


技术领域technical field
本发明涉及带锁髓内钉正骨手术由机器人辅助的医疗系统。The invention relates to a robot-assisted medical system for bone-setting surgery with a locking intramedullary nail.
背景技术Background technique
传统的带锁髓内钉正骨手术根据手术实施的位置不同分为股骨、胫骨等多种,手术难度也不尽相同。以股骨正骨手术为例,其基本过程为:先要将病人的上身固定于手术床上,两个医生将病人骨折的股骨上下部分向外拉伸,称之为牵引。然后一个医生侧向固定病人的骨折处,使之保持一个固定的位置,称之为复位。牵引、复位完成后主治医生先在股骨一端的骨节末端打一个孔,以便植入一根长度与股骨长度相仿的髓内钉,然后在股骨远端和近端经皮穿孔(一般4个),以便用锁钉将髓内钉固定在骨骼上。在髓内钉锁定过程中目前临床上主要采用:C臂机下徒手瞄准锁定、机械式远端锁定瞄准器、激光束引导、主动跟踪式计算机导航手术系统等。C臂机下徒手瞄准锁定不仅需要医生具有很高的操作技巧与丰富的临床经验,而且需要频繁地使用C臂机进行拍照,放射线损伤大,同时人为干扰因素多。手术时主治医生使用手电钻在股骨上打孔,由于股骨部分肌肉较多、外形复杂,主治医生不能用肉眼直接观测到手电钻钻入的位置,必须经常将手电钻退出来,使用X光机观察钻孔的情况,根据照相情况确定下次钻进的方向和深度。因此手术时间长、参与的医生较多,且医生会长时间受到X光的照射。另外由于麻药无法到达骨髓腔内部,手电钻多次进出骨髓腔,极大的增加了病人的痛苦。为减少放射线损伤,少用或不用C臂机,机械式远端锁定瞄准器得到了广泛的应用。但是机械式锁定瞄准器一般安装复杂,且容易发生形变,造成瞄准器与髓内钉位置关系发生变化,很难找准远端锁孔的位置,增加了操作的难度和额外损伤,有时甚至又重新回到C臂机下徒手瞄准锁定。而且不同厂家的瞄准器只能锁定自己厂家的髓内钉,不具备通用性。光学定位下的计算机导航系统需要大型的计算机图像处理硬件、软件和专用的手术器械,需要工程技术人员的指导,限制了医生的主观能动性,且价格昂贵,难以推广。Traditional interlocking intramedullary nail bone setting surgery is divided into femur, tibia, etc. according to the different positions of the operation, and the difficulty of the operation is also different. Taking femoral bone setting surgery as an example, the basic process is as follows: firstly, the upper body of the patient should be fixed on the operating table, and two doctors will stretch the upper and lower parts of the patient's fractured femur outward, which is called traction. A doctor then immobilizes the patient's fracture laterally to keep it in a fixed position, called reduction. After the traction and reduction are completed, the attending doctor first makes a hole at the end of the condyle at one end of the femur to implant an intramedullary nail with a length similar to the length of the femur, and then percutaneously perforates the distal and proximal ends of the femur (generally 4), In order to fix the intramedullary nail to the bone with a locking nail. In the locking process of intramedullary nails, the main clinical methods are: C-arm under-machine freehand aiming and locking, mechanical distal locking aimer, laser beam guidance, active tracking computer navigation surgery system, etc. Free-hand aiming and locking under the C-arm machine not only requires doctors to have high operating skills and rich clinical experience, but also needs to frequently use the C-arm machine to take pictures, which causes great radiation damage and many human interference factors. During the operation, the attending doctor uses a hand drill to drill holes in the femur. Due to the many muscles in the femur and its complex shape, the attending doctor cannot directly observe the drilled position of the hand drill with the naked eye. He must often withdraw the hand drill and use an X-ray machine to observe According to the situation of the drilling, determine the direction and depth of the next drilling according to the photographic situation. Therefore, the operation time is long, and there are many doctors involved, and the doctors will be exposed to X-rays for a long time. In addition, because the anesthetic cannot reach the inside of the bone marrow cavity, the electric hand drill enters and exits the bone marrow cavity many times, which greatly increases the pain of the patient. In order to reduce radiation damage, less or no C-arm machine is used, and mechanical distal locking collimator has been widely used. However, mechanical locking sights are generally complicated to install and prone to deformation, resulting in changes in the positional relationship between the sight and the intramedullary nail. Return to the freehand aiming lock under the C-arm. Moreover, the sights of different manufacturers can only lock the intramedullary nails of their own manufacturers, which is not universal. The computer navigation system under optical positioning requires large-scale computer image processing hardware, software and special surgical instruments, and requires the guidance of engineers and technicians, which limits the subjective initiative of doctors, and is expensive and difficult to promote.
发明内容Contents of the invention
本发明的目的是提供一种机器人辅助带锁髓内钉正骨手术医疗系统,它具有通用性强,手术效果好,降低手术费用,减轻病人痛苦,减少医生的放射线损伤,实现正骨手术的模拟教学训练和远程治疗的特点。本发明由从手端80和主手端70组成,从手端80由医用牵引复位并联机器人1、正骨调整机构2、正骨复位机构3、高精度全自动C形臂X光机4、导航机器人5、CCD摄像机6、高速图像采集卡7、第一图像处理单元8、机构控制单元9、第一位置传感器10、第一力传感器11、第一位置/力信号采集卡12、第一机器人控制器13、第一伺服、力控制单元14、多功能自动手术床15、从手控制站16、第二位置传感器10′、第二力传感器11′、第二位置/力信号采集卡12′、第二机器人控制器13′、第二伺服、力控制单元14′组成;主手端70由主手控制站17、虚拟手术仿真系统18、监视器19、遥操作并联主手20、第三力传感器11″、第三位置/力信号采集卡12″、第三机器人控制器13″、第三伺服、力控制单元14″、第三位置传感器10″、第二图像处理单元8′组成;从手端80的医用牵引复位并联机器人1设置在多功能自动手术床15的前侧,正骨调整机构2设置在医用牵引复位并联机器人1上,正骨固定机构3设置在多功能自动手术床15上的前侧,高精度全自动C形臂X光机4设在多功能自动手术床15的左侧,导航机器人5设在多功能自动手术床15的右侧,高精度全自动C形臂X光机4的输出端与高速图像采集卡7的输入端a相连接,CCD摄像机6的输出端与高速图像采集卡7的输入端b相连接,高速图像采集卡7的输出端与第一图像处理单元8的输入端相连接,第一图像处理单元8的输出端与从手控制站16的输入端z相连接,机构控制单元9的双向端口C与CCD摄像头6的双向端口相连接,机构控制单元9的双向端口d与高精度全自动C形臂X光机4的双向端口相连接,机构控制单元9的双向端口y与从手控制站16的双向端口k相连接,第一位置传感器10的输出端与第一位置/力信号采集卡12的输入端e相连接,第一位置传感器10的输出端f与导航机器人5的输入端相连接,导航机器人5的输出端与第一力传感器11的输入端相连接,第一力传感器11的输出端与第一位置/力信号采集卡12的输入端相连接,第一位置/力信号采集卡12的输出端与第一机器人控制器13的输入端h相连接,第一机器人控制器13的输出端与第一伺服、力控制单元14的输入端相连接,第一伺服、力控制单元14的输出端与导航机器人5的输入端g相连接,第一机器人控制器13的双向端口j与从手控制站16的双向端口m相连接,医用牵引复位并连机器人1上的输出端与第二位置传感器10′的输入端相连接,第二位置传感器10′的输出端与第二位置/力信号采集卡12′的输入端相连接,第二位置/力信号采集卡12′的输出端与第二机器人控制器13′的输入端相连接,第二机器人控制器13′的输出端与第二伺服、力控制单元14′的输入端相连接,第二伺服、力控制单元14′的输出端与医用牵引复位并联机器人1的输入端相连接,医用牵引复位并联机器人1的输出端o与第二力传感器11′的输入端相连接,第二力传感器11′的输出端与第二位置/力信号采集卡12′的输入端p相连接,第二机器人控制器13′的双向端口q与从手控制站16的双向端口n相连接;主手端70的遥操作并联主手20的输出端与第三力传感器11″的输入端相连接,第三力传感器11″的输出端与第三位置/力信号采集卡12″的输入端S相连接,遥操作并联主手20的输出端r与第三位置传感器10″的输入端相连接,第三位置传感器10″的输出端与第三位置/力信号采集卡12″的输入端相连接,第三位置/力信号采集卡12″的输出端与第三机器人控制器13″的输入端相连接,第三机器人控制器13″的输出端与第三伺服、力控制单元14″的输入端相连接,第三伺服、力控制单元14″的输出端与遥操作并联主手20的输入端相连接,第三机器人控制器13″的双向端口与主手控制站17的双向端口相连接,主手控制站17的输出端w与虚拟手术仿真系统18的输入端相连接,主手控制站17的输出端t与第二图像处理单元8′的输入端相连接,第二图像处理单元8′的输出端与虚拟手术仿真系统18的输出端共同接入监视器19;从手控制站16与主手控制站17之间通过网络90相连接。本发明具有如下优点:保护医护人员;医生不必在X光的照射下工作,减少了“受线”机会。具有通用性,适合任何厂家的髓内钉手术,手术效果好。由计算机专家系统根据图像信息确定的手术规划结果比人脑根据经验形成的手术规划效果好,并且机器人的定位和运动精度比人手要高几个数量级,手术精度高。降低手术费用:病人术后康复周期短,并且异地的病人避免了往返路费,大大节省了费用。减轻病人痛苦:手术创伤小,且一次整复就能满足要求,避免了二次手术给病人带来的痛苦。远程干预:通过网络信息交互,即使是偏远地区的病人也能得到远程专家的诊断和治疗,当地医生也可以得到专家的指点。手术教学训练;80%的手术失误是人为因素引起的,所以手术训练极其重要。医生可在虚拟手术系统上观察专家手术过程,也可重复实习,使得手术培训的时间大为缩短,同时减少了对昂贵的实验对象的需求。The purpose of the present invention is to provide a robot-assisted interlocking intramedullary nail orthopedic surgery medical system, which has strong versatility, good operation effect, reduces operation cost, relieves patients' pain, reduces radiation damage of doctors, and realizes simulation teaching of orthopedic surgery Features of training and teletherapy. The present invention consists of a slave hand end 80 and a master hand end 70. The slave hand end 80 is composed of a medical traction reset
附图说明Description of drawings
图1是本发明的结构示意图,图2是医用牵引复位并联机器人1与高精度全自动C形臂X光机4及多功能自动手术床15和导航机器人5的工作位置示意图,图3是医用牵引复位并联机器人1的结构示意图,图4是高精度全自动C形臂X光机4的结构示意图,图5是多功能自动手术床15的结构示意图。Fig. 1 is a schematic structural view of the present invention, Fig. 2 is a schematic diagram of the working positions of a medical traction reset
具体实施方式Detailed ways
(参见图1、图2)本实施方式由从手端80和主手端70组成,从手端80由医用牵引复位并联机器人1、正骨调整机构2、正骨复位机构3、高精度全自动C形臂X光机4、导航机器人5、CCD摄像机6、高速图像采集卡7、第一图像处理单元8、机构控制单元9、第一位置传感器10、第一力传感器11、第一位置/力信号采集卡12、第一机器人控制器13、第一伺服、力控制单元14、多功能自动手术床15、从手控制站16、第二位置传感器10′、第二力传感器11′、第二位置/力信号采集卡12′、第二机器人控制器13′、第二伺服、力控制单元14′组成;主手端70由主手控制站17、虚拟手术仿真系统18、监视器19、遥操作并联主手20、第三力传感器11″、第三位置/力信号采集卡12″、第三机器人控制器13″、第三伺服、力控制单元14″、第三位置传感器10″、第二图像处理单元8′组成;从手端80的医用牵引复位并联机器人1设置在多功能自动手术床15的前侧,正骨调整机构2设置在医用牵引复位并联机器人1上,正骨固定机构3设置在多功能自动手术床15上的前侧,高精度全自动C形臂X光机4设在多功能自动手术床15的左侧,导航机器人5设在多功能自动手术床15的右侧,高精度全自动C形臂X光机4的输出端与高速图像采集卡7的输入端a相连接,CCD摄像机6的输出端与高速图像采集卡7的输入端b相连接,高速图像采集卡7的输出端与第一图像处理单元8的输入端相连接,第一图像处理单元8的输出端与从手控制站16的输入端z相连接,机构控制单元9的双向端口C与CCD摄像头6的双向端口相连接,机构控制单元9的双向端口d与高精度全自动C形臂X光机4的双向端口相连接,机构控制单元9的双向端口y与从手控制站16的双向端口k相连接,第一位置传感器10的输出端与第一位置/力信号采集卡12的输入端e相连接,第一位置传感器10的输出端f与导航机器人5的输入端相连接,导航机器人5的输出端与第一力传感器11的输入端相连接,第一力传感器11的输出端与第一位置/力信号采集卡12的输入端相连接,第一位置/力信号采集卡12的输出端与第一机器人控制器13的输入端h相连接,第一机器人控制器13的输出端与第一伺服、力控制单元14的输入端相连接,第一伺服、力控制单元14的输出端与导航机器人5的输入端g相连接,第一机器人控制器13的双向端口j与从手控制站16的双向端口m相连接,医用牵引复位并连机器人1上的输出端与第二位置传感器10′的输入端相连接,第二位置传感器10′的输出端与第二位置/力信号采集卡12′的输入端相连接,第二位置/力信号采集卡12′的输出端与第二机器人控制器13′的输入端相连接,第二机器人控制器13′的输出端与第二伺服、力控制单元14′的输入端相连接,第二伺服、力控制单元14′的输出端与医用牵引复位并联机器人1的输入端相连接,医用牵引复位并联机器人1的输出端o与第二力传感器11′的输入端相连接,第二力传感器11′的输出端与第二位置/力信号采集卡12′的输入端p相连接,第二机器人控制器13′的双向端口q与从手控制站16的双向端口n相连接;主手端70的遥操作并联主手20的输出端与第三力传感器11″的输入端相连接,第三力传感器11″的输出端与第三位置/力信号采集卡12″的输入端S相连接,遥操作并联主手20的输出端r与第三位置传感器10″的输入端相连接,第三位置传感器10″的输出端与第三位置/力信号采集卡12″的输入端相连接,第三位置/力信号采集卡12″的输出端与第三机器人控制器13″的输入端相连接,第三机器人控制器13″的输出端与第三伺服、力控制单元14″的输入端相连接,第三伺服、力控制单元14″的输出端与遥操作并联主手20的输入端相连接,第三机器人控制器13″的双向端口与主手控制站17的双向端口相连接,主手控制站17的输出端w与虚拟手术仿真系统18的输入端相连接,主手控制站17的输出端t与第二图像处理单元8′的输入端相连接,第二图像处理单元8′的输出端与虚拟手术仿真系统18的输出端共同接入监视器19;从手控制站16与主手控制站17之间通过网络90相连接。(参见图3)医用牵引复位并联机器人1由上平台21、虎克铰支链22、虎克铰23、滚珠丝杠装置24、联轴器25、连接平台26、支撑架27、下平台28、电机29组成,支撑架27固定在连接平台26与下平台28之间,电机29固定在下平台28的下侧,联轴器25的下端与电机29的输出轴相连接,联轴器25的上端与滚珠丝杠装置24的下端相连接,滚珠丝杠装置24的上端与虎克铰23的下端相连接,虎克铰23的上部与虎克铰支链22的下端相连接,虎克铰支链22的上部与上平台21的下侧铰接。(参见图4),高精度全自动C形臂X光机4由y向驱动机构30、y向传动机构31、护罩32、z向传动机构33、z向驱动机构34、水平旋转驱动机构35、垂直旋转驱动机构36、C形臂支撑架37、C形臂38、C形导轨39、X光发射装置40、C形臂驱动机构41、X光接收装置42、升降平移机构43、直线导轨44、底座45、x向驱动机构46组成。直线导轨44设在底座45上,y向传动机构31设置在直线导轨44上,y向驱动机构30固定在y向传动机构31的一侧上,x向驱动机构46固定在y向传动机构31的下部,z向传动机构33固定在y向传动机构31的上部,z向驱动机构34固定在z向传动机构33的外侧上部,升降平移机构43固定在z向传动机构33一侧的y向传动机构31的上部,z向传动机构33及z向驱动机构34的外侧设有护罩32,水平旋转驱动机构35设置在升降平移机构43的上部,垂直旋转驱动机构36设置在水平旋转驱动机构35的上部,C形臂支撑架37固定在水平旋转驱动机构35的一侧上,C形臂驱动机构41固定在C形臂支撑架37内,C形臂38设在C形臂支撑架37及C形臂驱动机构41的外侧上,C形导轨39固定在C形臂38上,X光发射装置40固定在C形臂38的上端,X光接收装置42固定在C形臂38的下端。(参见图5)多功能自动手术床15由头背板47、牵引挡柱48、翻转机构49、大腿板50、小腿板51、小腿板下翻机构52、床面翻转机构53、y向平移机构54、x向平移机构55、底座56、电机58、支架59、z向平移机构60组成,x向平移机构55固定在底座56上侧,y向平移机构54固定在x向平移机构55上部的一侧,z向平移机构60固定在y向平移机构54的上部,z向平移机构60的外部固定有支架59,z向平移机构60的底部固定有电机58,头背板47设在支架59的上端,大腿板50的一侧由翻转机构49与头背板47的一端相连接,大腿板50的另一侧由小腿板下翻机构52与小腿板51相连接,牵引挡柱48固定在大腿板50一侧的头背板47的上平面上,床面翻转机构53固定在大腿板50一侧的支架59上并与头背板47的下部相连接。(See Figures 1 and 2) This embodiment consists of a slave hand end 80 and a master hand end 70. The slave hand end 80 is reset by a medical traction
手术流程:Surgical procedure:
1、通过正骨调整机构2、正骨固定机构3等辅助设施,将患者固定在多功能自动手术床15上。1. Fix the patient on the multifunctional
2、调整多功能自动手术床15与医用牵引复位并联机器人1之间的相对位置关系,预紧。2. Adjust the relative positional relationship between the multifunctional
3、医生在主手端远距离控制机构控制单元9,驱动从手端的高精度全自动C形臂X光机4拍摄患者断骨处的X光图像,经高速图像采集卡7采集后,送到第一图像处理单元8进行处理,获得骨断处的信息,并数字化,然后由从手控制站16通过网络传递到主手控制站17,显示在监视器19上。3. The doctor remotely controls the mechanism control unit 9 at the main hand end to drive the high-precision fully automatic C-
4、医生根据数字化信息和X光图像,进行手术规划,确定手术方案。4. According to the digital information and X-ray images, the doctor plans the operation and determines the operation plan.
5、医生通过虚拟手术仿真系统18演示手术的整个过程,根据仿真结果,对手术方案进行修改,直到满意为止。5. The doctor demonstrates the whole operation process through the virtual operation simulation system 18, and modifies the operation plan according to the simulation results until the operation is satisfactory.
6、医生根据手术方案,在主手端通过遥操作并联主手20控制医用牵引复位并联机器人1,医用牵引复位并联机器人1在第一机器人控制器13和第一伺服、力控制单元14的驱动下完成牵引、复位等正骨动作。第一位置/力信号采集卡12采集医用牵引复位并联机器人1上的第二位置传感器10′和第二力传感器11′信息,反馈到主手控制站17,再通过遥操作并联主手20上的第三位置传感器10″、第三力传感器11″、第三位置/力信号采集卡12″、第三机器人控制器13″和第三伺服、力控制单元14″作用在遥操作并联主手20上,使医生具有力的感觉,就好像亲手做手术一样;6. According to the operation plan, the doctor controls the medical traction reset
7、控制高精度全自动C形臂X光机4,拍摄患者断骨处图像,确认牵引、复位效果。7. Control the high-precision automatic C-
8、牵引、复位效果达到要求后,医生手动将带锁髓内钉插入骨髓腔。8. After the traction and reduction effects meet the requirements, the doctor manually inserts the interlocking intramedullary nail into the bone marrow cavity.
9、控制高精度全自动C形臂X光机4,拍摄包含髓内钉近端和远端锁孔的照片,经图像处理后,确定每个锁孔在图像空间的位置和空间姿态。9. Control the high-precision fully automatic C-
10、图像空间、机器人空间、手术空间的坐标转换。10. Coordinate transformation of image space, robot space, and operation space.
11、根据获得的机器人位置和姿态信息,通过导航机器人5上的第一位置传感器10、第一力传感器11、第一位置/力信号采集卡12、第一机器人控制器13和第一伺服、力控制单元14驱动导航机器人5运动到相应位置,使导航机器人5的末端执行器从空间(位置和姿态)瞄准每个锁孔。11. According to the obtained robot position and attitude information, through the first position sensor 10 on the
12、医生在机器人导航下完成钻孔(或由机器人直接钻孔)。12. The doctor completes the drilling under the robot navigation (or directly drills the hole by the robot).
13、医生置入锁钉、缝合、术后处理。13. The doctor inserts locking nails, sutures, and performs postoperative treatment.
14、手术完毕。14. The operation is completed.
15、整个手术在CCD摄像机6监视下进行。15. The whole operation is carried out under the monitoring of the CCD camera 6 .
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CNB2004100136296ACN1259891C (en) | 2004-03-17 | 2004-03-17 | Robot assisted bone setting operation medical system with lock marrow internal nail |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CNB2004100136296ACN1259891C (en) | 2004-03-17 | 2004-03-17 | Robot assisted bone setting operation medical system with lock marrow internal nail |
| Publication Number | Publication Date |
|---|---|
| CN1561923A CN1561923A (en) | 2005-01-12 |
| CN1259891Ctrue CN1259891C (en) | 2006-06-21 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CNB2004100136296AExpired - Fee RelatedCN1259891C (en) | 2004-03-17 | 2004-03-17 | Robot assisted bone setting operation medical system with lock marrow internal nail |
| Country | Link |
|---|---|
| CN (1) | CN1259891C (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20040162637A1 (en) | 2002-07-25 | 2004-08-19 | Yulun Wang | Medical tele-robotic system with a master remote station with an arbitrator |
| US7813836B2 (en) | 2003-12-09 | 2010-10-12 | Intouch Technologies, Inc. | Protocol for a remotely controlled videoconferencing robot |
| US8077963B2 (en) | 2004-07-13 | 2011-12-13 | Yulun Wang | Mobile robot with a head-based movement mapping scheme |
| CN100336636C (en)* | 2005-06-29 | 2007-09-12 | 东南大学 | Motion control device for rehabilitation medical mechanism arm |
| US9198728B2 (en) | 2005-09-30 | 2015-12-01 | Intouch Technologies, Inc. | Multi-camera mobile teleconferencing platform |
| US8849679B2 (en) | 2006-06-15 | 2014-09-30 | Intouch Technologies, Inc. | Remote controlled robot system that provides medical images |
| CN100428917C (en)* | 2006-12-21 | 2008-10-29 | 南通大学 | Intramedullary lock pin machining system |
| US9160783B2 (en) | 2007-05-09 | 2015-10-13 | Intouch Technologies, Inc. | Robot system that operates through a network firewall |
| US10875182B2 (en) | 2008-03-20 | 2020-12-29 | Teladoc Health, Inc. | Remote presence system mounted to operating room hardware |
| US8179418B2 (en) | 2008-04-14 | 2012-05-15 | Intouch Technologies, Inc. | Robotic based health care system |
| US8170241B2 (en) | 2008-04-17 | 2012-05-01 | Intouch Technologies, Inc. | Mobile tele-presence system with a microphone system |
| US9193065B2 (en) | 2008-07-10 | 2015-11-24 | Intouch Technologies, Inc. | Docking system for a tele-presence robot |
| US9842192B2 (en) | 2008-07-11 | 2017-12-12 | Intouch Technologies, Inc. | Tele-presence robot system with multi-cast features |
| US8340819B2 (en) | 2008-09-18 | 2012-12-25 | Intouch Technologies, Inc. | Mobile videoconferencing robot system with network adaptive driving |
| US8996165B2 (en) | 2008-10-21 | 2015-03-31 | Intouch Technologies, Inc. | Telepresence robot with a camera boom |
| US8463435B2 (en) | 2008-11-25 | 2013-06-11 | Intouch Technologies, Inc. | Server connectivity control for tele-presence robot |
| US9138891B2 (en) | 2008-11-25 | 2015-09-22 | Intouch Technologies, Inc. | Server connectivity control for tele-presence robot |
| US8849680B2 (en) | 2009-01-29 | 2014-09-30 | Intouch Technologies, Inc. | Documentation through a remote presence robot |
| US8897920B2 (en)* | 2009-04-17 | 2014-11-25 | Intouch Technologies, Inc. | Tele-presence robot system with software modularity, projector and laser pointer |
| US11399153B2 (en) | 2009-08-26 | 2022-07-26 | Teladoc Health, Inc. | Portable telepresence apparatus |
| US8384755B2 (en) | 2009-08-26 | 2013-02-26 | Intouch Technologies, Inc. | Portable remote presence robot |
| US11154981B2 (en) | 2010-02-04 | 2021-10-26 | Teladoc Health, Inc. | Robot user interface for telepresence robot system |
| US8670017B2 (en) | 2010-03-04 | 2014-03-11 | Intouch Technologies, Inc. | Remote presence system including a cart that supports a robot face and an overhead camera |
| US10343283B2 (en) | 2010-05-24 | 2019-07-09 | Intouch Technologies, Inc. | Telepresence robot system that can be accessed by a cellular phone |
| US10808882B2 (en) | 2010-05-26 | 2020-10-20 | Intouch Technologies, Inc. | Tele-robotic system with a robot face placed on a chair |
| CN101870107B (en)* | 2010-06-26 | 2011-08-31 | 上海交通大学 | Control system of auxiliary robot of orthopedic surgery |
| CN101999938B (en)* | 2010-10-15 | 2012-07-18 | 上海交通大学 | Manual operating device for bone surgery assisted robot |
| US9264664B2 (en) | 2010-12-03 | 2016-02-16 | Intouch Technologies, Inc. | Systems and methods for dynamic bandwidth allocation |
| US12093036B2 (en) | 2011-01-21 | 2024-09-17 | Teladoc Health, Inc. | Telerobotic system with a dual application screen presentation |
| US8965579B2 (en) | 2011-01-28 | 2015-02-24 | Intouch Technologies | Interfacing with a mobile telepresence robot |
| US9323250B2 (en) | 2011-01-28 | 2016-04-26 | Intouch Technologies, Inc. | Time-dependent navigation of telepresence robots |
| US11482326B2 (en) | 2011-02-16 | 2022-10-25 | Teladog Health, Inc. | Systems and methods for network-based counseling |
| US10769739B2 (en) | 2011-04-25 | 2020-09-08 | Intouch Technologies, Inc. | Systems and methods for management of information among medical providers and facilities |
| US9098611B2 (en) | 2012-11-26 | 2015-08-04 | Intouch Technologies, Inc. | Enhanced video interaction for a user interface of a telepresence network |
| US20140139616A1 (en) | 2012-01-27 | 2014-05-22 | Intouch Technologies, Inc. | Enhanced Diagnostics for a Telepresence Robot |
| US8836751B2 (en) | 2011-11-08 | 2014-09-16 | Intouch Technologies, Inc. | Tele-presence system with a user interface that displays different communication links |
| US8902278B2 (en) | 2012-04-11 | 2014-12-02 | Intouch Technologies, Inc. | Systems and methods for visualizing and managing telepresence devices in healthcare networks |
| US9251313B2 (en) | 2012-04-11 | 2016-02-02 | Intouch Technologies, Inc. | Systems and methods for visualizing and managing telepresence devices in healthcare networks |
| US9361021B2 (en) | 2012-05-22 | 2016-06-07 | Irobot Corporation | Graphical user interfaces including touchpad driving interfaces for telemedicine devices |
| WO2013176760A1 (en) | 2012-05-22 | 2013-11-28 | Intouch Technologies, Inc. | Graphical user interfaces including touchpad driving interfaces for telemedicine devices |
| CN102715955B (en)* | 2012-06-11 | 2014-05-14 | 北京航空航天大学 | Hydraulic and servo-motor hybrid-drive system for medical robot |
| US9610101B2 (en) | 2012-06-11 | 2017-04-04 | Lihai Zhang | Long-bone fracture-reduction robot |
| CN102961811A (en)* | 2012-11-07 | 2013-03-13 | 上海交通大学 | Trachea intubating system and method based on remotely operated mechanical arm |
| CN103190957A (en)* | 2013-04-25 | 2013-07-10 | 哈尔滨首创骨科微创医疗设备有限公司 | Osteopathy robot remote control system |
| CN104157114A (en)* | 2014-04-28 | 2014-11-19 | 北京理工大学 | Wireless transmission-based intelligent deformation magic scale |
| CN104000640B (en)* | 2014-05-12 | 2016-03-16 | 北京航空航天大学 | A kind of principal and subordinate's isomorphism remote operating reduction of the fracture mechanism |
| CN106217407B (en)* | 2016-07-21 | 2018-12-11 | 青岛欧开智能系统有限公司 | A kind of mechanical arm having dual safety |
| CN106361441B (en)* | 2016-09-19 | 2024-05-17 | 极限人工智能有限公司 | Master-slave type femoral shaft fracture reduction parallel robot system and method |
| CN106826789A (en)* | 2017-03-10 | 2017-06-13 | 蒙柳 | A kind of modular remote operating machinery arm controller |
| US11862302B2 (en) | 2017-04-24 | 2024-01-02 | Teladoc Health, Inc. | Automated transcription and documentation of tele-health encounters |
| US10483007B2 (en) | 2017-07-25 | 2019-11-19 | Intouch Technologies, Inc. | Modular telehealth cart with thermal imaging and touch screen user interface |
| CN107650149B (en)* | 2017-08-21 | 2020-09-18 | 北京精密机电控制设备研究所 | Contact and non-contact fusion measurement system and method based on serial mechanical arm |
| US11636944B2 (en) | 2017-08-25 | 2023-04-25 | Teladoc Health, Inc. | Connectivity infrastructure for a telehealth platform |
| CN107898594A (en)* | 2017-12-20 | 2018-04-13 | 燕山大学 | A kind of reproduction type waist treats servo robot |
| US10617299B2 (en) | 2018-04-27 | 2020-04-14 | Intouch Technologies, Inc. | Telehealth cart that supports a removable tablet with seamless audio/video switching |
| CN111904596B (en)* | 2020-06-09 | 2022-03-25 | 武汉联影智融医疗科技有限公司 | Navigation adjustment mechanism and surgical robot system with same |
| CN113907882A (en)* | 2021-08-26 | 2022-01-11 | 四川大学华西医院 | A reduction and positioning robot for fracture surgery |
| CN116098753A (en)* | 2022-10-21 | 2023-05-12 | 唐鼎 | Robotic system and working method for bone setting |
| Publication number | Publication date |
|---|---|
| CN1561923A (en) | 2005-01-12 |
| Publication | Publication Date | Title |
|---|---|---|
| CN1259891C (en) | Robot assisted bone setting operation medical system with lock marrow internal nail | |
| CN109998687B (en) | Robot system and method for fracture reduction surgery | |
| EP3328306A1 (en) | Apparatus for performing fracture reduction | |
| WO2011063715A1 (en) | Orthopaedic robot navigation apparatus and positioning system | |
| CN114760936A (en) | Methods and systems for robotic-assisted surgery using a customized bone registration guide | |
| CN109498141B (en) | Master-slave double-arm bionic digital long bone diaphysis fracture reduction robot | |
| EP2997926B1 (en) | Guiding and holding device for minimum incision foot surgery | |
| CN104825215B (en) | Osteotomy guide plate | |
| CN111728696A (en) | A craniotomy robot system and its craniotomy method | |
| CN114795496A (en) | Passive surgical robot navigation positioning system | |
| CN108324358B (en) | Fracture fixation device and fracture reduction system | |
| US20210093333A1 (en) | Systems and methods for fixating a navigation array | |
| EP3197379B1 (en) | Device for repositioning bone fracture fragments | |
| CN114191080B (en) | Decoupling type bone setting robot | |
| CN218652009U (en) | Remote control orthopedic robot guide pin device | |
| CN218606798U (en) | Projection principle-based guide nail placing device, guide robot and integrated orthopedic surgery equipment | |
| CN1561926A (en) | Robot assisted locking system with lock marrow internal nail based on image navigation | |
| CN113208794B (en) | A parallel robot for lower extremity fracture reduction | |
| CN215229764U (en) | Operating table and have its bone surgery auxiliary system | |
| Schauer et al. | RoboPoint—an autoclavable interactive miniature robot for surgery and interventional radiology | |
| KR100399004B1 (en) | Frame fixator and operation system thereof | |
| WO2023202611A1 (en) | Projection principle-based guide robot and orthopedic surgery screw placement method | |
| US11185376B2 (en) | Robot for placement of spinal instrumentation | |
| Wang et al. | Comparison analysis of robot-assisted computed tomography navigation system and manual freehand technique in orthopedic surgery | |
| Zhi-jiang et al. | A novel fluoroscopy-guided robot-assisted orthopaedic surgery system |
| Date | Code | Title | Description |
|---|---|---|---|
| C06 | Publication | ||
| PB01 | Publication | ||
| C10 | Entry into substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| C14 | Grant of patent or utility model | ||
| GR01 | Patent grant | ||
| C17 | Cessation of patent right | ||
| CF01 | Termination of patent right due to non-payment of annual fee | Granted publication date:20060621 Termination date:20110317 |