Movatterモバイル変換


[0]ホーム

URL:


CN1449458A - Thin-film metallic oxide structure and process for fabricating same - Google Patents

Thin-film metallic oxide structure and process for fabricating same
Download PDF

Info

Publication number
CN1449458A
CN1449458ACN01813243ACN01813243ACN1449458ACN 1449458 ACN1449458 ACN 1449458ACN 01813243 ACN01813243 ACN 01813243ACN 01813243 ACN01813243 ACN 01813243ACN 1449458 ACN1449458 ACN 1449458A
Authority
CN
China
Prior art keywords
layer
single crystal
perovskite oxide
perovskite
growing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN01813243A
Other languages
Chinese (zh)
Inventor
K·费森贝瑟
J·M·芬德
J·瑞姆达尼
R·德鲁派德
W·J·欧姆斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motorola Solutions Inc
Original Assignee
Motorola Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motorola IncfiledCriticalMotorola Inc
Publication of CN1449458ApublicationCriticalpatent/CN1449458A/en
Pendinglegal-statusCriticalCurrent

Links

Images

Classifications

Landscapes

Abstract

Translated fromChinese

通过首先在硅晶片上生长调节缓冲层(24)可以生长氧化物材料的高质量外延层(26),覆盖大的硅晶片(22)。调节缓冲层是通过氧化硅的非晶界面层(28)与硅晶片间隔开的单晶氧化物层。非晶界面层驱散应力并允许高质量单晶氧化物调节缓冲层的生长。通过非晶界面层照顾了调节缓冲层和底层硅衬底之间的任何晶格不匹配。氧化物材料可以是压电、铁电、热电、铁磁、磁阻或者超导材料,最好是钙钛矿型。

A high quality epitaxial layer (26) of oxide material can be grown covering the large silicon wafer (22) by first growing a conditioning buffer layer (24) on the silicon wafer. The conditioning buffer layer is a single crystal oxide layer separated from the silicon wafer by an amorphous interface layer (28) of silicon oxide. The amorphous interfacial layer dissipates stress and allows high-quality single-crystal oxide to regulate the growth of the buffer layer. Any lattice mismatch between the tuning buffer layer and the underlying silicon substrate is taken care of by the amorphous interfacial layer. The oxide material can be piezoelectric, ferroelectric, pyroelectric, ferromagnetic, magnetoresistive or superconducting, preferably perovskite.

Description

Translated fromChinese
薄膜金属氧化物结构及其制造方法Thin film metal oxide structure and method of manufacturing the same

发明领域field of invention

本发明总的来说涉及微电子结构和器件及其制造方法,更具体地说,涉及薄膜金属氧化物结构和器件,并且涉及薄膜金属氧化物结构和器件的制造及使用。The present invention relates generally to microelectronic structures and devices and methods of fabrication thereof, and more particularly to thin film metal oxide structures and devices, and to the manufacture and use of thin film metal oxide structures and devices.

发明背景Background of the invention

多种金属氧化物都表现出希望的特性,例如压电、铁电、铁磁、大磁阻和超导性能。在采用这些特性优点的有关的微电子器件中可以包含或者使用这些氧化物。例如,可以使用金属氧化物来形成铁电存储器件等。A variety of metal oxides exhibit desirable properties such as piezoelectricity, ferroelectricity, ferromagnetism, large magnetoresistance, and superconductivity. These oxides may be included or used in related microelectronic devices that take advantage of these properties. For example, metal oxides can be used to form ferroelectric memory devices and the like.

通常,金属氧化物膜的希望特性随着氧化物膜结晶度的增加而增加。例如,当材料处于单晶形式时,超导材料表现出最高的导电率。此外,还希望这些氧化物与半导体元件一体化以便形成器件例如存储器件。据此,人们渴望得到在半导体衬底上生长薄膜单晶金属氧化物的方法和装置。In general, desirable properties of metal oxide films increase as the crystallinity of the oxide film increases. For example, superconducting materials exhibit the highest electrical conductivity when the material is in a single crystal form. In addition, it is also desirable that these oxides are integrated with semiconductor elements to form devices such as memory devices. Accordingly, people are eager to obtain methods and devices for growing thin film single crystal metal oxides on semiconductor substrates.

由于各种金属氧化物材料的希望的特性,并且由于它们目前通常的高成本和块状时(in bulk form)低的实用性,许多年来一直试图在外来衬底上生长希望的金属氧化物材料薄膜。然而,为了实现金属氧化物材料的最佳特性,希望得到高结晶质量的单晶膜。例如,已经试图在衬底例如硅上生长单晶金属氧化物材料层。通常这些努力没有获得成功,因为基质晶体(host crystal)和生长的晶体之间晶格的不匹配已经使得到的金属氧化物材料薄膜具有低的结晶质量。已经在氧化物衬底上例如块状钛酸锶生长更高质量的金属氧化物。生长在氧化物衬底上的金属氧化物经常是昂贵的,一部分是因为氧化物衬底小且昂贵。Due to the desirable properties of various metal oxide materials, and due to their current generally high cost and low availability in bulk form, attempts have been made for many years to grow desirable metal oxide materials on exotic substrates. film. However, to achieve optimal properties of metal oxide materials, single crystal films of high crystalline quality are desired. For example, attempts have been made to grow layers of single crystal metal oxide materials on substrates such as silicon. Often these efforts have not been successful because the lattice mismatch between the host crystal and the growing crystal has resulted in low crystalline quality of the resulting thin films of metal oxide materials. Higher quality metal oxides have been grown on oxide substrates such as bulk strontium titanate. Metal oxides grown on oxide substrates are often expensive, in part because oxide substrates are small and expensive.

如果大面积的高质量单晶金属氧化物材料薄膜可以便宜地得到,那末与在金属氧化物材料的块状晶片上或者在氧化物材料的块状晶片上这种材料的外延膜中制造半导体器件的成本相比,可以利用该膜有利地制造各种便宜的半导体器件。此外,如果在块状晶片例如硅晶片上可以得到高质量单晶金属氧化物材料的薄膜,那末可以得到集成的半导体结构,该结构利用硅和金属氧化物材料两者的最好性能。If large-area, high-quality thin films of single-crystal metal-oxide materials are inexpensively available, there is no comparison between fabricating semiconductor devices on bulk wafers of metal-oxide materials or in epitaxial films of such materials on bulk wafers of oxide materials. Compared with the cost of , various inexpensive semiconductor devices can be advantageously manufactured using this film. Furthermore, if thin films of high quality single crystal metal oxide materials are available on bulk wafers such as silicon wafers, integrated semiconductor structures can be obtained which utilize the best properties of both silicon and metal oxide materials.

据此,需要一种微电子结构和用于制造该结构的方法,该结构提供了在另一种单晶材料之上的高质量单晶金属氧化物膜。Accordingly, there is a need for a microelectronic structure and method for fabricating the structure that provides a high quality single crystal metal oxide film on another single crystal material.

附图的简要描述Brief description of the drawings

下面以例子方式参照附图而不是限制来说明本发明,其中相同的参考标号表示类似的部件,其中:The present invention is illustrated below by way of example and not limitation with reference to the accompanying drawings, in which like reference numerals indicate similar parts, in which:

图1-3示意性地示出了根据本发明各个实施例的器件结构的截面;1-3 schematically illustrate cross-sections of device structures according to various embodiments of the present invention;

图4示出了可得到的最大膜厚与基质晶体和生长的晶体覆盖层(overlayer)之间的晶格错配之间的关系曲线图。Figure 4 shows a graph of the maximum achievable film thickness versus the lattice mismatch between the host crystal and the growing crystal overlayer.

技术人员应理解,为了简化和清楚,图中示出的部件没有必要按比例绘制。例如,图中的一些部件可以相对于其它的部件放大,以便帮助理解本发明的实施例。The skilled artisan will appreciate that for simplicity and clarity, components shown in the figures have not necessarily been drawn to scale. For example, some of the elements in the figures may be exaggerated relative to other elements to help to understand the embodiments of the present invention.

附图的详细描述Detailed description of the drawings

图1示意性地示出了根据本发明实施例的微电子结构20的部分截面。微电子结构20包含单晶衬底22、包括单晶材料的调节(accommodating)缓冲层24和单晶金属氧化物材料层26。在上下文中,术语“单晶”应具有半导体工业内通用的含义。该术语指的应是半导体工业中经常使用的单晶材料或者基本上是单晶的材料,并且应包含具有相对少量的缺陷例如位错等的材料,这些缺陷在硅或锗或硅和锗的混合物的衬底以及这些材料的外延层中是常见的。FIG. 1 schematically shows a partial cross-section of amicroelectronic structure 20 according to an embodiment of the invention. Themicroelectronic structure 20 includes asingle crystal substrate 22, anaccommodating buffer layer 24 comprising a single crystal material, and alayer 26 of a single crystal metal oxide material. In this context, the term "single crystal" shall have its usual meaning within the semiconductor industry. The term shall refer to single-crystal or substantially single-crystal materials, as often used in the semiconductor industry, and shall include materials with relatively small amounts of defects, such as dislocations, etc., in silicon or germanium or both Hybrid substrates as well as epitaxial layers of these materials are common.

根据本发明的一个实施例,结构20还包含位于衬底22和调节缓冲层24之间的非晶中间层28。结构20还包含调节缓冲层和单晶氧化物层26之间的模板30。如下面将更全面地说明的,模板帮助开始调节缓冲层上金属氧化物层的生长。非晶中间层帮助缓解调节缓冲层中的应变,借此,帮助高质量的调节缓冲层的生长。According to an embodiment of the present invention, thestructure 20 further includes anamorphous interlayer 28 between thesubstrate 22 and theadjustment buffer layer 24 . Thestructure 20 also includes atemplate 30 between the conditioning buffer layer and the singlecrystal oxide layer 26 . As will be explained more fully below, the template helps to initiate the growth of the regulated metal oxide layer on the buffer layer. The amorphous interlayer helps to relieve the strain in the conditioning buffer layer, thereby helping the growth of the high-quality conditioning buffer layer.

根据本发明的实施例,衬底22是单晶半导体晶片,大直径较好。该晶片可以是元素周期表中的IV族材料,优选IVA族材料。IV族半导体材料的例子包含硅;锗;混合的硅和锗;混合的硅和碳;混合的硅、锗和碳等。衬底22还可以是化合物半导体材料。根据具体的半导体结构的需要,衬底22的化合物半导体材料选自下面的任何一种:IIIA和VA族元素(III-V半导体化合物);混合的III-V化合物、II族(A或者B)和VIA元素(II-VI半导体化合物)以及混合的II-VI化合物。例子包含砷化镓(GaAs)、砷化铟镓(GaInAs)、砷化铝镓(GaAlAs)、磷化铟(InP)、硫化镉(CdS)、碲化汞镉(CdHgTe)、硒化锌(ZnSe)、硒化硫锌(ZnSSe)等。According to an embodiment of the invention,substrate 22 is a single crystal semiconductor wafer, preferably with a large diameter. The wafer may be a group IV material of the periodic table, preferably a group IVA material. Examples of Group IV semiconductor materials include silicon; germanium; mixed silicon and germanium; mixed silicon and carbon; mixed silicon, germanium, and carbon, and the like.Substrate 22 may also be a compound semiconductor material. According to the needs of the specific semiconductor structure, the compound semiconductor material of thesubstrate 22 is selected from any of the following: IIIA and VA group elements (III-V semiconductor compounds); mixed III-V compounds, II group (A or B) and VIA elements (II-VI semiconductor compounds) and mixed II-VI compounds. Examples include gallium arsenide (GaAs), indium gallium arsenide (GaInAs), aluminum gallium arsenide (GaAlAs), indium phosphide (InP), cadmium sulfide (CdS), cadmium mercury telluride (CdHgTe), zinc selenide ( ZnSe), zinc sulfur selenide (ZnSSe), etc.

较好的是,衬底22是包含硅或者锗的晶片,最好是用在半导体工业中的高质量单晶硅晶片。调节缓冲层24是外延生长在下伏衬底上的单晶氧化物或者氮化物材料较好。根据本发明的一个实施例,在层24生长过程中,通过衬底22的氧化,非晶中间层28生长在衬底22上衬底22和生长的调节缓冲层之间的界面处。非晶中间层起到缓解应变的作用,否则该应变会由于衬底和缓冲层的晶格常数不同而出现在单晶调节缓冲层中。这里所使用的晶格常数指的是在表面的平面中测得的晶胞的原子之间的距离。如果这种应变不通过非晶中间层缓解,该应变会引起调节缓冲层的晶体结构缺陷。结果,调节缓冲层的晶体结构缺陷将使其难以在单晶金属氧化物层26中得到高质量的晶体结构。Preferably,substrate 22 is a wafer comprising silicon or germanium, preferably a high quality single crystal silicon wafer as used in the semiconductor industry. Theadjustment buffer layer 24 is preferably a single crystal oxide or nitride material epitaxially grown on the underlying substrate. According to one embodiment of the invention, during the growth oflayer 24, by oxidation ofsubstrate 22, anamorphous interlayer 28 is grown onsubstrate 22 at the interface betweensubstrate 22 and the grown conditioning buffer layer. The amorphous interlayer serves to relieve the strain that would otherwise occur in the single crystal conditioning buffer layer due to the difference in lattice constants of the substrate and buffer layer. Lattice constant as used herein refers to the distance between atoms of a unit cell measured in the plane of the surface. If this strain is not relieved by the amorphous interlayer, this strain can cause defects in the crystal structure of the regulating buffer layer. As a result, defects in the crystal structure of the adjustment buffer layer will make it difficult to obtain a high-quality crystal structure in the single crystalmetal oxide layer 26 .

调节缓冲层24是根据其与下伏的衬底和上覆的金属氧化物材料的晶体兼容性而选择的单晶氧化物或者氮化物材料较好。例如,该材料可以是具有与衬底和后来形成的金属氧化物材料匹配的晶格结构的氧化物或者氮化物。适用于调节缓冲层的材料包含:金属氧化物,例如碱土金属钛酸盐、碱土金属锆酸盐、碱土金属铪酸盐、碱土金属钽酸盐、碱土金属钌酸盐、碱土金属铌酸盐、碱土金属钒酸盐;钙钛矿氧化物,例如碱土金属锡基钙钛矿、铝酸镧、镧钪氧化物和氧化钆。此外,各种氮化物也可以用于调节缓冲层,例如氮化镓、氮化铝和氮化硼。尽管例如钌酸锶是导体,但这些材料中的大部分是绝缘体。通常,这些材料是金属氧化物或者金属氮化物,更具体地说,这些金属氧化物或者氮化物一般包含至少两种不同的金属元素。在一些具体的应用中,该金属氧化物或者氮化物可以包含三种或者更多中不同的金属元素。Adjustment buffer layer 24 is preferably a single crystal oxide or nitride material selected for its crystal compatibility with the underlying substrate and overlying metal oxide material. For example, the material may be an oxide or nitride having a lattice structure matched to the substrate and subsequently formed metal oxide material. Materials suitable for the conditioning buffer layer include: metal oxides such as alkaline earth metal titanates, alkaline earth metal zirconates, alkaline earth metal hafnates, alkaline earth metal tantalates, alkaline earth metal ruthenates, alkaline earth metal niobates, Alkaline earth vanadates; perovskite oxides such as alkaline earth tin-based perovskites, lanthanum aluminate, lanthanum scandium oxide, and gadolinium oxide. In addition, various nitrides such as gallium nitride, aluminum nitride, and boron nitride can also be used to adjust the buffer layer. Most of these materials are insulators, although strontium ruthenate, for example, is a conductor. Typically, these materials are metal oxides or metal nitrides, and more specifically, these metal oxides or nitrides generally contain at least two different metal elements. In some specific applications, the metal oxide or nitride may contain three or more different metal elements.

非晶界面层28最好是由衬底22的表面氧化形成的氧化物构成,由氧化硅构成更好。层28的厚度足以缓解由于衬底22和调节缓冲层24的晶格常数之间的不匹配造成的应变。通常,层28的厚度为约0.5-5纳米。Theamorphous interface layer 28 is preferably formed of an oxide formed by oxidation of the surface of thesubstrate 22, more preferably formed of silicon oxide. The thickness oflayer 28 is sufficient to relieve strain due to the mismatch between the lattice constants ofsubstrate 22 andtuning buffer layer 24 . Typically,layer 28 has a thickness of about 0.5-5 nanometers.

根据具体结构或者应用的需要,可以选择层26的金属氧化物材料。例如,层26可以包含具有希望特性的金属氧化物材料,例如显示压电、热电、铁磁、巨磁阻或者超导特性的材料。这种材料包含单斜的、四方的、立方的或者钙钛矿的金属氧化物结构,具有化学通式:ABO3,其中A选自由铅、镧、铌、钪及其组合构成的组,B选自由锆、钛、及其组合构成的组:(Pb,La,Na,Sc)(Zr,Ti)O3,例如,PbZrTiO3、PbNbZrTiO3、PbScZrTiO3、PbSrNbZrTiO3、PbLiZrTiO3、PbTiO3;ABO3,其中A选自由锶、钡、钙及其组合构成的组,B选自由锆、铪、钛及其组合构成的组:(Sr,Ba,Ca)(Zr,Hf,Ti)O3,例如,SrTiO3、BaTiO3、BaSrTiO3、CaTiO3、BaZrO3;ACoO3,其中A选自镧、锶、钡、锆及其组合:(La,Sr,Ba,Zr)CoO3,例如,LaSrCoO3、LaZrCoO3;ABMnO3,其中A是稀土元素(例如镧),B是碱土金属元素(例如钙、钡或锶):(La,Sr,Ba,Ca)MnO3,例如LaSrMnO3、LaCaMnO3;ABa2Cu3On,其中A选自钇、镨及其组合,n是7或8:(Y,Pr)Ba2Cu3O7-8,例如YBa2Cu3O、YPrBa2Cu3O;ARuO3,其中A选自锶、钡及其组合:(Sr,Ba)RuO3;PbAO3,其中A选自镁、铌及其组合:Pb(Mg,Nb)O3;GdFeO3;YAlO3;LaAlO3;SrVO3;SrCrO3;BaAO3,其中A选自铅、铋及其组合:Ba(Pb,Bi)O3;LaCoO3;KNbO3;NaWO3;Bi4Ti3O12;YMnO3;和LaAO3,其中A选自铝、钪及其组合:La(Al,Sc)O3The metal oxide material oflayer 26 can be selected according to the needs of a specific structure or application. For example,layer 26 may comprise a metal oxide material having desirable properties, such as a material exhibiting piezoelectric, pyroelectric, ferromagnetic, giant magnetoresistance, or superconducting properties. This material contains monoclinic, tetragonal, cubic or perovskite metal oxide structures and has the general chemical formula: ABO3 , where A is selected from the group consisting of lead, lanthanum, niobium, scandium and combinations thereof, and B selected from the group consisting of zirconium, titanium, and combinations thereof: (Pb, La, Na, Sc)(Zr, Ti)O3 , for example, PbZrTiO3 , PbNbZrTiO3 , PbScZrTiO3 , PbSrNbZrTiO3 , PbLiZrTiO3 , PbTiO3 ; ABO3 , where A is selected from the group consisting of strontium, barium, calcium, and combinations thereof, and B is selected from the group consisting of zirconium, hafnium, titanium, and combinations thereof: (Sr, Ba, Ca)(Zr, Hf, Ti)O3 , for example, SrTiO3 , BaTiO3 , BaSrTiO3 , CaTiO3 , BaZrO3 ; ACoO3 , wherein A is selected from lanthanum, strontium, barium, zirconium and combinations thereof: (La, Sr, Ba, Zr)CoO3 , for example, LaSrCoO3 , LaZrCoO3 ; ABMnO3 , where A is a rare earth element (such as lanthanum), and B is an alkaline earth metal element (such as calcium, barium, or strontium): (La, Sr, Ba, Ca)MnO3 , such as LaSrMnO3 , LaCaMnO3 ; ABa2 Cu3 On , wherein A is selected from yttrium, praseodymium and combinations thereof, n is 7 or 8: (Y, Pr) Ba2 Cu3 O7-8 , such as YBa2 Cu3 O, YPrBa2 Cu3 O; ARuO3 , where A is selected from strontium, barium, and combinations thereof: (Sr, Ba)RuO3 ; PbAO3 , where A is selected from magnesium, niobium, and combinations thereof: Pb(Mg, Nb)O3 ; GdFeO3 ; YAlO3 ; LaAlO3 ; SrVO3 ; SrCrO3 ; BaAO3 , wherein A is selected from lead, bismuth and combinations thereof: Ba(Pb, Bi)O3 ; LaCoO3 ; KNbO 3; NaWO3 ; Bi4 Ti3 O12 ; YMnO3 ; and LaAO3 , wherein A is selected from aluminum, scandium and combinations thereof: La(Al,Sc)O3 .

在选择的位置,适当的模板材料化学结合到调节缓冲层24表面,为接续的金属氧化物层26的外延生长提供晶核形成的位置。当使用时,模板层30具有大约1-10个单层的厚度。At selected locations, an appropriate template material chemically binds to the surface ofconditioning buffer layer 24 to provide sites for the formation of crystal nuclei for the epitaxial growth of subsequentmetal oxide layer 26 . When used,template layer 30 has a thickness of about 1-10 monolayers.

图2显示了根据本发明更进一步的实施例的微电子结构40的部分截面图。结构40与前面描述的结构20类似,除了使附加的缓冲层32位于调节缓冲层24和单晶金属氧化物材料层26之间。具体地说,附加的缓冲层位于可选择的模板30(如果没有模板,那末就是层24)和单晶金属氧化物材料覆盖层之间。当调节缓冲层的晶格常数与覆盖的金属氧化物材料层不能适当地匹配时,由单晶氧化物材料形成的附加缓冲层起到提供晶格补偿的作用。FIG. 2 shows a partial cross-sectional view of amicroelectronic structure 40 according to a further embodiment of the present invention.Structure 40 is similar to structure 20 previously described, except thatadditional buffer layer 32 is positioned betweenconditioning buffer layer 24 andlayer 26 of single crystal metal oxide material. Specifically, an additional buffer layer is located between optional template 30 (orlayer 24 if no template is present) and the capping layer of single crystal metal oxide material. The additional buffer layer formed from a single crystal oxide material acts to provide lattice compensation when the lattice constant of the tuning buffer layer is not properly matched to the overlying metal oxide material layer.

图3示意性地显示了根据本发明另一个仿效实施例的微电子结构34的部分截面图。结构34与结构20类似,除了结构34包含非晶层36和附加的金属氧化物层38,而不包含调节缓冲层24和非晶界面层28。FIG. 3 schematically shows a partial cross-sectional view of a microelectronic structure 34 according to another exemplary embodiment of the present invention. Structure 34 is similar to structure 20 except that structure 34 includes amorphous layer 36 and additional metal oxide layer 38 instead of tuningbuffer layer 24 andamorphous interface layer 28 .

如下面更详细描述的,按照与上述方式类似的方式可以通过首先形成调节缓冲层和非晶界面形成非晶层36。然后(通过外延生长)形成单晶金属氧化物层38,覆盖单晶调节缓冲层。然后将调节缓冲层暴露于退火工艺,以便将单晶调节缓冲层转变为非晶层。按该方式形成的非晶层36包括来自调节缓冲层和界面层的材料,该非晶层可以合并(amalgamate)或者可以不合并。这样,层36可以包括一个或者两个非晶层。在衬底22和金属氧化物层38(层38的形成后)之间非晶层36的形成缓解了层22和38之间的应力,为后续的工艺例如金属氧化物层26的形成提供了真正适用的衬底。As described in more detail below, the amorphous layer 36 may be formed by first forming the adjustment buffer layer and the amorphous interface in a manner similar to that described above. A single crystal metal oxide layer 38 is then formed (by epitaxial growth) overlying the single crystal conditioning buffer layer. The conditioning buffer layer is then exposed to an annealing process to convert the single crystal conditioning buffer layer into an amorphous layer. The amorphous layer 36 formed in this manner includes material from the conditioning buffer layer and the interfacial layer, which may or may not be amalgamate. Thus, layer 36 may comprise one or two amorphous layers. The formation of the amorphous layer 36 between thesubstrate 22 and the metal oxide layer 38 (after the formation of the layer 38) relieves the stress between thelayers 22 and 38, and provides for subsequent processes such as the formation of themetal oxide layer 26. Really applicable substrate.

上面结合图1和2描述的工艺适于在单晶衬底上生长单晶金属氧化物层。然而,包含将单晶调节缓冲层转换为非晶氧化物层、结合图3描述的工艺对于生长单晶金属氧化物层来说可能更好,因为它允许在形成层26之前缓解了层38中任何应变。The process described above in connection with Figures 1 and 2 is suitable for growing a single crystal metal oxide layer on a single crystal substrate. However, the process described in conjunction with FIG. 3 , which includes converting the single-crystal conditioning buffer layer to an amorphous oxide layer, may be better for growing a single-crystal metal oxide layer because it allows for the relaxation of the crystalline layer in layer 38 prior to forminglayer 26. Any strain.

金属氧化物层38可以包含在本申请中结合金属氧化物层26或者附加的缓冲层32描述的任何材料。例如,层38可以包含上面列出的适用于层26的钙钛矿金属氧化物。Metal oxide layer 38 may comprise any of the materials described herein in connection withmetal oxide layer 26 oradditional buffer layer 32 . For example, layer 38 may comprise the perovskite metal oxides listed above as suitable forlayer 26 .

根据本发明的一个实施例,层38作为层36形成过程中的退火盖层(anneal cap)和用于后续的金属氧化物层26形成的模板。据此,层38最好足够厚,以便提供适合层26生长的模板(至少一个单层),并且足够薄,以便允许层38形成为基本上没有缺陷的单晶金属氧化物(经常少于大约10个单层)。According to one embodiment of the present invention, layer 38 acts as an anneal cap during the formation of layer 36 and as a template for the subsequent formation ofmetal oxide layer 26 . Accordingly, layer 38 is preferably thick enough to provide a suitable template forlayer 26 growth (at least a monolayer), and thin enough to allow layer 38 to be formed as a substantially defect-free single crystal metal oxide (often less than about 10 single layers).

根据本发明的另一个实施例,单晶金属氧化物层38包括金属氧化物材料(例如上面结合层26讨论的材料),该层足够厚以便使用用于希望的微电子器件的膜。在这种情况下,根据本发明的微电子结构不包含层26。换句话说,根据该实施例的微电子结构仅包含设置在非晶氧化物层36上的一个金属氧化物层。According to another embodiment of the present invention, single crystal metal oxide layer 38 comprises a metal oxide material (such as the material discussed above in connection with layer 26) that is thick enough to use the film for the desired microelectronic device. In this case, the microelectronic structure according to the invention does not containlayer 26 . In other words, the microelectronic structure according to this embodiment includes only one metal oxide layer disposed on the amorphous oxide layer 36 .

下面非限定的、说明性的例子说明了根据本发明的各个可选择的实施例、可用于结构20、40和34的材料的各种组合。这些例子仅是说明性的,本发明不仅限于这些说明性的例子。The following non-limiting, illustrative examples illustrate various combinations of materials that may be used forstructures 20, 40, and 34 in accordance with various alternative embodiments of the present invention. These examples are illustrative only, and the present invention is not limited to these illustrative examples.

例1example 1

根据本发明的一个实施例,单晶衬底22是在(100)方向上定向的硅衬底。该硅衬底例如可以是通常用来制造大约200-300mm直径的互补金属氧化物半导体(CMOS)集成电路的硅衬底。根据本发明的该实施例,调节缓冲层24是SrzBa1-zTiO3的单晶层,其中z从0-1,非晶中间层是形成在硅衬底和调节缓冲层之间的界面处的氧化硅(SiOx)层。选择z的值以便得到与接着形成的层26的晶格常数紧密配合的一个或者多个晶格常数。调节缓冲层可以具有大约2-100纳米(nm)的厚度,最好具有大约10nm的厚度。总之,希望调节缓冲层足够厚以便隔离金属氧化物层和衬底,得到希望的特性。比100nm厚的层通常几乎不能提供附加的好处,同时增加了不必要的成本。然而,如果需要可以制造更厚的层。氧化硅的非晶中间层可以具有大约0.5-5nm的厚度,最好具有大约1.5-2.5nm的厚度。According to one embodiment of the present invention,single crystal substrate 22 is a silicon substrate oriented in the (100) direction. The silicon substrate may be, for example, a silicon substrate commonly used to fabricate complementary metal-oxide-semiconductor (CMOS) integrated circuits of about 200-300 mm in diameter. According to this embodiment of the present invention, theadjustment buffer layer 24 is a single crystal layer of Srz Ba1-z TiO3 , where z is from 0-1, and the amorphous interlayer is formed between the silicon substrate and the adjustment buffer layer. Silicon oxide (SiOx ) layer at the interface. The value of z is selected so as to obtain one or more lattice constants that closely match the lattice constant of the subsequently formedlayer 26 . The adjustment buffer layer may have a thickness of about 2-100 nanometers (nm), preferably about 10 nm. In general, it is desirable to adjust the buffer layer to be thick enough to isolate the metal oxide layer from the substrate to obtain the desired properties. Layers thicker than 100nm typically provide little additional benefit while adding unnecessary cost. However, thicker layers can be fabricated if desired. The amorphous interlayer of silicon oxide may have a thickness of about 0.5-5 nm, preferably about 1.5-2.5 nm.

根据本发明的该实施例,金属氧化物材料层26是钌酸锶(SrRuO3)层,具有大约5-500nm的厚度,最好具有大约10-100nm的厚度。该厚度通常根据该层准备作何用而定。According to this embodiment of the invention, the metaloxide material layer 26 is a strontium ruthenate (SrRuO3 ) layer having a thickness of about 5-500 nm, preferably about 10-100 nm. The thickness generally depends on what the layer is intended to be used for.

例2Example 2

根据本发明的另一个实施例,提供一种结构,该结构适于覆盖硅衬底的外延膜(Pb,La,Nb,Sc)(Zr,Ti)O3膜的生长。该衬底最好是如上所述的硅晶片。适合的调节缓冲层材料是SrxBa1-xTiO3,其中x从0-1,具有大约2-100nm的厚度,最好具有大约5-15nm的厚度。金属氧化物材料例如可以是PbZrTiO3,具有大约50-500nm的厚度。According to another embodiment of the present invention, there is provided a structure suitable for the growth of an epitaxial (Pb, La, Nb, Sc) (Zr, Ti) O3 film covering a silicon substrate. The substrate is preferably a silicon wafer as described above. A suitable adjustment buffer layer material is Srx Ba1-x TiO3 , where x ranges from 0-1, with a thickness of about 2-100 nm, preferably about 5-15 nm. The metal oxide material may be, for example, PbZrTiO3 , with a thickness of about 50-500 nm.

再参考图1-3,衬底22是单晶衬底,例如单晶硅或者砷化镓衬底。单晶衬底的晶体结构由晶格常数和晶格定向来表征。同样,调节缓冲层24也是单晶材料,该单晶材料的晶格由晶格常数和晶体定向表征。调节缓冲层和单晶衬底的晶格常数必须紧密配合,或者必须使当一个晶体定向相对于另一个晶体定向旋转时实现晶格常数基本匹配。在该文中“基本相等”和“基本匹配”的含义是晶格常数之间充分类似,以便允许在底层上生长高质量的晶体层。Referring again to FIGS. 1-3 , thesubstrate 22 is a single crystal substrate, such as a single crystal silicon or gallium arsenide substrate. The crystal structure of a single crystal substrate is characterized by lattice constants and lattice orientations. Likewise, theadjustment buffer layer 24 is also a single crystal material whose crystal lattice is characterized by lattice constants and crystal orientations. The lattice constants of the tuning buffer layer and the single crystal substrate must be closely matched, or must be substantially matched when one crystal orientation is rotated relative to the other. The meaning of "substantially equal" and "substantially matching" in this context is that the lattice constants are sufficiently similar to allow growth of a high quality crystalline layer on the underlying layer.

图4绘出了可以得到的高结晶质量的晶体生长层的膜厚作为基质晶体和生长晶体的晶格常数之间的失配的函数关系曲线图。曲线42说明了高结晶质量材料的边界。曲线42的右侧区域代表趋向多晶的层。没有晶格不匹配,理论上能够在基质晶体上生长无限厚、高质量的外延层。随着晶格常数不匹配的增加,可以得到的、高质量结晶层的厚度迅速减小。作为参考点,例如,如果基质晶体和生长层之间的晶格常数失配大于约2%,那末不能得到超过大约20nm的单晶外延层。Figure 4 plots the film thickness of achievable crystal growth layers of high crystalline quality as a function of the mismatch between the lattice constants of the host crystal and the growing crystal.Curve 42 illustrates the boundary for high crystalline quality material. The area to the right ofcurve 42 represents layers that tend to be polycrystalline. Without lattice mismatch, it is theoretically possible to grow infinitely thick, high-quality epilayers on host crystals. The thickness of achievable, high-quality crystalline layers decreases rapidly with increasing lattice constant mismatch. As a point of reference, for example, if the lattice constant mismatch between the host crystal and the growth layer is greater than about 2%, then single crystal epitaxial layers beyond about 20 nm cannot be obtained.

根据本发明的一个实施例,衬底22是(100)或者(111)定向的单晶硅晶片,调节缓冲层24是钛酸锶钡层。通过将钛酸盐材料的晶体取向相对于硅衬底晶片的晶体取向旋转45°实现这两个材料之间晶格常数的基本匹配。如果足够厚,包含在所述结构中的非晶界面层28(在该例中是氧化硅层)起到减小钛酸盐单晶层中的应变的作用,该应变可能是由于基质硅晶片和生长的钛酸盐层的晶格常数的任何不匹配造成的。结果,根据本发明的一个实施例,可以得到高质量的、厚的、单晶钛酸盐层。According to an embodiment of the present invention, thesubstrate 22 is a (100) or (111) oriented single crystal silicon wafer, and theadjustment buffer layer 24 is a barium strontium titanate layer. Substantial matching of lattice constants between the two materials was achieved by rotating the crystal orientation of the titanate material by 45° relative to that of the silicon substrate wafer. If thick enough, the amorphous interfacial layer 28 (in this case a silicon oxide layer) contained in the structure acts to reduce the strain in the titanate single crystal layer that may be due to the and any mismatch in the lattice constants of the grown titanate layer. As a result, a high quality, thick, single crystal titanate layer can be obtained according to one embodiment of the present invention.

仍然参考图1-3,层26是外延生长的金属氧化物材料层,并且结晶材料也由晶体的晶格常数和晶体定向表征。根据本发明的一个实施例,层26的晶格常数不同于衬底22的晶格常数。为了在该外延生长的单晶层中得到高的结晶质量,调节缓冲层必须具有高的结晶质量。此外,为了在层26中实现高的结晶质量,希望在基质晶体(此时为单晶调节缓冲层)和生长的晶体之间的晶格常数之间基本匹配。通过适当选择材料,作为生长晶体的晶体取向相对于基质晶体的取向旋转的结果,实现了晶格常数的基本匹配。在有些情况下,可以使用基质氧化物和生长的金属氧化物层之间的结晶缓冲层来减小生长的单晶金属氧化物层中由晶格常数的微小不同而导致的应变。从而可以在生长的单晶金属氧化物层中得到更好的结晶质量。Still referring to FIGS. 1-3 ,layer 26 is an epitaxially grown layer of metal oxide material, and the crystalline material is also characterized by the lattice constant and crystal orientation of the crystals. According to one embodiment of the invention, the lattice constant oflayer 26 is different from the lattice constant ofsubstrate 22 . In order to obtain a high crystalline quality in the epitaxially grown single-crystal layer, the regulating buffer layer must have a high crystalline quality. Furthermore, in order to achieve a high crystalline quality inlayer 26, a substantial match between the lattice constants between the host crystal (in this case the single crystal conditioning buffer layer) and the growing crystal is desired. By proper choice of materials, substantial matching of lattice constants is achieved as a result of rotation of the crystal orientation of the growing crystal relative to that of the host crystal. In some cases, a crystalline buffer layer between the host oxide and the growing metal oxide layer can be used to reduce strain in the growing single crystal metal oxide layer caused by small differences in lattice constant. A better crystalline quality can thus be obtained in the grown monocrystalline metal oxide layer.

下面的例子说明了根据本发明一个实施例的方法,该方法用于制造如图1-3所描述微电子结构。该方法由提供包括硅或者锗的单晶半导体衬底开始。根据本发明的最佳实施例,半导体衬底是具有(100)取向的硅晶片。该衬底最好定向在轴上,或者至多偏移轴大约0.5°。尽管如下所述半导体衬底的其它部分可以包括其它结构,但至少半导体衬底的一部分具有裸露的表面。在上下文中术语“裸露”指的是已经清洁了衬底的一部分表面以便除去任何氧化物、污染物或者其它外来材料。众所周知,裸露的硅是易反应的并且容易形成本身的氧化物。术语“裸露”意指包括这种本身氧化物。薄的氧化硅还可以故意生长在半导体衬底上,尽管这种生长的氧化物不是根据本发明的工艺必须的。为了外延生长覆盖单晶衬底的单晶氧化物层,必须首先除去本身的氧化物层以便露出下方衬底的晶体结构。尽管根据本发明可以使用其它的外延工艺,但最好通过分子束外延生长(MBE)进行下面的工艺。首先可以通过在MBE装置中热淀积锶、钡、锶和钡的组合、其它碱土金属或碱土金属的组合的薄层除去该本身氧化物。在使用锶的情况下,然后将衬底加热到大约750℃的温度,以便使锶和本身的氧化硅层反应。锶起到减少氧化硅以便留下没有氧化硅的表面。所得到的表面表现为有序的2×1结构,该表面包含锶、氧和硅。有序的2×1结构形成了用于单晶氧化物的覆盖层有序生长的模板。该模板提供需要的化学和物理特性,以便成为覆盖层的结晶生长的核。The following example illustrates a method according to one embodiment of the present invention for fabricating microelectronic structures as depicted in FIGS. 1-3. The method begins by providing a single crystal semiconductor substrate comprising silicon or germanium. According to a preferred embodiment of the invention, the semiconductor substrate is a silicon wafer having a (100) orientation. The substrate is preferably oriented on-axis, or at most about 0.5° off-axis. At least a portion of the semiconductor substrate has an exposed surface, although other portions of the semiconductor substrate may include other structures as described below. The term "bare" in this context means that a portion of the surface of the substrate has been cleaned to remove any oxides, contaminants or other foreign material. It is well known that bare silicon is reactive and readily forms its own oxide. The term "bare" is meant to include such native oxides. Thin silicon oxide can also be deliberately grown on the semiconductor substrate, although such a grown oxide is not necessary for the process according to the invention. In order to epitaxially grow a single crystal oxide layer covering a single crystal substrate, the oxide layer itself must first be removed in order to expose the crystalline structure of the underlying substrate. Although other epitaxial processes may be used in accordance with the present invention, the following processes are preferably performed by molecular beam epitaxy (MBE). The native oxide can first be removed by thermally depositing a thin layer of strontium, barium, a combination of strontium and barium, other alkaline earth metals or a combination of alkaline earth metals in an MBE apparatus. In the case of strontium, the substrate is then heated to a temperature of about 750° C. in order to react the strontium with the native silicon oxide layer. Strontium acts to reduce the silicon oxide to leave a silicon oxide free surface. The resulting surface exhibits an ordered 2×1 structure comprising strontium, oxygen and silicon. The ordered 2 × 1 structure forms a template for the ordered growth of capping layers of single-crystal oxides. This template provides the required chemical and physical properties in order to be the nucleus for the crystalline growth of the capping layer.

根据本发明的另一个实施例,可以使本身的氧化硅转变,并且可以在低温利用MBE将碱土金属氧化物例如氧化锶、氧化锶钡或氧化钡淀积到衬底表面上、接着将该结构加热到大约750℃的温度,制备用于单晶氧化物层生长的衬底表面。在该温度,在氧化锶和该本身的氧化硅之间发生固态反应,引起该本身的氧化硅减少,留下有序的2×1结构,锶、氧和硅留在衬底的表面上。这样也形成了用于有序的单晶氧化物层后续生长的模板。According to another embodiment of the present invention, the native silicon oxide can be transformed and an alkaline earth metal oxide such as strontium oxide, strontium barium oxide or barium oxide can be deposited on the substrate surface at low temperature using MBE, followed by the structure Heating to a temperature of approximately 750°C prepares the substrate surface for growth of a single crystal oxide layer. At this temperature, a solid state reaction occurs between the strontium oxide and the native silicon oxide, causing the native silicon oxide to decrease, leaving an ordered 2x1 structure with strontium, oxygen and silicon remaining on the surface of the substrate. This also forms a template for the subsequent growth of the ordered single crystal oxide layer.

根据本发明的一个实施例,从衬底表面上除去氧化硅之后,将衬底冷却到大约200-800℃的温度,利用分子束外延生长在模板上生长钛酸锶层。通过打开MBE装置中的窗板(shutters)以便露出锶、钛和氧源启动MBE工艺。锶和钛的比大约为1∶1。氧的分压最初设定在最小值,以便在大约0.3-0.5nm每分钟的生长速度下生长化学计量比的钛酸锶。钛酸锶的最初生长之后,将氧分压增加到高于最初的最小值。氧的过压导致在下方衬底和正在生长的钛酸锶层之间的界面处生长非晶氧化硅层。氧化硅层的生长来源于氧扩散通过正在生长的钛酸锶层到达下方衬底表面处的界面,在该界面氧与硅反应。钛酸锶生长为有序的单晶,结晶取向相对于下方衬底的有序2×1晶体结构旋转45°。在非晶氧化硅中间层中,缓解了由于硅衬底和正在生长的晶体之间晶格常数的微小不匹配而可能存在于钛酸锶层中应变。According to one embodiment of the present invention, after silicon oxide is removed from the substrate surface, the substrate is cooled to a temperature of about 200-800° C., and a strontium titanate layer is grown on the template by molecular beam epitaxy. The MBE process was started by opening the shutters in the MBE apparatus to expose the strontium, titanium and oxygen sources. The ratio of strontium to titanium is approximately 1:1. The partial pressure of oxygen was initially set at a minimum value to grow stoichiometric strontium titanate at a growth rate of about 0.3-0.5 nm per minute. After the initial growth of strontium titanate, the oxygen partial pressure was increased above the initial minimum. The overpressure of oxygen causes the growth of an amorphous silicon oxide layer at the interface between the underlying substrate and the growing strontium titanate layer. The growth of the silicon oxide layer results from the diffusion of oxygen through the growing strontium titanate layer to the interface at the underlying substrate surface where the oxygen reacts with the silicon. Strontium titanate grows as an ordered single crystal with a crystallographic orientation rotated by 45° relative to the ordered 2×1 crystal structure of the underlying substrate. In the amorphous silicon oxide interlayer, the strain that may exist in the strontium titanate layer due to the slight mismatch in lattice constant between the silicon substrate and the growing crystal is relieved.

钛酸锶层已经生长到希望的厚度之后,可以利用模板覆盖单晶钛酸锶层,这有益于希望的金属氧化物材料外延层的后续生长。例如,可以通过使具有钛的1-2单层、钛-氧的1-2单层或者锶-氧的1-2单层终结所述生长盖住钛酸锶单晶层的MBE生长。模板形成之后(如果形成了一个),利用MBE或者其它适当的技术生长金属氧化物材料。After the strontium titanate layer has grown to the desired thickness, the single crystal strontium titanate layer can be covered with a template, which facilitates the subsequent growth of the desired epitaxial layer of metal oxide material. For example, MBE growth of a strontium titanate single crystal layer can be capped by terminating the growth with a 1-2 monolayer of titanium, a 1-2 monolayer of titanium-oxygen, or a 1-2 monolayer of strontium-oxygen. After the template is formed (if one is formed), the metal oxide material is grown using MBE or other suitable technique.

可以通过上面讨论的方法形成图2所示的结构,添加附加的缓冲层淀积步骤。在淀积单晶金属氧化物层之前形成缓冲层,覆盖模板或者调节缓冲层。如果缓冲层是氧化物超晶格,例如,可以利用MBE在上述模板上淀积这种超晶格。The structure shown in Figure 2 can be formed by the methods discussed above, adding an additional buffer layer deposition step. A buffer layer is formed before depositing the single crystal metal oxide layer, covering the template or adjusting the buffer layer. If the buffer layer is an oxide superlattice, such a superlattice can be deposited on the above-mentioned template using MBE, for example.

可以如上所述通过生长调节缓冲层在衬底22上形成非晶氧化物层和通过在调节缓冲层上生长金属氧化物层38形成如图3所示的结构34。然后将调节缓冲层和非晶氧化物层暴露于退火工序,该退火工序足以将调节缓冲层的晶体结构从单晶变为非晶,从而形成非晶层,使得非晶氧化物层和新的非晶调节缓冲层的组合形成单一的非晶氧化物层36。然后在层38上生长层26。或者可以在层26生长之后进行退火工序。Forming the amorphous oxide layer on thesubstrate 22 by growing the conditioning buffer layer and forming the structure 34 shown in FIG. 3 by growing the metal oxide layer 38 on the conditioning buffer layer can be done as described above. The conditioning buffer layer and the amorphous oxide layer are then exposed to an annealing process sufficient to change the crystal structure of the conditioning buffer layer from monocrystalline to amorphous, thereby forming the amorphous layer, such that the amorphous oxide layer and the new The combination of amorphous conditioning buffer layers forms a single amorphous oxide layer 36 .Layer 26 is then grown on layer 38 . Alternatively, the annealing process may be performed afterlayer 26 is grown.

根据该实施例的一个方面,通过将衬底22、调节缓冲层、非晶氧化物层和层38暴露于快速热退火工艺形成层36,所述快速热退火工艺具有大约700-1000℃的峰值温度和大约10秒至10分钟的处理时间。然而,可以采用其它适当的退火工艺以便根据本发明将调节缓冲层转变为非晶层。例如,可以采用激光退火或者“常规”热退火工艺(在适当的环境中)以便形成层36。当采用常规的热退火以便形成层36时,可能需要层30的一个或者多个成份的过压,以便防止在退火工艺过程中层38的退化。According to one aspect of this embodiment, layer 36 is formed by exposingsubstrate 22, conditioning buffer layer, amorphous oxide layer, and layer 38 to a rapid thermal annealing process having a peak value of approximately 700-1000°C temperature and a processing time of about 10 seconds to 10 minutes. However, other suitable annealing processes may be employed in order to convert the conditioning buffer layer into an amorphous layer according to the present invention. For example, laser annealing or a "conventional" thermal annealing process (in appropriate circumstances) may be employed to form layer 36 . When conventional thermal annealing is used to form layer 36, an overpressure of one or more components oflayer 30 may be required to prevent degradation of layer 38 during the annealing process.

如上所述,结构34的层38可以包含适用于层32或者26的任何材料。据此,可以采用与层32或26有关的任何淀积或生长方法,以便淀积层38。As noted above, layer 38 of structure 34 may comprise any material suitable forlayer 32 or 26 . Accordingly, any deposition or growth method associated withlayer 32 or 26 may be used to deposit layer 38 .

上述方法说明了用于通过分子束外延工艺形成半导体结构的方法,所述半导体结构包含硅衬底、覆盖氧化物层和单晶金属氧化物层。该方法还可以通过下列工艺进行:化学汽相淀积(CVD)、金属有机化学汽相淀积(MOCVD)、迁移增强外延(MEE)、原子层外延(ALE)、物理汽相淀积(PVD)、化学溶液淀积(CSD)、脉冲激光淀积(PLD)等。此外,通过类似的工艺,还可以生长其它单晶调节缓冲层例如碱土金属钛酸盐、锆酸盐、铪酸盐、钽酸盐、钒酸盐、钌酸盐和铌酸盐;钙钛矿氧化物例如碱土金属锡基钙钛矿、铝酸镧、氧化镧钪和氧化钆。此外,通过类似的工艺例如MBE,可以淀积其它的金属氧化物层,覆盖单晶氧化物调节缓冲层。例如,可以通过用准分子激光烧蚀希望材料的靶并加热衬底到大约300-500℃的温度下,通过PLD生长金属氧化物。The methods described above illustrate methods for forming a semiconductor structure comprising a silicon substrate, a capping oxide layer, and a single crystal metal oxide layer by a molecular beam epitaxy process. The method can also be carried out by the following processes: Chemical Vapor Deposition (CVD), Metal Organic Chemical Vapor Deposition (MOCVD), Migration Enhanced Epitaxy (MEE), Atomic Layer Epitaxy (ALE), Physical Vapor Deposition (PVD) ), chemical solution deposition (CSD), pulsed laser deposition (PLD), etc. In addition, other single-crystal regulatory buffer layers such as alkaline earth metal titanates, zirconates, hafnates, tantalates, vanadates, ruthenates, and niobates can be grown by similar processes; perovskite Oxides such as alkaline earth tin-based perovskites, lanthanum aluminate, lanthanum scandium oxide, and gadolinium oxide. In addition, other metal oxide layers can be deposited by a similar process such as MBE, covering the single crystal oxide conditioning buffer layer. For example, metal oxides can be grown by PLD by ablating a target of the desired material with an excimer laser and heating the substrate to a temperature of about 300-500°C.

金属氧化物材料和单晶氧化物调节缓冲层的每种变化可以使用适当的用于启动各个层生长的模板。在这种情况下,可以根据上面联系生长层26所描述方法生长适当的模板材料。Each variation of metal oxide material and single crystal oxide conditioning buffer layer can use an appropriate template for initiating the growth of the respective layer. In this case, a suitable template material can be grown according to the method described above in connection withgrowth layer 26 .

在前面的说明中,已经参考具体实施例描述了本发明。然而,本领域技术人员应理解,如在下面权利要求中提出的,在不离开本发明的范围的情况下可以作出各种修改和变化。据此,应将说明书和附图看作是说明性的而不是限定性的。所有的这些修改都应包含在本发明的范围内。In the foregoing specification, the invention has been described with reference to specific embodiments. However, one of ordinary skill in the art appreciates that various modifications and changes can be made without departing from the scope of the present invention as set forth in the claims below. Accordingly, the specification and drawings are to be regarded as illustrative rather than restrictive. All such modifications are intended to be included within the scope of this invention.

上面已经根据具体实施例描述了利益、其它优点和问题的解决方案。然而,利益、优点、解决问题的技术方案以及将出现或变得更显著的任何会带来任何利益、优点或技术方案的要素(element)都不应解释为任何或所有权利要求的临界的、需要的或必要的技术特征或要素。这里所使用的术语“包括”或其任何其它变化都应指的是非排外的包含,使得包括要素清单的工艺、方法、制品或装置不仅包含这些要素,而且可以包含没有列出清单的或者这些工艺、方法、制品或装置固有的其它要素。Benefits, other advantages, and solutions to problems have been described above in terms of specific embodiments. However, benefits, advantages, technical solutions to problems and any elements (elements) that will appear or become more significant that will bring any benefits, advantages or technical solutions should not be interpreted as critical, A desired or necessary technical feature or element. As used herein, the term "comprises" or any other variation thereof shall mean a non-exclusive inclusion such that a process, method, article, or apparatus that includes a list of elements includes not only those elements, but also non-listed or such processes. , method, article or other element inherent in the device.

Claims (42)

Translated fromChinese
1.一种钙钛矿氧化物结构,包括:1. A perovskite oxide structure comprising:单晶半导体衬底;Single crystal semiconductor substrate;覆盖单晶半导体衬底的非晶层;an amorphous layer covering the monocrystalline semiconductor substrate;包括SrxBa1-xTiO3的单晶层,覆盖所述非晶层,其中x为0-1;和a single crystal layer comprising Srx Ba1-x TiO3 covering said amorphous layer, where x is 0-1; and单晶钙钛矿氧化物层,覆盖该单晶层。A single crystal perovskite oxide layer overlies the single crystal layer.2.权利要求1的钙钛矿氧化物结构,其中单晶半导体衬底包括硅。2. The perovskite oxide structure of claim 1, wherein the single crystal semiconductor substrate comprises silicon.3.权利要求2的钙钛矿氧化物结构,其中非晶层包括氧化硅。3. The perovskite oxide structure of claim 2, wherein the amorphous layer comprises silicon oxide.4.权利要求3的钙钛矿氧化物结构,其中非晶氧化物层足够厚以便缓解单晶层中的应变。4. The perovskite oxide structure of claim 3, wherein the amorphous oxide layer is thick enough to relieve strain in the single crystal layer.5.权利要求1的钙钛矿氧化物结构,其中单晶钙钛矿氧化物层包括具有其性能选自压电、铁电、热电、铁磁、巨磁阻或者超导性能的材料。5. The perovskite oxide structure of claim 1, wherein the single crystal perovskite oxide layer comprises a material having properties selected from piezoelectric, ferroelectric, pyroelectric, ferromagnetic, giant magnetoresistance, or superconducting properties.6.权利要求1的钙钛矿氧化物结构,其中,单晶层由通过x值部分确定的第一晶格常数表征,其中,钙钛矿氧化物层由第二晶格常数表征,并且其中变化x值以便基本上匹配第一和第二晶格常数。6. The perovskite oxide structure of claim 1, wherein the single crystal layer is characterized by a first lattice constant determined in part by the value of x, wherein the perovskite oxide layer is characterized by a second lattice constant, and wherein The value of x is varied to substantially match the first and second lattice constants.7.权利要求1的钙钛矿氧化物结构,其中单晶钙钛矿氧化物层具有成份ABO3,其中A选自由铅、镧、铌、钪及其组合构成的组,B选自由锆、钛及其组合构成的组。7. The perovskite oxide structure of claim 1, wherein the single crystal perovskite oxide layer has the compositionABO3 , wherein A is selected from the group consisting of lead, lanthanum, niobium, scandium and combinations thereof, and B is selected from the group consisting of zirconium, Group consisting of titanium and its combinations.8.权利要求1的钙钛矿氧化物结构,其中单晶钙钛矿氧化物层具有成份ABO3,其中A选自由锶、钡、钙及其组合构成的组,B选自由锆、铪、钛及其组合构成的组。8. The perovskite oxide structure of claim 1, wherein the single crystal perovskite oxide layer has the compositionABO3 , wherein A is selected from the group consisting of strontium, barium, calcium and combinations thereof, B is selected from the group consisting of zirconium, hafnium, hafnium, Group consisting of titanium and its combinations.9.权利要求1的钙钛矿氧化物结构,其中单晶钙钛矿氧化物层具有成份ACoO3,其中A选自镧、锶、钡、锆及其组合。9. The perovskite oxide structure of claim 1, wherein the single crystal perovskite oxide layer has the compositionACoO3 , wherein A is selected from the group consisting of lanthanum, strontium, barium, zirconium, and combinations thereof.10.权利要求1的钙钛矿氧化物结构,其中单晶钙钛矿氧化物层具有成份ABMnO3,A是稀土元素,B是碱土金属元素。10. The perovskite oxide structure of claim 1, wherein the single crystal perovskite oxide layer has the compositionABMnO3 , A is a rare earth element and B is an alkaline earth metal element.11.权利要求10的钙钛矿氧化物结构,其中稀土元素包括镧,碱土金属元素选自钙、锶和钡。11. The perovskite oxide structure of claim 10, wherein the rare earth element comprises lanthanum and the alkaline earth metal element is selected from the group consisting of calcium, strontium and barium.12.权利要求1的钙钛矿氧化物结构,其中单晶钙钛矿氧化物层具有成份ABa2Cu3On,其中A选自钇、镨及其组合,n是7或8。12. The perovskite oxide structureof claim 1, wherein the single crystal perovskite oxide layer has the compositionABa2Cu3On , where A is selected from yttrium,praseodymium and combinations thereof, and n is 7 or 8.13.权利要求1的钙钛矿氧化物结构,其中单晶钙钛矿氧化物层具有成份ARuO3,其中A选自锶、钡及其组合。13. The perovskite oxide structure of claim 1, wherein the single crystal perovskite oxide layer has the compositionARuO3 , wherein A is selected from the group consisting of strontium, barium, and combinations thereof.14.权利要求1的钙钛矿氧化物结构,其中单晶钙钛矿氧化物层具有成份PbAO3,其中A选自镁、铌及其组合。14. The perovskite oxide structure of claim 1, wherein the single crystal perovskite oxide layer has the compositionPbAO3 , wherein A is selected from the group consisting of magnesium, niobium, and combinations thereof.15.权利要求1的钙钛矿氧化物结构,其中单晶钙钛矿氧化物层具有成份BaAO3,其中A选自铅、铋及其组合。15. The perovskite oxide structure of claim 1, wherein the single crystal perovskite oxide layer has the compositionBaAO3 , wherein A is selected from the group consisting of lead, bismuth, and combinations thereof.16.权利要求1的钙钛矿氧化物结构,其中单晶钙钛矿氧化物层具有成份LaAO3,其中其中A选自铝、钪及其组合。16. The perovskite oxide structure of claim 1, wherein the single crystal perovskite oxide layer has the compositionLaAO3 , wherein A is selected from the group consisting of aluminum, scandium, and combinations thereof.17.权利要求1的钙钛矿氧化物结构,其中单晶钙钛矿氧化物层的组成选自GdFeO3、YAlO3、LaAlO3、SrCrO3、SrVO3、LaCoO3、KNbO3、NaWO3、Bi4Ti3O12、YMnO3和LaScO317. The perovskite oxide structure of claim 1, wherein the composition of the single crystal perovskite oxide layer is selected from the group consisting of GdFeO3 , YAlO 3 , LaAlO3 , SrCrO3, SrVO3 , LaCoO3 , KNbO3 , NaWO3 , Bi4 Ti3 O12 , YMnO3 and LaScO3 .18.一种钙钛矿氧化物结构,包括:18. A perovskite oxide structure comprising:单晶半导体衬底;Single crystal semiconductor substrate;在半导体衬底上外延生长的第一钙钛矿层;a first perovskite layer epitaxially grown on a semiconductor substrate;形成在半导体衬底上的应力缓解氧化物层,位于第一钙钛矿层下面;和a stress relief oxide layer formed on the semiconductor substrate, underlying the first perovskite layer; and在第一钙钛矿层上外延生长的第二钙钛矿层,第二钙钛矿层具有与第一钙钛矿层不同的成份。A second perovskite layer is epitaxially grown on the first perovskite layer, the second perovskite layer having a different composition than the first perovskite layer.19.权利要求18的钙钛矿氧化物结构,其中单晶半导体衬底包括IV族元素。19. The perovskite oxide structure of claim 18, wherein the single crystal semiconductor substrate comprises a group IV element.20.权利要求19的钙钛矿氧化物结构,其中单晶半导体衬底包括硅。20. The perovskite oxide structure of claim 19, wherein the single crystal semiconductor substrate comprises silicon.21.权利要求20的钙钛矿氧化物结构,其中应力缓解氧化物包括氧化硅。21. The perovskite oxide structure of claim 20, wherein the stress relief oxide comprises silicon oxide.22.权利要求18的钙钛矿氧化物结构,其中第二钙钛矿层与第一钙钛矿层基本上晶格匹配。22. The perovskite oxide structure of claim 18, wherein the second perovskite layer is substantially lattice matched to the first perovskite layer.23.权利要求18的钙钛矿氧化物结构,其中第二钙钛矿层包括具有其性能选自压电、铁电、热电、铁磁、巨磁阻或者超导性能的材料。23. The perovskite oxide structure of claim 18, wherein the second perovskite layer comprises a material having properties selected from piezoelectric, ferroelectric, pyroelectric, ferromagnetic, giant magnetoresistance, or superconducting properties.24.权利要求18的钙钛矿氧化物结构,其中第一钙钛矿层包括SrxBa1-xTiO3,其中x为0-1。24. The perovskite oxide structure of claim 18, wherein the first perovskite layer comprisesSrxBa1-xTiO3, where x is 0-1.25.一种钙钛矿氧化物结构,包括:25. A perovskite oxide structure comprising:单晶半导体衬底;Single crystal semiconductor substrate;覆盖衬底的氧化硅;Silicon oxide covering the substrate;外延生长的SrxBa1-xTiO3层,覆盖衬底,其中x为0-1;和an epitaxially grownSrxBa1-xTiO3layer covering the substrate, where x is 0-1; and外延生长的钙钛矿氧化物层,覆盖SrxBa1-xTiO3层并基本与SrxBa1-xTiO3层晶格匹配。An epitaxially grown perovskite oxidelayer covers and substantially lattice-matches the Sr xBa1-x TiO3 layer.26.一种钙钛矿氧化物结构的制造方法,包括步骤:26. A method of manufacturing a perovskite oxide structure, comprising the steps of:提供单晶硅衬底;Provide monocrystalline silicon substrate;形成第一模板层,覆盖衬底;forming a first template layer covering the substrate;生长单晶氧化物的第一层,覆盖第一模板层;growing a first layer of monocrystalline oxide overlying the first template layer;在生长第一层的步骤过程中,在衬底上生长氧化硅的第一非晶层;growing a first amorphous layer of silicon oxide on the substrate during the step of growing the first layer;形成第二模板层,覆盖第一层;和forming a second template layer overlying the first layer; and生长单晶钙钛矿氧化物的第二层,覆盖第二模板层。A second layer of single crystal perovskite oxide is grown overlying the second template layer.27.权利要求26的方法,其中形成第一模板层的步骤包括以下步骤:27. The method of claim 26, wherein the step of forming a first template layer comprises the steps of:淀积锶层,覆盖衬底;和depositing a layer of strontium overlying the substrate; and加热衬底以便使锶反应。The substrate is heated to react the strontium.28.权利要求26的方法,其中形成第一模板层的步骤包括步骤:形成包括硅、锶和氧的层。28. The method of claim 26, wherein the step of forming a first template layer comprises the step of forming a layer comprising silicon, strontium and oxygen.29.权利要求26的方法,其中形成第一模板层的步骤包括步骤:29. The method of claim 26, wherein the step of forming a first template layer comprises the steps of:淀积氧化锶层,覆盖衬底;和depositing a layer of strontium oxide overlying the substrate; and加热衬底以便使氧化锶反应。The substrate is heated to react the strontium oxide.30.权利要求26的方法,其中生长单晶氧化物的第一层的步骤包括:生长单晶SrxBa1-xTiO3层的步骤,其中x为0-1。30. The method of claim 26, wherein the step of growing a first layer of single crystal oxide comprises the step of growing a layer of single crystalSrxBa1-xTiO3, where x is 0-1.31.权利要求30的方法,其中生长单晶氧化物的第一层的步骤包括:通过选自分子束外延、化学汽相淀积、金属有机化学汽相淀积、迁移增强外延、原子层外延、物理汽相淀积、化学溶液淀积和脉冲激光淀积的工艺,生长单晶氧化物的第一层。31. The method of claim 30, wherein the step of growing the first layer of single crystal oxide comprises: a method selected from the group consisting of molecular beam epitaxy, chemical vapor deposition, metal organic chemical vapor deposition, migration enhanced epitaxy, atomic layer epitaxy , physical vapor deposition, chemical solution deposition and pulsed laser deposition processes to grow the first layer of single crystal oxide.32.权利要求30的方法,其中形成第二模板层的步骤包括步骤:形成选来以使第二层单晶生长的成核的材料的1-10个单层。32. The method of claim 30, wherein the step of forming a second template layer comprises the step of forming 1-10 monolayers of a nucleating material selected to grow the second layer of single crystals.33.权利要求30的方法,其中生长第二层的步骤包括步骤:生长基本上与SrxBa1-xTiO3晶格匹配的单晶钙钛矿氧化物。33. The method of claim 30, wherein the step of growing the second layer comprises the step of growing a single crystal perovskite oxide substantially lattice matched toSrxBa1-xTiO3 .34.权利要求30的方法,其中生长第二层的步骤包括:通过选自分子束外延、化学汽相淀积、金属有机化学汽相淀积、迁移增强外延、原子层外延、物理汽相淀积、化学溶液淀积和脉冲激光淀积的工艺,生长单晶钙钛矿氧化物。34. The method of claim 30, wherein the step of growing the second layer comprises: a method selected from the group consisting of molecular beam epitaxy, chemical vapor deposition, metal organic chemical vapor deposition, migration enhanced epitaxy, atomic layer epitaxy, physical vapor deposition deposition, chemical solution deposition, and pulsed laser deposition to grow single-crystal perovskite oxides.35.权利要求26的方法,其中生长第二层的步骤包括步骤:35. The method of claim 26, wherein the step of growing the second layer comprises the steps of:将衬底放在脉冲激光淀积系统中;Place the substrate in a pulsed laser deposition system;在脉冲激光淀积系统中提供钙钛矿氧化物靶;Provide perovskite oxide targets in pulsed laser deposition systems;加热衬底到大约300℃和大约500℃之间的温度;和heating the substrate to a temperature between about 300°C and about 500°C; and利用激光烧蚀靶。The target is ablated using a laser.36.权利要求35的方法,其中烧蚀靶的步骤包括用准分子激光烧蚀靶的步骤。36. The method of claim 35, wherein the step of ablating the target comprises the step of ablating the target with an excimer laser.37.一种钙钛矿氧化物结构的制造方法,包括步骤:37. A method of manufacturing a perovskite oxide structure, comprising the steps of:提供单晶衬底;Provide single crystal substrate;生长单晶氧化物的第一层,覆盖衬底;growing a first layer of monocrystalline oxide covering the substrate;生长应变释放层,位于第一层下面;growing a strain relief layer, under the first layer;生长单晶钙钛矿氧化物层,覆盖第一层。A single crystal perovskite oxide layer is grown, covering the first layer.38.权利要求37的方法,其中生长第一层的步骤包括:生长包括SrxBa1-xTiO3的层的步骤,其中x为0-1。38. The method of claim 37, wherein the step of growing the first layer comprises the step of growing a layer comprisingSrxBa1-xTiO3, where x is 0-1.39.权利要求37的方法,其中生长单晶钙钛矿氧化物层的步骤包括:生长基本上与第一层晶格匹配的钙钛矿氧化物层的步骤。39. The method of claim 37, wherein the step of growing a single crystal perovskite oxide layer comprises the step of growing a perovskite oxide layer substantially lattice matched to the first layer.40.权利要求37的方法,其中生长单晶钙钛矿氧化物层的步骤包括:通过选自分子束外延、化学汽相淀积、金属有机化学汽相淀积、迁移增强外延、原子层外延、物理汽相淀积、化学溶液淀积和脉冲激光淀积的工艺生长钙钛矿氧化物层的步骤。40. The method of claim 37, wherein the step of growing a single-crystal perovskite oxide layer comprises: , physical vapor deposition, chemical solution deposition and pulsed laser deposition processes to grow the perovskite oxide layer.41.一种钙钛矿氧化物结构的制造方法,包括步骤:41. A method of manufacturing a perovskite oxide structure, comprising the steps of:生长包括SrxBa1-xTiO3的第一层,其中x为0-1;和growing a first layer comprising Srx Ba1-x TiO3 , where x is 0-1; and生长单晶钙钛矿氧化物的第二层,覆盖第一层。A second layer of single-crystal perovskite oxide is grown, covering the first layer.42.权利要求41的方法,其中生长第二层的步骤包括:生长与第一层基本上晶格匹配的第二层。42. The method of claim 41, wherein the step of growing the second layer comprises growing the second layer substantially lattice matched to the first layer.
CN01813243A2000-07-242001-07-19Thin-film metallic oxide structure and process for fabricating samePendingCN1449458A (en)

Applications Claiming Priority (2)

Application NumberPriority DateFiling DateTitle
US62487700A2000-07-242000-07-24
US09/624,8772000-07-24

Publications (1)

Publication NumberPublication Date
CN1449458Atrue CN1449458A (en)2003-10-15

Family

ID=24503701

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN01813243APendingCN1449458A (en)2000-07-242001-07-19Thin-film metallic oxide structure and process for fabricating same

Country Status (4)

CountryLink
JP (1)JP2004505444A (en)
CN (1)CN1449458A (en)
AU (1)AU2001276989A1 (en)
WO (1)WO2002009159A2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN101789260B (en)*2010-01-192013-03-20湘潭大学Epitaxial strain ferroelectric film for ferroelectric memory and method for regulating and controlling strain thereof
CN106277041A (en)*2016-11-142017-01-04东北大学A kind of preparation method of lanthanum gallate solid solution Barium metatitanate. amorphous
CN109119530A (en)*2017-06-232019-01-01松下知识产权经营株式会社Thin-film structure and its manufacturing method
CN111926295A (en)*2020-09-012020-11-13深圳大学 A kind of preparation method of giant tetragonal PbTiO3 film
CN112537799A (en)*2019-09-202021-03-23中国科学院物理研究所Method for regulating oxygen vacancy sequence phase of perovskite phase cobalt oxide material

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US6916717B2 (en)*2002-05-032005-07-12Motorola, Inc.Method for growing a monocrystalline oxide layer and for fabricating a semiconductor device on a monocrystalline substrate
US7072093B2 (en)2003-04-302006-07-04Hewlett-Packard Development Company, L.P.Optical interference pixel display with charge control
DE102004058958B4 (en)*2004-12-082006-10-26Forschungszentrum Jülich GmbH Semiconductor device made of a high band gap material and dielectric constant
JP4678410B2 (en)*2008-02-122011-04-27セイコーエプソン株式会社 Head manufacturing method and printer manufacturing method
CN101913860B (en)*2010-08-192012-11-21西北工业大学Bismuth titanate based piezoelectric ceramic with high curie temperature and preparation method thereof
JP5716407B2 (en)*2011-01-172015-05-13株式会社リコー Field effect transistor, display element, image display device, and system
US8796121B1 (en)*2013-11-192014-08-05Translucent, Inc.Stress mitigating amorphous SiO2 interlayer
CN115418718A (en)*2022-09-072022-12-02武汉大学Product based on two-dimensional spinel type ferrite film and preparation method and application thereof

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
JPS6450575A (en)*1987-08-211989-02-27Nec CorpSubstrate for electronic device
US5270298A (en)*1992-03-051993-12-14Bell Communications Research, Inc.Cubic metal oxide thin film epitaxially grown on silicon
EP0568064B1 (en)*1992-05-011999-07-14Texas Instruments IncorporatedPb/Bi-containing high-dielectric constant oxides using a non-Pb/Bi-containing perovskite as a buffer layer
US5650362A (en)*1993-11-041997-07-22Fuji Xerox Co.Oriented conductive film and process for preparing the same
US5830270A (en)*1996-08-051998-11-03Lockheed Martin Energy Systems, Inc.CaTiO3 Interfacial template structure on semiconductor-based material and the growth of electroceramic thin-films in the perovskite class

Cited By (9)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN101789260B (en)*2010-01-192013-03-20湘潭大学Epitaxial strain ferroelectric film for ferroelectric memory and method for regulating and controlling strain thereof
CN106277041A (en)*2016-11-142017-01-04东北大学A kind of preparation method of lanthanum gallate solid solution Barium metatitanate. amorphous
CN106277041B (en)*2016-11-142018-01-12东北大学A kind of preparation method of lanthanum gallate solid solution barium titanate amorphous
CN109119530A (en)*2017-06-232019-01-01松下知识产权经营株式会社Thin-film structure and its manufacturing method
CN109119530B (en)*2017-06-232023-10-17松下知识产权经营株式会社 Thin film structure and manufacturing method thereof
CN112537799A (en)*2019-09-202021-03-23中国科学院物理研究所Method for regulating oxygen vacancy sequence phase of perovskite phase cobalt oxide material
CN112537799B (en)*2019-09-202021-09-28中国科学院物理研究所Method for regulating oxygen vacancy sequence phase of perovskite phase cobalt oxide material
CN111926295A (en)*2020-09-012020-11-13深圳大学 A kind of preparation method of giant tetragonal PbTiO3 film
CN111926295B (en)*2020-09-012022-08-09深圳大学Huge tetragonal phase PbTiO 3 Method for producing thin film

Also Published As

Publication numberPublication date
WO2002009159A2 (en)2002-01-31
JP2004505444A (en)2004-02-19
WO2002009159A3 (en)2002-04-25
AU2001276989A1 (en)2002-02-05

Similar Documents

PublicationPublication DateTitle
US6916717B2 (en)Method for growing a monocrystalline oxide layer and for fabricating a semiconductor device on a monocrystalline substrate
US5801105A (en)Multilayer thin film, substrate for electronic device, electronic device, and preparation of multilayer oxide thin film
US6258459B1 (en)Multilayer thin film
US6709776B2 (en)Multilayer thin film and its fabrication process as well as electron device
US20040151463A1 (en)Optical waveguide structure and method for fabricating the same
US20060288928A1 (en)Perovskite-based thin film structures on miscut semiconductor substrates
US7211852B2 (en)Structure and method for fabricating GaN devices utilizing the formation of a compliant substrate
CN1449458A (en)Thin-film metallic oxide structure and process for fabricating same
US6693298B2 (en)Structure and method for fabricating epitaxial semiconductor on insulator (SOI) structures and devices utilizing the formation of a compliant substrate for materials used to form same
US6638872B1 (en)Integration of monocrystalline oxide devices with fully depleted CMOS on non-silicon substrates
US20020167005A1 (en)Semiconductor structure including low-leakage, high crystalline dielectric materials and methods of forming same
WO2002009158A2 (en)Semiconductor structure including a magnetic tunnel junction
WO2002009191A2 (en)Non-volatile memory element
US6890816B2 (en)Compound semiconductor structure including an epitaxial perovskite layer and method for fabricating semiconductor structures and devices
US7169619B2 (en)Method for fabricating semiconductor structures on vicinal substrates using a low temperature, low pressure, alkaline earth metal-rich process
US20020153524A1 (en)Structure and method for fabricating semiconductor structures and devices utilizing perovskite stacks
US20030019423A1 (en)Structure and method for fabricating semiconductor structures and devices utilizing the formation of a compliant gallium nitride substrate
US20020158245A1 (en)Structure and method for fabricating semiconductor structures and devices utilizing binary metal oxide layers
US20040164315A1 (en)Structure and device including a tunneling piezoelectric switch and method of forming same
WO2002041371A1 (en)Semiconductor structure having high dielectric constant material
US20030020068A1 (en)Structure and method for integrating compound semiconductor structures and devices utilizing the formation of a compliant substrate for materials used to form the same
US20020084461A1 (en)Structure and method for fabricating III-V nitride devices utilizing the formation of a compliant substrate
WO2002009157A2 (en)Alkali earth metal oxide gate insulators
WO2002091434A2 (en)Wide bandgap semiconductor structure

Legal Events

DateCodeTitleDescription
C06Publication
PB01Publication
C10Entry into substantive examination
SE01Entry into force of request for substantive examination
C02Deemed withdrawal of patent application after publication (patent law 2001)
WD01Invention patent application deemed withdrawn after publication

[8]ページ先頭

©2009-2025 Movatter.jp