1 elbow is poor along the area pressure of bending radius direction
The poor equivalent bending moment mechanical model of interior pressure acting force is shown in accompanying drawing 2, and the radially inside and outside inside pipe wall surface area ratio of equal-diameter elbow midline is shown in accompanying drawing 3 compared with audio-visual picture.Press accompanying drawing 2 and accompanying drawing 3, on the bend pipe neutral line, the radially outer tube wall surface of bending radius is long-pending long-pending larger than radially inner tube wall surface on the neutral line, and under same interior pressure effect, radially outer acting force is greater than radially inner acting force, therefore on footpath, be, unbalanced with joint efforts.The 2 hoop bending stresses that the area pressure along bending radius direction is poor and warp-wise moment of flexure causes indirectly
For the bend loss of a warp-wise angular unit (π/180 radian) shown in accompanying drawing 2, pipe internal surface product moment radially inside and outside on center line is caused, poorly along the acting force of Y direction be
The plane of bending of making a concerted effort to be parallel to bend pipe due to this difference acting force, and radially outward, it is the moment of flexure of M that its effect to elbow internal wall is equivalent to size, under interior pressure effect, with the finite element analysis model of straight tube elbow, see accompanying drawing 4, accompanying drawing 4 (a) is the finite element analysis model deformation tendency arrow arrow figure of a two ends band straight tube reducing elbow while bearing interior press, accompanying drawing 4 (b) be the amplification after distortion show with distortion before profile schematic diagram relatively.From these figure, when at one end straight tube does not have foreign object constraint, elbow has out curved trend.But due to the engineering limited case of bend pipe straight tube that two ends connect in fact, this moment of flexure can be equivalent to a pair of elbow that makes here and close curved end face moment of flexure.Due to the adjection of this equivalence end face moment of flexure, the buckling stress σ of swan neckθ Wmeeting is respective change with bent angle θ, still, and equivalent end face moment of flexure and the axial stress σ causing thereofθ Wthe flexural center O of all can take claims a little as mid point along axis, and both maximal values all occur on the bend pipe xsect at O place, flexural center, therefore, and when limit load analysis, as long as analyze the moment of flexure in this cross section.In θ=0~π/4, the horizontal component of interior Δ F and vertical component are respectively the moment of flexure of flexural center O
In whole 90 ° of equal-diameter elbows, Δ Fythe equivalent bending moment M total to flexural center Oθfor
By Mθ(6) formula that the hoop bending stress causing can be respectively proposes by T Kalman or P carat and gram/(7) formula that И leu Si Nieer proposes calculates.
The poor circumferential moment causing at hoop of 2 area pressure along bending radius direction and hoop bending stress
Interior pressure causes that unit angle bend pipe cross section circumferential moment mechanical model is shown in accompanying drawing 5, for the pipeline section (middle line length π R/180) of a warp-wise angular unit shown in accompanying drawing 2, the poor component along X-direction of the caused acting force of pipe internal surface product moment radially inside and outside on center line is
φ on tube section0the moment of flexure that place, ∈ (pi/2~pi/2) angle causes has the equation of comptability
At tube section neutral line place, φ0=0, so the moment of flexure at this place is
By deflection of beam stress-type, the bending stress that this moment of flexure causes is
In fact, to the such variable cross-section circular arc of accompanying drawing 5 (b), structure has very large flexibility, and the moment of flexure of one end cannot be delivered to the other end completely, and it is inappropriate by deflection of beam stress-type, asking for the bending stress that local moment of flexure causes in whole segmental arc.From (6) formula and (7) formula, can find out the circumference stress of bend pipe and cos2φ is in direct ratio, so, (11) formula is multiplied by cos2φ, becomes the final bending stress formula directly causing at hoop about acting force that will ask for
The geometrical variations of the bend pipe xsect being caused by interior pressure, on the one hand, the stepless action being inside pressed in radially makes xsect become round, on the other hand, the additional bending moment that interior pressure causes makes xsect become oval, both effects cancel out each other after the Geometrical change of xsect very small, remain the circular section that radius is r, therefore, hoop membrane stress still can calculate by (1) formula.
In 3, be pressed in the hoop total stress that 45 ° of 90 ° of equal-diameter elbows are located
For 90 ° of elbows in actual pipeline, from its circumference stress of end to end of elbow, gradually change, the stress of central cross-section is maximum and become the starting point of inefficacy, it is main research object that 45 ° of bend pipes are located cross section, according to above-mentioned analysis, corresponding to formula (6) and (7), be inside pressed in 45 ° of isometrical 90 ° of bend pipes and locate the hoop total stress formula that tube wall causes and can be respectively
Or
4 discuss
For (13) and (14) two formulas, more known as calculated, the hoop bending stress that interior pressure causes reaches to three times of hoop membrane stress, becomes the important stress composition of can not ignore.
Certainly, if the connected straight tube in elbow two ends does not suffer restraints, can freely stretch, above-mentioned various middle σφ W' character can change.
In fact, its xsect of elbow that any process is manufactured is general all there is to a certain degree non-circular, often be approximately the ellipse of ovality ρ=1%~10%, the non-circular elbow of bend pipe xsect also can produce another kind of hoop additional bending stress under the effect of interior pressure, obviously, for manufacture, cause xsect transverse direction at the elbow of neutral line direction, the poor component in bending radius direction of area pressure is larger, thereby formula (5) and formula (10) have larger end value.
In addition, as R → ∞, haveIdentical with the circumference stress formula of straight tube.
The described equivalent bending moment M of formula (5)θ≈ 0.032ri2rP is that the two ends straight tube that is connected exists a kind of quantitative description of impact on 90 ° of iso-diameter elbow extreme pressures, and the mechanism of action of this phenomenon is the restriction that straight tube channel angular elbow is opened curved trend under effect.And formula (5) Mθ≈ 0.032ri2rP and formula (10)And be the ultimate bending moment larger a kind of quantitative description of the ultimate bending moment of equal-diameter elbow in interior pressure and while closing curved synergy than interior pressure and while opening curved synergy.
When bearing external pressure, elbow does the used time, the feature equally with above-mentioned equivalent bending moment, and the numerical values recited of equivalent bending moment still can be calculated by derived formula, only the action direction of acting force and equivalent bending moment all with interior pressure effect under opposite direction, simultaneously, the calculating of area difference will be take elbow outside surface as reference field, and the inside radius in formula replaces external radius.
Below the mark in this instructions is further described:
The center line bending radius of R elbow, mm
The angle of the θ turning radius and left end disc, degree or °
The circumferential angle of pipe radius and neutral axis on φ tube section, degree or °
Rithe inside radius of swan neck xsect, mm
Rothe external radius of swan neck xsect, mm
T bend pipe tools shell thickness, mm
In P, press, MPa (106n/m2)
Tortuosity factor