技术领域Technical Field
本公开的实施例涉及计算机技术领域,具体涉及电力调度方法、装置、电子设备和计算机可读介质。Embodiments of the present disclosure relate to the field of computer technology, and in particular to a power dispatching method, device, electronic device, and computer-readable medium.
背景技术Background Art
随着可再生能源(如太阳能和风能)在电力系统中的比重不断增加,其间歇性和不可预测性给电力系统的稳定运行带来了挑战。为了提高电力系统的稳定性,电力调度显得尤为重要。在电力调度过程中需要考虑影响电力调度的多种因素(例如,用电需求、电力价值、可再生能源发电量)。电力调度,是对电力资源进行调度的一项技术。目前,在对电力资源进行调度时,通常采用的方式为:根据预设用电的需求对电力资源进行调度或根据预设用电需求、可再生能源发电量和历史电力价值进行电力调度。As the proportion of renewable energy (such as solar and wind energy) in the power system continues to increase, its intermittent and unpredictable nature poses challenges to the stable operation of the power system. In order to improve the stability of the power system, power dispatch is particularly important. In the process of power dispatch, it is necessary to consider a variety of factors that affect power dispatch (for example, electricity demand, electricity value, and renewable energy generation). Power dispatch is a technology for dispatching power resources. At present, when dispatching power resources, the usual method is to dispatch power resources according to the preset power demand or to dispatch power according to the preset power demand, renewable energy generation, and historical power value.
然而,当采用上述方式进行电力调度时,经常会存在如下技术问题:However, when the above method is used for power dispatching, the following technical problems often occur:
第一,根据预设用电需求对电力资源进行调度,在电力调度过程中并没有考虑到可再生能源(例如,太阳能和风能)的潜在供应,当可再生能源充裕的情况下,根据预设用电需求进行电力资源调度可能会导致电储装置存储资源的浪费。First, power resources are dispatched according to preset power demand, and the potential supply of renewable energy (for example, solar energy and wind energy) is not taken into account during the power dispatch process. When renewable energy is abundant, scheduling power resources according to preset power demand may lead to a waste of storage resources of power storage devices.
第二,根据预设用电需求、可再生能源发电量和历史电力价值进行电力调度,使用历史电力价值进行电力调度缺乏实时性,历史电力价值无法准确反映当前时刻的电力流转市场供需情况,如果电力供给和实际需求存在较大差异,导致生成的电力调度量序列准确性较低,根据准确性较低的电力调度量序列进行电力调度可能造成电力资源的浪费或短缺。Second, power dispatch is carried out according to preset power demand, renewable energy power generation and historical power value. The use of historical power value for power dispatch lacks real-time performance. The historical power value cannot accurately reflect the current supply and demand situation of the power circulation market. If there is a large difference between power supply and actual demand, the generated power dispatch quantity sequence will have low accuracy. Power dispatch based on the low-accuracy power dispatch quantity sequence may cause waste or shortage of power resources.
继续地,在进行电力调度之后,电力价值范围往往会随着电力资源的调度而发生改变,在存储所生成的电力价值范围信息时,进一步存在如下技术问题:Furthermore, after power dispatching, the power value range often changes with the dispatching of power resources. When storing the generated power value range information, the following technical problems further exist:
第三,直接将所生成表征电力价值范围的信息存储至存储设备(例如,硬盘),在存储过程中并未对存储的信息进行加密处理,导致未加密的表征电力价值范围的信息容易受到黑客攻击或内部人员泄露的风险,导致敏感信息被窃取或篡改,进而导致表征电力价值范围的信息存储安全性较低。Third, the generated information representing the value range of electricity is directly stored in a storage device (e.g., a hard disk), and the stored information is not encrypted during the storage process, resulting in the risk of unencrypted information representing the value range of electricity being vulnerable to hacker attacks or internal personnel leakage, causing sensitive information to be stolen or tampered with, which in turn leads to low storage security of the information representing the value range of electricity.
该背景技术部分中所公开的以上信息仅用于增强对本发明构思的背景的理解,并因此,其可包含并不形成本国的本领域普通技术人员已知的现有技术的信息。The above information disclosed in this Background section is only for enhancement of understanding of the background of the inventive concept and therefore it may contain information that does not form the prior art that is already known in this country to a person of ordinary skill in the art.
发明内容Summary of the invention
本公开的内容部分用于以简要的形式介绍构思,这些构思将在后面的具体实施方式部分被详细描述。本公开的内容部分并不旨在标识要求保护的技术方案的关键特征或必要特征,也不旨在用于限制所要求的保护的技术方案的范围。The content of this disclosure is used to introduce concepts in a brief form, which will be described in detail in the detailed implementation section below. The content of this disclosure is not intended to identify the key features or essential features of the technical solution claimed for protection, nor is it intended to limit the scope of the technical solution claimed for protection.
本公开的一些实施例提出了电力调度方法、装置、电子设备和计算机可读介质,来解决以上背景技术部分提到的技术问题中的一项或多项。Some embodiments of the present disclosure propose a power dispatching method, an apparatus, an electronic device, and a computer-readable medium to solve one or more of the technical problems mentioned in the above background technology section.
第一方面,本公开的一些实施例提供了一种电力调度方法,该方法包括:获取供电节点标识集;对于上述供电节点标识集中的每个供电节点标识,执行以下电力调度处理:获取对应上述供电节点标识的当日电力流转条件信息与对应上述供电节点标识的当日环境信息;获取对应上述供电节点标识的历史电力流转条件信息集与对应上述供电节点标识的历史环境信息集,其中,上述历史电力流转条件信息集中一个历史电力流转条件信息与一个历史日期对应,上述历史环境信息集中的一个历史环境信息与一个历史日期对应;根据上述当日电力流转条件信息、上述当日环境信息、上述历史电力流转条件信息集与上述历史环境信息集,确定相似日日期;获取与上述相似日日期对应的相似日数据,其中,上述相似日数据包括以下至少一项:电价值序列、新能源发电量序列、负荷量序列;根据上述相似日数据、上述当日电力流转条件信息与当日环境信息,生成与上述供电节点标识对应的当日预测电价值序列、当日预测新能源发电量序列与当日预测负荷量序列;获取与上述供电节点标识对应的可控负荷信息;将上述可控负荷信息、上述当日预测电价值序列、上述当日预测新能源发电量序列与上述当日预测负荷量序列输入至预设电力调度信息生成模型,得到电力调度信息,其中,上述电力调度信息包括电力调度量序列;根据上述电力调度量序列,对与上述供电节点标识对应的电储能装置进行电力调度。In a first aspect, some embodiments of the present disclosure provide a method for power dispatching, the method comprising: obtaining a power supply node identification set; for each power supply node identification in the above power supply node identification set, performing the following power dispatching processing: obtaining the current day power flow condition information corresponding to the above power supply node identification and the current day environment information corresponding to the above power supply node identification; obtaining the historical power flow condition information set corresponding to the above power supply node identification and the historical environment information set corresponding to the above power supply node identification, wherein one historical power flow condition information in the above historical power flow condition information set corresponds to a historical date, and one historical environment information in the above historical environment information set corresponds to a historical date; determining a similar day date based on the above current day power flow condition information, the above current day environment information, the above historical power flow condition information set and the above historical environment information set; obtaining Get similar day data corresponding to the above-mentioned similar day date, wherein the above-mentioned similar day data includes at least one of the following: an electricity value sequence, a new energy power generation sequence, and a load sequence; generate a predicted electricity value sequence for the day, a predicted new energy power generation sequence for the day, and a predicted load sequence for the day corresponding to the above-mentioned power supply node identifier based on the above-mentioned similar day data, the above-mentioned power flow condition information for the day, and the above-mentioned environmental information for the day; obtain controllable load information corresponding to the above-mentioned power supply node identifier; input the above-mentioned controllable load information, the above-mentioned predicted electricity value sequence for the day, the above-mentioned predicted new energy power generation sequence for the day, and the above-mentioned predicted load sequence for the day into a preset power dispatching information generation model to obtain power dispatching information, wherein the above-mentioned power dispatching information includes a power dispatching quantity sequence; according to the above-mentioned power dispatching quantity sequence, perform power dispatching on the electric energy storage device corresponding to the above-mentioned power supply node identifier.
第二方面,本公开的一些实施例提供了一种电力调度装置,装置包括:获取单元,被配置成获取供电节点标识集;电力调度处理单元,被配置成对于上述供电节点标识集中的每个供电节点标识,执行以下电力调度处理:获取对应上述供电节点标识的当日电力流转条件信息与对应上述供电节点标识的当日环境信息;获取对应上述供电节点标识的历史电力流转条件信息集与对应上述供电节点标识的历史环境信息集,其中,上述历史电力流转条件信息集中一个历史电力流转条件信息与一个历史日期对应,上述历史环境信息集中的一个历史环境信息与一个历史日期对应;根据上述当日电力流转条件信息、上述当日环境信息、上述历史电力流转条件信息集与上述历史环境信息集,确定相似日日期;获取与上述相似日日期对应的相似日数据,其中,上述相似日数据包括以下至少一项:电价值序列、新能源发电量序列、负荷量序列;根据上述相似日数据、上述当日电力流转条件信息与当日环境信息,生成与上述供电节点标识对应的当日预测电价值序列、当日预测新能源发电量序列与当日预测负荷量序列;获取与上述供电节点标识对应的可控负荷信息;将上述可控负荷信息、上述当日预测电价值序列、上述当日预测新能源发电量序列与上述当日预测负荷量序列输入至预设电力调度信息生成模型,得到电力调度信息,其中,上述电力调度信息包括电力调度量序列;根据上述电力调度量序列,对与上述供电节点标识对应的电储能装置进行电力调度。In a second aspect, some embodiments of the present disclosure provide a power dispatching device, the device comprising: an acquisition unit, configured to acquire a power supply node identification set; a power dispatching processing unit, configured to perform the following power dispatching processing for each power supply node identification in the above power supply node identification set: acquiring the current day power flow condition information corresponding to the above power supply node identification and the current day environmental information corresponding to the above power supply node identification; acquiring a historical power flow condition information set corresponding to the above power supply node identification and a historical environmental information set corresponding to the above power supply node identification, wherein a historical power flow condition information in the above historical power flow condition information set corresponds to a historical date, and a historical environmental information in the above historical environmental information set corresponds to a historical date; based on the above current day power flow condition information, the above current day environmental information, the above historical power flow condition information set and the above historical environmental information set , determine the similar day date; obtain similar day data corresponding to the above similar day date, wherein the above similar day data includes at least one of the following: electricity value sequence, new energy power generation sequence, load sequence; generate the daily predicted electricity value sequence, daily predicted new energy power generation sequence and daily predicted load sequence corresponding to the above power supply node identifier according to the above similar day data, the above daily power flow condition information and the daily environmental information; obtain the controllable load information corresponding to the above power supply node identifier; input the above controllable load information, the above daily predicted electricity value sequence, the above daily predicted new energy power generation sequence and the above daily predicted load sequence into the preset power dispatching information generation model to obtain power dispatching information, wherein the above power dispatching information includes a power dispatching quantity sequence; according to the above power dispatching quantity sequence, perform power dispatching on the electric energy storage device corresponding to the above power supply node identifier.
第三方面,本公开的一些实施例提供了一种电子设备,包括:一个或多个处理器;存储装置,其上存储有一个或多个程序,当一个或多个程序被一个或多个处理器执行,使得一个或多个处理器实现上述第一方面任一实现方式所描述的方法。In a third aspect, some embodiments of the present disclosure provide an electronic device comprising: one or more processors; a storage device on which one or more programs are stored, and when the one or more programs are executed by the one or more processors, the one or more processors implement the method described in any implementation manner of the above-mentioned first aspect.
第四方面,本公开的一些实施例提供了一种计算机可读介质,其上存储有计算机程序,其中,程序被处理器执行时实现上述第一方面任一实现方式所描述的方法。In a fourth aspect, some embodiments of the present disclosure provide a computer-readable medium having a computer program stored thereon, wherein when the program is executed by a processor, the method described in any implementation manner of the above-mentioned first aspect is implemented.
本公开的上述各个实施例具有如下有益效果:通过本公开的一些实施例的电力调度方法,减少了电储装置存储资源的浪费。具体来说,造成电储装置存储资源的浪费的原因在于:根据预设用电需求对电力资源进行调度,在电力调度过程中并没有考虑到可再生能源(例如,太阳能和风能)的潜在供应,当可再生能源充裕的情况下,根据预设用电需求进行电力资源调度可能会导致电储装置存储资源的浪费。基于此,本公开的一些实施例的电力调度方法,首先,获取供电节点标识集。由此,可以得到表征各个需要供电区域的供电节点标识集。接着,对于上述供电节点标识集中的每个供电节点标识,执行以下电力调度处理:获取对应上述供电节点标识的当日电力流转条件信息与对应上述供电节点标识的当日环境信息。由此,可以得到用于确定相似日日期的当日电力流转条件信息与当日环境信息。然后,获取对应上述供电节点标识的历史电力流转条件信息集与对应上述供电节点标识的历史环境信息集,其中,上述历史电力流转条件信息集中一个历史电力流转条件信息与一个历史日期对应,上述历史环境信息集中的一个历史环境信息与一个历史日期对应。由此,可以得到用于确定相似日日期的历史电力流转条件信息集与历史环境信息集。接着,根据上述当日电力流转条件信息、上述当日环境信息、上述历史电力流转条件信息集与上述历史环境信息集,确定相似日日期。由此,可以得到相似日日期。然后,获取与上述相似日日期对应的相似日数据,其中,上述相似日数据包括以下至少一项:电价值序列、新能源发电量序列、负荷量序列。由此,可以获取到用于预测当日各个时间段电价值的相似日数据。接着,根据上述相似日数据、上述当日电力流转条件信息与当日环境信息,生成与上述供电节点标识对应的当日预测电价值序列、当日预测新能源发电量序列与当日预测负荷量序列。由此,可以预测得到当日预测电价值序列、表征可再生能源(例如,太阳能和风能)的潜在供应量的当日预测新能源发电量序列、表征用电需求量的当日预测负荷量序列。接着,获取与上述供电节点标识对应的可控负荷信息。由此,可以得到用于生成电力调度量序列的可控负荷信息。接着,将上述可控负荷信息、上述当日预测电价值序列、上述当日预测新能源发电量序列与上述当日预测负荷量序列输入至预设电力调度信息生成模型,得到电力调度信息,其中,上述电力调度信息包括电力调度量序列。由此,可以根据可控负荷信息、当日预测电价值序列、表征可再生能源(例如,太阳能和风能)的潜在供应量的当日预测新能源发电量序列与当日预测负荷量序,生成电力调度序列。根据上述电力调度量序列,对与上述供电节点标识对应的电储能装置进行电力调度。由此,可以在生成电力调度序列的基础上进行电力调度。也因为在进行电力调度之前,考虑到了可再生能源(例如,太阳能和风能)的潜在供应量,根据可控负荷信息、当日预测电价值序列、表征可再生能源(例如,太阳能和风能)的潜在供应量的当日预测新能源发电量序列与当日预测负荷量序,生成了电力调度序列。减少了在可再生能源充裕的情况下仍然根据预设用电需求进行电力调度的可能性,减少了电储装置存储资源的浪费。The above-mentioned various embodiments of the present disclosure have the following beneficial effects: through the power dispatching method of some embodiments of the present disclosure, the waste of storage resources of the electric storage device is reduced. Specifically, the reason for the waste of storage resources of the electric storage device is that the power resources are dispatched according to the preset power demand, and the potential supply of renewable energy (for example, solar energy and wind energy) is not taken into account in the power dispatching process. When the renewable energy is abundant, the power resource dispatching according to the preset power demand may lead to the waste of storage resources of the electric storage device. Based on this, the power dispatching method of some embodiments of the present disclosure, first, obtains the power supply node identification set. Thus, the power supply node identification set that characterizes each area that needs power supply can be obtained. Then, for each power supply node identification in the above power supply node identification set, the following power dispatching processing is performed: the power flow condition information of the day corresponding to the above power supply node identification and the environmental information of the day corresponding to the above power supply node identification are obtained. Thus, the power flow condition information of the day and the environmental information of the day for determining the similar date can be obtained. Then, the historical power flow condition information set corresponding to the above power supply node identifier and the historical environment information set corresponding to the above power supply node identifier are obtained, wherein one historical power flow condition information in the above historical power flow condition information set corresponds to a historical date, and one historical environment information in the above historical environment information set corresponds to a historical date. Thus, the historical power flow condition information set and the historical environment information set for determining the similar date can be obtained. Then, the similar date is determined according to the above power flow condition information of the day, the above environmental information of the day, the above historical power flow condition information set and the above historical environment information set. Thus, the similar date can be obtained. Then, the similar day data corresponding to the above similar date is obtained, wherein the above similar day data includes at least one of the following: an electricity value sequence, a new energy power generation sequence, and a load sequence. Thus, similar day data for predicting the electricity value of each time period of the day can be obtained. Then, according to the above similar day data, the above power flow condition information of the day and the environmental information of the day, the predicted electricity value sequence of the day, the predicted new energy power generation sequence of the day and the predicted load sequence of the day corresponding to the above power supply node identifier are generated. Thus, it is possible to predict the current day's predicted electricity value sequence, the current day's predicted new energy generation sequence characterizing the potential supply of renewable energy (e.g., solar energy and wind energy), and the current day's predicted load sequence characterizing the electricity demand. Next, the controllable load information corresponding to the above-mentioned power supply node identifier is obtained. Thus, the controllable load information used to generate the power dispatching quantity sequence can be obtained. Then, the above-mentioned controllable load information, the above-mentioned current day's predicted electricity value sequence, the above-mentioned current day's predicted new energy generation sequence, and the above-mentioned current day's predicted load sequence are input into the preset power dispatching information generation model to obtain the power dispatching information, wherein the above-mentioned power dispatching information includes the power dispatching quantity sequence. Thus, the power dispatching sequence can be generated according to the controllable load information, the current day's predicted electricity value sequence, the current day's predicted new energy generation sequence characterizing the potential supply of renewable energy (e.g., solar energy and wind energy), and the current day's predicted load sequence. According to the above-mentioned power dispatching quantity sequence, the electric energy storage device corresponding to the above-mentioned power supply node identifier is subjected to power dispatching. Thus, power dispatching can be performed on the basis of generating the power dispatching sequence. Also, before power dispatching, the potential supply of renewable energy (e.g., solar and wind energy) is taken into account, and a power dispatching sequence is generated based on controllable load information, the current day's predicted electricity value sequence, the current day's predicted new energy generation sequence that characterizes the potential supply of renewable energy (e.g., solar and wind energy), and the current day's predicted load sequence. This reduces the possibility of power dispatching based on preset power demand when renewable energy is abundant, and reduces the waste of storage resources of power storage devices.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
结合附图并参考以下具体实施方式,本公开各实施例的上述和其他特征、优点及方面将变得更加明显。贯穿附图中,相同或相似的附图标记表示相同或相似的元素。应当理解附图是示意性的,元件和元素不一定按照比例绘制。The above and other features, advantages and aspects of the embodiments of the present disclosure will become more apparent with reference to the following detailed description in conjunction with the accompanying drawings. Throughout the accompanying drawings, the same or similar reference numerals represent the same or similar elements. It should be understood that the drawings are schematic and that components and elements are not necessarily drawn to scale.
图1是根据本公开的电力调度方法的一些实施例的流程图;FIG1 is a flow chart of some embodiments of the power dispatching method according to the present disclosure;
图2是根据本公开的电力调度装置的一些实施例的结构示意图;FIG2 is a schematic diagram of the structure of some embodiments of the power dispatching device according to the present disclosure;
图3是适于用来实现本公开的一些实施例的电子设备的结构示意图。FIG. 3 is a schematic diagram of the structure of an electronic device suitable for implementing some embodiments of the present disclosure.
具体实施方式DETAILED DESCRIPTION
下面将参照附图更详细地描述本公开的实施例。虽然附图中显示了本公开的某些实施例,然而应当理解的是,本公开可以通过各种形式来实现,而且不应该被解释为限于这里阐述的实施例。相反,提供这些实施例是为了更加透彻和完整地理解本公开。应当理解的是,本公开的附图及实施例仅用于示例性作用,并非用于限制本公开的保护范围。Embodiments of the present disclosure will be described in more detail below with reference to the accompanying drawings. Although certain embodiments of the present disclosure are shown in the accompanying drawings, it should be understood that the present disclosure can be implemented in various forms and should not be construed as being limited to the embodiments set forth herein. On the contrary, these embodiments are provided to provide a more thorough and complete understanding of the present disclosure. It should be understood that the drawings and embodiments of the present disclosure are only for exemplary purposes and are not intended to limit the scope of protection of the present disclosure.
另外还需要说明的是,为了便于描述,附图中仅示出了与有关发明相关的部分。在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互组合。It should also be noted that, for ease of description, only the parts related to the invention are shown in the drawings. In the absence of conflict, the embodiments and features in the embodiments of the present disclosure may be combined with each other.
需要注意,本公开中提及的“第一”、“第二”等概念仅用于对不同的装置、模块或单元进行区分,并非用于限定这些装置、模块或单元所执行的功能的顺序或者相互依存关系。It should be noted that the concepts such as "first" and "second" mentioned in the present disclosure are only used to distinguish different devices, modules or units, and are not used to limit the order or interdependence of the functions performed by these devices, modules or units.
需要注意,本公开中提及的“一个”、“多个”的修饰是示意性而非限制性的,本领域技术人员应当理解,除非在上下文另有明确指出,否则应该理解为“一个或多个”。It should be noted that the modifications of "one" and "plurality" mentioned in the present disclosure are illustrative rather than restrictive, and those skilled in the art should understand that unless otherwise clearly indicated in the context, it should be understood as "one or more".
本公开实施方式中的多个装置之间所交互的消息或者信息的名称仅用于说明性的目的,而并不是用于对这些消息或信息的范围进行限制。The names of the messages or information exchanged between multiple devices in the embodiments of the present disclosure are only used for illustrative purposes and are not used to limit the scope of these messages or information.
下面将参考附图并结合实施例来详细说明本公开。The present disclosure will be described in detail below with reference to the accompanying drawings and in conjunction with embodiments.
图1示出了根据本公开的电力调度方法的一些实施例的流程100。该电力调度方法,包括以下步骤:FIG1 shows a process 100 of some embodiments of the power dispatching method according to the present disclosure. The power dispatching method comprises the following steps:
步骤101,获取供电节点标识集。Step 101: Obtain a power supply node identification set.
在一些实施例中,电力调度方法的执行主体(例如计算设备)可以从预设数据库获取供电节点标识集。其中,上述供电节点标识集中的供电节点标识可以为用于表示供电地区的标识名称。上述标识名称可以为地区名称。上述执行主体可以为用于对电厂电力资源进行管理和调度的服务器。In some embodiments, the execution subject (e.g., a computing device) of the power dispatching method may obtain a power supply node identification set from a preset database. The power supply node identification in the power supply node identification set may be an identification name used to indicate a power supply area. The identification name may be a region name. The execution subject may be a server used to manage and dispatch power resources of a power plant.
步骤102,对于供电节点标识集中的每个供电节点标识,执行以下电力调度处理:Step 102: for each power supply node identifier in the power supply node identifier set, perform the following power dispatching process:
步骤1021,获取对应供电节点标识的当日电力流转条件信息与对应供电节点标识的当日环境信息。Step 1021, obtaining the current day power flow condition information corresponding to the power supply node identification and the current day environment information corresponding to the power supply node identification.
在一些实施例中,上述执行主体可以获取对应上述供电节点标识的当日电力流转条件信息与对应上述供电节点标识的当日环境信息。实践中,上述执行主体可以从预设数据库获取与上述供电节点标识对应的当日电力流转条件信息与当日环境信息。其中,上述当日电力流转条件信息可以表示当前日期的电力流转条件信息。上述电力流转条件信息可以表示影响电力流转的限制条件。上述电力流转条件信息包括但不限于以下中的至少一项:统调负荷信息、新能源出力信息。上述统调负荷信息可以表示与上述供电节点标识对应的总电力负荷。上述新能源出力信息可以表示与上述供电节点标识对应的各个新能源发电设备在一天内可以产生的最大电力总和(新能源出力信息可以表示各个新能源发电设备能够产生的最大电力总和,而不是实际产生的电力总和)。上述当日环境信息可以表示与当前日期对应的环境信息。上述环境信息可以表示一天的环境状况。上述环境信息可以包括但不限于以下至少一项:参照平均环境温度、参照平均相对湿度、参照平均日照辐射强度、参照日照时长。上述参照平均环境温度、上述参照平均相对湿度、上述参照平均日照辐射强度、上述参照日照时长可以通过气象大模型预测得到。例如,上述气象大模型可以为盘古气象大模型。In some embodiments, the execution subject may obtain the power flow condition information of the day corresponding to the power supply node identifier and the environmental information of the day corresponding to the power supply node identifier. In practice, the execution subject may obtain the power flow condition information of the day corresponding to the power supply node identifier and the environmental information of the day from a preset database. Among them, the power flow condition information of the day may represent the power flow condition information of the current date. The power flow condition information may represent the restrictive conditions affecting the power flow. The power flow condition information includes but is not limited to at least one of the following: unified load information and new energy output information. The unified load information may represent the total power load corresponding to the power supply node identifier. The new energy output information may represent the maximum total power that can be generated by each new energy power generation device corresponding to the power supply node identifier in one day (the new energy output information may represent the maximum total power that can be generated by each new energy power generation device, rather than the actual total power generated). The environmental information of the day may represent the environmental information corresponding to the current date. The environmental information may represent the environmental conditions of a day. The environmental information may include but is not limited to at least one of the following: reference average environmental temperature, reference average relative humidity, reference average solar radiation intensity, and reference sunshine duration. The reference average environmental temperature, the reference average relative humidity, the reference average solar radiation intensity, and the reference sunshine duration may be predicted by a large meteorological model. For example, the large meteorological model may be a Pangu meteorological model.
步骤1022,获取对应供电节点标识的历史电力流转条件信息集与对应供电节点标识的历史环境信息集。Step 1022, obtaining a historical power flow condition information set corresponding to the power supply node identifier and a historical environment information set corresponding to the power supply node identifier.
在一些实施例中,上述执行主体可以获取对应上述供电节点标识的历史电力流转条件信息集与对应上述供电节点标识的历史环境信息集。其中,上述历史电力流转条件信息集中一个历史电力流转条件信息与一个历史日期对应,上述历史环境信息集中的一个历史环境信息与一个历史日期对应。上述历史电力流转条件信息可以表示与一个历史日期对应的电力流转条件信息。上述历史日期可以是指与过去的一天对应的日期。上述历史环境信息集中的一个历史环境信息可以表示与历史日期对应的环境信息。In some embodiments, the execution subject may obtain a historical power flow condition information set corresponding to the power supply node identifier and a historical environment information set corresponding to the power supply node identifier. Among them, one historical power flow condition information in the historical power flow condition information set corresponds to a historical date, and one historical environment information in the historical environment information set corresponds to a historical date. The historical power flow condition information may represent power flow condition information corresponding to a historical date. The historical date may refer to a date corresponding to a past day. One historical environment information in the historical environment information set may represent environment information corresponding to a historical date.
步骤1023,根据当日电力流转条件信息、当日环境信息、历史电力流转条件信息集与历史环境信息集,确定相似日日期。Step 1023, determining a similar day date based on the current day's power flow condition information, current day's environmental information, a historical power flow condition information set, and a historical environmental information set.
在一些实施例中,上述执行主体可以根据上述当日电力流转条件信息、上述当日环境信息、上述历史电力流转条件信息集与上述历史环境信息集,确定相似日日期。In some embodiments, the execution entity may determine a similar day date based on the current day power flow condition information, the current day environmental information, the historical power flow condition information set, and the historical environmental information set.
在一些实施例的一些可选的实现方式中,上述执行主体可以通过以下步骤根据上述当日电力流转条件信息、上述当日环境信息、上述历史电力流转条件信息集与上述历史环境信息集,确定相似日日期:In some optional implementations of some embodiments, the execution subject may determine the similar day date according to the current day power flow condition information, the current day environment information, the historical power flow condition information set, and the historical environment information set through the following steps:
第一步,对上述当日电力流转条件信息进行映射转换处理,得到与上述当日电力流转条件信息对应的当日电力流转条件向量信息。实践中,首先,上述执行主体可以通过词嵌入技术将上述当日电力流转条件信息中的各个当日电力流转条件子信息转换成各个向量。然后,上述执行主体可以将上述各个向量确定为当日电力流转条件向量信息。The first step is to map and convert the above-mentioned power flow condition information of the day to obtain the power flow condition vector information of the day corresponding to the above-mentioned power flow condition information of the day. In practice, firstly, the above-mentioned execution subject can convert each of the power flow condition sub-information of the day in the above-mentioned power flow condition information of the day into each vector through word embedding technology. Then, the above-mentioned execution subject can determine the above-mentioned each vector as the power flow condition vector information of the day.
第二步,对上述当日环境信息进行映射转换处理,得到与上述当日环境信息对应的当日环境向量信息。实践中,首先,上述执行主体可以通过词嵌入技术将上述当日环境信息中的各个日环境子信息转换成与上述各个日环境子信息对应的各个向量。然后,上述执行主体可以将与上述各个日环境子信息对应的各个向量确定为当日环境向量信息。The second step is to map and transform the above-mentioned daily environmental information to obtain the daily environmental vector information corresponding to the above-mentioned daily environmental information. In practice, first, the above-mentioned execution subject can convert each daily environmental sub-information in the above-mentioned daily environmental information into each vector corresponding to each daily environmental sub-information through word embedding technology. Then, the above-mentioned execution subject can determine each vector corresponding to each daily environmental sub-information as the daily environmental vector information.
第三步,根据上述当日电力流转条件向量信息、上述当日环境向量信息、上述历史电力流转条件信息集与上述历史环境信息集,确定相似日日期。The third step is to determine the similar day date based on the above-mentioned current day power flow condition vector information, the above-mentioned current day environment vector information, the above-mentioned historical power flow condition information set and the above-mentioned historical environment information set.
在一些实施例的一些可选的实现方式中,上述执行主体可以通过以下步骤根据上述当日电力流转条件向量信息、上述当日环境向量信息、上述历史电力流转条件信息集与上述历史环境信息集,确定相似日日期:In some optional implementations of some embodiments, the execution subject may determine the similar day date according to the current day power flow condition vector information, the current day environment vector information, the historical power flow condition information set, and the historical environment information set through the following steps:
第一步,对于上述历史电力流转条件信息集中的每个历史电力流转条件信息,执行以下生成步骤:In the first step, for each piece of historical power flow condition information in the above historical power flow condition information set, the following generation steps are performed:
第一子步骤,将上述历史电力流转条件信息转换成与上述历史电力流转条件信息对应的历史电力流转条件向量信息。实践中,上述执行主体可以将上述历史电力流转条件信息输入至词嵌入模型中,得到与上述历史电力流转条件信息对应的历史电力流转条件向量信息。上述历史电力流转条件向量信息可以为表示历史电力流转条件信息的向量矩阵。The first sub-step is to convert the above historical power flow condition information into historical power flow condition vector information corresponding to the above historical power flow condition information. In practice, the above execution subject can input the above historical power flow condition information into a word embedding model to obtain the historical power flow condition vector information corresponding to the above historical power flow condition information. The above historical power flow condition vector information can be a vector matrix representing the historical power flow condition information.
第二子步骤,将对应上述历史电力流转条件信息的历史日期确定为目标历史日期。In the second sub-step, the historical date corresponding to the above-mentioned historical power flow condition information is determined as the target historical date.
第三子步骤,将上述当日电力流转条件向量信息与上述历史电力流转条件向量信息的相似度确定为第一待筛选相似度。其中,上述第一待筛选相似度可以为当日电力流转条件向量信息与上述历史电力流转条件向量信息的余弦相似度。The third sub-step is to determine the similarity between the current day power flow condition vector information and the historical power flow condition vector information as the first similarity to be screened. The first similarity to be screened may be the cosine similarity between the current day power flow condition vector information and the historical power flow condition vector information.
第四子步骤,将上述历史环境信息集中与上述目标历史日期对应的历史环境信息确定为待转换历史环境信息。The fourth sub-step is to determine the historical environment information corresponding to the target historical date in the historical environment information set as the historical environment information to be converted.
第五子步骤,将上述待转换历史环境信息转换成与上述待转换历史环境信息对应的历史环境向量信息。实践中,上述执行主体可以将上述待转换历史环境信息输入至上述词嵌入模型,得到与上述待转换历史环境信息对应的历史环境向量信息。The fifth sub-step is to convert the historical context information to be converted into historical context vector information corresponding to the historical context information to be converted. In practice, the execution subject may input the historical context information to be converted into the word embedding model to obtain the historical context vector information corresponding to the historical context information to be converted.
第六子步骤,将上述当日环境向量信息与上述历史环境向量信息的相似度确定为第二筛选相似度。其中,上述第二筛选相似度可以为上述当日环境向量信息与上述历史环境向量信息的余弦相似度。The sixth sub-step is to determine the similarity between the current day environment vector information and the historical environment vector information as a second screening similarity, wherein the second screening similarity may be the cosine similarity between the current day environment vector information and the historical environment vector information.
第七子步骤,根据预设权重系数信息、上述第一待筛选相似度与上述第二筛选相似度,生成筛选相似度。其中,上述筛选相似度与上述目标历史日期对应。其中,上述预设权重系数信息可以包括对应上述第一筛选相似度的第一权重系数、对应上述第二筛选相似度的第二权重系数。实践中,首先,上述执行主体可以将上述预设权重系数信息中的第一权重系数与上述第一待筛选相似度的乘积确定为第一数值。然后,上述执行主体可以将上述预设权重系数信息中的第二权重系数与上述第二待筛选相似度的乘积确定为第二数值。接着,上述执行主体可以将上述第一数值与上述第二数值的和确定为筛选相似度。需要说明的是上述第一权重系数与上述第二权重系数的和等于1。上述第一权重系数大于0小于1。上述第一权重系数大于0小于1。The seventh sub-step is to generate a screening similarity according to the preset weight coefficient information, the first similarity to be screened and the second screening similarity. The screening similarity corresponds to the target historical date. The preset weight coefficient information may include a first weight coefficient corresponding to the first screening similarity and a second weight coefficient corresponding to the second screening similarity. In practice, first, the execution subject may determine the product of the first weight coefficient in the preset weight coefficient information and the first similarity to be screened as a first value. Then, the execution subject may determine the product of the second weight coefficient in the preset weight coefficient information and the second similarity to be screened as a second value. Then, the execution subject may determine the sum of the first value and the second value as the screening similarity. It should be noted that the sum of the first weight coefficient and the second weight coefficient is equal to 1. The first weight coefficient is greater than 0 and less than 1. The first weight coefficient is greater than 0 and less than 1.
第二步,将所生成的各个筛选相似度确定为筛选相似度集合。In the second step, each generated screening similarity is determined as a screening similarity set.
第三步,将上述筛选相似度集合中满足预设筛选条件的筛选相似度确定为目标筛选相似度。其中,上述预设筛选条件可以为相似度数值最大。The third step is to determine the screening similarity in the screening similarity set that meets the preset screening condition as the target screening similarity. The preset screening condition may be the maximum similarity value.
第四步,将与上述目标筛选相似度对应的目标历史日期确定为相似日日期。In the fourth step, the target historical date corresponding to the above target screening similarity is determined as the similar date.
步骤1024,获取与相似日日期对应的相似日数据。Step 1024, obtaining similar day data corresponding to the similar day date.
在一些实施例中,上述执行主体可以获取与上述相似日日期对应的相似日数据。其中,上述相似日数据包括以下至少一项:电价值序列、新能源发电量序列、负荷量序列。实践中,上述执行主体可以从上述预设数据库获取与上述相似日日期对应的相似日数据。其中,上述电价值序列中的一个电价值可以为对应一个时间段的电价值。例如,上述电价值可以为与时间段2024年3月25日00:00-2024年3月25日00:15对应的25元/kWh。上述新能源发电量序列中的一个新能源发电量可以为对应一个时间段的新能源发电量。上述新能源发电量可以为在一段时间内新能源发电的总电量。上述新能源发电可以包括但不限于以下中的至少一项:风能发电、太阳能发电、水能发电。例如,上述新能源发电量可以为在时间段2024年3月25日00:00-2024年3月25日00:15内的新能源发电量为100000kWh。上述一段时间可以为将当前日期内的24个小时分成同等时间长度的96个时间段中的一个时间段。In some embodiments, the execution subject may obtain similar day data corresponding to the similar day date. The similar day data may include at least one of the following: an electricity value sequence, a new energy power generation sequence, and a load sequence. In practice, the execution subject may obtain similar day data corresponding to the similar day date from the preset database. One of the electricity values in the electricity value sequence may be an electricity value corresponding to a time period. For example, the electricity value may be 25 yuan/kWh corresponding to the time period from 00:00 on March 25, 2024 to 00:15 on March 25, 2024. One of the new energy power generation in the new energy power generation sequence may be a new energy power generation corresponding to a time period. The new energy power generation may be the total amount of electricity generated by new energy in a period of time. The new energy power generation may include but is not limited to at least one of the following: wind power generation, solar power generation, and hydropower generation. For example, the new energy power generation may be 100,000 kWh of new energy power generation in the time period from 00:00 on March 25, 2024 to 00:15 on March 25, 2024. The above period of time may be one of 96 time periods of equal length divided into 24 hours in the current date.
步骤1025,根据相似日数据、当日电力流转条件信息与当日环境信息,生成与供电节点标识对应的当日预测电价值序列、当日预测新能源发电量序列与当日预测负荷量序列。Step 1025, based on similar day data, the power flow condition information of the day and the environmental information of the day, generate the daily predicted electricity value sequence, the daily predicted new energy power generation sequence and the daily predicted load sequence corresponding to the power supply node identifier.
在一些实施例中,上述执行主体可以根据上述相似日数据、上述当日电力流转条件信息与当日环境信息,生成与上述供电节点标识对应的当日预测电价值序列、当日预测新能源发电量序列与当日预测负荷量序列。In some embodiments, the above-mentioned execution entity can generate the daily predicted electricity value sequence, the daily predicted new energy power generation sequence and the daily predicted load sequence corresponding to the above-mentioned power supply node identifier based on the above-mentioned similar day data, the above-mentioned daily power flow condition information and the daily environmental information.
在一些实施例的一些可选的实现方式中,上述执行主体可以通过以下步骤根据上述相似日数据、上述当日电力流转条件信息与当日环境信息,生成与上述供电节点标识对应的当日预测电价值序列、当日预测新能源发电量序列与当日预测负荷量序列:In some optional implementations of some embodiments, the execution subject may generate a daily predicted electricity value sequence, a daily predicted new energy power generation sequence, and a daily predicted load sequence corresponding to the power supply node identifier according to the similar day data, the daily power flow condition information, and the daily environmental information through the following steps:
第一步,将上述相似日数据所包括的电价值序列、上述当日电力流转条件信息、上述当日环境信息确定为第一输入数据。The first step is to determine the electricity value sequence included in the above-mentioned similar day data, the above-mentioned daily power flow condition information, and the above-mentioned daily environmental information as the first input data.
第二步,将上述第一输入数据输入至预先训练好的电价值预测模型,得到与上述第一输入数据对应的当前预测电价值序列。其中,上述电价值预测模型可以为以第一输入数据为输入数据,以当前预测电力价值序列为输出数据的神经网络模型。例如,上述神经网络模型可以为长短期记忆网络(LSTM,Long Short-Term Memory)模型。作为示例,可以首先获取多个样本第一输入数据和多个样本第一输入数据中的每个样本第一输入数据所对应的样本当前预测电力价值序列。然后,将多个样本第一输入数据的每个样本第一输入数据作为输入,将多个样本第一输入数据中的每个样本第一输入数据所对应的当前预测电力价值序列作为期望输出,训练得到电价值预测模型。上述当前预测电力价值序列中的当前预测电力价值可以为对应一个时间段的预测的电力价值。上述一段时间可以为将当前日期内的24个小时分成同等时间长度的96个时间段中的一个时间段。需要说明的是第一输入数据中的当日环境信息(例如,参照平均日照辐射强度、参照日照时长)与新能源发电量(例如,太阳能发电量)之间存在一定的客观规律。作为示例,平均日照辐射强度越高,太阳能发电量也会相应增加。较高的平均日照辐射强度意味着太阳能板可以接收到更多的太阳辐射能量,从而产生更多的电能。参照日照时长是指太阳从日出到日落的时间长度,它直接影响着太阳能发电系统每天可以接收到的太阳辐射总量,进而影响太阳能发电总量。新能源发电量和电力价值之间也存在一定的客观规律。新能源发电量的增加会影响电力供给情况,进而影响电价值。In the second step, the first input data is input into the pre-trained electricity value prediction model to obtain the current predicted electricity value sequence corresponding to the first input data. The electricity value prediction model can be a neural network model with the first input data as input data and the current predicted electricity value sequence as output data. For example, the neural network model can be a long short-term memory network (LSTM, Long Short-Term Memory) model. As an example, a plurality of sample first input data and a sample current predicted electricity value sequence corresponding to each sample first input data in the plurality of sample first input data can be first obtained. Then, each sample first input data of the plurality of sample first input data is used as input, and the current predicted electricity value sequence corresponding to each sample first input data in the plurality of sample first input data is used as the expected output to train the electricity value prediction model. The current predicted electricity value in the current predicted electricity value sequence can be the predicted electricity value corresponding to a time period. The above period of time can be one of the 96 time periods of equal length that divides the 24 hours in the current date. It should be noted that there are certain objective laws between the daily environmental information in the first input data (for example, reference average sunshine radiation intensity, reference sunshine duration) and the new energy power generation (for example, solar power generation). As an example, the higher the average sunshine radiation intensity, the greater the solar power generation. A higher average sunshine radiation intensity means that solar panels can receive more solar radiation energy, thereby generating more electrical energy. The reference sunshine duration refers to the length of time from sunrise to sunset, which directly affects the total amount of solar radiation that the solar power generation system can receive every day, and thus affects the total amount of solar power generation. There are also certain objective laws between new energy power generation and the value of electricity. The increase in new energy power generation will affect the power supply situation, and thus affect the value of electricity.
第三步,将上述相似日数据所包括的新能源发电量序列、上述当日电力流转条件信息、上述当日环境信息确定为第二输入数据。The third step is to determine the new energy power generation sequence included in the above similar day data, the above power flow condition information on the day, and the above environmental information on the day as the second input data.
第四步,将上述第二输入数据输入至预先训练好的新能源出力预测模型,得到与上述第二输入数据对应的当日预测新能源发电量序列。其中,上述新能源出力预测模型可以为以第二输入数据为输入数据,以当日预测新能源发电量序列为输出数据的神经网络模型。例如,上述神经网络模型可以为循环神经网络(Recurrent Neural Network,RNN)模型。作为示例,可以首先获取多个样本第二输入数据和多个样本第二输入数据中的每个样本第二输入数据所对应的样本当日预测新能源发电量序列。然后,将多个样本第二输入数据中的每个样本第二输入数据作为输入,将多个样本第二输入数据中的每个样本第二输入数据所对应的当日预测新能源发电量序列作为期望输出,训练得到新能源出力预测模型。上述当日预测新能源发电量序列中的一个当日预测新能源发电量可以为对应一个时间段的预测的新能源发电量。The fourth step is to input the second input data into the pre-trained new energy output prediction model to obtain the predicted new energy power generation sequence for the day corresponding to the second input data. The new energy output prediction model can be a neural network model with the second input data as input data and the predicted new energy power generation sequence for the day as output data. For example, the neural network model can be a recurrent neural network (RNN) model. As an example, a plurality of sample second input data and a sample predicted new energy power generation sequence corresponding to each sample second input data in the plurality of sample second input data can be first obtained. Then, each sample second input data in the plurality of sample second input data is used as input, and the predicted new energy power generation sequence for the day corresponding to each sample second input data in the plurality of sample second input data is used as the expected output to train the new energy output prediction model. One of the predicted new energy power generation for the day in the above-mentioned predicted new energy power generation sequence can be the predicted new energy power generation corresponding to a time period.
第五步,将上述相似日数据所包括的负荷量序列、上述当日电力流转条件信息确定为第三输入数据。The fifth step is to determine the load sequence included in the similar day data and the power flow condition information of the day as the third input data.
第六步,将上述第三输入数据输入至预先训练好的负荷量预测模型,得到与上述第三输入数据对应的当日预测负荷量序列。其中,上述负荷量预测模型可以为以第三输入数据为输入数据,以当日预测负荷量序列为输出数据的神经网络模型。例如,上述神经网络模型可以为长短期记忆网络(LSTM,Long Short-Term Memory)模型。作为示例,可以首先获取多个样本第三输入数据和多个第三输入数据中的每个第三输入数据所对应的样本当日预测负荷量序列。然后,将多个第三输入数据中的每个第三输入数据作为输入,将多个第三输入数据中的每个第三输入数据所对应的样本当日预测负荷量序列作为期望输出,训练得到负荷量预测模型。上述当日预测负荷量序列中的一个当日预测负荷量可以为对应一个时间段的预测的负荷量。上述负荷量可以为电力系统为一个地区提供的电量。The sixth step is to input the third input data into a pre-trained load forecasting model to obtain a predicted load sequence for the day corresponding to the third input data. The load forecasting model may be a neural network model with the third input data as input data and the predicted load sequence for the day as output data. For example, the neural network model may be a long short-term memory network (LSTM, Long Short-Term Memory) model. As an example, a plurality of sample third input data and a sample predicted load sequence for the day corresponding to each of the plurality of third input data may be first obtained. Then, each of the plurality of third input data is used as input, and a sample predicted load sequence for the day corresponding to each of the plurality of third input data is used as the expected output to train a load forecasting model. A predicted load for the day in the predicted load sequence for the day may be a predicted load for a time period. The load may be the amount of electricity provided by the power system to a region.
在一些实施例的一些可选的实现方式中,上述执行主体可以通过以下步骤将上述第一输入数据输入至预先训练好的电价值预测模型,得到与上述第一输入数据对应的当前预测电价值序列:In some optional implementations of some embodiments, the execution subject may input the first input data into a pre-trained electricity value prediction model through the following steps to obtain a current predicted electricity value sequence corresponding to the first input data:
第一步,将上述第一输入数据中的当日电力流转条件信息输入至上述电价值预测模型的映射转换层,得到与上述当日电力流转条件信息对应的当日电力流转条件特征信息。其中,上述电价值预测模型包括上述映射转换层、特征合并层、特征时序依赖关系捕获层、当前预测电价值层、输出层。上述映射转换层可以为将上述当日电力流转条件信息转换成连续型的表示的嵌入层。上述当日电力流转条件特征信息可以为表示上述当日电力流转条件信息的向量。The first step is to input the current day power flow condition information in the first input data into the mapping conversion layer of the electricity value prediction model to obtain the current day power flow condition characteristic information corresponding to the current day power flow condition information. The electricity value prediction model includes the mapping conversion layer, feature merging layer, feature time series dependency capture layer, current predicted power value layer, and output layer. The mapping conversion layer may be an embedding layer that converts the current day power flow condition information into a continuous representation. The current day power flow condition characteristic information may be a vector representing the current day power flow condition information.
第二步,将上述第一输入数据中的当日环境信息输入至上述电价值预测模型的映射转换层,得到与上述当日环境信息对应的当日环境特征信息。其中,上述当日环境特征信息可以为表示上述当日环境信息的向量。The second step is to input the daily environmental information in the first input data into the mapping conversion layer of the electricity value prediction model to obtain the daily environmental feature information corresponding to the daily environmental information. The daily environmental feature information can be a vector representing the daily environmental information.
第三步,将上述当日电力流转条件特征信息和上述当日环境特征信息输入至上述特征合并层,得到合并特征信息。上述特征合并层可以为将上述当日电力流转条件特征信息和上述当日环境特征信息合并的concatenate层。上述合并特征信息可以为将上述当日电力流转条件特征信息和上述当日环境特征信息合并后的特征向量。In the third step, the above-mentioned daily power flow condition characteristic information and the above-mentioned daily environmental characteristic information are input into the above-mentioned feature merging layer to obtain the merged characteristic information. The above-mentioned feature merging layer can be a concatenate layer that merges the above-mentioned daily power flow condition characteristic information and the above-mentioned daily environmental characteristic information. The above-mentioned merged characteristic information can be a feature vector obtained by merging the above-mentioned daily power flow condition characteristic information and the above-mentioned daily environmental characteristic information.
第四步,将上述第一输入数据中的电价值序列、上述合并特征信息输入至上述特征时序依赖关系捕获层,得到时序依赖特征信息。其中,上述特征时序依赖关系捕获层可以为学习序列数据中的时间依赖关系,电价值序列和合并特征信息依赖关系的LSTM层。In the fourth step, the electricity value sequence and the merged feature information in the first input data are input into the feature time series dependency capture layer to obtain the time series dependency feature information. The feature time series dependency capture layer can be an LSTM layer that learns the time dependency in the sequence data, the electricity value sequence and the merged feature information dependency.
第五步,将上述时序依赖特征信息输入至上述当前预测电价值层,得到与上述时序依赖特征信息对应的价值预测信息。其中,上述当前预测电价值层可以为根据时序依赖特征信息预测电价值的全连接层。上述价值预测信息可以为表征当前预测电价值序列的向量。The fifth step is to input the above time-dependent characteristic information into the above-mentioned current predicted electricity value layer to obtain the value prediction information corresponding to the above-mentioned time-dependent characteristic information. Among them, the above-mentioned current predicted electricity value layer can be a fully connected layer that predicts the electricity value according to the time-dependent characteristic information. The above-mentioned value prediction information can be a vector that represents the current predicted electricity value sequence.
第六步,将上述价值预测信息输入至上述输出层,得到与上述价值预测信息对应的当前预测电价值序列。其中,上述输出层可以为将上述全连接层的输出信息转换成预设格式信息的神经网络层。这里,上述预设格式信息可以为序列。上述输出层可以将向量中的元素按照其在向量中的顺序排列,形成一个序列。Step 6: Input the value prediction information into the output layer to obtain the current predicted electricity value sequence corresponding to the value prediction information. The output layer may be a neural network layer that converts the output information of the fully connected layer into information in a preset format. Here, the preset format information may be a sequence. The output layer may arrange the elements in the vector according to their order in the vector to form a sequence.
上述技术方案及其相关内容作为本公开的实施例的一个发明点,解决了背景技术提及的技术问题二“根据预设用电需求、可再生能源发电量和历史电力价值进行电力调度,使用历史电力价值进行电力调度缺乏实时性,历史电力价值无法准确反映当前时刻的电力流转市场供需情况,如果电力供给和实际需求存在较大差异,导致生成的电力调度量序列准确性较低,根据准确性较低的电力调度量序列进行电力调度可能造成电力资源的浪费或短缺”。导致电力资源浪费和短缺的因素往往如下:根据预设用电需求、可再生能源发电量和历史电力价值进行电力调度,使用历史电力价值进行电力调度缺乏实时性,历史电力价值无法准确反映当前时刻的电力流转市场供需情况,如果电力供给和实际需求存在较大差异,导致生成的电力调度量序列准确性较低,根据准确性较低的电力调度量序列进行电力调度可能造成电力资源的浪费或短缺。如果解决了上述因素,就能达到减少电力资源浪费和短缺的效果。为了达到这一效果,首先,将上述第一输入数据中的当日电力流转条件信息输入至上述电价值预测模型的映射转换层,得到与上述当日电力流转条件信息对应的当日电力流转条件特征信息,其中,上述电价值预测模型包括上述映射转换层、特征合并层、特征时序依赖关系捕获层、当前预测电价值层、输出层。由此,可以得到用于生成合并特征信息的当日电力流转条件特征信息。接着,将上述第一输入数据中的当日环境信息输入至上述电价值预测模型的映射转换层,得到与上述当日环境信息对应的当日环境特征信息。由此,可以得到用于生成合并特征信息的当日环境特征信息。然后,将上述当日电力流转条件特征信息和上述当日环境特征信息输入至上述特征合并层,得到合并特征信息。由此,可以将上述当日电力流转条件特征信息和上述当日环境特征信息进行合并。接着,将上述第一输入数据中的电价值序列、上述合并特征信息输入至上述特征时序依赖关系捕获层,得到时序依赖特征信息。由此,可以得到表征电价值序列与时间、电价值序列和合并特征信息依赖关系的时序依赖特征信息。然后,将上述时序依赖特征信息输入至上述当前预测电价值层,得到与上述时序依赖特征信息对应的价值预测信息。由此,可以预测当前预测电价值序列。之后,将上述价值预测信息输入至上述输出层,得到与上述价值预测信息对应的当前预测电价值序列。由此,可以得到当前预测电价值序列。当前预测电价值序列具有实时性,可以较为准确地反应当前时刻的电力流转市场供需情况。结合步骤1027,将上述可控负荷信息、上述当日预测电价值序列、上述当日预测新能源发电量序列与上述当日预测负荷量序列输入至预设电力调度信息生成模型,得到电力调度信息,其中,上述电力调度信息包括电力调度量序列。由此,可以根据可控负荷信息、上述当日预测电价值序列、上述当日预测新能源发电量序列与上述当日预测负荷量序列,生成准确性较高的电力调度量序列。结合步骤1028根据上述电力调度量序列,对与上述供电节点标识对应的电储能装置进行电力调度。根据准确性较高的电力调度量序列进行电力调度,减少了电力资源的浪费和电力短缺情况的发生次数。The above technical scheme and its related contents, as an inventive point of the embodiments of the present disclosure, solve the second technical problem mentioned in the background technology, "electricity dispatching according to preset electricity demand, renewable energy generation and historical electricity value, lack of real-time performance of electricity dispatching using historical electricity value, historical electricity value cannot accurately reflect the supply and demand situation of the electricity circulation market at the current moment, if there is a large difference between electricity supply and actual demand, resulting in low accuracy of the generated electricity dispatching quantity sequence, and electricity dispatching according to the low-accuracy electricity dispatching quantity sequence may cause waste or shortage of electricity resources". The factors that lead to waste and shortage of electricity resources are often as follows: electricity dispatching according to preset electricity demand, renewable energy generation and historical electricity value, lack of real-time performance of electricity dispatching using historical electricity value, historical electricity value cannot accurately reflect the supply and demand situation of the electricity circulation market at the current moment, if there is a large difference between electricity supply and actual demand, resulting in low accuracy of the generated electricity dispatching quantity sequence, and electricity dispatching according to the low-accuracy electricity dispatching quantity sequence may cause waste or shortage of electricity resources. If the above factors are solved, the effect of reducing waste and shortage of electricity resources can be achieved. In order to achieve this effect, first, the power flow condition information of the day in the above-mentioned first input data is input into the mapping conversion layer of the above-mentioned electric value prediction model to obtain the power flow condition characteristic information of the day corresponding to the power flow condition information of the day, wherein the above-mentioned electric value prediction model includes the above-mentioned mapping conversion layer, feature merging layer, feature time series dependency capture layer, current predicted electric value layer, and output layer. Thus, the power flow condition characteristic information of the day used to generate the merged characteristic information can be obtained. Then, the daily environmental information in the above-mentioned first input data is input into the mapping conversion layer of the above-mentioned electric value prediction model to obtain the daily environmental characteristic information corresponding to the above-mentioned daily environmental information. Thus, the daily environmental characteristic information used to generate the merged characteristic information can be obtained. Then, the power flow condition characteristic information of the day and the daily environmental characteristic information of the day are input into the above-mentioned feature merging layer to obtain the merged characteristic information. Thus, the power flow condition characteristic information of the day and the daily environmental characteristic information of the day can be merged. Then, the electric value sequence in the above-mentioned first input data and the merged characteristic information are input into the above-mentioned feature time series dependency capture layer to obtain the time series dependency characteristic information. Thus, the time-dependent characteristic information that characterizes the dependency relationship between the electric value sequence and time, the electric value sequence and the combined characteristic information can be obtained. Then, the above-mentioned time-dependent characteristic information is input into the above-mentioned current predicted electric value layer to obtain the value prediction information corresponding to the above-mentioned time-dependent characteristic information. Thus, the current predicted electric value sequence can be predicted. After that, the above-mentioned value prediction information is input into the above-mentioned output layer to obtain the current predicted electric value sequence corresponding to the above-mentioned value prediction information. Thus, the current predicted electric value sequence can be obtained. The current predicted electric value sequence is real-time and can more accurately reflect the supply and demand situation of the power circulation market at the current moment. Combined with step 1027, the above-mentioned controllable load information, the above-mentioned predicted electric value sequence for the day, the above-mentioned predicted new energy power generation sequence for the day and the above-mentioned predicted load sequence for the day are input into the preset power dispatching information generation model to obtain the power dispatching information, wherein the above-mentioned power dispatching information includes the power dispatching quantity sequence. Thus, according to the controllable load information, the above-mentioned predicted electric value sequence for the day, the above-mentioned predicted new energy power generation sequence for the day and the above-mentioned predicted load sequence for the day, a power dispatching quantity sequence with higher accuracy can be generated. In combination with step 1028, the electric energy storage device corresponding to the power supply node identifier is powered on according to the power dispatch amount sequence. Power dispatch is performed according to a power dispatch amount sequence with high accuracy, thereby reducing the waste of power resources and the number of power shortages.
步骤1026,获取与供电节点标识对应的可控负荷信息。Step 1026, obtaining controllable load information corresponding to the power supply node identifier.
在一些实施例中,上述执行主体可以获取与上述供电节点标识对应的可控负荷信息。实践中,上述执行主体可以从预设数据库获取与上述电节点标识对应的可控负荷信息。上述可控负荷信息可以为电力系统中可以通过外部控制手段进行调节的可控负荷的相关数据和参数。上述可控负荷可以包括但不限于以下至少一项:可削减负荷、可平移负荷、可中断负荷。例如,上述可控负荷信息可以为Pcut(t)=(1-γcut(t))P(t)。上述Pcut(t)可以为t时间段削减之后的负荷。上述P(t)可以为t时间段削减之前的负荷。上述γcut(t)可以为t时间段可削减负荷比例,上述γcut(t)可以为0到1之间的数值。上述γcut(t)为γcut可削减负荷比例序列中的一个可削减负荷比例。上述t可以表示96个时间段中的一个时间段。上述γcut可以为与上述96个时间段对应的可削减负荷比例序列。上述可削减负荷比例序列中的一个可削减负荷比例可以为对应一个时间段的可削减负荷比例。作为示例,上述t可以为2024年3月25日00:00-2024年3月25日00:15。则上述γcut(t)可以为上述γcut中与上述2024年3月25日00:00-2024年3月25日00:15对应的可削减负荷比例。上述可消减负荷比例是一个0到1的数值。In some embodiments, the execution subject may obtain the controllable load information corresponding to the power supply node identifier. In practice, the execution subject may obtain the controllable load information corresponding to the power node identifier from a preset database. The controllable load information may be relevant data and parameters of the controllable load that can be adjusted by external control means in the power system. The controllable load may include but is not limited to at least one of the following: a curtailable load, a shiftable load, and an interruptible load. For example, the controllable load information may be Pcut (t) = (1-γcut (t)) P (t). The Pcut (t) may be the load after the t time period is curtailed. The P (t) may be the load before the t time period is curtailed. The γcut (t) may be the curtailable load ratio in the t time period, and the γcut (t) may be a value between 0 and 1. The γcut (t) may be a curtailable load ratio in the γcut curtailable load ratio sequence. The t may represent one of the 96 time periods. The γcut may be a curtailable load ratio sequence corresponding to the 96 time periods. A curtailable load ratio in the curtailable load ratio sequence may be a curtailable load ratio corresponding to a time period. As an example, the above t may be 00:00 on March 25, 2024-00:15 on March 25, 2024. Then the above γcut (t) may be the load reduction ratio corresponding to the above 00:00 on March 25, 2024-00:15 on March 25, 2024 in the above γcut . The above load reduction ratio is a value between 0 and 1.
步骤1027,将可控负荷信息、当日预测电价值序列、当日预测新能源发电量序列与当日预测负荷量序列输入至预设电力调度信息生成模型,得到电力调度信息。Step 1027, input the controllable load information, the daily predicted electricity value sequence, the daily predicted new energy power generation sequence and the daily predicted load sequence into the preset power dispatch information generation model to obtain the power dispatch information.
在一些实施例中,上述执行主体可以将上述可控负荷信息、上述当日预测电价值序列、上述当日预测新能源发电量序列与上述当日预测负荷量序列输入至预设电力调度信息生成模型,得到电力调度信息。其中,上述电力调度信息包括电力调度量序列。上述预设电力调度信息生成模型可以为以可控负荷信息、当日预测电价值序列、当日预测新能源发电量序列与上述当日预测负荷量序列为输入数据的情况下,在预设时间内以电力总流出量的价值最大为目标求解各个最优电力调度量的数学规划模型。上述电力调度量序列可以为与各个预设时间段对应的序列。上述电力调度量序列中的一个电力调度量可以为对应一个时间段的电力调度量。例如,上述电力调度量为时间段2024年3月28日00:00-2024年3月28日00:15需要向与上述供电节点标识对应的电储能装置调度的电量。In some embodiments, the execution subject may input the controllable load information, the daily predicted electricity value sequence, the daily predicted new energy generation sequence and the daily predicted load sequence into a preset power dispatch information generation model to obtain power dispatch information. The power dispatch information includes a power dispatch quantity sequence. The preset power dispatch information generation model may be a mathematical programming model that solves each optimal power dispatch quantity within a preset time with the maximum value of the total power outflow as the goal, with the controllable load information, the daily predicted electricity value sequence, the daily predicted new energy generation sequence and the daily predicted load sequence as input data. The power dispatch quantity sequence may be a sequence corresponding to each preset time period. One of the power dispatch quantities in the power dispatch quantity sequence may be a power dispatch quantity corresponding to a time period. For example, the power dispatch quantity is the amount of electricity that needs to be dispatched to the electric energy storage device corresponding to the power supply node identifier in the time period from 00:00 on March 28, 2024 to 00:15 on March 28, 2024.
在一些实施例的一些可选的实现方式中,上述执行主体可以通过以下步骤将上述可控负荷信息、上述当日预测电价值序列、上述当日预测新能源发电量序列与上述当日预测负荷量序列输入至预设电力调度信息生成模型,得到电力调度信息:In some optional implementations of some embodiments, the execution subject may input the controllable load information, the daily predicted electricity value sequence, the daily predicted new energy power generation sequence and the daily predicted load sequence into a preset power dispatch information generation model to obtain power dispatch information through the following steps:
第一步,将上述可控负荷信息、上述当日预测电价值序列、上述当日预测新能源发电量序列、上述当日预测负荷量序列确定为输入数据。The first step is to determine the controllable load information, the daily predicted electricity value sequence, the daily predicted new energy power generation sequence, and the daily predicted load sequence as input data.
第二步,将上述输入数据输入至预设电力调度信息生成模型。The second step is to input the above input data into the preset power dispatch information generation model.
第三步,根据预设求解器与预设电力调度信息生成模型,生成电力调度量序列。实践中,上述执行主体可以通过上述预设求解器对预设电力调度信息生成模型进行求解,得到电力调度序列。最后,上述执行主体可以将上述电力调度序列确定为电力调度信息。其中,上述预设求解器可以为CPLEX求解器。The third step is to generate a power dispatch quantity sequence according to the preset solver and the preset power dispatch information generation model. In practice, the above-mentioned execution subject can solve the preset power dispatch information generation model through the above-mentioned preset solver to obtain the power dispatch sequence. Finally, the above-mentioned execution subject can determine the above-mentioned power dispatch sequence as power dispatch information. Among them, the above-mentioned preset solver can be a CPLEX solver.
步骤1028,根据电力调度量序列,对与供电节点标识对应的电储能装置进行电力调度。Step 1028: Perform power dispatch on the electric energy storage device corresponding to the power supply node identifier according to the power dispatch quantity sequence.
在一些实施例中,上述执行主体可以根据上述电力调度量序列,对与上述供电节点标识对应的电储能装置进行电力调度。其中,上述的电储能装置可以为用于存储电量的设备。例如,上述电储能装置可以为超级电容器。In some embodiments, the execution subject may perform power dispatching on the electric energy storage device corresponding to the power supply node identifier according to the electric power dispatching amount sequence. The electric energy storage device may be a device for storing electric power. For example, the electric energy storage device may be a supercapacitor.
在一些实施例的一些可选的实现方式中,上述执行主体可以通过以下步骤根据上述电力调度量序列,对与上述供电节点标识对应的电储能装置进行电力调度:In some optional implementations of some embodiments, the execution subject may perform power dispatching on the electric energy storage device corresponding to the power supply node identifier according to the power dispatching amount sequence through the following steps:
第一步,对于电力调度量序列中的第一个电力调度量,执行以下电力调度处理:In the first step, for the first power dispatch quantity in the power dispatch quantity sequence, the following power dispatch processing is performed:
第一子步骤,将与上述电力调度量对应的时间段确定为目标时间段。In the first sub-step, the time period corresponding to the above-mentioned power dispatching amount is determined as the target time period.
第二子步骤,获取系统时间作为当前时间点。The second sub-step is to obtain the system time as the current time point.
第三子步骤,响应于确定上述当前时间点在上述目标时间段内且上述电力调度量大于预设数值,从预设电厂向上述电储能装置调入与上述电力调度量对应的电能资源。其中,上述预设数值可以为0。实践中,上述执行主体可以将表征从预设电厂向上述电储能装置调入与上述电力调度量对应的电能资源的信息发送至电力系统。然后,电力系统接收到上述信息后会控制远动终端从预设电厂向上述电储能装置调入与上述电力调度量对应的电能资源。The third sub-step is, in response to determining that the current time point is within the target time period and the power dispatch amount is greater than a preset value, transferring the electric energy resources corresponding to the power dispatch amount from the preset power plant to the electric energy storage device. The preset value may be 0. In practice, the execution subject may send information representing the transfer of the electric energy resources corresponding to the power dispatch amount from the preset power plant to the electric energy storage device to the power system. Then, after receiving the information, the power system will control the telecontrol terminal to transfer the electric energy resources corresponding to the power dispatch amount from the preset power plant to the electric energy storage device.
第四子步骤,响应于确定上述当前时间点在上述目标时间段内且上述电力调度量小于预设数值,从上述电储能装置向上述电储能装置所在的电网释放与上述电力调度量对应的电能资源。实践中,上述执行主体可以将表征从电储能装置向上述预设电厂调入与电力调度量对应的电能资源的信息发送至电力系统。然后,电力系统接收到信息后会控制远动终端从上述电储能装置向上述电网释放与上述电力调度量对应的电能资源。The fourth sub-step is, in response to determining that the current time point is within the target time period and the power dispatch amount is less than a preset value, releasing the electric energy resources corresponding to the power dispatch amount from the electric energy storage device to the power grid where the electric energy storage device is located. In practice, the execution subject may send information representing the transfer of electric energy resources corresponding to the power dispatch amount from the electric energy storage device to the preset power plant to the power system. Then, after receiving the information, the power system will control the telecontrol terminal to release the electric energy resources corresponding to the power dispatch amount from the electric energy storage device to the power grid.
第五子步骤,将第一个电力调度量从上述电力调度量序列中删除,以对上述电力调度量序列进行更新。The fifth sub-step is to delete the first electric power dispatching amount from the electric power dispatching amount sequence to update the electric power dispatching amount sequence.
第六子步骤,响应于确定更新后的电力调度量序列不为空,在当前时间点的预设时间段之后,根据上述更新后的电力调度量序列,再次执行上述电力调度处理。The sixth sub-step is, in response to determining that the updated power dispatching amount sequence is not empty, after a preset time period at the current time point, executing the above power dispatching process again according to the above updated power dispatching amount sequence.
在一些实施例的一些可选的实现方式中,在上述根据上述电力调度量序列,对与上述供电节点标识对应的电储能装置进行电力调度之后,上述执行主体还可以执行以下步骤:In some optional implementations of some embodiments, after the electric energy storage device corresponding to the power supply node identifier is dispatched according to the electric power dispatch amount sequence, the execution subject may further perform the following steps:
第一步,对上述电力调度量序列中的每个电力调度量,执行以下步骤:The first step is to perform the following steps for each power dispatch quantity in the above power dispatch quantity sequence:
第一子步骤,将对应上述电力调度量的时间段确定为调度时间段。In the first sub-step, the time period corresponding to the above-mentioned power dispatching amount is determined as the dispatching time period.
第二子步骤,将上述当日预测电价值序列中与上述调度时间段对应的当日预测电价值确定为目标当日预测电价值。In the second sub-step, the daily predicted electricity value corresponding to the above-mentioned scheduling time period in the above-mentioned daily predicted electricity value sequence is determined as the target daily predicted electricity value.
第三子步骤,响应于确定上述电力调度量等于上述预设数值,根据上述目标当日预测电价值,生成与上述调度时间段对应的信息。实践中,上述执行主体可以将表征大于等于上述目标当日预测电价值的价值范围信息确定为与上述调度时间段对应的价值范围信息。In a third sub-step, in response to determining that the power dispatch amount is equal to the preset value, information corresponding to the dispatch time period is generated according to the target daily predicted power value. In practice, the execution subject may determine the value range information representing the value greater than or equal to the target daily predicted power value as the value range information corresponding to the dispatch time period.
第四子步骤,响应于确定上述电力调度量大于上述预设数值,根据第一预设矫正系数与上述目标当日预测电价值,生成与上述调度时间对应的价值范围信息。实践中,首先,上述执行主体可以将上述第一预设矫正系数与上述目标当日预测电价值的乘积确定为第一数值。然后,上述执行主体可以将表征小于等于上述第一数值的信息确定为价值范围信息。The fourth sub-step is, in response to determining that the above-mentioned power dispatch amount is greater than the above-mentioned preset value, generating value range information corresponding to the above-mentioned dispatch time according to the first preset correction coefficient and the above-mentioned target daily predicted electricity value. In practice, first, the above-mentioned execution subject may determine the product of the above-mentioned first preset correction coefficient and the above-mentioned target daily predicted electricity value as the first value. Then, the above-mentioned execution subject may determine the information representing less than or equal to the above-mentioned first value as the value range information.
第五子步骤,响应于确定上述电力调度量小于上述预设数值,根据第二预设矫正系数与上述目标当日预测电价值,生成与上述调度时间对应的价值范围信息。实践中,上述执行主体可以将上述第二预设矫正系数与上述目标当日预测电价值的乘积确定为第二数值。然后,上述执行主体可以将表征大于等于上述第二数值的信息确定为与上述调度时间对应的价值范围信息。The fifth sub-step is, in response to determining that the above-mentioned power dispatch amount is less than the above-mentioned preset value, generating the value range information corresponding to the above-mentioned dispatch time according to the second preset correction coefficient and the above-mentioned target daily predicted electricity value. In practice, the above-mentioned execution subject may determine the product of the above-mentioned second preset correction coefficient and the above-mentioned target daily predicted electricity value as the second value. Then, the above-mentioned execution subject may determine the information representing that it is greater than or equal to the above-mentioned second value as the value range information corresponding to the above-mentioned dispatch time.
第二步,将所生成的各个价值范围信息确定为价值范围信息集。In the second step, each value range information generated is determined as a value range information set.
第三步,从预设数据库获取与上述价值范围信息集对应的加密算法信息。其中,上述加密算法信息可以表示预设加密算法。例如,上述预设加密算法可以为AES加密算法。The third step is to obtain encryption algorithm information corresponding to the above value range information set from a preset database. The above encryption algorithm information may represent a preset encryption algorithm. For example, the above preset encryption algorithm may be an AES encryption algorithm.
第四步,根据上述加密算法信息和预设伪随机数生成器,生成与上述加密算法信息对应的密钥。实践中,上述执行主体可以通过上述预设伪随机数生成器,生成与上述加密算法信息对应的密钥。其中,上述密钥可以为用来控制加密和解密过程的参数。The fourth step is to generate a key corresponding to the encryption algorithm information according to the encryption algorithm information and the preset pseudo-random number generator. In practice, the execution subject can generate a key corresponding to the encryption algorithm information through the preset pseudo-random number generator. The key can be a parameter used to control the encryption and decryption process.
第五步,根据上述密钥对上述价值范围信息集进行加密处理,得到与上述价值范围信息集对应的价值范围加密数据。实践中,上述执行主体可以将上述价值范围信息集确定为待加密明文。然后,上述执行主体可以根据所生成的密钥对上述待加密明文进行加密操作,得到与上述待加密明文对应的密文。之后,上述执行主体可以将上述密文确定为价值范围加密数据。The fifth step is to encrypt the value range information set according to the key to obtain the value range encrypted data corresponding to the value range information set. In practice, the execution subject may determine the value range information set as the plaintext to be encrypted. Then, the execution subject may perform encryption operation on the plaintext to be encrypted according to the generated key to obtain the ciphertext corresponding to the plaintext to be encrypted. Afterwards, the execution subject may determine the ciphertext as the value range encrypted data.
第六步,将上述加密数据存储至预设存储设备。其中,上述预设存储设备可以为用于存储价值范围加密数据的设备。例如,上述设备可以为硬盘。Step 6: Store the encrypted data in a preset storage device. The preset storage device may be a device for storing encrypted data of a value range. For example, the device may be a hard disk.
上述技术方案及其相关内容作为本公开的实施例的一个发明点,解决了背景技术提及的技术问题三“直接将所生成表征电力价值范围的信息存储至存储设备(例如,硬盘),在存储过程中并未对存储的信息进行加密处理,导致未加密的表征电力价值范围的信息容易受到黑客攻击或内部人员泄露的风险,导致敏感信息被窃取或篡改,进而导致表征电力价值范围的信息存储安全性较低”。导致电力价值范围信息的存储安全应较低的因素往往如下:直接将所生成表征电力价值范围的信息存储至存储设备(例如,硬盘),在存储过程中并未对存储的信息进行加密处理,导致未加密的表征电力价值范围的信息容易受到黑客攻击或内部人员泄露的风险,导致敏感信息被窃取或篡改,进而导致表征电力价值范围的信息存储安全性较低。如果解决了上述因素,就能达到提高表征电力价值范围的信息存储安全性的效果。为了达到这一效果,首先,对上述电力调度量序列中的每个电力调度量,执行以下步骤:接着,将对应上述电力调度量的时间段确定为调度时间段。由此,可以得到用于确定目标当日预测价值的调度时间段。之后,将上述当日预测电价值序列中与上述调度时间段对应的当日预测电价值确定为目标当日预测电价值。由此,可以得到目标当日预测电价值。然后,响应于确定上述电力调度量等于上述预设数值,根据上述目标当日预测电价值,生成与上述调度时间段对应的价值范围信息。由此,可以得到当电力调度量等于上述预设数值时的价值范围信息。接着,响应于确定上述电力调度量大于上述预设数值,根据第一预设矫正系数与上述目标当日预测电价值,生成与上述调度时间对应的价值范围信息。由此,可以得到当电力调度量大于上述预设数值时的价值范围信息。然后,响应于确定上述电力调度量小于上述预设数值,根据第二预设矫正系数与上述目标当日预测电价值,生成与上述调度时间对应的价值范围信息。由此,可以得到当电力调度量小于上述预设数值时的价值范围信息。之后,将所生成的各个价值范围信息确定为价值范围信息集。由此,可以得到表征电力价值范围的价值范围信息集。接着,从预设数据库获取与上述价值范围信息集对应的加密算法信息。由此,可以得到用于对价值范围信息集进行加密的加密算法信息。接着,根据上述加密算法信息和预设伪随机数生成器,生成与上述加密算法信息对应的密钥。由此,可以得到用于加密处理的密钥。然后,根据上述密钥,对上述价值范围信息集进行加密处理,得到与上述价值范围信息集对应的价值范围加密数据。由此,可以对价值范围信息集进行加密,得到价值范围加密数据。之后,将上述价值范围加密数据存储至预设存储设备。也因为在电力调度之后,生成了随着电力调度而发生改变的表征电力价值范围的价值范围信息集,在存储价值范围信息集之前对价值范围信息集进行了加密,降低了表征电力价值范围的价值范围信息集受到黑客攻击或内部人员泄露的风险,提高了表征电力价值范围的价值范围信息集的存储安全性。The above technical solution and its related contents, as an inventive point of the embodiment of the present disclosure, solve the technical problem three mentioned in the background technology, "the generated information representing the value range of electricity is directly stored in a storage device (for example, a hard disk), and the stored information is not encrypted during the storage process, resulting in the unencrypted information representing the value range of electricity being vulnerable to hacker attacks or internal personnel leakage, resulting in sensitive information being stolen or tampered with, and then resulting in low storage security of the information representing the value range of electricity". The factors that lead to low storage security of the information of the value range of electricity are often as follows: the generated information representing the value range of electricity is directly stored in a storage device (for example, a hard disk), and the stored information is not encrypted during the storage process, resulting in the unencrypted information representing the value range of electricity being vulnerable to hacker attacks or internal personnel leakage, resulting in sensitive information being stolen or tampered with, and then resulting in low storage security of the information representing the value range of electricity. If the above factors are solved, the effect of improving the storage security of the information representing the value range of electricity can be achieved. In order to achieve this effect, first, for each power dispatch amount in the above power dispatch amount sequence, the following steps are performed: Then, the time period corresponding to the above power dispatch amount is determined as the dispatch time period. Thus, the dispatch time period for determining the target daily forecast value can be obtained. Afterwards, the predicted electricity value of the day corresponding to the above-mentioned scheduling time period in the above-mentioned predicted electricity value sequence is determined as the target predicted electricity value of the day. Thus, the target predicted electricity value of the day can be obtained. Then, in response to determining that the above-mentioned power dispatch amount is equal to the above-mentioned preset value, the value range information corresponding to the above-mentioned scheduling time period is generated according to the above-mentioned target predicted electricity value of the day. Thus, the value range information when the power dispatch amount is equal to the above-mentioned preset value can be obtained. Then, in response to determining that the above-mentioned power dispatch amount is greater than the above-mentioned preset value, the value range information corresponding to the above-mentioned scheduling time is generated according to the first preset correction coefficient and the above-mentioned target predicted electricity value of the day. Thus, the value range information when the power dispatch amount is greater than the above-mentioned preset value can be obtained. Then, in response to determining that the above-mentioned power dispatch amount is less than the above-mentioned preset value, the value range information corresponding to the above-mentioned scheduling time is generated according to the second preset correction coefficient and the above-mentioned target predicted electricity value of the day. Thus, the value range information when the power dispatch amount is less than the above-mentioned preset value can be obtained. Afterwards, the generated value range information is determined as a value range information set. Thus, the value range information set characterizing the power value range can be obtained. Next, the encryption algorithm information corresponding to the above-mentioned value range information set is obtained from the preset database. Thus, the encryption algorithm information used to encrypt the value range information set can be obtained. Next, according to the above-mentioned encryption algorithm information and the preset pseudo-random number generator, a key corresponding to the above-mentioned encryption algorithm information is generated. Thus, the key used for encryption processing can be obtained. Then, according to the above-mentioned key, the above-mentioned value range information set is encrypted to obtain the value range encrypted data corresponding to the above-mentioned value range information set. Thus, the value range information set can be encrypted to obtain the value range encrypted data. Afterwards, the above-mentioned value range encrypted data is stored in a preset storage device. Also because after the power dispatching, a value range information set representing the value range of electricity that changes with the power dispatching is generated, and the value range information set is encrypted before the value range information set is stored, the risk of the value range information set representing the value range of electricity being attacked by hackers or leaked by internal personnel is reduced, and the storage security of the value range information set representing the value range of electricity is improved.
本公开的上述各个实施例具有如下有益效果:通过本公开的一些实施例的电力调度方法,减少了电储装置存储资源的浪费。具体来说,造成电储装置存储资源的浪费的原因在于:根据预设用电需求对电力资源进行调度,在电力调度过程中并没有考虑到可再生能源(例如,太阳能和风能)的潜在供应,当可再生能源充裕的情况下,根据预设用电需求进行电力资源调度可能会导致电储装置存储资源的浪费。基于此,本公开的一些实施例的电力调度方法,首先,获取供电节点标识集。由此,可以得到表征各个需要供电区域的供电节点标识集。接着,对于上述供电节点标识集中的每个供电节点标识,执行以下电力调度处理:获取对应上述供电节点标识的当日电力流转条件信息与对应上述供电节点标识的当日环境信息。由此,可以得到用于确定相似日日期的当日电力流转条件信息与当日环境信息。然后,获取对应上述供电节点标识的历史电力流转条件信息集与对应上述供电节点标识的历史环境信息集,其中,上述历史电力流转条件信息集中一个历史电力流转条件信息与一个历史日期对应,上述历史环境信息集中的一个历史环境信息与一个历史日期对应。由此,可以得到用于确定相似日日期的历史电力流转条件信息集与历史环境信息集。接着,根据上述当日电力流转条件信息、上述当日环境信息、上述历史电力流转条件信息集与上述历史环境信息集,确定相似日日期。由此,可以得到相似日日期。然后,获取与上述相似日日期对应的相似日数据,其中,上述相似日数据包括以下至少一项:电价值序列、新能源发电量序列、负荷量序列。由此,可以获取到用于预测当日各个时间段电价值的相似日数据。接着,根据上述相似日数据、上述当日电力流转条件信息与当日环境信息,生成与上述供电节点标识对应的当日预测电价值序列、当日预测新能源发电量序列与当日预测负荷量序列。由此,可以预测得到当日预测电价值序列、表征可再生能源(例如,太阳能和风能)的潜在供应量的当日预测新能源发电量序列、表征用电需求量的当日预测负荷量序列。接着,获取与上述供电节点标识对应的可控负荷信息。由此,可以得到用于生成电力调度量序列的可控负荷信息。接着,将上述可控负荷信息、上述当日预测电价值序列、上述当日预测新能源发电量序列与上述当日预测负荷量序列输入至预设电力调度信息生成模型,得到电力调度信息,其中,上述电力调度信息包括电力调度量序列。由此,可以根据可控负荷信息、当日预测电价值序列、表征可再生能源(例如,太阳能和风能)的潜在供应量的当日预测新能源发电量序列与当日预测负荷量序,生成电力调度序列。根据上述电力调度量序列,对与上述供电节点标识对应的电储能装置进行电力调度。由此,可以在生成电力调度序列的基础上进行电力调度。也因为在进行电力调度之前,考虑到了可再生能源(例如,太阳能和风能)的潜在供应量,根据可控负荷信息、当日预测电价值序列、表征可再生能源(例如,太阳能和风能)的潜在供应量的当日预测新能源发电量序列与当日预测负荷量序,生成了电力调度序列。减少了在可再生能源充裕的情况下仍然根据预设用电需求进行电力调度的可能性,减少了电储装置存储资源的浪费。The above-mentioned various embodiments of the present disclosure have the following beneficial effects: through the power dispatching method of some embodiments of the present disclosure, the waste of storage resources of the electric storage device is reduced. Specifically, the reason for the waste of storage resources of the electric storage device is that the power resources are dispatched according to the preset power demand, and the potential supply of renewable energy (for example, solar energy and wind energy) is not taken into account in the power dispatching process. When the renewable energy is abundant, the power resource dispatching according to the preset power demand may lead to the waste of storage resources of the electric storage device. Based on this, the power dispatching method of some embodiments of the present disclosure, first, obtains the power supply node identification set. Thus, the power supply node identification set characterizing each area requiring power supply can be obtained. Then, for each power supply node identification in the above power supply node identification set, the following power dispatching processing is performed: the power flow condition information of the day corresponding to the above power supply node identification and the environmental information of the day corresponding to the above power supply node identification are obtained. Thus, the power flow condition information of the day and the environmental information of the day for determining the similar date can be obtained. Then, the historical power flow condition information set corresponding to the above power supply node identifier and the historical environment information set corresponding to the above power supply node identifier are obtained, wherein one historical power flow condition information in the above historical power flow condition information set corresponds to a historical date, and one historical environment information in the above historical environment information set corresponds to a historical date. Thus, the historical power flow condition information set and the historical environment information set for determining the similar date can be obtained. Then, the similar date is determined according to the above power flow condition information of the day, the above environmental information of the day, the above historical power flow condition information set and the above historical environment information set. Thus, the similar date can be obtained. Then, the similar day data corresponding to the above similar date is obtained, wherein the above similar day data includes at least one of the following: an electricity value sequence, a new energy power generation sequence, and a load sequence. Thus, similar day data for predicting the electricity value of each time period of the day can be obtained. Then, according to the above similar day data, the above power flow condition information of the day and the environmental information of the day, the predicted electricity value sequence of the day, the predicted new energy power generation sequence of the day and the predicted load sequence of the day corresponding to the above power supply node identifier are generated. Thus, it is possible to predict the current day's predicted electricity value sequence, the current day's predicted new energy generation sequence characterizing the potential supply of renewable energy (e.g., solar energy and wind energy), and the current day's predicted load sequence characterizing the electricity demand. Next, the controllable load information corresponding to the above-mentioned power supply node identifier is obtained. Thus, the controllable load information used to generate the power dispatching quantity sequence can be obtained. Then, the above-mentioned controllable load information, the above-mentioned current day's predicted electricity value sequence, the above-mentioned current day's predicted new energy generation sequence, and the above-mentioned current day's predicted load sequence are input into the preset power dispatching information generation model to obtain the power dispatching information, wherein the above-mentioned power dispatching information includes the power dispatching quantity sequence. Thus, the power dispatching sequence can be generated according to the controllable load information, the current day's predicted electricity value sequence, the current day's predicted new energy generation sequence characterizing the potential supply of renewable energy (e.g., solar energy and wind energy), and the current day's predicted load sequence. According to the above-mentioned power dispatching quantity sequence, the electric energy storage device corresponding to the above-mentioned power supply node identifier is subjected to power dispatching. Thus, power dispatching can be performed on the basis of generating the power dispatching sequence. Also, before power dispatching, the potential supply of renewable energy (e.g., solar and wind energy) is taken into account, and a power dispatching sequence is generated based on controllable load information, the current day's predicted electricity value sequence, the current day's predicted new energy generation sequence that characterizes the potential supply of renewable energy (e.g., solar and wind energy), and the current day's predicted load sequence. This reduces the possibility of power dispatching based on preset power demand when renewable energy is abundant, and reduces the waste of storage resources of power storage devices.
进一步参考图2,作为对各图所示方法的实现,本公开提供了一种电力调度装置的一些实施例,这些装置实施例与图1所示的那些方法实施例相对应,该装置具体可以应用于各种电子设备中。Further referring to FIG. 2 , as an implementation of the methods shown in the respective figures, the present disclosure provides some embodiments of a power dispatching device, which device embodiments correspond to the method embodiments shown in FIG. 1 , and the device can be specifically applied to various electronic devices.
如图2所示,一些实施例的电力调度装置200包括:获取单元201和电力调度处理单元202。其中,获取单元201被配置成获取供电节点标识集;电力调度处理单元202被配置成对于上述供电节点标识集中的每个供电节点标识,执行以下电力调度处理:获取对应上述供电节点标识的当日电力流转条件信息与对应上述供电节点标识的当日环境信息;获取对应上述供电节点标识的历史电力流转条件信息集与对应上述供电节点标识的历史环境信息集,其中,上述历史电力流转条件信息集中一个历史电力流转条件信息与一个历史日期对应,上述历史环境信息集中的一个历史环境信息与一个历史日期对应;根据上述当日电力流转条件信息、上述当日环境信息、上述历史电力流转条件信息集与上述历史环境信息集,确定相似日日期;获取与上述相似日日期对应的相似日数据,其中,上述相似日数据包括以下至少一项:电价值序列、新能源发电量序列、负荷量序列;根据上述相似日数据、上述当日电力流转条件信息与当日环境信息,生成与上述供电节点标识对应的当日预测电价值序列、当日预测新能源发电量序列与当日预测负荷量序列;获取与上述供电节点标识对应的可控负荷信息;将上述可控负荷信息、上述当日预测电价值序列、上述当日预测新能源发电量序列与上述当日预测负荷量序列输入至预设电力调度信息生成模型,得到电力调度信息,其中,上述电力调度信息包括电力调度量序列;根据上述电力调度量序列,对与上述供电节点标识对应的电储能装置进行电力调度。As shown in FIG2 , the power dispatching device 200 of some embodiments includes: an acquisition unit 201 and a power dispatching processing unit 202. The acquisition unit 201 is configured to acquire a power supply node identification set; the power dispatching processing unit 202 is configured to perform the following power dispatching processing for each power supply node identification in the above power supply node identification set: acquiring the current day power flow condition information corresponding to the above power supply node identification and the current day environment information corresponding to the above power supply node identification; acquiring the historical power flow condition information set corresponding to the above power supply node identification and the historical environment information set corresponding to the above power supply node identification, wherein one historical power flow condition information in the above historical power flow condition information set corresponds to a historical date, and one historical environment information in the above historical environment information set corresponds to a historical date; determining similar dates based on the above current day power flow condition information, the above current day environment information, the above historical power flow condition information set and the above historical environment information set; acquiring and Similar day data corresponding to the above-mentioned similar day dates, wherein the above-mentioned similar day data include at least one of the following: an electricity value sequence, a new energy power generation sequence, and a load sequence; based on the above-mentioned similar day data, the above-mentioned daily power flow condition information and the daily environmental information, generate the daily predicted electricity value sequence, the daily predicted new energy power generation sequence and the daily predicted load sequence corresponding to the above-mentioned power supply node identifier; obtain the controllable load information corresponding to the above-mentioned power supply node identifier; input the above-mentioned controllable load information, the above-mentioned daily predicted electricity value sequence, the above-mentioned daily predicted new energy power generation sequence and the above-mentioned daily predicted load sequence into a preset power dispatching information generation model to obtain power dispatching information, wherein the above-mentioned power dispatching information includes a power dispatching quantity sequence; according to the above-mentioned power dispatching quantity sequence, perform power dispatching on the electric energy storage device corresponding to the above-mentioned power supply node identifier.
可以理解的是,该装置200中记载的诸单元与参考图1述的方法中的各个步骤相对应。由此,上文针对方法描述的操作、特征以及产生的有益效果同样适用于装置200及其中包含的单元,在此不再赘述。It is understandable that the units recorded in the device 200 correspond to the steps in the method described with reference to Figure 1. Therefore, the operations, features and beneficial effects described above for the method are also applicable to the device 200 and the units contained therein, and will not be repeated here.
下面参考图3,其示出了适于用来实现本公开的一些实施例的电子设备300的结构示意图。图3示出的电子设备仅仅是一个示例,不应对本公开的实施例的功能和使用范围带来任何限制。Referring to Fig. 3, a schematic diagram of the structure of an electronic device 300 suitable for implementing some embodiments of the present disclosure is shown. The electronic device shown in Fig. 3 is only an example and should not bring any limitation to the functions and scope of use of the embodiments of the present disclosure.
如图3所示,电子设备300可以包括处理装置(例如中央处理器、图形处理器等)301,其可以根据存储在只读存储器(ROM)302中的程序或者从存储装置308加载到随机访问存储器(RAM)303中的程序而执行各种适当的动作和处理。在RAM 303中,还存储有电子设备300操作所需的各种程序和数据。处理装置301、ROM 302以及RAM 303通过总线304彼此相连。输入/输出(I/O)接口305也连接至总线304。As shown in FIG3 , the electronic device 300 may include a processing device (e.g., a central processing unit, a graphics processing unit, etc.) 301, which can perform various appropriate actions and processes according to a program stored in a read-only memory (ROM) 302 or a program loaded from a storage device 308 into a random access memory (RAM) 303. In the RAM 303, various programs and data required for the operation of the electronic device 300 are also stored. The processing device 301, the ROM 302, and the RAM 303 are connected to each other via a bus 304. An input/output (I/O) interface 305 is also connected to the bus 304.
通常,以下装置可以连接至I/O接口305:包括例如触摸屏、触摸板、键盘、鼠标、摄像头、麦克风、加速度计、陀螺仪等的输入装置306;包括例如液晶显示器(LCD)、扬声器、振动器等的输出装置307;包括例如磁带、硬盘等的存储装置308;以及通信装置309。通信装置309可以允许电子设备300与其他设备进行无线或有线通信以交换数据。虽然图3示出了具有各种装置的电子设备300,但是应理解的是,并不要求实施或具备所有示出的装置。可以替代地实施或具备更多或更少的装置。图3中示出的每个方框可以代表一个装置,也可以根据需要代表多个装置。Typically, the following devices may be connected to the I/O interface 305: input devices 306 including, for example, a touch screen, a touchpad, a keyboard, a mouse, a camera, a microphone, an accelerometer, a gyroscope, etc.; output devices 307 including, for example, a liquid crystal display (LCD), a speaker, a vibrator, etc.; storage devices 308 including, for example, a magnetic tape, a hard disk, etc.; and communication devices 309. The communication device 309 may allow the electronic device 300 to communicate with other devices wirelessly or by wire to exchange data. Although FIG. 3 shows an electronic device 300 with various devices, it should be understood that it is not required to implement or have all the devices shown. More or fewer devices may be implemented or have alternatively. Each box shown in FIG. 3 may represent one device, or may represent multiple devices as needed.
特别地,根据本公开的一些实施例,上文参考流程图描述的过程可以被实现为计算机软件程序。例如,本公开的一些实施例包括一种计算机程序产品,其包括承载在计算机可读介质上的计算机程序,该计算机程序包含用于执行流程图所示的方法的程序代码。在这样的一些实施例中,该计算机程序可以通过通信装置309从网络上被下载和安装,或者从存储装置308被安装,或者从ROM 302被安装。在该计算机程序被处理装置301执行时,执行本公开的一些实施例的方法中限定的功能。In particular, according to some embodiments of the present disclosure, the process described above with reference to the flowchart can be implemented as a computer software program. For example, some embodiments of the present disclosure include a computer program product, which includes a computer program carried on a computer-readable medium, and the computer program includes a program code for executing the method shown in the flowchart. In some such embodiments, the computer program can be downloaded and installed from the network through the communication device 309, or installed from the storage device 308, or installed from the ROM 302. When the computer program is executed by the processing device 301, the functions defined in the method of some embodiments of the present disclosure are executed.
需要说明的是,本公开的一些实施例中记载的计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质或者是两者的任意组合。计算机可读存储介质例如可以是——但不限于——电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子可以包括但不限于:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机访问存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者的任意合适的组合。在本公开的一些实施例中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。而在本公开的一些实施例中,计算机可读信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或的任意合适的组合。计算机可读信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读信号介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于:电线、光缆、RF(射频)等等,或者的任意合适的组合。It should be noted that the computer-readable medium recorded in some embodiments of the present disclosure may be a computer-readable signal medium or a computer-readable storage medium or any combination of the two. The computer-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device or device, or any combination of the above. More specific examples of computer-readable storage media may include, but are not limited to: an electrical connection with one or more wires, a portable computer disk, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or flash memory), an optical fiber, a portable compact disk read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination thereof. In some embodiments of the present disclosure, a computer-readable storage medium may be any tangible medium containing or storing a program that may be used by or in conjunction with an instruction execution system, device or device. In some embodiments of the present disclosure, a computer-readable signal medium may include a data signal propagated in a baseband or as part of a carrier wave, in which a computer-readable program code is carried. Such propagated data signals may take a variety of forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination thereof. The computer readable signal medium may also be any computer readable medium other than a computer readable storage medium, which may send, propagate or transmit a program for use by or in conjunction with an instruction execution system, apparatus or device. The program code contained on the computer readable medium may be transmitted using any suitable medium, including but not limited to: wires, optical cables, RF (radio frequency), etc., or any suitable combination thereof.
在一些实施方式中,客户端、服务器可以利用诸如HTTP(HyperText TransferProtocol,超文本传输协议)之类的任何当前已知或未来研发的网络协议进行通信,并且可以与任意形式或介质的数字数据通信(例如,通信网络)互连。通信网络的示例包括局域网(“LAN”),广域网(“WAN”),网际网(例如,互联网)以及端对端网络(例如,ad hoc端对端网络),以及任何当前已知或未来研发的网络。In some embodiments, the client and the server may communicate using any currently known or future developed network protocol such as HTTP (HyperText Transfer Protocol), and may be interconnected with any form or medium of digital data communication (e.g., a communication network). Examples of communication networks include a local area network ("LAN"), a wide area network ("WAN"), an internet (e.g., the Internet), and a peer-to-peer network (e.g., an ad hoc peer-to-peer network), as well as any currently known or future developed network.
计算机可读介质可以是电子设备中所包含的;也可以是单独存在,而未装配入该电子设备中。计算机可读介质承载有一个或者多个程序,当一个或者多个程序被该电子设备执行时,使得该电子设备:获取供电节点标识集;对于上述供电节点标识集中的每个供电节点标识,执行以下电力调度处理:获取对应上述供电节点标识的当日电力流转条件信息与对应上述供电节点标识的当日环境信息;获取对应上述供电节点标识的历史电力流转条件信息集与对应上述供电节点标识的历史环境信息集,其中,上述历史电力流转条件信息集中一个历史电力流转条件信息与一个历史日期对应,上述历史环境信息集中的一个历史环境信息与一个历史日期对应;根据上述当日电力流转条件信息、上述当日环境信息、上述历史电力流转条件信息集与上述历史环境信息集,确定相似日日期;获取与上述相似日日期对应的相似日数据,其中,上述相似日数据包括以下至少一项:电价值序列、新能源发电量序列、负荷量序列;根据上述相似日数据、上述当日电力流转条件信息与当日环境信息,生成与上述供电节点标识对应的当日预测电价值序列、当日预测新能源发电量序列与当日预测负荷量序列;获取与上述供电节点标识对应的可控负荷信息;将上述可控负荷信息、上述当日预测电价值序列、上述当日预测新能源发电量序列与上述当日预测负荷量序列输入至预设电力调度信息生成模型,得到电力调度信息,其中,上述电力调度信息包括电力调度量序列;根据上述电力调度量序列,对与上述供电节点标识对应的电储能装置进行电力调度。The computer-readable medium may be included in the electronic device; or it may exist independently without being installed in the electronic device. The computer-readable medium carries one or more programs. When the one or more programs are executed by the electronic device, the electronic device: obtains a power supply node identification set; for each power supply node identification in the above power supply node identification set, performs the following power dispatch processing: obtains the current day power flow condition information corresponding to the above power supply node identification and the current day environment information corresponding to the above power supply node identification; obtains the historical power flow condition information set corresponding to the above power supply node identification and the historical environment information set corresponding to the above power supply node identification, wherein one historical power flow condition information in the above historical power flow condition information set corresponds to a historical date, and one historical environment information in the above historical environment information set corresponds to a historical date; according to the above current day power flow condition information, the above current day environment information, the above historical power flow condition information set and the above historical environment information set, determine Similar day date; obtaining similar day data corresponding to the above similar day date, wherein the above similar day data includes at least one of the following: electricity value sequence, new energy power generation sequence, load sequence; generating the daily predicted electricity value sequence, the daily predicted new energy power generation sequence and the daily predicted load sequence corresponding to the above power supply node identifier according to the above similar day data, the above daily power flow condition information and the daily environmental information; obtaining the controllable load information corresponding to the above power supply node identifier; inputting the above controllable load information, the above daily predicted electricity value sequence, the above daily predicted new energy power generation sequence and the above daily predicted load sequence into a preset power dispatching information generation model to obtain power dispatching information, wherein the above power dispatching information includes a power dispatching quantity sequence; according to the above power dispatching quantity sequence, performing power dispatching on the electric energy storage device corresponding to the above power supply node identifier.
可以以一种或多种程序设计语言或其组合来编写用于执行本公开的一些实施例的操作的计算机程序代码,程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)——连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。Computer program code for performing the operations of some embodiments of the present disclosure may be written in one or more programming languages or a combination thereof, including object-oriented programming languages, such as Java, Smalltalk, C++, and conventional procedural programming languages, such as "C" or similar programming languages. The program code may be executed entirely on the user's computer, partially on the user's computer, as a separate software package, partially on the user's computer and partially on a remote computer, or entirely on a remote computer or server. In cases involving a remote computer, the remote computer may be connected to the user's computer via any type of network, including a local area network (LAN) or a wide area network (WAN), or may be connected to an external computer (e.g., via the Internet using an Internet service provider).
附图中的流程图和框图,图示了按照本公开各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段、或代码的一部分,该模块、程序段、或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。The flow chart and block diagram in the accompanying drawings illustrate the possible architecture, function and operation of the system, method and computer program product according to various embodiments of the present disclosure. In this regard, each square box in the flow chart or block diagram can represent a module, a program segment or a part of a code, and the module, the program segment or a part of the code contains one or more executable instructions for realizing the specified logical function. It should also be noted that in some implementations as replacements, the functions marked in the square box can also occur in a sequence different from that marked in the accompanying drawings. For example, two square boxes represented in succession can actually be executed substantially in parallel, and they can sometimes be executed in the opposite order, depending on the functions involved. It should also be noted that each square box in the block diagram and/or flow chart, and the combination of the square boxes in the block diagram and/or flow chart can be implemented with a dedicated hardware-based system that performs a specified function or operation, or can be implemented with a combination of dedicated hardware and computer instructions.
描述于本公开的一些实施例中的单元可以通过软件的方式实现,也可以通过硬件的方式来实现。所描述的单元也可以设置在处理器中,例如,可以描述为:一种处理器包括获取单元和电力调度处理单元。其中,这些单元的名称在某种情况下并不构成对该单元本身的限定,例如,获取单元还可以被描述为“获取供电节点标识集的单元”。The units described in some embodiments of the present disclosure may be implemented by software or by hardware. The units described may also be provided in a processor, for example, may be described as: a processor including an acquisition unit and a power dispatch processing unit. The names of these units do not, in some cases, constitute limitations on the units themselves, for example, the acquisition unit may also be described as a "unit for acquiring a power supply node identification set".
本文中以上描述的功能可以至少部分地由一个或多个硬件逻辑部件来执行。例如,非限制性地,可以使用的示范类型的硬件逻辑部件包括:现场可编程门阵列(FPGA)、专用集成电路(ASIC)、专用标准产品(ASSP)、片上系统(SOC)、复杂可编程逻辑设备(CPLD)等等。The functions described above herein may be performed at least in part by one or more hardware logic components. For example, without limitation, exemplary types of hardware logic components that may be used include: field programmable gate arrays (FPGAs), application specific integrated circuits (ASICs), application specific standard products (ASSPs), systems on chip (SOCs), complex programmable logic devices (CPLDs), and the like.
以上描述仅为本公开的一些较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本公开的实施例中所涉及的发明范围,并不限于技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离发明构思的情况下,由技术特征或其等同特征进行任意组合而形成的其它技术方案。例如特征与本公开的实施例中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。The above descriptions are only some preferred embodiments of the present disclosure and an explanation of the technical principles used. Those skilled in the art should understand that the scope of the invention involved in the embodiments of the present disclosure is not limited to the technical solutions formed by a specific combination of technical features, but should also cover other technical solutions formed by any combination of technical features or their equivalent features without departing from the inventive concept. For example, a technical solution formed by replacing the features with (but not limited to) the technical features with similar functions disclosed in the embodiments of the present disclosure.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202410743835.XACN118763736B (en) | 2024-06-11 | 2024-06-11 | Power dispatching method, device, electronic device and computer readable medium |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202410743835.XACN118763736B (en) | 2024-06-11 | 2024-06-11 | Power dispatching method, device, electronic device and computer readable medium |
| Publication Number | Publication Date |
|---|---|
| CN118763736Atrue CN118763736A (en) | 2024-10-11 |
| CN118763736B CN118763736B (en) | 2025-02-14 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202410743835.XAActiveCN118763736B (en) | 2024-06-11 | 2024-06-11 | Power dispatching method, device, electronic device and computer readable medium |
| Country | Link |
|---|---|
| CN (1) | CN118763736B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN119628880A (en)* | 2024-11-19 | 2025-03-14 | 科睿特软件集团股份有限公司 | A method for improving data flow effect based on artificial intelligence |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2018129829A1 (en)* | 2017-01-12 | 2018-07-19 | 沃太能源南通有限公司 | New type micro-network system and system-based networking and scheduling method |
| CN110880789A (en)* | 2019-12-06 | 2020-03-13 | 国网江苏省电力有限公司南通供电分公司 | Economic dispatching method for wind power and photovoltaic combined power generation system |
| CN115759317A (en)* | 2022-06-09 | 2023-03-07 | 国网天津市电力公司 | A power load control method, device, electronic equipment and storage medium |
| CN116845907A (en)* | 2023-07-11 | 2023-10-03 | 华自科技股份有限公司 | Micro-grid source load scheduling method, micro-grid source load scheduling system, electronic equipment and medium |
| CN116882597A (en)* | 2023-09-07 | 2023-10-13 | 国网信息通信产业集团有限公司 | Virtual power plant control method, device, electronic equipment and readable medium |
| CN117196084A (en)* | 2023-04-12 | 2023-12-08 | 国网河北省电力有限公司信息通信分公司 | Virtual power plant operation scheduling method and device, terminal and storage medium |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2018129829A1 (en)* | 2017-01-12 | 2018-07-19 | 沃太能源南通有限公司 | New type micro-network system and system-based networking and scheduling method |
| CN110880789A (en)* | 2019-12-06 | 2020-03-13 | 国网江苏省电力有限公司南通供电分公司 | Economic dispatching method for wind power and photovoltaic combined power generation system |
| CN115759317A (en)* | 2022-06-09 | 2023-03-07 | 国网天津市电力公司 | A power load control method, device, electronic equipment and storage medium |
| CN117196084A (en)* | 2023-04-12 | 2023-12-08 | 国网河北省电力有限公司信息通信分公司 | Virtual power plant operation scheduling method and device, terminal and storage medium |
| CN116845907A (en)* | 2023-07-11 | 2023-10-03 | 华自科技股份有限公司 | Micro-grid source load scheduling method, micro-grid source load scheduling system, electronic equipment and medium |
| CN116882597A (en)* | 2023-09-07 | 2023-10-13 | 国网信息通信产业集团有限公司 | Virtual power plant control method, device, electronic equipment and readable medium |
| Title |
|---|
| 吴迪;王正风;: "基于逐日分段气象算法的日前负荷预测", 电气应用, no. 06, 15 June 2020 (2020-06-15)* |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN119628880A (en)* | 2024-11-19 | 2025-03-14 | 科睿特软件集团股份有限公司 | A method for improving data flow effect based on artificial intelligence |
| CN119628880B (en)* | 2024-11-19 | 2025-08-05 | 科睿特软件集团股份有限公司 | A method for improving data flow effect based on artificial intelligence |
| Publication number | Publication date |
|---|---|
| CN118763736B (en) | 2025-02-14 |
| Publication | Publication Date | Title |
|---|---|---|
| CN112288595B (en) | A method for predicting power grid load, related device, equipment and storage medium | |
| CN115036993B (en) | Energy device control method, device, electronic apparatus, and computer-readable medium | |
| CN115085196B (en) | Power load predicted value determination method, device, equipment and computer readable medium | |
| CN116882597B (en) | Virtual power plant control method, device, electronic equipment and readable medium | |
| CN118763736A (en) | Power dispatching method, device, electronic device and computer readable medium | |
| CN115062877A (en) | Power equipment material information adjustment method, device, equipment and computer medium | |
| CN116512980B (en) | Power distribution method, device, equipment and medium based on internal resistance of power battery | |
| CN118395255A (en) | A time series prediction method applied to the field of photovoltaic storage and charging | |
| Li et al. | CTS2M: concurrent task scheduling and storage management for residential energy consumers under dynamic energy pricing | |
| CN117977586A (en) | Power failure early warning method and device based on three-dimensional digital twin model and electronic equipment | |
| CN116911577B (en) | Comprehensive energy scheduling method, device, electronic equipment and computer readable medium | |
| CN118783540A (en) | Virtual power plant energy scheduling method, device, electronic device and readable medium | |
| CN118535997A (en) | Tower foundation condition monitoring method, device, computer equipment, storage medium and computer program product | |
| CN116388112B (en) | Abnormal supply end power-off method, device, electronic equipment and computer readable medium | |
| Dogiwal et al. | Internet of things based real-time monitoring system for grid data | |
| CN117639042B (en) | Loss-reduction power supply control method and device for medium-low voltage distribution network, electronic equipment and medium | |
| CN111985967A (en) | Article information generation method and device, electronic equipment and computer readable medium | |
| Juneja et al. | Tie-line power transferred: Data security using block chain technology | |
| CN117350434A (en) | Methods, devices and equipment for generating renewable energy data | |
| CN116894163B (en) | Charging and discharging facility load prediction information generation method and device based on information security | |
| CN116599090B (en) | Power adjustment method, device and computer readable medium based on energy storage resource | |
| CN118747538A (en) | Virtual power plant data interaction method, equipment and medium based on federated learning | |
| CN118350610A (en) | Method and device for scheduling production resources, electronic equipment and readable medium | |
| Sun et al. | Utilizing indicator computing assistant to facilitate distribution automation in LTE wireless private network | |
| Si et al. | Smart grid data security sharing mechanism based on alliance blockchain |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |