站的主界面。当用户点击控制请求按钮时,系统调用时延检测模块对通讯时延进行检测,并将检测结果发送给控制方式选择模块。控制方式选择模块根据检测的通讯时延,为用户调用相应的控制方式模块。若通讯时延小于50ms,系统调用直接控制模块,用户进入直接控制方式;如果用户提出控制请求时传输时延在50ms和200ms时,用户进入预测控制方式;当检测到的通讯时延大于200ms时,系统调用监督控制模块,用户将进入监督控制方式。(与三种控制方式相对应的时延范围是根据多次测量和试验结果确定的)每种控制方式都有相应的图形化的控制界面,用户可以通过点击控制按钮,或指定机器人运动的目标点,对机器人进行操作。当用户进行相应的控制操作时,对应的控制指令通过无线网络传送给机器人底层驱动模块,机器人会根据指令产生相应的运动,如前进、后退、左转、右转和停止等,与电机的驱动直接相关,本机器人采用差动驱动方式对机器人运动进行控制。同时,机器人上的传感器采集的机器人位置信息和摄像机采集的机器人环境的视频信息通过无线网络返回给控制网站,并在用户端显示出来。In the present invention, a remote user can log in to the robot control website by using a general-purpose browser (such as IE, Netscape, etc.) through a computer connected to the Internet, and then enter the main interface of the robot control website. When the user clicks the control request button, the system calls the delay detection module to detect the communication delay, and sends the detection result to the control mode selection module. The control mode selection module invokes the corresponding control mode module for the user according to the detected communication time delay. If the communication delay is less than 50ms, the system calls the direct control module, and the user enters the direct control mode; if the transmission delay is between 50ms and 200ms when the user makes a control request, the user enters the predictive control mode; when the detected communication delay is greater than 200ms , the system calls the supervisory control module, and the user will enter the supervisory control mode. (The delay ranges corresponding to the three control methods are determined based on multiple measurements and test results) Each control method has a corresponding graphical control interface, and the user can click the control button or specify the target of the robot movement Click to operate the robot. When the user performs the corresponding control operation, the corresponding control command is transmitted to the bottom drive module of the robot through the wireless network, and the robot will generate corresponding movements according to the command, such as forward, backward, left turn, right turn and stop, etc. Directly related, the robot uses differential drive to control the robot movement. At the same time, the robot position information collected by the sensor on the robot and the video information of the robot environment collected by the camera are returned to the control website through the wireless network and displayed on the user end.

用户在控制过程中,时延检测器定时对用户的时延状态进行检测,如果发现时延状况有了显著变化,不再适于现有的控制方式,则将新的时延类型参数传给控制方式转换器。控制方式转换器重新为用户调用与当前时延相适应的控制方式,使用户继续进行控制操作。在预测显示控制方式的控制过程中,时延检测器定时检测的时延信息和机器人的位置信息作为补偿器的校正参数,对预测模型进行校正,以保证模型的精度。几种控制方式的综合运用融合控制方式的自动转换,保证了不同的用户在不同的时延条件下顺利地完成机器人的远程操作。During the user's control process, the delay detector regularly detects the user's delay status. If the delay status is found to have changed significantly and is no longer suitable for the existing control method, the new delay type parameter will be passed to Control mode converter. The control mode converter calls the control mode suitable for the current time delay for the user again, so that the user can continue to perform the control operation. In the control process of the predictive display control mode, the time delay information detected by the time delay detector and the position information of the robot are used as the correction parameters of the compensator to correct the prediction model to ensure the accuracy of the model. The comprehensive application of several control methods and the automatic conversion of the fusion control methods ensure that different users can successfully complete the remote operation of the robot under different delay conditions.

Claims (8)

Translated fromChinese
1 一种基于互联网的机器人远程控制方法,包括远程用户计算机由互联网连接到机器人控制网站,再由局域网连接到移动机器人系统,其特征在于所说的机器人控制网站在接入远程计算机用户提出的控制请求时,系统通过时延检测模块对用户的时延进行检测,完成对用户端与机器人网络服务器间的传输时延进行检测并分类,然后将结果传递给控制方式选择模块,控制方式选择模块根据时延检测模块的检测结果按时延类型为用户调用相应的直接控制、预测控制或监督控制模块,用户进入相应的控制模块,并通过用户端显示的控制界面对机器人进行运动控制;所说的移动机器人采集的机器人位置信息和环境信息通过无线网络返回给控制网站,并传递给用户端。1. An Internet-based robot remote control method, comprising connecting the remote user computer to the robot control website through the Internet, and then connecting to the mobile robot system through the local area network, characterized in that the robot control website is connected to the control system proposed by the remote computer user. When requesting, the system detects the user's delay through the delay detection module, completes the detection and classification of the transmission delay between the user end and the robot network server, and then passes the result to the control mode selection module, which controls the mode selection module according to The detection result of the delay detection module calls the corresponding direct control, predictive control or supervisory control module for the user according to the delay type, the user enters the corresponding control module, and controls the movement of the robot through the control interface displayed on the user end; The robot's location information and environmental information collected by the robot are returned to the control website through the wireless network and passed to the client.2 按照权利要求1所述的远程控制方法,其特征在于所说的直接控制模块是在用户提出控制请求时网络的双向传输时延RTT小于50ms条件下,实现对机器人的直接控制。2. The remote control method according to claim 1, characterized in that said direct control module realizes direct control of the robot when the two-way transmission time delay RTT of the network is less than 50ms when the user makes a control request.3 按照权利要求1所述的远程控制方法,其特征在于所说的预测控制模块是在用户提出控制请求时网络的双向传输时延RTT在50ms和200ms条件下,实现机器人的预测显示控制。3. The remote control method according to claim 1, characterized in that the predictive control module realizes the predictive display control of the robot under the condition that the two-way transmission time delay RTT of the network is between 50ms and 200ms when the user makes a control request.4 按照权利要求1所述的远程控制方法,其特征在于所说的监督控制模块是在用户提出控制请求时网络的双向传输时延RTT大于200ms条件下,通过远程操作人员发送目标任务和相关指令完成对远程机器人的控制。4. The remote control method according to claim 1, characterized in that the supervisory control module sends the target task and related instructions through the remote operator under the condition that the two-way transmission delay RTT of the network is greater than 200ms when the user makes a control request Complete control of the remote robot.5 按照权利要求1所述的远程控制方法,其特征在于所说的远程用户计算机是任何连接到互联网上的计算机,用户使用通用浏览器登录到机器人网站上对机器人进行控制。5. The remote control method according to claim 1, wherein said remote user computer is any computer connected to the Internet, and the user uses a common browser to log in to the robot website to control the robot.6 按照权利要求1或5所述的远程控制方法,其特征在于所说的远程用户计算机连接到互联网的方式,可以是拨号、ADSL以及宽带中的一种。6. The remote control method according to claim 1 or 5, characterized in that the way the remote user computer is connected to the Internet can be one of dial-up, ADSL and broadband.7 按照权利要求1所述的远程控制方法,其特征在于所说的移动机器人和机器人服务器组成的机器人系统是具有一定自主能力的独立闭环控制系统。7. The remote control method according to claim 1, characterized in that the robot system composed of the mobile robot and the robot server is an independent closed-loop control system with certain autonomy.8 按照权利要求1或7所述的远程控制方法,其特征在于所说的移动机器人上装有具有监控、跟踪和环境识别功能的摄像机,以及装有获取和处理感知识别环境,确定机器人的运动状态超声波传感器组。8. According to the remote control method described in claim 1 or 7, it is characterized in that said mobile robot is equipped with a camera with monitoring, tracking and environment recognition functions, and is equipped with a camera for acquiring and processing the perception and recognition environment to determine the motion state of the robot Ultrasonic sensor set.
CN 2005100152832005-09-292005-09-29 Internet-based remote control method for robotsPendingCN1743144A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN 200510015283CN1743144A (en)2005-09-292005-09-29 Internet-based remote control method for robots

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN 200510015283CN1743144A (en)2005-09-292005-09-29 Internet-based remote control method for robots

Publications (1)

Publication NumberPublication Date
CN1743144Atrue CN1743144A (en)2006-03-08

Family

ID=36138736

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN 200510015283PendingCN1743144A (en)2005-09-292005-09-29 Internet-based remote control method for robots

Country Status (1)

CountryLink
CN (1)CN1743144A (en)

Cited By (59)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN100507784C (en)*2006-06-062009-07-01中国地质科学院地质研究所Remotely control systems and method
CN101879720A (en)*2010-07-092010-11-10上海交通大学 Control System of Reconfigurable Modular Robot
CN102124491A (en)*2008-08-202011-07-13欧洲航空防务和航天公司Method and device for remotely controlling a camera on board a mobile station
CN101452289B (en)*2007-12-062011-09-28Abb研究有限公司A robot service system and a method for providing remote service for a robot
CN102395931A (en)*2009-04-172012-03-28英塔茨科技公司Tele-presence robot system with software modularity, projector and laser pointer
CN102736622A (en)*2011-03-312012-10-17泰怡凯电器(苏州)有限公司Multifunctional robot system and control method for robot body to search module part
CN102830677A (en)*2012-09-032012-12-19中国第一汽车股份有限公司Remote control method of industrial robot
CN103534068A (en)*2010-12-162014-01-22三星重工业株式会社 Wind turbine assembly and management robot and wind turbine system incorporating it
CN103916875A (en)*2014-04-242014-07-09山东大学Management and planning system of multi-class control terminals based on WIFI wireless network
CN104015190A (en)*2014-05-132014-09-03中国科学院力学研究所Robot remote control method and system under indeterminate bidirectional time delay condition
CN104050241A (en)*2013-10-232014-09-17东软集团股份有限公司Remote-operating accepting system, remote operating system and program
US8965579B2 (en)2011-01-282015-02-24Intouch TechnologiesInterfacing with a mobile telepresence robot
US8983174B2 (en)2004-07-132015-03-17Intouch Technologies, Inc.Mobile robot with a head-based movement mapping scheme
US8996165B2 (en)2008-10-212015-03-31Intouch Technologies, Inc.Telepresence robot with a camera boom
US9089972B2 (en)2010-03-042015-07-28Intouch Technologies, Inc.Remote presence system including a cart that supports a robot face and an overhead camera
US9098611B2 (en)2012-11-262015-08-04Intouch Technologies, Inc.Enhanced video interaction for a user interface of a telepresence network
US9138891B2 (en)2008-11-252015-09-22Intouch Technologies, Inc.Server connectivity control for tele-presence robot
US9160783B2 (en)2007-05-092015-10-13Intouch Technologies, Inc.Robot system that operates through a network firewall
US9174342B2 (en)2012-05-222015-11-03Intouch Technologies, Inc.Social behavior rules for a medical telepresence robot
US9193065B2 (en)2008-07-102015-11-24Intouch Technologies, Inc.Docking system for a tele-presence robot
US9198728B2 (en)2005-09-302015-12-01Intouch Technologies, Inc.Multi-camera mobile teleconferencing platform
US9224181B2 (en)2012-04-112015-12-29Intouch Technologies, Inc.Systems and methods for visualizing patient and telepresence device statistics in a healthcare network
US9251313B2 (en)2012-04-112016-02-02Intouch Technologies, Inc.Systems and methods for visualizing and managing telepresence devices in healthcare networks
US9264664B2 (en)2010-12-032016-02-16Intouch Technologies, Inc.Systems and methods for dynamic bandwidth allocation
US9296107B2 (en)2003-12-092016-03-29Intouch Technologies, Inc.Protocol for a remotely controlled videoconferencing robot
CN101997710B (en)*2009-08-202016-04-06宏正自动科技股份有限公司 Remote management system and method
US9323250B2 (en)2011-01-282016-04-26Intouch Technologies, Inc.Time-dependent navigation of telepresence robots
US9361021B2 (en)2012-05-222016-06-07Irobot CorporationGraphical user interfaces including touchpad driving interfaces for telemedicine devices
US9381654B2 (en)2008-11-252016-07-05Intouch Technologies, Inc.Server connectivity control for tele-presence robot
CN105844881A (en)*2016-04-212016-08-10奇弩(北京)科技有限公司Method for establishing connection between robot and remote controller
US9429934B2 (en)2008-09-182016-08-30Intouch Technologies, Inc.Mobile videoconferencing robot system with network adaptive driving
CN105931440A (en)*2016-04-212016-09-07奇弩(北京)科技有限公司Method for establishing connection between robot and remote controller
US9602765B2 (en)2009-08-262017-03-21Intouch Technologies, Inc.Portable remote presence robot
US9616576B2 (en)2008-04-172017-04-11Intouch Technologies, Inc.Mobile tele-presence system with a microphone system
CN105934723B (en)*2014-02-072017-07-07Abb瑞士股份有限公司 Web browser access to robotic cell installation
US9715337B2 (en)2011-11-082017-07-25Intouch Technologies, Inc.Tele-presence system with a user interface that displays different communication links
CN107197536A (en)*2017-05-102017-09-22成都优威骐翼教育科技有限公司Robot and internet automatic connecting system
CN107197003A (en)*2017-05-102017-09-22成都优威骐翼教育科技有限公司Support internetwork machine people's system of multi-user Cooperation
CN107247634A (en)*2017-06-062017-10-13广州视源电子科技股份有限公司Method and device for dynamic asynchronous remote process call of robot
US9842192B2 (en)2008-07-112017-12-12Intouch Technologies, Inc.Tele-presence robot system with multi-cast features
US9849593B2 (en)2002-07-252017-12-26Intouch Technologies, Inc.Medical tele-robotic system with a master remote station with an arbitrator
US9974612B2 (en)2011-05-192018-05-22Intouch Technologies, Inc.Enhanced diagnostics for a telepresence robot
CN108961711A (en)*2018-04-282018-12-07深圳市牛鼎丰科技有限公司Control method, device, computer equipment and the storage medium of remote-controlled movement device
CN109933069A (en)*2019-03-212019-06-25东南大学 Remote control system and control method of wire flaw detection robot based on vision and force feedback
US10343283B2 (en)2010-05-242019-07-09Intouch Technologies, Inc.Telepresence robot system that can be accessed by a cellular phone
US10471588B2 (en)2008-04-142019-11-12Intouch Technologies, Inc.Robotic based health care system
US10769739B2 (en)2011-04-252020-09-08Intouch Technologies, Inc.Systems and methods for management of information among medical providers and facilities
US10808882B2 (en)2010-05-262020-10-20Intouch Technologies, Inc.Tele-robotic system with a robot face placed on a chair
US10875182B2 (en)2008-03-202020-12-29Teladoc Health, Inc.Remote presence system mounted to operating room hardware
US11154981B2 (en)2010-02-042021-10-26Teladoc Health, Inc.Robot user interface for telepresence robot system
US11389064B2 (en)2018-04-272022-07-19Teladoc Health, Inc.Telehealth cart that supports a removable tablet with seamless audio/video switching
US11398307B2 (en)2006-06-152022-07-26Teladoc Health, Inc.Remote controlled robot system that provides medical images
US11399153B2 (en)2009-08-262022-07-26Teladoc Health, Inc.Portable telepresence apparatus
US11636944B2 (en)2017-08-252023-04-25Teladoc Health, Inc.Connectivity infrastructure for a telehealth platform
US11742094B2 (en)2017-07-252023-08-29Teladoc Health, Inc.Modular telehealth cart with thermal imaging and touch screen user interface
US11850757B2 (en)2009-01-292023-12-26Teladoc Health, Inc.Documentation through a remote presence robot
US11862302B2 (en)2017-04-242024-01-02Teladoc Health, Inc.Automated transcription and documentation of tele-health encounters
US12093036B2 (en)2011-01-212024-09-17Teladoc Health, Inc.Telerobotic system with a dual application screen presentation
US12224059B2 (en)2011-02-162025-02-11Teladoc Health, Inc.Systems and methods for network-based counseling

Cited By (113)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US9849593B2 (en)2002-07-252017-12-26Intouch Technologies, Inc.Medical tele-robotic system with a master remote station with an arbitrator
US10315312B2 (en)2002-07-252019-06-11Intouch Technologies, Inc.Medical tele-robotic system with a master remote station with an arbitrator
US9375843B2 (en)2003-12-092016-06-28Intouch Technologies, Inc.Protocol for a remotely controlled videoconferencing robot
US9956690B2 (en)2003-12-092018-05-01Intouch Technologies, Inc.Protocol for a remotely controlled videoconferencing robot
US9296107B2 (en)2003-12-092016-03-29Intouch Technologies, Inc.Protocol for a remotely controlled videoconferencing robot
US10882190B2 (en)2003-12-092021-01-05Teladoc Health, Inc.Protocol for a remotely controlled videoconferencing robot
US8983174B2 (en)2004-07-132015-03-17Intouch Technologies, Inc.Mobile robot with a head-based movement mapping scheme
US9766624B2 (en)2004-07-132017-09-19Intouch Technologies, Inc.Mobile robot with a head-based movement mapping scheme
US10241507B2 (en)2004-07-132019-03-26Intouch Technologies, Inc.Mobile robot with a head-based movement mapping scheme
US9198728B2 (en)2005-09-302015-12-01Intouch Technologies, Inc.Multi-camera mobile teleconferencing platform
US10259119B2 (en)2005-09-302019-04-16Intouch Technologies, Inc.Multi-camera mobile teleconferencing platform
CN100507784C (en)*2006-06-062009-07-01中国地质科学院地质研究所Remotely control systems and method
US11398307B2 (en)2006-06-152022-07-26Teladoc Health, Inc.Remote controlled robot system that provides medical images
US9160783B2 (en)2007-05-092015-10-13Intouch Technologies, Inc.Robot system that operates through a network firewall
US10682763B2 (en)2007-05-092020-06-16Intouch Technologies, Inc.Robot system that operates through a network firewall
CN101452289B (en)*2007-12-062011-09-28Abb研究有限公司A robot service system and a method for providing remote service for a robot
US11787060B2 (en)2008-03-202023-10-17Teladoc Health, Inc.Remote presence system mounted to operating room hardware
US10875182B2 (en)2008-03-202020-12-29Teladoc Health, Inc.Remote presence system mounted to operating room hardware
US11472021B2 (en)2008-04-142022-10-18Teladoc Health, Inc.Robotic based health care system
US10471588B2 (en)2008-04-142019-11-12Intouch Technologies, Inc.Robotic based health care system
US9616576B2 (en)2008-04-172017-04-11Intouch Technologies, Inc.Mobile tele-presence system with a microphone system
US9193065B2 (en)2008-07-102015-11-24Intouch Technologies, Inc.Docking system for a tele-presence robot
US10493631B2 (en)2008-07-102019-12-03Intouch Technologies, Inc.Docking system for a tele-presence robot
US10878960B2 (en)2008-07-112020-12-29Teladoc Health, Inc.Tele-presence robot system with multi-cast features
US9842192B2 (en)2008-07-112017-12-12Intouch Technologies, Inc.Tele-presence robot system with multi-cast features
CN102124491B (en)*2008-08-202013-09-04欧洲航空防务和航天公司Method and device for remotely controlling a camera on board a mobile station
CN102124491A (en)*2008-08-202011-07-13欧洲航空防务和航天公司Method and device for remotely controlling a camera on board a mobile station
US9429934B2 (en)2008-09-182016-08-30Intouch Technologies, Inc.Mobile videoconferencing robot system with network adaptive driving
US8996165B2 (en)2008-10-212015-03-31Intouch Technologies, Inc.Telepresence robot with a camera boom
US9138891B2 (en)2008-11-252015-09-22Intouch Technologies, Inc.Server connectivity control for tele-presence robot
US10059000B2 (en)2008-11-252018-08-28Intouch Technologies, Inc.Server connectivity control for a tele-presence robot
US12138808B2 (en)2008-11-252024-11-12Teladoc Health, Inc.Server connectivity control for tele-presence robots
US9381654B2 (en)2008-11-252016-07-05Intouch Technologies, Inc.Server connectivity control for tele-presence robot
US10875183B2 (en)2008-11-252020-12-29Teladoc Health, Inc.Server connectivity control for tele-presence robot
US11850757B2 (en)2009-01-292023-12-26Teladoc Health, Inc.Documentation through a remote presence robot
US9983571B2 (en)2009-04-172018-05-29Intouch Technologies, Inc.Tele-presence robot system with software modularity, projector and laser pointer
US10969766B2 (en)2009-04-172021-04-06Teladoc Health, Inc.Tele-presence robot system with software modularity, projector and laser pointer
CN102395931B (en)*2009-04-172017-03-08英塔茨科技公司There is the remote ground apparent robot system of software module, projector and laser designator
CN102395931A (en)*2009-04-172012-03-28英塔茨科技公司Tele-presence robot system with software modularity, projector and laser pointer
CN101997710B (en)*2009-08-202016-04-06宏正自动科技股份有限公司 Remote management system and method
US9602765B2 (en)2009-08-262017-03-21Intouch Technologies, Inc.Portable remote presence robot
US10911715B2 (en)2009-08-262021-02-02Teladoc Health, Inc.Portable remote presence robot
US11399153B2 (en)2009-08-262022-07-26Teladoc Health, Inc.Portable telepresence apparatus
US10404939B2 (en)2009-08-262019-09-03Intouch Technologies, Inc.Portable remote presence robot
US11154981B2 (en)2010-02-042021-10-26Teladoc Health, Inc.Robot user interface for telepresence robot system
US11798683B2 (en)2010-03-042023-10-24Teladoc Health, Inc.Remote presence system including a cart that supports a robot face and an overhead camera
US9089972B2 (en)2010-03-042015-07-28Intouch Technologies, Inc.Remote presence system including a cart that supports a robot face and an overhead camera
US10887545B2 (en)2010-03-042021-01-05Teladoc Health, Inc.Remote presence system including a cart that supports a robot face and an overhead camera
US10343283B2 (en)2010-05-242019-07-09Intouch Technologies, Inc.Telepresence robot system that can be accessed by a cellular phone
US11389962B2 (en)2010-05-242022-07-19Teladoc Health, Inc.Telepresence robot system that can be accessed by a cellular phone
US10808882B2 (en)2010-05-262020-10-20Intouch Technologies, Inc.Tele-robotic system with a robot face placed on a chair
CN101879720A (en)*2010-07-092010-11-10上海交通大学 Control System of Reconfigurable Modular Robot
US10218748B2 (en)2010-12-032019-02-26Intouch Technologies, Inc.Systems and methods for dynamic bandwidth allocation
US9264664B2 (en)2010-12-032016-02-16Intouch Technologies, Inc.Systems and methods for dynamic bandwidth allocation
CN103534068A (en)*2010-12-162014-01-22三星重工业株式会社 Wind turbine assembly and management robot and wind turbine system incorporating it
CN103534068B (en)*2010-12-162015-09-30三星重工业株式会社 Wind turbine assembly and management robot and wind turbine system incorporating it
US12093036B2 (en)2011-01-212024-09-17Teladoc Health, Inc.Telerobotic system with a dual application screen presentation
US11289192B2 (en)2011-01-282022-03-29Intouch Technologies, Inc.Interfacing with a mobile telepresence robot
US10399223B2 (en)2011-01-282019-09-03Intouch Technologies, Inc.Interfacing with a mobile telepresence robot
US9323250B2 (en)2011-01-282016-04-26Intouch Technologies, Inc.Time-dependent navigation of telepresence robots
US8965579B2 (en)2011-01-282015-02-24Intouch TechnologiesInterfacing with a mobile telepresence robot
US9785149B2 (en)2011-01-282017-10-10Intouch Technologies, Inc.Time-dependent navigation of telepresence robots
US11468983B2 (en)2011-01-282022-10-11Teladoc Health, Inc.Time-dependent navigation of telepresence robots
US10591921B2 (en)2011-01-282020-03-17Intouch Technologies, Inc.Time-dependent navigation of telepresence robots
US9469030B2 (en)2011-01-282016-10-18Intouch TechnologiesInterfacing with a mobile telepresence robot
US12224059B2 (en)2011-02-162025-02-11Teladoc Health, Inc.Systems and methods for network-based counseling
CN102736622A (en)*2011-03-312012-10-17泰怡凯电器(苏州)有限公司Multifunctional robot system and control method for robot body to search module part
CN102736622B (en)*2011-03-312015-08-19科沃斯机器人有限公司Multifunctional robot system and robot body find the control method in module portion
US10769739B2 (en)2011-04-252020-09-08Intouch Technologies, Inc.Systems and methods for management of information among medical providers and facilities
US9974612B2 (en)2011-05-192018-05-22Intouch Technologies, Inc.Enhanced diagnostics for a telepresence robot
US9715337B2 (en)2011-11-082017-07-25Intouch Technologies, Inc.Tele-presence system with a user interface that displays different communication links
US10331323B2 (en)2011-11-082019-06-25Intouch Technologies, Inc.Tele-presence system with a user interface that displays different communication links
US10762170B2 (en)2012-04-112020-09-01Intouch Technologies, Inc.Systems and methods for visualizing patient and telepresence device statistics in a healthcare network
US11205510B2 (en)2012-04-112021-12-21Teladoc Health, Inc.Systems and methods for visualizing and managing telepresence devices in healthcare networks
US9224181B2 (en)2012-04-112015-12-29Intouch Technologies, Inc.Systems and methods for visualizing patient and telepresence device statistics in a healthcare network
US9251313B2 (en)2012-04-112016-02-02Intouch Technologies, Inc.Systems and methods for visualizing and managing telepresence devices in healthcare networks
US10658083B2 (en)2012-05-222020-05-19Intouch Technologies, Inc.Graphical user interfaces including touchpad driving interfaces for telemedicine devices
US10328576B2 (en)2012-05-222019-06-25Intouch Technologies, Inc.Social behavior rules for a medical telepresence robot
US11628571B2 (en)2012-05-222023-04-18Teladoc Health, Inc.Social behavior rules for a medical telepresence robot
US10780582B2 (en)2012-05-222020-09-22Intouch Technologies, Inc.Social behavior rules for a medical telepresence robot
US9174342B2 (en)2012-05-222015-11-03Intouch Technologies, Inc.Social behavior rules for a medical telepresence robot
US10603792B2 (en)2012-05-222020-03-31Intouch Technologies, Inc.Clinical workflows utilizing autonomous and semiautonomous telemedicine devices
US11515049B2 (en)2012-05-222022-11-29Teladoc Health, Inc.Graphical user interfaces including touchpad driving interfaces for telemedicine devices
US11453126B2 (en)2012-05-222022-09-27Teladoc Health, Inc.Clinical workflows utilizing autonomous and semi-autonomous telemedicine devices
US9776327B2 (en)2012-05-222017-10-03Intouch Technologies, Inc.Social behavior rules for a medical telepresence robot
US9361021B2 (en)2012-05-222016-06-07Irobot CorporationGraphical user interfaces including touchpad driving interfaces for telemedicine devices
US10892052B2 (en)2012-05-222021-01-12Intouch Technologies, Inc.Graphical user interfaces including touchpad driving interfaces for telemedicine devices
US10061896B2 (en)2012-05-222018-08-28Intouch Technologies, Inc.Graphical user interfaces including touchpad driving interfaces for telemedicine devices
CN102830677A (en)*2012-09-032012-12-19中国第一汽车股份有限公司Remote control method of industrial robot
US10334205B2 (en)2012-11-262019-06-25Intouch Technologies, Inc.Enhanced video interaction for a user interface of a telepresence network
US11910128B2 (en)2012-11-262024-02-20Teladoc Health, Inc.Enhanced video interaction for a user interface of a telepresence network
US9098611B2 (en)2012-11-262015-08-04Intouch Technologies, Inc.Enhanced video interaction for a user interface of a telepresence network
US10924708B2 (en)2012-11-262021-02-16Teladoc Health, Inc.Enhanced video interaction for a user interface of a telepresence network
CN104050241A (en)*2013-10-232014-09-17东软集团股份有限公司Remote-operating accepting system, remote operating system and program
CN104050241B (en)*2013-10-232017-04-12东软集团股份有限公司Remote-operating accepting system, remote operating system and remote operating method
CN105934723B (en)*2014-02-072017-07-07Abb瑞士股份有限公司 Web browser access to robotic cell installation
CN103916875B (en)*2014-04-242018-04-06山东大学Management and planning system based on WIFI wireless networks multiclass control terminal
CN103916875A (en)*2014-04-242014-07-09山东大学Management and planning system of multi-class control terminals based on WIFI wireless network
CN104015190B (en)*2014-05-132016-04-13中国科学院力学研究所Robot long-distance control method under a kind of uncertain two-way time delay condition and system
CN104015190A (en)*2014-05-132014-09-03中国科学院力学研究所Robot remote control method and system under indeterminate bidirectional time delay condition
CN105844881A (en)*2016-04-212016-08-10奇弩(北京)科技有限公司Method for establishing connection between robot and remote controller
CN105931440A (en)*2016-04-212016-09-07奇弩(北京)科技有限公司Method for establishing connection between robot and remote controller
US11862302B2 (en)2017-04-242024-01-02Teladoc Health, Inc.Automated transcription and documentation of tele-health encounters
CN107197003A (en)*2017-05-102017-09-22成都优威骐翼教育科技有限公司Support internetwork machine people's system of multi-user Cooperation
CN107197536A (en)*2017-05-102017-09-22成都优威骐翼教育科技有限公司Robot and internet automatic connecting system
CN107247634A (en)*2017-06-062017-10-13广州视源电子科技股份有限公司Method and device for dynamic asynchronous remote process call of robot
US11742094B2 (en)2017-07-252023-08-29Teladoc Health, Inc.Modular telehealth cart with thermal imaging and touch screen user interface
US11636944B2 (en)2017-08-252023-04-25Teladoc Health, Inc.Connectivity infrastructure for a telehealth platform
US11389064B2 (en)2018-04-272022-07-19Teladoc Health, Inc.Telehealth cart that supports a removable tablet with seamless audio/video switching
CN108961711B (en)*2018-04-282020-06-02深圳市牛鼎丰科技有限公司Control method and device for remotely controlling mobile device, computer equipment and storage medium
CN108961711A (en)*2018-04-282018-12-07深圳市牛鼎丰科技有限公司Control method, device, computer equipment and the storage medium of remote-controlled movement device
CN109933069A (en)*2019-03-212019-06-25东南大学 Remote control system and control method of wire flaw detection robot based on vision and force feedback
CN109933069B (en)*2019-03-212022-03-08东南大学 Remote control system and control method of wire flaw detection robot based on vision and force feedback

Similar Documents

PublicationPublication DateTitle
CN1743144A (en) Internet-based remote control method for robots
CN110733038B (en) Industrial Robot Remote Monitoring and Data Processing System
CN114442510B (en)Digital twin closed-loop control method, system, computer equipment and storage medium
CN107276816B (en)A kind of long-range monitoring and fault diagnosis system and method for diagnosing faults based on cloud service
CN112101767B (en)Equipment running state edge cloud fusion diagnosis method and system
CN110390246A (en)A kind of video analysis method in side cloud environment
CN110948879A (en) A 3D printing remote monitoring system and control method based on cloud platform
CN113319462B (en) A welding robot management and control method and device based on edge-cloud collaboration
US12428271B2 (en)Scene self-adaptive method for controlling unmanned driving of monorail hoist transportation robot
CN117692937B (en)5G full-connection factory equipment network topology structure and construction and use methods thereof
CN119536092A (en) A method and system for intelligent interactive control of multimedia equipment in a digital exhibition hall
CN104950896A (en)Floor sweeping robot, server and floor sweeping robot service system
CN116993122A (en)Carbon monitoring and command system based on Internet of things
Peng et al.A pushing-grasping collaborative method based on deep Q-network algorithm in dual viewpoints
CN117226847A (en)Control method and system of teleoperation equipment
CN202067141U (en)Electric welding machine network management system based on S3C2440
CN114609969A (en)Numerical control machine tool track error compensation method based on cloud computing
Mostefa et al.Safe and efficient mobile robot teleoperation via a network with communication delay
CN104898522B (en)A kind of digital source of welding current remote monitoring system
CN117184574A (en)Digital twin-driven single packaging line multi-station linkage method
CN117350962A (en) A self-learning method and device for wood surface defects based on cloud-edge collaboration
CN106354015A (en)Remote monitoring and online debugging method of diagonal recurrent neural network control system
CN117631623A (en) An intelligent and precise control method for silicon content in molten iron
CN117746173A (en) Cross-domain federated target detection method and system based on knowledge distillation and model integration
CN109600786B (en) A kind of multifunctional spectrum monitoring system and method based on mobile platform

Legal Events

DateCodeTitleDescription
C06Publication
PB01Publication
C10Entry into substantive examination
SE01Entry into force of request for substantive examination
C02Deemed withdrawal of patent application after publication (patent law 2001)
WD01Invention patent application deemed withdrawn after publication

[8]ページ先頭

©2009-2025 Movatter.jp