Movatterモバイル変換


[0]ホーム

URL:


CN118801410A - A microgrid stability control method based on pole placement method - Google Patents

A microgrid stability control method based on pole placement method
Download PDF

Info

Publication number
CN118801410A
CN118801410ACN202410810117.XACN202410810117ACN118801410ACN 118801410 ACN118801410 ACN 118801410ACN 202410810117 ACN202410810117 ACN 202410810117ACN 118801410 ACN118801410 ACN 118801410A
Authority
CN
China
Prior art keywords
microgrid
transfer function
additional controller
interconnected converter
reference value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202410810117.XA
Other languages
Chinese (zh)
Inventor
吴翔宇
许寅
王颖
刘曌
李猛
张放
张晓红
王帅杰
尚子轩
于润妮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Jiaotong University
Original Assignee
Beijing Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Jiaotong UniversityfiledCriticalBeijing Jiaotong University
Priority to CN202410810117.XApriorityCriticalpatent/CN118801410A/en
Publication of CN118801410ApublicationCriticalpatent/CN118801410A/en
Pendinglegal-statusCriticalCurrent

Links

Classifications

Landscapes

Abstract

Translated fromChinese

本发明提供了一种基于极点配置法的微电网稳定控制方法,属于微电网系统稳定性控制技术领域,包括:采集交直流互联变流器的输出有功功率作为交直流互联变流器附加控制器的输入信号,随后将输出信号与交直流互联变流器的原始参考值进行信号叠加,计算得到新的参考值;并利用极点配置法确定附加控制器的设计参数,确定交直流微电网系统的闭环传递函数;通过闭环传递函数,确定附加控制器调整交直流微电网系统的整体动态响应特性,根据设定的期望主导特征根提高交直流微电网系统的阻尼比,以控制交直流互联变流器的附加阻尼。本发明通过在交直流互联变流器中加入附加控制器,增加系统的阻尼,解决了交直流微电网系统中的宽频振荡问题。

The present invention provides a microgrid stability control method based on pole configuration method, which belongs to the field of microgrid system stability control technology, including: collecting the output active power of the AC/DC interconnected converter as the input signal of the additional controller of the AC/DC interconnected converter, then superimposing the output signal with the original reference value of the AC/DC interconnected converter, and calculating a new reference value; and using the pole configuration method to determine the design parameters of the additional controller and determine the closed-loop transfer function of the AC/DC microgrid system; through the closed-loop transfer function, determine that the additional controller adjusts the overall dynamic response characteristics of the AC/DC microgrid system, and improves the damping ratio of the AC/DC microgrid system according to the set expected dominant characteristic root, so as to control the additional damping of the AC/DC interconnected converter. The present invention solves the problem of broadband oscillation in the AC/DC microgrid system by adding an additional controller to the AC/DC interconnected converter to increase the damping of the system.

Description

Translated fromChinese
一种基于极点配置法的微电网稳定控制方法A microgrid stability control method based on pole placement method

技术领域Technical Field

本发明涉及微电网系统稳定性控制技术领域,特别是涉及一种基于极点配置法的微电网稳定控制方法。The present invention relates to the technical field of microgrid system stability control, and in particular to a microgrid stability control method based on a pole placement method.

背景技术Background Art

交直流微电网中大量不同类型电力电子变流器在不同带宽控制环节的作用下容易诱发系统发生宽频带振荡现象,威胁微电网的安全稳定运行。电力系统宽频振荡是指电力系统中的电气量随时间作周期性波动,且振荡频率覆盖较宽范围(0.01Hz到数kHz)的动态过程。近年来,在大电网中由于新能源、柔性直流输电、弱电网等元素间动态交互所导致的宽频振荡现象频发。交直流微电网也同样可以包含新能源和直流配电这些元素并可能接入弱电网,此外交直流微电网中的控制环节带宽覆盖0.01Hz到数kHz的频带范围,因此,交直流微电网中同样具备发生宽频振荡问题的可能性。A large number of different types of power electronic converters in AC/DC microgrids are prone to induce wideband oscillation in the system under the action of different bandwidth control links, threatening the safe and stable operation of the microgrid. Power system wideband oscillation refers to the dynamic process in which the electrical quantity in the power system fluctuates periodically over time and the oscillation frequency covers a wide range (0.01Hz to several kHz). In recent years, wideband oscillations have occurred frequently in large power grids due to dynamic interactions between elements such as new energy, flexible DC transmission, and weak power grids. AC/DC microgrids can also include elements such as new energy and DC distribution and may be connected to weak power grids. In addition, the control link bandwidth in DC microgrids covers a frequency band range of 0.01Hz to several kHz. Therefore, AC/DC microgrids also have the possibility of wideband oscillation problems.

在实际案例方面,例如在2019年1月,根据现有的交直流混合微电网示范工程在孤岛运行状况下,当交流侧负荷增加后,发生了直流侧电流持续增幅振荡现象,最终直流侧的过大电流引起了交直流网络间接口的电力电子变压器的过电流保护动作,导致其从系统中切除。当交直流微电网中发生宽频振荡后,尤其是在发生发散振荡的情况下,如果没有得到及时处理,电压电流的大幅波动容易导致微电网中新能源发电等设备大量脱网,严重影响系统的安全稳定运行。In terms of actual cases, for example, in January 2019, according to the existing AC/DC hybrid microgrid demonstration project, when the AC side load increased under isolated operation, the DC side current continued to increase and oscillate, and finally the excessive current on the DC side caused the overcurrent protection of the power electronic transformer at the interface between the AC and DC networks to be activated, resulting in its removal from the system. When broadband oscillation occurs in an AC/DC microgrid, especially in the case of divergent oscillation, if it is not handled in a timely manner, the large fluctuations in voltage and current can easily cause a large number of new energy power generation equipment in the microgrid to be disconnected from the grid, seriously affecting the safe and stable operation of the system.

传统的宽频振荡抑制主要针对交流微电网或直流微电网,对交直流微电网的振荡抑制研究不充分。因此,亟需一种引入交直流互联变流器附加控制而抑制交直流微电网宽频振荡的方法。Traditional broadband oscillation suppression is mainly aimed at AC microgrids or DC microgrids, and the research on oscillation suppression of AC and DC microgrids is insufficient. Therefore, there is an urgent need for a method to introduce additional control of AC and DC interconnected converters to suppress broadband oscillations of AC and DC microgrids.

发明内容Summary of the invention

为了克服现有技术的不足,本发明的目的是提供一种基于极点配置法的微电网稳定控制方法,通过在交直流互联变流器中加入附加控制器,增加了系统的阻尼,补偿滞后的相位,有效的解决了交直流微电网系统中的宽频振荡问题。In order to overcome the shortcomings of the prior art, the purpose of the present invention is to provide a microgrid stability control method based on the pole configuration method. By adding an additional controller to the AC/DC interconnected converter, the damping of the system is increased, the lagging phase is compensated, and the problem of broadband oscillation in the AC/DC microgrid system is effectively solved.

为实现上述目的,本发明提供了如下方案:To achieve the above object, the present invention provides the following solutions:

一种基于极点配置法的微电网稳定控制方法,包括以下步骤:A microgrid stability control method based on pole placement method comprises the following steps:

获取交直流互联变流器的输出有功功率;Obtaining the output active power of the AC/DC interconnected converter;

将所述输出有功功率转换为输入信号,并将所述输入信号传递至所述交直流互联变流器中附加控制器输入端,得到输出信号;Converting the output active power into an input signal, and transmitting the input signal to an input terminal of an additional controller in the AC/DC interconnected converter to obtain an output signal;

将所述输出信号与所述交直流互联变流器的原始参考值进行信号叠加,计算得到新的参考值;The output signal is superimposed on an original reference value of the AC/DC interconnected converter to calculate a new reference value;

基于所述新的参考值和期望的系统动态响应,利用极点配置法确定所述附加控制器的设计参数;Determining design parameters of the additional controller using a pole placement method based on the new reference value and the expected system dynamic response;

根据所述设计参数构建所述交直流互联变流器附加控制器的数学模型,确定交直流微电网系统的闭环传递函数;Constructing a mathematical model of the additional controller of the AC/DC interconnected converter according to the design parameters, and determining a closed-loop transfer function of the AC/DC microgrid system;

通过所述闭环传递函数,确定所述附加控制器调整交直流微电网系统整体的动态响应特性,根据设定的期望主导特征根提高交直流微电网系统的阻尼比,以控制交直流互联变流器的附加阻尼。Through the closed-loop transfer function, the additional controller is determined to adjust the overall dynamic response characteristics of the AC/DC microgrid system, and the damping ratio of the AC/DC microgrid system is increased according to the set expected dominant characteristic root to control the additional damping of the AC/DC interconnected converter.

优选地,所述获取交直流互联变流器的输出有功功率,包括:Preferably, the obtaining of the output active power of the AC/DC interconnected converter includes:

根据所述交直流互联变流器的功率测量电路或传感器,采集所述输出有功功率ΔPILCCollecting the output active power ΔPILC according to the power measurement circuit or sensor of the AC/DC interconnected converter;

对所述输出有功功率ΔPILC进行滤波降噪处理,随后将处理后的所述输出有功功率ΔPILC传递至所述附加控制器输入端。The output active power ΔPILC is subjected to filtering and noise reduction processing, and then the processed output active power ΔPILC is transmitted to the input terminal of the additional controller.

优选地,将所述输出有功功率转换为输入信号,并将所述输入信号传递至所述交直流互联变流器中附加控制器输入端,得到输出信号的步骤为:所述附加控制器根据输入的所述输出有功功率ΔPILC,计算得到输出信号ΔIdPreferably, the step of converting the output active power into an input signal and transmitting the input signal to the input terminal of an additional controller in the AC/DC interconnected converter to obtain an output signal is as follows: the additional controller calculates an output signal ΔId according to the input output active power ΔPILC .

优选地,将所述输出信号与所述交直流互联变流器的原始参考值进行信号叠加,计算得到新的参考值的步骤为:将得到的输出信号ΔId叠加到交直流互联变流器交流侧端口输出电流的d轴分量参考值Idref的控制端处,叠加信号得到新的交直流互联变流器交流侧端口输出电流的d轴分量参考值IdnewrefPreferably, the output signal is superimposed on the original reference value of the AC/DC interconnected converter, and the step of calculating a new reference value is: superimposing the obtained output signal ΔId to the control end of the d-axis component reference value Idref of the output current of the AC side port of the AC/DC interconnected converter, and superimposing the signal to obtain a new d-axis component reference value Idnewref of the output current of the AC side port of the AC/DC interconnected converter.

优选地,所述新的参考值按以下公式计算得到:Preferably, the new reference value is calculated according to the following formula:

其中,P为有功功率,ud为交流电压的d轴分量,uq为交流电压的q轴分量,为交直流互联变流器输出有功功率的参考值。Where P is the active power,ud is the d-axis component of the AC voltage, andq is the q-axis component of the AC voltage. It is the reference value of the active power output of the AC/DC interconnected converter.

优选地,根据所述设计参数构建所述交直流互联变流器附加控制器的数学模型,确定交直流微电网系统的闭环传递函数,包括:Preferably, constructing a mathematical model of the additional controller of the AC/DC interconnected converter according to the design parameters and determining a closed-loop transfer function of the AC/DC microgrid system comprises:

确定所述交直流微电网系统的原始传递函数H(s);Determine the original transfer function H(s) of the AC/DC microgrid system;

根据所述交直流微电网系统的原始传递函数H(s)与附加控制器的传递函数G(s),确定所述交直流微电网系统的闭环传递函数GB(s);Determine a closed-loop transfer function GB (s) of the AC/DC microgrid system according to an original transfer function H(s) of the AC/DC microgrid system and a transfer function G(s) of the additional controller;

所述闭环传递函数GB(s)为:The closed-loop transfer functionGB (s) is:

其中,附加控制器G(s)由比例环节K、隔直环节Tw、超前滞后环节T1、T2和限幅环节ΔPmax、ΔPmin构成,传递函数表达式为:The additional controller G(s) is composed of a proportional link K, a DC isolation linkTw , lead-lag linksT1 ,T2 and limit linksΔPmax ,ΔPmin , and the transfer function expression is:

其中,隔直环节Tw取值为10,限幅环节中的ΔPmax和ΔPmin分别取值为100kW、-100kW。Among them, the value ofTw in the DC isolation link is 10, and the values of ΔPmax and ΔPmin in the limiting link are 100kW and -100kW respectively.

优选地,所述交直流微电网系统的闭环传递函数GB(s)与特征方程为:Preferably, the closed-loop transfer functionGB (s) and characteristic equation of the AC/DC microgrid system are:

通过求解所述特征方程,确定交直流微电网系统的主导特征根sd,其满足的幅值和相角条件为:By solving the characteristic equation, the dominant characteristic root sd of the AC/DC microgrid system is determined, and the amplitude and phase angle conditions it satisfies are:

根据∠H(sd)G(sd)=0,即θHG=0,得到θG=-θH,其中,θH、θG分别为所述交直流微电网系统的原始传递函数H(s)和附加控制器的传递函数G(s)的相角。According to ∠H(sd )G(sd )=0, that is, θHG =0, θG =-θH is obtained, wherein θH and θG are the phase angles of the original transfer function H(s) of the AC/DC microgrid system and the transfer function G(s) of the additional controller, respectively.

优选地,根据所述原始传递函数H(s)的相角θH,结合相位补偿环节的公式求解参数α和超前滞后环节T1、T2,包括:Preferably, according to the phase angle θH of the original transfer function H(s), the parameter α and the lead-lag link T1 , T2 are solved in combination with the formula of the phase compensation link, including:

通过上式,利用极点配置法计算出在主导特征根时的参数K,包括:Through the above formula, the pole configuration method is used to calculate the parameter K at the dominant characteristic root, including:

其中,ωd为主导振荡模式的振荡角频率;Where,ωd is the oscillation angular frequency of the dominant oscillation mode;

根据上式求解得到附加控制器G(s)中的各个参数值,将得到的各个参数值应用于所述交直流互联变流器的控制环节中,实现抑制所述交直流微电网系统的振荡。The parameter values in the additional controller G(s) are obtained by solving the above formula, and the obtained parameter values are applied to the control link of the AC/DC interconnected converter to suppress the oscillation of the AC/DC microgrid system.

根据本发明提供的具体实施例,本发明公开了以下技术效果:According to the specific embodiments provided by the present invention, the present invention discloses the following technical effects:

本发明提供了一种基于极点配置法的微电网稳定控制方法,包括:采集交直流互联变流器的输出有功功率作为交直流互联变流器附加控制器的输入信号,随后将输出信号与交直流互联变流器的原始参考值进行信号叠加,计算得到新的参考值;并利用极点配置法确定附加控制器的设计参数,确定交直流微电网系统的闭环传递函数;通过闭环传递函数,确定附加控制器调整交直流微电网系统整体的动态响应特性,根据设定的期望主导特征根提高交直流微电网系统的阻尼比,以控制交直流互联变流器的附加阻尼。通过在交直流互联变流器中加入附加控制器,增加系统的阻尼,补偿滞后的相位,有效的解决了交直流微电网系统中的宽频振荡问题。The present invention provides a microgrid stability control method based on the pole configuration method, including: collecting the output active power of the AC/DC interconnected converter as the input signal of the additional controller of the AC/DC interconnected converter, then superimposing the output signal with the original reference value of the AC/DC interconnected converter, and calculating a new reference value; and using the pole configuration method to determine the design parameters of the additional controller, and determine the closed-loop transfer function of the AC/DC microgrid system; through the closed-loop transfer function, determine the additional controller to adjust the overall dynamic response characteristics of the AC/DC microgrid system, and improve the damping ratio of the AC/DC microgrid system according to the set expected dominant characteristic root to control the additional damping of the AC/DC interconnected converter. By adding an additional controller to the AC/DC interconnected converter, increasing the damping of the system, and compensating for the lagging phase, the problem of broadband oscillation in the AC/DC microgrid system is effectively solved.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings required for use in the embodiments will be briefly introduced below. Obviously, the drawings described below are only some embodiments of the present invention. For ordinary technicians in this field, other drawings can be obtained based on these drawings without paying creative work.

图1为本发明实施例1提供的方法流程图;FIG1 is a flow chart of a method provided in Example 1 of the present invention;

图2为本发明实施例1提供的附加控制器结构图;FIG2 is a structural diagram of an additional controller provided in Example 1 of the present invention;

图3为本发明实施例2提供的交直流微电网系统的电路拓扑结构图;FIG3 is a circuit topology diagram of an AC/DC microgrid system provided in Embodiment 2 of the present invention;

图4为本发明实施例2提供的附加控制器投入前后交直流互联变流器的输出功率对比结果图。FIG4 is a graph showing a comparison of the output power of the AC/DC interconnected converter before and after the additional controller provided in Example 2 of the present invention is put into operation.

具体实施方式DETAILED DESCRIPTION

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will be combined with the drawings in the embodiments of the present invention to clearly and completely describe the technical solutions in the embodiments of the present invention. Obviously, the described embodiments are only part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by ordinary technicians in this field without creative work are within the scope of protection of the present invention.

为使本发明的目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。In order to make the purpose, features and advantages of the present invention more obvious and easy to understand, the present invention is further described in detail below with reference to the accompanying drawings and specific embodiments.

实施例1Example 1

如图1所示,基于图2提供的附加控制器结构图,本发明提供了一种基于极点配置法的微电网稳定控制方法,包括以下步骤:As shown in FIG. 1 , based on the additional controller structure diagram provided in FIG. 2 , the present invention provides a microgrid stability control method based on a pole placement method, comprising the following steps:

步骤100、获取交直流互联变流器的输出有功功率;Step 100: obtaining the output active power of the AC/DC interconnected converter;

步骤200、将所述输出有功功率转换为输入信号,并将所述输入信号传递至所述交直流互联变流器中附加控制器输入端,得到输出信号;Step 200: convert the output active power into an input signal, and transmit the input signal to an input terminal of an additional controller in the AC/DC interconnected converter to obtain an output signal;

步骤300、将所述输出信号与所述交直流互联变流器的原始参考值进行信号叠加,计算得到新的参考值;Step 300: Superimpose the output signal with the original reference value of the AC/DC interconnected converter to obtain a new reference value;

步骤400、基于所述新的参考值和期望的系统动态响应,利用极点配置法确定所述附加控制器的设计参数;Step 400: Determine the design parameters of the additional controller using a pole placement method based on the new reference value and the expected system dynamic response;

步骤500、根据所述设计参数构建所述交直流互联变流器附加控制器的数学模型,确定交直流微电网系统的闭环传递函数;Step 500: construct a mathematical model of the additional controller of the AC/DC interconnected converter according to the design parameters, and determine a closed-loop transfer function of the AC/DC microgrid system;

步骤600、通过所述闭环传递函数,确定所述附加控制器调整交直流微电网系统的整体动态响应特性,根据设定的期望主导特征根提高交直流微电网系统的阻尼比,以控制交直流互联变流器的附加阻尼。Step 600: Determine, through the closed-loop transfer function, that the additional controller adjusts the overall dynamic response characteristics of the AC/DC microgrid system, and increase the damping ratio of the AC/DC microgrid system according to the set desired dominant characteristic root to control the additional damping of the AC/DC interconnected converter.

在上述步骤100中,所述获取交直流互联变流器的输出有功功率,包括:In the above step 100, the step of obtaining the output active power of the AC/DC interconnected converter includes:

S101、根据所述交直流互联变流器的功率测量电路或传感器,采集所述输出有功功率ΔPILCS101, collecting the output active power ΔPILC according to the power measurement circuit or sensor of the AC/DC interconnected converter;

S102、对所述输出有功功率ΔPILC进行滤波降噪处理,随后将处理后的所述输出有功功率ΔPILC传递至所述附加控制器输入端。S102 , performing filtering and noise reduction processing on the output active power ΔPILC , and then transmitting the processed output active power ΔPILC to the input terminal of the additional controller.

根据上述内容,将所述输出有功功率转换为输入信号,并将所述输入信号传递至所述交直流互联变流器中附加控制器输入端,得到输出信号的步骤为:所述附加控制器根据输入的所述输出有功功率ΔPILC,计算得到输出信号ΔIdAccording to the above content, the step of converting the output active power into an input signal and transmitting the input signal to the input terminal of the additional controller in the AC/DC interconnected converter to obtain the output signal is as follows: the additional controller calculates the output signal ΔId according to the input output active power ΔPILC .

另外,在上述内容中,将所述输出信号与所述交直流互联变流器的原始参考值进行信号叠加,计算得到新的参考值的步骤为:将得到的输出信号ΔId叠加到交直流互联变流器交流侧端口输出电流的d轴分量参考值Idref的控制端处,叠加信号得到新的交直流互联变流器交流侧端口输出电流的d轴分量参考值IdnewrefIn addition, in the above content, the output signal is superimposed with the original reference value of the AC/DC interconnected converter to calculate a new reference value, which is as follows: the obtained output signal ΔId is superimposed on the control end of the d-axis component reference value Idref of the output current of the AC side port of the AC/DC interconnected converter, and the superimposed signal is obtained to obtain a new d-axis component reference value Idnewref of the output current of the AC side port of the AC/DC interconnected converter.

上述新的参考值按以下公式计算得到:The above new reference value is calculated according to the following formula:

其中,P为有功功率,ud为交流电压的d轴分量,uq为交流电压的q轴分量,为交直流互联变流器输出有功功率的参考值。Where P is the active power,ud is the d-axis component of the AC voltage, andq is the q-axis component of the AC voltage. It is the reference value of the active power output of the AC/DC interconnected converter.

在本实施例中,根据所述设计参数构建所述交直流互联变流器附加控制器的数学模型,确定交直流微电网系统的闭环传递函数,包括:In this embodiment, a mathematical model of the additional controller of the AC/DC interconnected converter is constructed according to the design parameters to determine a closed-loop transfer function of the AC/DC microgrid system, including:

确定所述交直流微电网系统的原始传递函数H(s);Determine the original transfer function H(s) of the AC/DC microgrid system;

根据所述原始传递函数H(s)与附加控制器G(s),确定所述闭环传递函数GB(s);Determining the closed-loop transfer function GB (s) according to the original transfer function H(s) and the additional controller G(s);

所述闭环传递函数GB(s)为:The closed-loop transfer functionGB (s) is:

其中,附加控制器G(s)由比例环节K、隔直环节Tw、超前滞后环节T1、T2和限幅环节ΔPmax、ΔPmin构成,传递函数表达式为:The additional controller G(s) is composed of a proportional link K, a DC isolation linkTw , lead-lag linksT1 ,T2 and limit linksΔPmax ,ΔPmin , and the transfer function expression is:

其中,隔直环节Tw取值为10,限幅环节中的ΔPmax和ΔPmin分别取值为100kW、-100kW。Among them, the value ofTw in the DC isolation link is 10, and the values of ΔPmax and ΔPmin in the limiting link are 100kW and -100kW respectively.

根据上述内容可得,上述闭环传递函数GB(s)与特征方程为:According to the above content, the closed-loop transfer functionGB (s) and the characteristic equation are:

通过求解所述特征方程,确定交直流微电网系统的主导特征根sd,其满足的幅值和相角条件为:By solving the characteristic equation, the dominant characteristic root sd of the AC/DC microgrid system is determined, and the amplitude and phase angle conditions it satisfies are:

根据∠H(sd)G(sd)=0,即θHG=0,得到θG=-θH,也就是说,系统的滞后相角可被G(s)的超前相角抵消。其中,θH、θG分别为交直流微电网系统的原始传递函数H(s)和附加控制器的传递函数G(s)的相角。According to ∠H(sd )G(sd )=0, that is, θHG =0, we get θG =-θH , that is, the lagging phase angle of the system can be offset by the leading phase angle of G(s). Among them, θH and θG are the phase angles of the original transfer function H(s) of the AC/DC microgrid system and the transfer function G(s) of the additional controller, respectively.

其次,根据交直流微电网系统的原始传递函数H(s)的相角θH,结合相位补偿环节的公式求解参数α和超前滞后环节T1、T2,包括:Secondly, according to the phase angle θH of the original transfer function H(s) of the AC/DC microgrid system, the parameter α and the lead-lag link T1 , T2 are solved in combination with the formula of the phase compensation link, including:

通过上式,利用极点配置法计算出在主导特征根时的参数K,包括:Through the above formula, the pole configuration method is used to calculate the parameter K at the dominant characteristic root, including:

其中,ωd为主导振荡模式的振荡角频率;Where,ωd is the oscillation angular frequency of the dominant oscillation mode;

根据上式求解得到附加控制器G(s)中的各个参数值,将得到的各个参数值应用于所述交直流互联变流器的控制环节中,实现抑制所述交直流微电网系统的振荡。The parameter values in the additional controller G(s) are obtained by solving the above formula, and the obtained parameter values are applied to the control link of the AC/DC interconnected converter to suppress the oscillation of the AC/DC microgrid system.

下面通过列举一个具体实例来对本发明再进一步的阐述。The present invention is further described below by giving a specific example.

实施例2Example 2

在本实施例中,交直流微电网系统为一个含有3台交流DG、3台直流DG和交直流互联变流器作为实例对本发明提出的基于交直流互联变流器的附加控制器的交直流微电网系统宽频振荡策略有效性进行验证,实施例2提供的基于交直流互联变流器的交直流微电网系统拓扑如图3所示,本实施例为了验证上述附加控制器G(s)对交直流微电网系统振荡的抑制效果,在Matlab/Simulink仿真平台上进行检验。In this embodiment, the AC/DC microgrid system is a system including 3 AC DGs, 3 DC DGs and an AC/DC interconnected converter as an example to verify the effectiveness of the wide-band oscillation strategy of the AC/DC microgrid system based on the additional controller of the AC/DC interconnected converter proposed in the present invention. The topology of the AC/DC microgrid system based on the AC/DC interconnected converter provided in Example 2 is shown in Figure 3. In order to verify the suppressing effect of the above-mentioned additional controller G(s) on the oscillation of the AC/DC microgrid system, this embodiment is tested on the Matlab/Simulink simulation platform.

将采集交直流互联变流器的输出有功功率ΔPILC作为附加控制器G(s)的输入信号,经过附加控制器后得到了输出信号ΔId,将其叠加到交直流互联变流器电流环的d轴分量参考值的控制端处,形成了新的交直流互联变流器交流侧端口输出电流的d轴分量参考值Idnewref;将原始系统中的传递函数记作H(s),系统的闭环传递函数则由G(s)和H(s)共同构成,利用极点配置法的原理去设计附加控制器G(s),通过对系统设定期望主导特征根来提高系统的阻尼比,从而抑制系统的振荡。当系统发生振荡时,在Matlab/Simulink仿真平台上可以得到系统在加入附加控制器G(s)前后的时域仿真结果,如图4所示。为便于分析和观察,仅展示交直流互联变流器的输出有功功率和无功功率的时域仿真结果,设置t=1s时交直流互联变流器的有功功率由30kW增加至40kW,无功功率由5kVar增加至10kVar,观察交直流互联变流器的输出有功功率和无功功率的波形,可以看到,在t=1s时加入附加控制器G(s),交直流互联变流器的输出有功功率和无功功率在经过短暂的动态过程后趋于稳定状态,说明宽频振荡现象得到抑制。故在含有3台交流DG、3台直流DG和交直流互联变流器的交直流微电网系统中验证了本发明所提供的方法具有有效性。The output active powerΔPILC of the AC/DC interconnected converter is collected as the input signal of the additional controller G(s). After the additional controller, the output signalΔId is obtained, which is superimposed on the control end of the d-axis component reference value of the current loop of the AC/DC interconnected converter to form a new d-axis component reference valueIdnewref of the output current of the AC side port of the AC/DC interconnected converter; the transfer function in the original system is recorded as H(s), and the closed-loop transfer function of the system is composed of G(s) and H(s). The additional controller G(s) is designed using the principle of pole placement method, and the damping ratio of the system is increased by setting the expected dominant characteristic root of the system, thereby suppressing the oscillation of the system. When the system oscillates, the time domain simulation results of the system before and after the addition of the additional controller G(s) can be obtained on the Matlab/Simulink simulation platform, as shown in Figure 4. For the convenience of analysis and observation, only the time domain simulation results of the output active power and reactive power of the AC/DC interconnected converter are shown. When t=1s is set, the active power of the AC/DC interconnected converter increases from 30kW to 40kW, and the reactive power increases from 5kVar to 10kVar. By observing the waveforms of the output active power and reactive power of the AC/DC interconnected converter, it can be seen that when the additional controller G(s) is added at t=1s, the output active power and reactive power of the AC/DC interconnected converter tend to be stable after a short dynamic process, indicating that the broadband oscillation phenomenon is suppressed. Therefore, the effectiveness of the method provided by the present invention is verified in an AC/DC microgrid system containing 3 AC DGs, 3 DC DGs and AC/DC interconnected converters.

因此,采用上述的一种基于极点配置法的微电网稳定控制方法,通过在交直流互联变流器中加入附加控制器,增加了系统的阻尼,补偿滞后的相位,有效的解决了交直流微电网系统中的宽频振荡问题。Therefore, the above-mentioned microgrid stability control method based on the pole configuration method is adopted. By adding an additional controller to the AC/DC interconnected converter, the damping of the system is increased, the lagging phase is compensated, and the broadband oscillation problem in the AC/DC microgrid system is effectively solved.

本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。The various embodiments in this specification are described in a progressive manner, and each embodiment focuses on the differences from other embodiments. The same or similar parts between the various embodiments can be referenced to each other.

本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。The principles and implementation methods of the present invention are described in this article using specific examples. The description of the above embodiments is only used to help understand the method and core idea of the present invention. At the same time, for those skilled in the art, according to the idea of the present invention, there will be changes in the specific implementation methods and application scope. In summary, the content of this specification should not be understood as limiting the present invention.

Claims (8)

Translated fromChinese
1.一种基于极点配置法的微电网稳定控制方法,其特征在于,包括以下步骤:1. A microgrid stability control method based on pole placement method, characterized in that it includes the following steps:获取交直流互联变流器的输出有功功率;Obtaining the output active power of the AC/DC interconnected converter;将所述输出有功功率转换为输入信号,并将所述输入信号传递至所述交直流互联变流器中附加控制器输入端,得到输出信号;Converting the output active power into an input signal, and transmitting the input signal to an input terminal of an additional controller in the AC/DC interconnected converter to obtain an output signal;将所述输出信号与所述交直流互联变流器的原始参考值进行信号叠加,计算得到新的参考值;The output signal is superimposed on an original reference value of the AC/DC interconnected converter to calculate a new reference value;基于所述新的参考值和期望的系统动态响应,利用极点配置法确定所述附加控制器的设计参数;Determining design parameters of the additional controller using a pole placement method based on the new reference value and the expected system dynamic response;根据所述设计参数构建所述交直流互联变流器附加控制器的数学模型,确定交直流微电网系统的闭环传递函数;Constructing a mathematical model of the additional controller of the AC/DC interconnected converter according to the design parameters, and determining a closed-loop transfer function of the AC/DC microgrid system;通过所述闭环传递函数,确定所述附加控制器调整交直流微电网系统的整体动态响应特性,根据设定的期望主导特征根提高交直流微电网系统的阻尼比,以控制交直流互联变流器的附加阻尼。Through the closed-loop transfer function, the additional controller is determined to adjust the overall dynamic response characteristics of the AC/DC microgrid system, and the damping ratio of the AC/DC microgrid system is increased according to the set expected dominant characteristic root to control the additional damping of the AC/DC interconnected converter.2.根据权利要求1所述的一种基于极点配置法的微电网稳定控制方法,其特征在于,所述获取交直流互联变流器的输出有功功率,包括:2. According to a microgrid stability control method based on pole placement method according to claim 1, it is characterized in that the obtaining of the output active power of the AC/DC interconnected converter comprises:根据所述交直流互联变流器的功率测量电路或传感器,采集所述输出有功功率ΔPILCCollecting the output active power ΔPILC according to the power measurement circuit or sensor of the AC/DC interconnected converter;对所述输出有功功率ΔPILC进行滤波降噪处理,随后将处理后的所述输出有功功率ΔPILC传递至所述附加控制器输入端。The output active power ΔPILC is subjected to filtering and noise reduction processing, and then the processed output active power ΔPILC is transmitted to the input terminal of the additional controller.3.根据权利要求2所述的一种基于极点配置法的微电网稳定控制方法,其特征在于,将所述输出有功功率转换为输入信号,并将所述输入信号传递至所述交直流互联变流器中附加控制器输入端,得到输出信号的步骤为:所述附加控制器根据输入的所述输出有功功率ΔPILC,计算得到输出信号ΔId3. A microgrid stability control method based on pole placement method according to claim 2, characterized in that the output active power is converted into an input signal, and the input signal is transmitted to the input end of the additional controller in the AC/DC interconnected converter to obtain the output signal in the step of: the additional controller calculates the output signal ΔId according to the input output active power ΔPILC .4.根据权利要求3所述的一种基于极点配置法的微电网稳定控制方法,其特征在于,将所述输出信号与所述交直流互联变流器的原始参考值进行信号叠加,计算得到新的参考值的步骤为:将得到的输出信号ΔId叠加到交直流互联变流器交流侧端口输出电流的d轴分量参考值Idref的控制端处,叠加信号得到新的交直流互联变流器交流侧端口输出电流的d轴分量参考值Idnewref4. A microgrid stability control method based on pole placement method according to claim 3, characterized in that the output signal is superimposed with the original reference value of the AC/DC interconnected converter to calculate a new reference value by: superimposing the obtained output signal ΔId to the control end of the d-axis component reference value Idref of the output current of the AC side port of the AC/DC interconnected converter, and superimposing the signal to obtain a new d-axis component reference value Idnewref of the output current of the AC side port of the AC/DC interconnected converter.5.根据权利要求4所述的一种基于极点配置法的微电网稳定控制方法,其特征在于,所述新的参考值按以下公式计算得到:5. A microgrid stability control method based on pole placement method according to claim 4, characterized in that the new reference value is calculated according to the following formula:其中,P为有功功率,ud为交流电压的d轴分量,uq为交流电压的q轴分量,为交直流互联变流器输出有功功率的参考值。Where P is the active power,ud is the d-axis component of the AC voltage, andq is the q-axis component of the AC voltage. It is the reference value of the active power output of the AC/DC interconnected converter.6.根据权利要求1所述的一种基于极点配置法的微电网稳定控制方法,其特征在于,根据所述设计参数构建所述交直流互联变流器附加控制器的数学模型,确定交直流微电网系统的闭环传递函数,包括:6. A microgrid stability control method based on pole placement method according to claim 1, characterized in that a mathematical model of the additional controller of the AC/DC interconnected converter is constructed according to the design parameters to determine the closed-loop transfer function of the AC/DC microgrid system, comprising:确定所述交直流微电网系统的原始传递函数H(s);Determine the original transfer function H(s) of the AC/DC microgrid system;根据所述原始传递函数H(s)与附加控制器G(s),确定所述闭环传递函数GB(s);Determining the closed-loop transfer function GB (s) according to the original transfer function H(s) and the additional controller G(s);所述闭环传递函数GB(s)为:The closed-loop transfer functionGB (s) is:其中,附加控制器G(s)由比例环节K、隔直环节Tw、超前滞后环节T1、T2和限幅环节ΔPmax、ΔPmin构成,传递函数表达式为:The additional controller G(s) is composed of a proportional link K, a DC isolation linkTw , lead-lag linksT1 ,T2 and limit linksΔPmax ,ΔPmin , and the transfer function expression is:其中,隔直环节Tw取值为10,限幅环节中的ΔPmax和ΔPmin分别取值为100kW、-100kW。Among them, the value ofTw in the DC isolation link is 10, and the values of ΔPmax and ΔPmin in the limiting link are 100kW and -100kW respectively.7.根据权利要求6所述的一种基于极点配置法的微电网稳定控制方法,其特征在于,所述闭环传递函数GB(s)与特征方程为:7. A microgrid stability control method based on pole placement method according to claim 6, characterized in that the closed-loop transfer functionGB (s) and the characteristic equation are:通过求解所述特征方程,确定交直流微电网系统的主导特征根sd,其满足的幅值和相角条件为:By solving the characteristic equation, the dominant characteristic root sd of the AC/DC microgrid system is determined, and the amplitude and phase angle conditions it satisfies are:根据∠H(sd)G(sd)=0,即θHG=0,得到θG=-θH,其中,θH、θG分别为交直流微电网系统的原始传递函数H(s)和附加控制器传递函数G(s)的相角。According to ∠H(sd )G(sd )=0, that is, θHG =0, we get θG =-θH , where θH and θG are the phase angles of the original transfer function H(s) and the additional controller transfer function G(s) of the AC/DC microgrid system, respectively.8.根据权利要求7所述的一种基于极点配置法的微电网稳定控制方法,其特征在于,根据所述交直流微电网系统的原始传递函数H(s)的相角θH,结合相位补偿环节的公式求解参数α和超前滞后环节T1、T2,包括:8. A microgrid stability control method based on pole placement method according to claim 7, characterized in that, according to the phase angle θH of the original transfer function H(s) of the AC/DC microgrid system, the parameter α and the lead-lag link T1 , T2 are solved in combination with the formula of the phase compensation link, comprising:通过上式,利用极点配置法计算出在主导特征根时的参数K,包括:Through the above formula, the pole configuration method is used to calculate the parameter K at the dominant characteristic root, including:其中,ωd为主导振荡模式的振荡角频率,m表示超前滞后环节的阶数;Where,ωd is the oscillation angular frequency of the dominant oscillation mode, and m represents the order of the lead-lag link;根据上式求解得到附加控制器G(s)中的各个参数值,将得到的各个参数值应用于所述交直流互联变流器的控制环节中,实现抑制所述交直流微电网系统的振荡。The parameter values in the additional controller G(s) are obtained by solving the above formula, and the obtained parameter values are applied to the control link of the AC/DC interconnected converter to suppress the oscillation of the AC/DC microgrid system.
CN202410810117.XA2024-06-212024-06-21 A microgrid stability control method based on pole placement methodPendingCN118801410A (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN202410810117.XACN118801410A (en)2024-06-212024-06-21 A microgrid stability control method based on pole placement method

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN202410810117.XACN118801410A (en)2024-06-212024-06-21 A microgrid stability control method based on pole placement method

Publications (1)

Publication NumberPublication Date
CN118801410Atrue CN118801410A (en)2024-10-18

Family

ID=93029205

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN202410810117.XAPendingCN118801410A (en)2024-06-212024-06-21 A microgrid stability control method based on pole placement method

Country Status (1)

CountryLink
CN (1)CN118801410A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US20130257166A1 (en)*2010-10-262013-10-03State Grid Corporation Of ChinaMethod, Apparatus and System for Suppressing Low Frequency Oscillation in Power System
CN104078993A (en)*2014-06-162014-10-01东北电力大学 A VSC-HVDC Additional Damping Control Method Based on Fault Restoration Signal
CN106410810A (en)*2016-11-242017-02-15国网江苏省电力公司经济技术研究院UPFC control unit with additional damping control function
CN107634526A (en)*2017-11-102018-01-26广东电网有限责任公司电力科学研究院A kind of AC/DC parallel transmission system forced oscillation suppressing method and device
CN113612262A (en)*2021-07-152021-11-05国网江苏省电力有限公司电力科学研究院Method and system for inhibiting low-frequency oscillation on direct current side

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US20130257166A1 (en)*2010-10-262013-10-03State Grid Corporation Of ChinaMethod, Apparatus and System for Suppressing Low Frequency Oscillation in Power System
CN104078993A (en)*2014-06-162014-10-01东北电力大学 A VSC-HVDC Additional Damping Control Method Based on Fault Restoration Signal
CN106410810A (en)*2016-11-242017-02-15国网江苏省电力公司经济技术研究院UPFC control unit with additional damping control function
CN107634526A (en)*2017-11-102018-01-26广东电网有限责任公司电力科学研究院A kind of AC/DC parallel transmission system forced oscillation suppressing method and device
CN113612262A (en)*2021-07-152021-11-05国网江苏省电力有限公司电力科学研究院Method and system for inhibiting low-frequency oscillation on direct current side

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
刘海峰, 徐政, 金丽成: "基于测试信号的直流小信号调制器参数整定", 电力系统自动化, no. 21, 15 November 2002 (2002-11-15), pages 12 - 16*
徐衍会;李真;伍双喜;: "高压直流附加控制对强迫振荡的抑制作用", 电力自动化设备, no. 07, 3 July 2018 (2018-07-03), pages 162 - 167*

Similar Documents

PublicationPublication DateTitle
CN110429611B (en) A static var compensator sequence impedance modeling and control parameter adjustment method
CN110739678B (en) A control method of series virtual impedance of grid-connected converter
CN112671010B (en)Virtual impedance-based fan grid-connected subsynchronous oscillation suppression and high-frequency harmonic suppression method
CN116094025A (en) A Transient Stability Analysis Method for Power Systems Containing Follow-Grid and Constructed-Grid Converters
CN105790270B (en)Suppress the method and device of subsynchronous resonance by double-fed fan rotor side converter
CN109842126B (en) A Stable Control Method for Suppressing Voltage Oscillation in Flexible HVDC Transmission System
CN107634524A (en) An Additional Damping Control Method Applied to Virtual Synchronous Generator Controller
CN103545838A (en) A hybrid damping adaptive control method for grid-connected inverters suitable for weak grid access conditions
CN110323745B (en) An Analytical Method for Harmonic Transmission Characteristics on the AC and DC Sides of Modular Multilevel Converters
CN112671009B (en)Double-fed fan subsynchronous oscillation suppression method with additional damping controller
CN204886199U (en) A Power Electronic Transformer for Unbalanced and Nonlinear Loads
CN103326386A (en)Capacitor-voltage-based grid-connected inverter active damping method
CN113595123A (en)High-frequency impedance calculation method and device of modular multilevel converter
CN103986171A (en) SSDC and SEDC Coordinated Control Optimization Method for Suppressing Subsynchronous Oscillation
CN104269854B (en)Voltage control method based on direct current inverter station stability measurement indexes
CN116961031B (en)High-frequency oscillation frequency division suppression and parameter design method for flexible direct-current transmission system
CN113839421A (en)Stability combination control method for LCL type grid-connected inverter under weak grid
CN110518581A (en)The inverter impedance optimization method of meter and sampling filter phaselocked loop
CN115000976A (en)Double-fed fan alternating current grid-connected high-frequency oscillation suppression method based on active damping
CN117439114A (en)Broadband oscillation suppression method and system for net-structured direct-drive fan
CN108258702B (en) A Resonance Suppression Method of Grid-Connected Converter Considering the Distributed Capacitance of Transmission Line
CN110661272B (en) A Method for Suppressing Subsynchronous Oscillation at Sending and Receiving Terminals of Wind Field Soft Direct Access System
CN106229971A (en)Outside centralized distributed photovoltaic power generation cluster resonance inhibiting system and suppressing method
CN109742759B (en) A PR harmonic compensation method based on fundamental dq coordinate system
CN115589035A (en) A grid-connected inverter system and low-frequency oscillation suppression method

Legal Events

DateCodeTitleDescription
PB01Publication
PB01Publication
SE01Entry into force of request for substantive examination
SE01Entry into force of request for substantive examination

[8]ページ先頭

©2009-2025 Movatter.jp