技术领域Technical Field
本发明属于Micro-LED显示技术领域,特别涉及一种Micro-LED发光芯片测试方法。The present invention belongs to the field of Micro-LED display technology, and in particular relates to a Micro-LED light-emitting chip testing method.
背景技术Background Art
Micro-LED显示作为新一代显示技术,集自发光、低功耗、高对比度、高亮度、超高分辨率与高色彩饱和度、高响应速度和长寿命等优点于一身;与有机发光二极管(OrganicLight Emitting Diode,OLED)相比,Micro-LED 作为无机发光器件,其寿命更长且能实现更高的显示亮度;与Mini-LED 技术相比,Micro-LED 能够实现像素级别的调光和更薄的显示。As a new generation of display technology, Micro-LED display combines the advantages of self-luminescence, low power consumption, high contrast, high brightness, ultra-high resolution and high color saturation, high response speed and long life. Compared with organic light emitting diodes (OLED), Micro-LED, as an inorganic light-emitting device, has a longer life and can achieve higher display brightness. Compared with Mini-LED technology, Micro-LED can achieve pixel-level dimming and thinner displays.
基于以上因素,Micro-LED 被视为极具潜力的下一代显示技术。Micro-LED 显示在无源矩阵 (PM) 驱动器的印刷电路板 (PCB) 上制造无法实现超小点间距、高密度、低成本制备;通过硅基半导体来实现Micro-LED显示则无法实现大面积制备。而采用TFT来实现Micro-LED制备可以实现超小像素尺寸、超高密度显示、低成本以及大尺寸显示。然而,当采用TFT的AM驱动技术来驱动Micro-LED显示器时,TFT和LED的性能差异会造成红绿蓝LED亮度匹配不均造成灰度过度不均匀以及亮度不均匀性,LED显示灰阶过度不均匀的原因是驱动控制系统针对红绿蓝每一级灰阶输出驱动电流或者调制脉宽步进精度没有达到要求,不能按照实际发光芯片所需要的步进精度去输出,导致某一级和前后级之间偏差过大,在Micro-LED显示屏出现灰阶过度不均匀。目前解决显示灰阶过度不均匀的方法是针对红绿蓝每一级调整驱动控制系统的输出精度以满足每一级输出所需的亮度要求。但是不同LED的光电特性是不一样的,所需的控制精度也不一样,而当前行业内并没有针对这一问题对LED特性和控制系统进行匹配研究,为了实现Micro-LED灰阶均匀过度及高均匀显示,需要对Micro-LED器件特性进行研究,才能够设计与其相匹配的像素电路和驱动架构,实现高画质显示。Based on the above factors, Micro-LED is regarded as a highly promising next-generation display technology. Micro-LED display cannot be manufactured on a printed circuit board (PCB) of a passive matrix (PM) driver to achieve ultra-small dot pitch, high density, and low-cost preparation; Micro-LED display cannot be manufactured on a large area using silicon-based semiconductors. Using TFT to realize Micro-LED preparation can achieve ultra-small pixel size, ultra-high density display, low cost, and large-size display. However, when using TFT AM driving technology to drive Micro-LED displays, the performance difference between TFT and LED will cause uneven brightness matching of red, green, and blue LEDs, resulting in excessive grayscale unevenness and brightness unevenness. The reason for excessive grayscale unevenness of LED display is that the output drive current or modulation pulse width step accuracy of the drive control system for each grayscale of red, green, and blue does not meet the requirements, and cannot be output according to the step accuracy required by the actual light-emitting chip, resulting in excessive deviation between a certain level and the previous and next levels, and excessive grayscale unevenness in the Micro-LED display. The current method to solve the excessive unevenness of grayscale display is to adjust the output accuracy of the drive control system for each level of red, green, and blue to meet the brightness requirements required for each level of output. However, the photoelectric characteristics of different LEDs are different, and the required control accuracy is also different. The current industry has not conducted research on matching LED characteristics and control systems to address this issue. In order to achieve uniform grayscale transition and highly uniform display of Micro-LED, it is necessary to study the characteristics of Micro-LED devices in order to design pixel circuits and drive architectures that match them and achieve high-definition display.
发明内容Summary of the invention
本发明解决现有采用TFT的AM驱动技术驱动Micro-LED显示器时,由于TFT和LED的性能差异会造成红绿蓝LED亮度匹配不均造成灰度过度不均匀以及亮度不均匀性的问题。从而提出的一种Micro-LED发光芯片测试方法,根据所述测试方法得到Micro-LED白场最小的灰阶等级N,从而设置Micro-LED显示深度为N bits才能够更好的克服Micro-LED的灰阶过度不均匀性问题,这为后续提升Micro-LED显示质量提供了重要参考价值。The present invention solves the problem that when the existing TFT AM driving technology is used to drive the Micro-LED display, the performance difference between TFT and LED will cause uneven matching of the brightness of the red, green and blue LEDs, resulting in excessive grayscale unevenness and brightness unevenness. Therefore, a Micro-LED light-emitting chip testing method is proposed. According to the testing method, the minimum grayscale level N of the Micro-LED white field is obtained, so that the Micro-LED display depth is set to N bits to better overcome the problem of excessive grayscale unevenness of the Micro-LED, which provides an important reference value for the subsequent improvement of the Micro-LED display quality.
为实现上述目的,本发明提供了如下方案:To achieve the above object, the present invention provides the following solutions:
本发明提供一种Micro-LED发光芯片测试方法,所述测试方法包括如下步骤:The present invention provides a Micro-LED light-emitting chip testing method, the testing method comprising the following steps:
步骤1:基于PCB基板设计Micro-LED测试阵列模组;Step 1: Design Micro-LED test array module based on PCB substrate;
步骤2:阵列内部采用并联方式分别将红绿蓝LED阵列连接;Step 2: Connect the red, green and blue LED arrays in parallel inside the array;
步骤3:设置电压源从0V开始,每次增长0.01V,直至达到设定的最高电压V,每增长一次电压记录一次亮度值,同时记录对应的电流值;Step 3: Set the voltage source to start from 0V and increase by 0.01V each time until it reaches the set maximum voltage V, record the brightness value every time the voltage increases, and record the corresponding current value at the same time;
步骤4:分别提取红绿蓝三种Micro-LED模块对应的最高目标亮度实测值和最低目标亮度实测值及其相对应的电压值数据;Step 4: Extract the highest target brightness measured value and the lowest target brightness measured value corresponding to the three types of Micro-LED modules of red, green and blue and their corresponding voltage value data respectively;
步骤5:通过最高亮度对应的数据电压和最低亮度对应的数据电压求得每一级灰度的数据电压增量;Step 5: Obtain the data voltage increment for each gray level through the data voltage corresponding to the highest brightness and the data voltage corresponding to the lowest brightness;
步骤6:根据每一级灰度的数据电压增量得到红绿蓝Micro-LED显示模块每一级灰度的数据电压,并计算得到红绿蓝模组最小灰阶电压的公约数;Step 6: Obtain the data voltage of each grayscale level of the red, green and blue Micro-LED display module according to the data voltage increment of each grayscale level, and calculate the common divisor of the minimum grayscale voltage of the red, green and blue modules ;
步骤7:根据红绿蓝模组最小灰阶电压的公约数得到对应的最小灰阶;Step 7: Based on the common divisor of the minimum grayscale voltage of the red, green and blue modules Get the corresponding minimum grayscale;
步骤8:选取红绿蓝每一级灰度的数据电压增量中的最大值,结合最小灰阶,得到Micro-LED白场最小的灰阶等级。Step 8: Select the maximum value of the data voltage increment for each gray level of red, green and blue , combined with the minimum grayscale, we get the minimum grayscale level of the Micro-LED white field.
进一步,还有一种优选实施例,采用外部电压源直接驱动Micro-LED测试阵列模组,从而保证加载到每颗LED上的电压是一致的。Furthermore, there is a preferred embodiment that uses an external voltage source to directly drive the Micro-LED test array module, thereby ensuring that the voltage loaded on each LED is consistent.
进一步,还有一种优选实施例,上述红绿蓝目标亮度比例为6:3:1。Furthermore, in a preferred embodiment, the red, green and blue target brightness ratio is 6:3:1.
进一步,还有一种优选实施例,步骤1具体为:Further, in another preferred embodiment, step 1 is specifically as follows:
基于PCB基板设计M × N个像素阵列模块,采用并联方式将M × N阵列连接。M × N pixel array modules are designed based on the PCB substrate, and the M × N arrays are connected in parallel.
进一步,还有一种优选实施例,步骤4中红绿蓝三种Micro-LED模块对应的最高目标亮度实测值分别为cd/m2、cd/m2和cd/m2以及相对应的电压值数据分别为V、V和V。Furthermore, in another preferred embodiment, the actual measured values of the highest target brightness corresponding to the three types of Micro-LED modules in step 4 are respectively cd/m2 , cd/m2 and cd/m2 and the corresponding voltage values are V. V and V.
进一步,还有一种优选实施例,步骤4中红绿蓝三种Micro-LED模块对应的最低目标亮度实测值分别为cd/m2、cd/m2和cd/m2以及相对应的电压值数据分别为V、V和V。Furthermore, in another preferred embodiment, the actual measured values of the minimum target brightness corresponding to the three types of Micro-LED modules in step 4 are respectively cd/m2 , cd/m2 and cd/m2 and the corresponding voltage values are V. V and V.
进一步,还有一种优选实施例,步骤5中每一级灰度的数据电压增量为:Furthermore, in another preferred embodiment, the data voltage increment for each gray level in step 5 is:
; ;
; ;
。 .
进一步,还有一种优选实施例,步骤6中红绿蓝Micro-LED显示模块每一级灰度的数据电压分别为:Furthermore, in another preferred embodiment, in step 6, the data voltages of each gray level of the red, green, and blue Micro-LED display modules are respectively:
R:mV/gray;R: mV/gray;
G:mV/gray;G: mV/gray;
B:mV/gray。B: mV/gray.
进一步,还有一种优选实施例,步骤7中最小灰阶为mV/gray。Furthermore, there is another preferred embodiment, in step 7, the minimum grayscale is mV/gray.
进一步,还有一种优选实施例,步骤8中Micro-LED白场最小的灰阶等级为:Furthermore, in another preferred embodiment, the minimum grayscale level of the Micro-LED white field in step 8 is:
; ;
其中,代表取整数。in, Represents an integer.
本发明的有益效果为:The beneficial effects of the present invention are:
1、本发明提供一种Micro-LED发光芯片测试方法,通过基于PCB基板设计Micro-LED测试阵列模组,同时阵列内部采用并联的方式将LED阵列连接起来,外部采用电压源直接驱动的方式保证加载到每颗LED上的电压是一致的,从而可以消除AM TFT像素驱动电路带来的影响。1. The present invention provides a method for testing a Micro-LED light-emitting chip. A Micro-LED test array module is designed based on a PCB substrate. The LED array is connected in parallel inside the array, and a voltage source is used externally to directly drive the LED to ensure that the voltage loaded on each LED is consistent, thereby eliminating the influence of the AM TFT pixel driving circuit.
进一步地,本发明所述的测试方法得到了在白场目标亮度为L cd/m2,Y K色温的条件下红绿蓝三基色Micro-LED阵列模组从0灰阶到255灰阶的数据电压分别为V、V和V。然后得到最小的灰阶电压分别为R:mV/gray,G:mV/gray,B:mV/gray,通过计算得到红绿蓝模组最小灰阶电压的公约数为,那么对应的最小灰阶为mV/gray。然后选取V、V和V中最大值,因此可以得到Micro-LED白场最小的灰阶等级为,因此Micro-LED显示深度为N bits才能够更好的克服Micro-LED的灰阶过度不均匀性,这为后续提升Micro-LED显示质量提供了重要参考价值。Furthermore, the test method of the present invention obtains that the data voltages of the red, green and blue primary color Micro-LED array module from grayscale 0 to grayscale 255 under the conditions of white field target brightness of L cd/m2 and YK color temperature are respectively V. V and V. Then the minimum grayscale voltage is R: mV/gray, G: mV/gray, B: mV/gray, the common divisor of the minimum grayscale voltage of the red, green and blue modules is calculated as , then the corresponding minimum grayscale is mV/gray. Then select V. V and Maximum value of V , so the minimum grayscale level of the Micro-LED white field can be obtained as Therefore, the Micro-LED display depth of N bits can better overcome the excessive grayscale non-uniformity of Micro-LED, which provides an important reference value for the subsequent improvement of Micro-LED display quality.
本发明适用于Micro-LED显示领域。The present invention is applicable to the field of Micro-LED display.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the specific implementation methods of the present invention or the technical solutions in the prior art, the drawings required for use in the specific implementation methods or the description of the prior art will be briefly introduced below. Obviously, the drawings described below are some implementation methods of the present invention. For ordinary technicians in this field, other drawings can be obtained based on these drawings without paying creative work.
图1是本发明所述的红色灯珠测试模块接线图;FIG1 is a wiring diagram of a red lamp bead test module according to the present invention;
图2是本发明所述的绿色灯珠测试模块接线图;FIG2 is a wiring diagram of a green lamp bead test module according to the present invention;
图3是本发明所述的蓝色灯珠测试模块接线图;FIG3 is a wiring diagram of a blue lamp bead test module according to the present invention;
图4是本发明所述的测试实验示意图;FIG4 is a schematic diagram of a test experiment according to the present invention;
图5是本发明所述的红绿蓝模组数据电压。FIG. 5 is a diagram showing the red, green and blue module data voltages according to the present invention.
具体实施方式DETAILED DESCRIPTION
下面结合附图对本发明的具体实施方式作进一步详细说明。以下实施方式将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变化和改进。The specific embodiments of the present invention are further described in detail below in conjunction with the accompanying drawings. The following embodiments will help those skilled in the art to further understand the present invention, but are not intended to limit the present invention in any form. It should be noted that, for those of ordinary skill in the art, several changes and improvements can be made without departing from the concept of the present invention.
实施方式一、本实施方式提供一种Micro-LED发光芯片测试方法,根据所述测试方法得到Micro-LED白场最小的灰阶等级N,从而设置Micro-LED显示深度为N bits才能够更好的克服Micro-LED的灰阶过度不均匀性问题,这为后续提升Micro-LED显示质量提供了重要参考价值。Implementation method 1. This implementation method provides a Micro-LED light-emitting chip testing method. According to the testing method, the minimum grayscale level N of the Micro-LED white field is obtained, so that the Micro-LED display depth is set to N bits to better overcome the problem of excessive grayscale non-uniformity of the Micro-LED, which provides important reference value for subsequent improvement of the Micro-LED display quality.
所述测试方法包括如下步骤:The testing method comprises the following steps:
步骤1:基于PCB基板设计Micro-LED测试阵列模组;Step 1: Design Micro-LED test array module based on PCB substrate;
具体为:Specifically:
基于PCB基板设计M × N的像素阵列模块,采用并联的方式将M × N阵列连接起来。M和N设计的大小需要根据所采用测量设备而定。根据常规测试设备面积大小设置的M和N的取值范围及阵列数如下表1所示。Based on the PCB substrate, an M × N pixel array module is designed, and the M × N arrays are connected in parallel. The size of M and N needs to be determined according to the measurement equipment used. The value range of M and N and the number of arrays set according to the area size of conventional test equipment are shown in Table 1 below.
表1Table 1
步骤2:Micro-LED测试阵列模组内部采用并联方式分别将红绿蓝LED阵列连接;Step 2: The red, green and blue LED arrays are connected in parallel inside the Micro-LED test array module;
具体为:Specifically:
通过固晶机将红绿蓝灯珠固晶到基板上,并采用并联方式分别将红绿蓝LED阵列连接起来,形成如图1至图3所示的测试模块接线图。The red, green and blue lamp beads are bonded to the substrate by a die bonding machine, and the red, green and blue LED arrays are connected in parallel to form the test module wiring diagram shown in Figures 1 to 3.
步骤3:设置电压源从0V开始,每次增长0.01V,直至达到设定的最高电压V,每增长一次电压记录一次亮度值,同时记录对应的电流值;Step 3: Set the voltage source to start from 0V and increase by 0.01V each time until it reaches the set maximum voltage V, record the brightness value every time the voltage increases, and record the corresponding current value at the same time;
具体为:Specifically:
设置电压源输出模式,从0V开始,每次增长0.01V,最高到V;其中,最高值的取值根据实际测量发光芯片的参数而定,为了防止电压过大烧坏测试模组又要保证电压能够实现最高亮度值。对应红灯来说从1.5V到2.0V ,绿灯则是从1.8V到2.1V,蓝灯则是2.1V到2.6V 。Set the voltage source output mode, starting from 0V and increasing by 0.01V each time, up to V; among which, the highest value The value is determined by the actual measured parameters of the light-emitting chip. In order to prevent the voltage from being too high and burning the test module, the voltage must be guaranteed to achieve the highest brightness value. For red light, it is from 1.5V to 2.0V, for green light, it is from 1.8V to 2.1V, and for blue light, it is from 2.1V to 2.6V.
步骤4:分别提取红绿蓝三种Micro-LED模块对应的最高目标亮度实测值和最低目标亮度实测值及其相对应的电压值数据;Step 4: Extract the highest target brightness measured value and the lowest target brightness measured value corresponding to the three types of Micro-LED modules of red, green and blue and their corresponding voltage value data respectively;
具体为:Specifically:
红绿蓝三种Micro-LED模块对应的最高目标亮度实测值分别为cd/m2、cd/m2和cd/m2以及相对应的电压值数据分别为V、V和V。The actual measured values of the highest target brightness corresponding to the three types of Micro-LED modules are: cd/m2 , cd/m2 and cd/m2 and the corresponding voltage values are V. V and V.
红绿蓝三种Micro-LED模块对应的最低目标亮度实测值分别为cd/m2、cd/m2和cd/m2以及相对应的电压值数据分别为V、V和V。The measured minimum target brightness values of the three Micro-LED modules, red, green and blue, are respectively cd/m2 , cd/m2 and cd/m2 and the corresponding voltage values are V. V and V.
步骤5:通过最高亮度对应的数据电压和最低亮度对应的数据电压求得每一级灰度的数据电压增量;Step 5: Obtain the data voltage increment for each gray level through the data voltage corresponding to the highest brightness and the data voltage corresponding to the lowest brightness;
具体为:Specifically:
红绿蓝三种Micro-LED模块每一级灰度的数据电压增量分别为:;The data voltage increments for each gray level of the three types of Micro-LED modules, red, green and blue, are: ;
; ;
。 .
步骤6:根据每一级灰度的数据电压增量得到红绿蓝Micro-LED显示模块每一级灰度的数据电压,并计算得到红绿蓝模组最小灰阶电压的公约数;Step 6: Obtain the data voltage of each grayscale level of the red, green and blue Micro-LED display module according to the data voltage increment of each grayscale level, and calculate the common divisor of the minimum grayscale voltage of the red, green and blue modules ;
其中,红绿蓝Micro-LED显示模块每一级灰度的数据电压分别为:Among them, the data voltage of each gray level of the red, green and blue Micro-LED display module is:
R:mV/gray;R: mV/gray;
G:mV/gray;G: mV/gray;
B:mV/gray。B: mV/gray.
步骤7:根据红绿蓝模组最小灰阶电压的公约数得到对应的最小灰阶;Step 7: Based on the common divisor of the minimum grayscale voltage of the red, green and blue modules Get the corresponding minimum grayscale;
其中,最小灰阶表示为:mV/gray。Among them, the minimum grayscale is expressed as: mV/gray.
步骤8:选取红绿蓝每一级灰度的数据电压增量中的最大值,结合最小灰阶,得到Micro-LED白场最小的灰阶等级。Step 8: Select the maximum value of the data voltage increment for each gray level of red, green and blue , combined with the minimum grayscale, we get the minimum grayscale level of the Micro-LED white field.
其中,Micro-LED白场最小的灰阶等级为:Among them, the minimum grayscale level of Micro-LED white field is:
; ;
其中,代表取整数。in, Represents an integer.
最后通过使用N bits驱动控制系统来驱动红绿蓝LED芯片在低灰度的时候能够准确发出cd/m2、cd/m2和cd/m22的亮度来完成6:3:1的配比实现最低亮度LMINcd/m2、Y K色温白场显示。与此同时在高亮的时候能够准确发出cd/m2、cd/m2和cd/m2的亮度来完成6:3:1的配比实现最高亮度LMAXcd/m2、Y K色温白场显示。这样就可以实现Micro-LED显示从低灰LMINcd/m2到高亮LMAXcd/m2灰阶过度没有偏色,均匀显示。Finally, by using the N bits driving control system to drive the red, green and blue LED chips, they can accurately emit light at low gray levels. cd/m2 , cd/m2 and The brightness of cd/m22 is used to complete the 6:3:1 ratio to achieve the minimum brightness LMIN cd/m2 and YK color temperature white field display. At the same time, it can accurately emit cd/m2 , cd/m2 and The brightness of cd/m2 is completed with a 6:3:1 ratio to achieve the highest brightness LMAX cd/m2 and YK color temperature white field display. In this way, the Micro-LED display can transition from low gray LMIN cd/m2 to high brightness LMAX cd/m2 grayscale without color cast and display evenly.
实施方式二、本实施方式是在实施方式一所述的一种Micro-LED发光芯片测试方法的基础上采用外部电压源直接驱动Micro-LED测试阵列模组。Embodiment 2: This embodiment adopts an external voltage source to directly drive the Micro-LED test array module based on the Micro-LED light emitting chip testing method described in Embodiment 1.
采用外部电压源直接驱动Micro-LED测试阵列模组,可以保证加载到每颗LED上的电压是一致的。Using an external voltage source to directly drive the Micro-LED test array module can ensure that the voltage loaded on each LED is consistent.
实施方式三、参见图4和图5说明本实施方式,本实施方式是对实施方式一所述的一种Micro-LED发光芯片测试方法作具体说明;Embodiment 3: Referring to FIG. 4 and FIG. 5 , this embodiment is described. This embodiment specifically describes a method for testing a Micro-LED light-emitting chip described in Embodiment 1.
实验系统设置如图4所示,将Micro-LED测试模组放置在LED626的测试台上,电源信号的正负极直接加载到载板上的Vdata和GND,Micro-LED的参数直接通过LED626测量,得到的电压、电流和亮度数据通过计算机保存。The experimental system is set up as shown in Figure 4. The Micro-LED test module is placed on the test bench of LED626. The positive and negative poles of the power signal are directly loaded to the Vdata and GND on the carrier board. The parameters of the Micro-LED are directly measured through LED626, and the obtained voltage, current and brightness data are saved by the computer.
Micro-LED显示屏目标亮度设置白场最高亮度为LMAXcd/cm2,最低亮度为LMINcd/m2,色温为Y K,LMAXcd/cm2和LMINcd/m2以及色温的值根据应用场景所设定,一般设定为户外使用和室内使用两种情况,由于环境光影响人眼在户外和室内对屏幕亮度敏感程度不一样所设定的值如下表2所示。The target brightness setting of the Micro-LED display is that the maximum brightness of the white field is LMAX cd/cm2 , the minimum brightness is LMIN cd/m2, and the color temperature is YK. The values of L MAX cd/cm 2,LMIN cd/m2 and color temperature are set according to the application scenario, and are generally set for outdoor and indoor use. Since the ambient light affects the human eye's sensitivity to screen brightness outdoors and indoors, the set values are shown in Table 2 below.
表2Table 2
红绿蓝目标亮度比例为6:3:1,如下表3和表4所示。The target brightness ratio of red, green and blue is 6:3:1, as shown in Table 3 and Table 4 below.
表3Table 3
表4Table 4
整个测试流程如下:The entire test process is as follows:
步骤一:设置电压源输出模式,从0V开始,每次增长0.01V,最高到V。每增长一次电压记录一次亮度值,同时记录对应的电流值。其中,最高值的取值根据实际测量发光芯片的参数而定,为了防止电压过大烧坏测试模组又要保证电压能够实现最高亮度值。对应红灯来说从1.5V到2.0V ,绿灯则是从1.8V到2.1V,蓝灯则是2.1V到2.6V 。Step 1: Set the voltage source output mode, starting from 0V and increasing by 0.01V each time, up to V. Each time the voltage increases, the brightness value is recorded, and the corresponding current value is recorded at the same time. Among them, the highest value The value is determined by the actual measured parameters of the light-emitting chip. In order to prevent the voltage from being too high and burning the test module, the voltage must be guaranteed to achieve the highest brightness value. For red light, it is from 1.5V to 2.0V, for green light, it is from 1.8V to 2.1V, and for blue light, it is from 2.1V to 2.6V.
步骤二:根据步骤一提取红绿蓝三种Micro-LED模块对应的最高目标亮度实测值cd/m2、cd/m2和cd/m2以及相对应的电压值数据V、V和V。Step 2: Extract the highest target brightness values corresponding to the three types of Micro-LED modules, red, green and blue, according to step 1 cd/m2 , cd/m2 and cd/m2 and corresponding voltage value data V. V and V.
步骤三:根据步骤一提取红绿蓝三种Micro-LED模块对应的最低目标亮度实测值cd/m2、cd/m2和cd/m2以及相对应的电压值数据V、V和V。Step 3: Extract the minimum target brightness values corresponding to the three types of Micro-LED modules, red, green and blue, according to step 1 cd/m2 , cd/m2 and cd/m2 and corresponding voltage value data V. V and V.
红绿蓝三种Micro-LED模块测量之后得到的测试结果如下表5和表6所示。The test results of the red, green and blue Micro-LED modules are shown in Tables 5 and 6 below.
表5Table 5
表6Table 6
设白场亮度随着数据电压变化是线性的,目标白场最高亮度对应的是255灰度级,那么目标白场对应的最低亮度则是1灰度级。那么通过最高亮度对应的数据电压和最低亮度对应的数据电压来求得每一级灰度的数据电压增量分别为,,将上述数据带入公式,可以得到红绿蓝Micro-LED显示模块每一级灰度的数据电压为R:mV/gray,G:mV/gray,B:mV/gray,如图5所示。通过计算得到红绿蓝模组最小灰阶电压的公约数为,那么对应的最小灰阶为mV/gray。然后选取V、V和V中最大值,因此可以得到Micro-LED白场最小的灰阶等级为,因此Micro-LED显示深度为N bits才能够更好的克服Micro-LED的灰阶过度不均匀性。Assume that the white field brightness changes linearly with the data voltage, and the highest brightness of the target white field corresponds to grayscale level 255, then the lowest brightness of the target white field is grayscale level 1. Then the data voltage increments for each grayscale level are obtained by using the data voltage corresponding to the highest brightness and the data voltage corresponding to the lowest brightness. , , Substituting the above data into the formula , we can get the data voltage of each gray level of the red, green and blue Micro-LED display module as R: mV/gray, G: mV/gray, B: mV/gray, as shown in Figure 5. The common divisor of the minimum grayscale voltage of the red, green and blue modules is calculated as , then the corresponding minimum grayscale is mV/gray. Then select V. V and Maximum value of V , so the minimum grayscale level of the Micro-LED white field can be obtained as Therefore, the Micro-LED display depth of N bits can better overcome the excessive grayscale non-uniformity of Micro-LED.
进一步通过使用N bits驱动控制系统来驱动红绿蓝LED芯片在低灰度的时候能够准确发出cd/m2、cd/m2和cd/m22的亮度来完成6:3:1的配比实现最低亮度LMINcd/m2、Y K色温白场显示。与此同时在高亮的时候能够准确发出cd/m2、cd/m2和cd/m2的亮度来完成6:3:1的配比实现最高亮度LMAXcd/m2、Y K色温白场显示。这样就可以实现Micro-LED显示从低灰LMINcd/m2到高亮LMAXcd/m2灰阶过度没有偏色,均匀显示。Furthermore, by using an N-bit drive control system, the red, green, and blue LED chips can be accurately emitted at low gray levels. cd/m2 , cd/m2 and The brightness of cd/m22 is used to complete the 6:3:1 ratio to achieve the minimum brightness LMIN cd/m2 and YK color temperature white field display. At the same time, it can accurately emit cd/m2 , cd/m2 and The brightness of cd/m2 is completed with a 6:3:1 ratio to achieve the highest brightness LMAX cd/m2 and YK color temperature white field display. In this way, the Micro-LED display can transition from low gray LMIN cd/m2 to high brightness LMAX cd/m2 grayscale without color cast and display evenly.
以上描述中,为了说明而不是为了限定,提出了诸如特定系统结构、技术之类的具体细节,以便透彻理解本申请实施方式。然而,本领域的技术人员应当清楚,在没有这些具体细节的其他实施例中也可以实现本申请。在其它情况下,省略对众所周知的系统、装置、电路以及方法的详细说明,以免不必要的细节妨碍本申请的描述。In the above description, specific details such as specific system structures and technologies are provided for the purpose of illustration rather than limitation, so as to provide a thorough understanding of the embodiments of the present application. However, it should be clear to those skilled in the art that the present application may also be implemented in other embodiments without these specific details. In other cases, detailed descriptions of well-known systems, devices, circuits, and methods are omitted to prevent unnecessary details from obstructing the description of the present application.
以上所述仅为本发明的实施方式而已,并不限制于本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。The above description is only an embodiment of the present invention and is not intended to limit the present invention. For those skilled in the art, the present invention may be modified and varied in various ways.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202411336557.2ACN118884188B (en) | 2024-09-25 | 2024-09-25 | Micro-LED light-emitting chip testing method |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202411336557.2ACN118884188B (en) | 2024-09-25 | 2024-09-25 | Micro-LED light-emitting chip testing method |
| Publication Number | Publication Date |
|---|---|
| CN118884188Atrue CN118884188A (en) | 2024-11-01 |
| CN118884188B CN118884188B (en) | 2024-12-17 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202411336557.2AActiveCN118884188B (en) | 2024-09-25 | 2024-09-25 | Micro-LED light-emitting chip testing method |
| Country | Link |
|---|---|
| CN (1) | CN118884188B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN119716494A (en)* | 2025-02-26 | 2025-03-28 | 上海聚跃检测技术有限公司 | Gallium nitride semiconductor chip package debugging parameter detection device and method |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2005195764A (en)* | 2004-01-06 | 2005-07-21 | Sony Corp | Display device and method of driving display device |
| KR20070082029A (en)* | 2006-02-14 | 2007-08-20 | 요코가와 덴키 가부시키가이샤 | Test system |
| CN112614453A (en)* | 2021-01-07 | 2021-04-06 | 深圳市华星光电半导体显示技术有限公司 | Method and device for diagnosing response time abnormity of liquid crystal display panel |
| CN115685580A (en)* | 2021-07-23 | 2023-02-03 | 京东方科技集团股份有限公司 | 3D display device and method for improving image crosstalk distribution |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| JP2005195764A (en)* | 2004-01-06 | 2005-07-21 | Sony Corp | Display device and method of driving display device |
| KR20070082029A (en)* | 2006-02-14 | 2007-08-20 | 요코가와 덴키 가부시키가이샤 | Test system |
| CN112614453A (en)* | 2021-01-07 | 2021-04-06 | 深圳市华星光电半导体显示技术有限公司 | Method and device for diagnosing response time abnormity of liquid crystal display panel |
| CN115685580A (en)* | 2021-07-23 | 2023-02-03 | 京东方科技集团股份有限公司 | 3D display device and method for improving image crosstalk distribution |
| Title |
|---|
| 李文通;丁雯;朱牧;: "复杂背景下玫瑰扫描红外探测系统作用距离评估方法", 红外与激光工程, no. 10, 25 October 2017 (2017-10-25), pages 254 - 260* |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN119716494A (en)* | 2025-02-26 | 2025-03-28 | 上海聚跃检测技术有限公司 | Gallium nitride semiconductor chip package debugging parameter detection device and method |
| CN119716494B (en)* | 2025-02-26 | 2025-06-03 | 上海聚跃检测技术有限公司 | Gallium nitride semiconductor chip package debugging parameter detection device and method |
| Publication number | Publication date |
|---|---|
| CN118884188B (en) | 2024-12-17 |
| Publication | Publication Date | Title |
|---|---|---|
| US11645975B2 (en) | Pixel driving circuit | |
| CN114830218A (en) | Display module and driving method thereof | |
| CN1231883C (en) | Driving circuit for active matrix organic LED | |
| CN104091570B (en) | Backlight circuit and driving method thereof, backlight module, display device | |
| CN109616039B (en) | Display panel, light-emitting control circuit and driving method thereof and display device | |
| CN118884188A (en) | A Micro-LED light-emitting chip testing method | |
| CN109767725A (en) | A pixel driving circuit, a driving method thereof, and a display device | |
| WO2022052240A1 (en) | Multi-grayscale pixel driving circuit, and display panel | |
| CN109285501B (en) | Display device | |
| WO2015172411A1 (en) | Panel drive circuit and panel drive method | |
| TW201926668A (en) | Micro lighting device | |
| KR102744636B1 (en) | Display apparatus and controlling method thereof | |
| CN114141200B (en) | Display module and leakage current detection method | |
| CN107195273A (en) | A kind of OLED display device and the method for improving display device display performance | |
| TWI738512B (en) | Backlight module and liquid crystal display thereof | |
| TWI825947B (en) | Display panel | |
| TWI834473B (en) | Display panel | |
| CN113517266A (en) | A semiconductor light source with uniform light color | |
| CN115938289B (en) | Method for adjusting display screen brightness consistency based on static driving circuit | |
| CN101556764A (en) | Driving method of passive matrix organic electroluminescent diode display device | |
| TWI796177B (en) | Pixel array | |
| US20240162210A1 (en) | Light source module and led film comprising same | |
| TW202416257A (en) | Pixel circuit | |
| CN108541108B (en) | LED lamp bead packaging structure and LED display screen | |
| CN108231011B (en) | Quantum dot electrowetting display device |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |