技术领域Technical Field
本发明属于铣边坡口检测技术领域,具体涉及一种钢板铣边坡口加工尺寸调控系统和方法。The invention belongs to the technical field of milling bevel detection, and in particular relates to a steel plate milling bevel processing size control system and method.
背景技术Background Art
在螺旋埋弧焊管生产过程中,需要使用铣边机对钢板双侧进行铣边,为焊管焊接成型铣出焊缝坡口,方便后续螺旋焊管焊接,铣边坡口质量的好坏直接影响焊管焊接成型的质量。In the production process of spiral submerged arc welded pipes, a milling machine is needed to mill the edges of both sides of the steel plate to mill out the weld groove for the welded pipe to facilitate the subsequent spiral welded pipe welding. The quality of the milled groove directly affects the quality of the welded pipe welding.
目前,大部分的铣边机在工作前,需要根据钢板厚度和所需的坡口形状调整好铣刀盘的位置,在工作时,铣刀盘的位置保持不变。钢板进给时,根据铣刀盘刀头的形状铣削出所需的铣边坡口形状,但由于钢板存在弯曲不平整区域,铣刀盘不能对钢板弯曲区域做出对应的位置调整,导致铣后的铣边坡口并不是理想形状,影响后续螺旋焊管焊接成形的质量。At present, most of the milling machines need to adjust the position of the milling cutter disc according to the thickness of the steel plate and the required groove shape before working. During operation, the position of the milling cutter disc remains unchanged. When the steel plate is fed, the required milling groove shape is milled according to the shape of the milling cutter head. However, due to the uneven bending area of the steel plate, the milling cutter disc cannot make corresponding position adjustments to the bending area of the steel plate, resulting in the milling groove after milling is not in the ideal shape, affecting the quality of subsequent spiral welded pipe welding.
发明内容Summary of the invention
本发明要解决的技术问题是,提供一种钢板铣边坡口加工尺寸调控系统和方法。The technical problem to be solved by the present invention is to provide a system and method for controlling the size of steel plate milling bevel processing.
为实现上述目的,本发明采用如下的技术方案:To achieve the above object, the present invention adopts the following technical solution:
一种钢板铣边坡口加工尺寸调控系统,包括:单目线激光检测装置、坡口实时检测装置、PLC控制柜和铣边机,坡口实时检测装置,包括:图像处理模块和调整量计算模块,其中,A steel plate milling groove processing size control system includes: a monocular line laser detection device, a groove real-time detection device, a PLC control cabinet and a milling machine. The groove real-time detection device includes: an image processing module and an adjustment amount calculation module, wherein:
单目线激光检测装置,用于采集铣边坡口图像;Monocular line laser detection device, used to collect images of milling groove;
所述图像处理模块,包括:The image processing module comprises:
预处理单元,用于对铣边坡口图像进行预处理;A preprocessing unit, used for preprocessing the milling groove image;
提取单元,用于根据预处理后的铣边坡口图像,提取铣边坡口中心线;An extraction unit, used for extracting a center line of the milling groove according to the preprocessed milling groove image;
识别单元,用于根据铣边坡口中心线,得到坡口特征点;The recognition unit is used to obtain the groove feature points according to the center line of the milling groove;
计算单元,用于根据坡口特征点,得到铣边坡口的实际测量尺寸;A calculation unit is used to obtain the actual measurement size of the milling groove according to the groove feature points;
所述调整量计算模块,用于计算铣边坡口的实际测量尺寸与理论尺寸的差值,得到反馈调整量;The adjustment amount calculation module is used to calculate the difference between the actual measured size and the theoretical size of the milling groove to obtain the feedback adjustment amount;
PLC控制柜,用于基于反馈调整量控制铣边机的铣刀盘进行相应的移动,对铣边坡口的加工尺寸进行调整。The PLC control cabinet is used to control the milling cutter disc of the edge milling machine to move accordingly based on the feedback adjustment amount, and adjust the processing size of the milling groove.
作为优选,提取单元包括:Preferably, the extraction unit comprises:
去噪组件,用于对预处理后铣边坡口图像进行去噪;A denoising component is used to denoise the pre-processed milling groove image;
提取组件,用于根据去噪后的预处理后铣边坡口图像,基于单边跟踪与动态Otsu,提取铣边坡口中心线。The extraction component is used to extract the center line of the milling groove based on the denoised preprocessed milling groove image based on single-edge tracking and dynamic Otsu.
作为优选,识别单元包括:Preferably, the identification unit comprises:
确定组件,用于根据铣边坡口中心线,确定铣边坡口的钝边中点;A determination component is used to determine the midpoint of the blunt edge of the milling groove according to the center line of the milling groove;
分段组件,用于根据铣边坡口的钝边中点,得到分段区域;A segmentation component is used to obtain segmented areas according to the midpoint of the blunt edge of the milling groove;
拟合组件,用于在分段区域内拟合中心点,得到铣边坡口特征点。The fitting component is used to fit the center point in the segmented area to obtain the feature points of the milling groove.
本发明还提供一种钢板铣边坡口加工尺寸调控方法,包括:The present invention also provides a method for controlling the size of a steel plate milling groove, comprising:
步骤S1、采集铣边坡口图像;Step S1, collecting the image of the milling groove;
步骤S2、对铣边坡口图像进行预处理;Step S2, preprocessing the milling groove image;
步骤S3、根据预处理后的铣边坡口图像,提取铣边坡口中心线;Step S3, extracting the center line of the milling groove according to the preprocessed milling groove image;
步骤S4、根据铣边坡口中心线,得到坡口特征点;Step S4, obtaining groove feature points according to the center line of the milling groove;
步骤S5、根据坡口特征点,得到铣边坡口的实际测量尺寸;Step S5, obtaining the actual measurement size of the milling groove according to the groove feature points;
步骤S6、计算铣边坡口的实际测量尺寸与理论尺寸的差值,得到反馈调整量;Step S6, calculating the difference between the actual measured size and the theoretical size of the milling groove to obtain a feedback adjustment amount;
步骤S7、基于反馈调整量控制铣边机的铣刀盘进行相应的移动,对铣边坡口的加工尺寸进行调整。Step S7: Based on the feedback adjustment amount, the milling cutter disc of the edge milling machine is controlled to move accordingly to adjust the processing size of the milling groove.
作为优选,步骤S3包括:Preferably, step S3 comprises:
对预处理后铣边坡口图像进行去噪;De-noising the pre-processed milling groove image;
根据去噪后的预处理后铣边坡口图像,基于单边跟踪与动态Otsu,提取铣边坡口中心线。According to the denoised preprocessed milling groove image, the center line of the milling groove is extracted based on single-edge tracking and dynamic Otsu.
作为优选,步骤S4包括:Preferably, step S4 comprises:
根据铣边坡口中心线,确定铣边坡口的钝边中点;According to the center line of the milling groove, determine the midpoint of the blunt edge of the milling groove;
根据铣边坡口的钝边中点,得到分段区域;According to the midpoint of the blunt edge of the milling groove, the segmented area is obtained;
在分段区域内拟合中心点,得到铣边坡口特征点。Fit the center point in the segmented area to obtain the characteristic points of the milling groove.
本发明可针对性地实现铣边坡口尺寸的实时检测与坡口加工尺寸的实时调整,保证了铣边坡口质量,且单目线激光检测装置成本低。The present invention can specifically realize the real-time detection of the milling groove size and the real-time adjustment of the groove processing size, thereby ensuring the quality of the milling groove, and the monocular line laser detection device has low cost.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings required for use in the embodiments or the description of the prior art will be briefly introduced below. Obviously, the drawings described below are only embodiments of the present invention. For ordinary technicians in this field, other drawings can be obtained based on the provided drawings without paying creative work.
图1为本发明实施例钢板铣边坡口加工尺寸调控系统的原理结构框图;FIG1 is a block diagram of the principle structure of a steel plate edge milling groove processing size control system according to an embodiment of the present invention;
图2为本发明实施例钢板铣边坡口加工尺寸调控系统的结构示意图,其中,100为铣边机,200为单目线激光检测装置,300为PLC控制柜;FIG2 is a schematic structural diagram of a steel plate edge milling groove processing size control system according to an embodiment of the present invention, wherein 100 is an edge milling machine, 200 is a monocular line laser detection device, and 300 is a PLC control cabinet;
图3为本发明实施例中的铣边坡口特征点示意图。FIG. 3 is a schematic diagram of characteristic points of the milling groove in an embodiment of the present invention.
具体实施方式DETAILED DESCRIPTION
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will be combined with the drawings in the embodiments of the present invention to clearly and completely describe the technical solutions in the embodiments of the present invention. Obviously, the described embodiments are only part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by ordinary technicians in this field without creative work are within the scope of protection of the present invention.
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。In order to make the above-mentioned objects, features and advantages of the present invention more obvious and easy to understand, the present invention is further described in detail below with reference to the accompanying drawings and specific embodiments.
实施例1:Embodiment 1:
如图1、2所示,本发明实施例提供一种钢板铣边坡口加工尺寸调控系统,包括:单目线激光检测装置200、坡口实时检测装置、PLC控制柜300和铣边机100,其中,As shown in FIGS. 1 and 2 , an embodiment of the present invention provides a steel plate milling groove processing size control system, comprising: a monocular line laser detection device 200, a groove real-time detection device, a PLC control cabinet 300 and a milling machine 100, wherein:
单目线激光检测装置200,用于采集铣边坡口图像;A monocular line laser detection device 200, used to collect images of the milling groove;
坡口实时检测装置,包括:图像处理模块和调整量计算模块;The groove real-time detection device comprises: an image processing module and an adjustment amount calculation module;
所述图像处理模块,包括:The image processing module comprises:
预处理单元,用于对铣边坡口图像进行预处理;A preprocessing unit, used for preprocessing the milling groove image;
提取单元,用于根据预处理后的铣边坡口图像,提取铣边坡口中心线;An extraction unit, used for extracting a center line of the milling groove according to the preprocessed milling groove image;
识别单元,用于根据铣边坡口中心线,得到坡口特征点;The recognition unit is used to obtain the groove feature points according to the center line of the milling groove;
计算单元,用于根据坡口特征点,得到铣边坡口的实际测量尺寸;A calculation unit, used for obtaining the actual measurement size of the milling groove according to the groove feature points;
所述调整量计算模块,用于计算铣边坡口的实际测量尺寸与理论尺寸的差值,得到反馈调整量;The adjustment amount calculation module is used to calculate the difference between the actual measured size and the theoretical size of the milling groove to obtain the feedback adjustment amount;
PLC控制柜300,用于基于反馈调整量控制铣边机100的铣刀盘进行相应的移动,对铣边坡口的加工尺寸进行调整。The PLC control cabinet 300 is used to control the milling cutter disc of the edge milling machine 100 to move accordingly based on the feedback adjustment amount, so as to adjust the processing size of the milling groove.
作为本发明实施的一种实施方式,预处理单元对铣边坡口图像进行预处理包含:图像ROI确定、图像滤波和图像分割;其中,图像ROI确定用于裁剪铣边坡口图像,得到保留坡口区域的铣边坡口图像;图像滤波采用3×3大小的中值滤波对裁剪后的铣边坡口图像进行滤波操作;图像分割采用Otsu法对滤波后的铣边坡口图像进行自适应阈值分割。As an implementation mode of the present invention, the preprocessing unit preprocesses the milling groove image including: image ROI determination, image filtering and image segmentation; wherein, the image ROI determination is used to crop the milling groove image to obtain the milling groove image with the groove area retained; the image filtering uses a 3×3 median filter to perform a filtering operation on the cropped milling groove image; the image segmentation uses the Otsu method to perform adaptive threshold segmentation on the filtered milling groove image.
作为本发明实施的一种实施方式,提取单元,包括:As an implementation mode of the present invention, the extraction unit includes:
去噪组件,用于对预处理后铣边坡口图像进行去噪;A denoising component is used to denoise the pre-processed milling groove image;
提取组件,用于根据去噪后的预处理后铣边坡口图像,基于单边跟踪与动态Otsu,提取铣边坡口中心线。The extraction component is used to extract the center line of the milling groove based on the denoised preprocessed milling groove image based on single-edge tracking and dynamic Otsu.
作为本发明实施的一种实施方式,识别单元包括:As an implementation mode of the present invention, the identification unit includes:
确定组件,用于根据铣边坡口中心线,确定铣边坡口的钝边中点;A determination component is used to determine the midpoint of the blunt edge of the milling groove according to the center line of the milling groove;
分段组件,用于根据铣边坡口的钝边中点,得到分段区域;A segmentation component is used to obtain segmented areas according to the midpoint of the blunt edge of the milling groove;
拟合组件,用于在分段区域内拟合中心点,得到铣边坡口特征点。The fitting component is used to fit the center point in the segmented area to obtain the feature points of the milling groove.
作为本发明实施的一种实施方式,所述单目线激光装置200包括:激光器、相机和工控主板;所述激光器用于加强铣边坡口的特征;所述相机用于采集激光器加强铣边坡口特征后的铣边坡口图像;工控主板用于存储加强铣边坡口特征后的铣边坡口图像和铣边坡口的实际测量尺寸。As an implementation mode of the present invention, the monocular line laser device 200 includes: a laser, a camera and an industrial control mainboard; the laser is used to enhance the features of the milling bevel; the camera is used to collect the image of the milling bevel after the features of the milling bevel are enhanced by the laser; the industrial control mainboard is used to store the image of the milling bevel after the features of the milling bevel are enhanced and the actual measured dimensions of the milling bevel.
作为本发明实施的一种实施方式,PLC控制柜300包括:PLC控制器和显示屏;PLC控制器,用于基于反馈调整量控制铣边机100的铣刀盘上下移动对应量,调整铣边坡口加工尺寸;显示屏,用于实时显示铣边坡口的实际测量尺寸。As an implementation mode of the present invention, the PLC control cabinet 300 includes: a PLC controller and a display screen; the PLC controller is used to control the milling cutter head of the milling machine 100 to move up and down by a corresponding amount based on the feedback adjustment amount, and adjust the processing size of the milling groove; the display screen is used to display the actual measured size of the milling groove in real time.
实施例2:Embodiment 2:
本发明实施例提供一种钢板铣边坡口加工尺寸调控方法,包括:The embodiment of the present invention provides a method for controlling the size of a steel plate milling groove, comprising:
步骤S1、采集铣边坡口图像;Step S1, collecting the image of the milling groove;
步骤S2、对铣边坡口图像进行预处理;Step S2, preprocessing the milling groove image;
步骤S3、根据预处理后的铣边坡口图像,提取铣边坡口中心线;Step S3, extracting the center line of the milling groove according to the preprocessed milling groove image;
步骤S4、根据铣边坡口中心线,得到坡口特征点;Step S4, obtaining groove feature points according to the center line of the milling groove;
步骤S5、根据坡口特征点,得到铣边坡口的实际测量尺寸;Step S5, obtaining the actual measurement size of the milling groove according to the groove feature points;
步骤S6、计算铣边坡口的实际测量尺寸与理论尺寸的差值,得到反馈调整量;Step S6, calculating the difference between the actual measured size and the theoretical size of the milling groove to obtain a feedback adjustment amount;
步骤S7、基于反馈调整量控制铣边机的铣刀盘进行相应的移动,对铣边坡口的加工尺寸进行调整。Step S7: Based on the feedback adjustment amount, the milling cutter disc of the edge milling machine is controlled to move accordingly to adjust the processing size of the milling groove.
作为本发明实施例的一种实施方式,步骤S2中,对铣边坡口图像进行预处理,包括:图像ROI确定、图像滤波、图像分割;其中,图像ROI确定用于裁剪铣边坡口图像,得到保留坡口区域的铣边坡口图像;图像滤波采用3×3大小的中值滤波对裁剪后的铣边坡口图像进行滤波操作;图像分割采用Otsu法对滤波后的铣边坡口图像进行自适应阈值分割。As an implementation mode of an embodiment of the present invention, in step S2, the milling groove image is preprocessed, including: image ROI determination, image filtering, and image segmentation; wherein, the image ROI determination is used to crop the milling groove image to obtain the milling groove image with the groove area retained; the image filtering uses a 3×3 median filter to perform a filtering operation on the cropped milling groove image; the image segmentation uses the Otsu method to perform adaptive threshold segmentation on the filtered milling groove image.
作为本发明实施例的一种实施方式,步骤S3包括:As an implementation of the embodiment of the present invention, step S3 includes:
步骤S31、对预处理后铣边坡口图像进行去噪;Step S31, denoising the pre-processed milling groove image;
步骤S32、根据去噪后的预处理后铣边坡口图像,基于单边跟踪与动态Otsu,提取铣边坡口中心线。Step S32: extract the center line of the milling groove based on the denoised preprocessed milling groove image and single-side tracking and dynamic Otsu.
进一步的,步骤S31中,利用噪声判别公式去除预处理后铣边坡口图像中存在的噪声,同时对所述噪声误判点进行灰度恢复;Furthermore, in step S31, the noise existing in the pre-processed milling groove image is removed by using a noise discrimination formula, and the grayscale of the noise misjudgment points is restored;
对于图像img1中任一像素点(e,f),噪声判别公式如下:For any pixel (e,f ) in imageimg1 , the noise discrimination formula is as follows:
其中,BValue(e,f)为像素点(e,f)蓝色通道的灰度值,RValue(e,f)为像素点(e,f)红色通道的灰度值;Where,BValue(e ,f ) is the grayscale value of the blue channel of the pixel (e ,f ),and RValue(e ,f ) is the grayscale value of the red channel of the pixel (e ,f );
对于噪声误判点的恢复为:遍历去噪后的预处理后铣边坡口图像,记录每列灰度值为255的像素点个数为n1,当遍历到第e列时,如果n1<2,且预处理后铣边坡口图像中的第e列存在灰度值为255的像素点,则令去噪后的图像中相同坐标像素点的灰度值为255。The recovery of the noise misjudgment points is as follows: traverse the denoised preprocessed milling groove image, record the number of pixels with a grayscale value of 255 in each column asn1 , and when traversing to thee-th column, ifn1 <2, and there are pixels with a grayscale value of 255 in thee- th column of the preprocessed milling groove image, then set the grayscale value of the pixel with the same coordinate in the denoised image to 255.
进一步的,步骤S32包括:Further, step S32 includes:
利用边界跟踪算法对去噪后的预处理后铣边坡口图像跟踪激光条纹的单侧边界;The boundary tracking algorithm is used to track the single-side boundary of the laser stripe on the denoised preprocessed milling groove image;
利用Otsu算法对跟踪点的上方第5个像素至下方第10个像素,共16个像素,计算局部阈值;The local threshold is calculated using the Otsu algorithm for 16 pixels from the 5th pixel above the tracking point to the 10th pixel below the tracking point.
利用Otsu计算的局部阈值提取跟踪点所在列的条纹中心,得到铣边坡口中心线。The local threshold calculated by Otsu is used to extract the center of the stripes in the column where the tracking point is located, and the center line of the milling groove is obtained.
作为本发明实施例的一种实施方式,步骤S4包括:As an implementation of the embodiment of the present invention, step S4 includes:
步骤S41、根据铣边坡口中心线,确定铣边坡口的钝边中点;Step S41, determining the midpoint of the blunt edge of the milling groove according to the center line of the milling groove;
步骤S42、根据铣边坡口的钝边中点,得到分段区域;Step S42, obtaining a segmented area according to the midpoint of the blunt edge of the milling groove;
步骤S43、在分段区域内拟合中心点,得到铣边坡口特征点。Step S43, fitting the center point in the segmented area to obtain the milling groove feature point.
进一步的,步骤S41中,根据铣边坡口中心线,利用Otsu分类法,以铣边坡口的所有中心点纵坐标作为分类对象,将中心点分为斜边类和钝边类,然后将钝边类左右边界点之间的中间点作为钝边中点,以此钝边中点将中心线分为钝边中点左右两侧区域。Furthermore, in step S41, according to the center line of the milling groove, the Otsu classification method is used to take the vertical coordinates of all center points of the milling groove as classification objects, and the center points are divided into bevel edge class and blunt edge class. Then, the middle point between the left and right boundary points of the blunt edge class is taken as the midpoint of the blunt edge, and the center line is divided into left and right areas of the blunt edge midpoint based on this blunt edge midpoint.
进一步的,如图3所示,步骤S42中,中心线首尾两点作为特征点q1和q4,以钝边中点分别与q1和q4构成两条直线,分别遍历钝边中点左右两侧区域的中心点,利用最大距离法计算中心点到直线的距离,距离最大的点作为坡口钝边特征点q2和q3的初始位置,以初始位置将中心线分为3段,分别为第一段(1,3n2/4),第二段(5n2/4,n-5n3/4),第三段(n-3n3/4,n);Further, as shown in FIG3 , in step S42 , the first and last points of the center line are taken as feature pointsq1 andq4 , and the midpoint of the blunt edge is used to form two straight lines withq1 andq4 , respectively. The center points of the left and right areas of the midpoint of the blunt edge are traversed respectively, and the distance from the center point to the straight line is calculated using the maximum distance method. The point with the largest distance is taken as the initial position of the feature pointsq2 andq3 of the blunt edge of the groove. The center line is divided into three sections based on the initial positions, namely, the first section (1, 3n2 /4), the second section (5n2 /4,n -5n3 /4), and the third section (n -3n3 /4,n );
其中,n为中心点总个数,n2为q1与q2初始位置之间的中心点个数,n3为q4与q3初始位置之间的中心点个数。Among them,n is the total number of center points,n2 is thenumber of center points between the initial positionsofq1 andq2 ,andn3 isthe number of center points betweenthe initial positionsofq4 andq3 .
进一步的,步骤S43中,利用最小二乘拟合法分别在分好的3段区间内拟合中心点,得到各段的拟合直线l1、l2、l3,l1和l2的交点为q2,l2和l3的交点为q3。Furthermore, in step S43, the least square fitting method is used to fit the center points in the three divided intervals to obtain the fitting linesl1 ,l2 ,l3 of each segment, the intersection point ofl1 andl2 isq2 , and the intersection point ofl2 andl3 isq3 .
作为本发明实施例的一种实施方式,步骤S5包括:As an implementation of the embodiment of the present invention, step S5 includes:
将坡口特征点的像素坐标转换为世界坐标,得到坡口特征点三维坐标,q1(x1,y1,z1),q2(x2,y2,z2),q3(x3,y3,z3),q4(x4,y4,z4);Convert the pixel coordinates of the groove feature points into world coordinates to obtain the three-dimensional coordinates of the groove feature points,q1 (x1 ,y1 ,z1 ),q2 (x2 ,y2 ,z2 ),q3 (x3 ,y3 ,z3 ),q4 (x4 ,y4, z4 );
根据坡口特征点三维坐标,得到铣边坡口的实际测量尺寸,包括:上坡口尺寸H1、钝边尺寸H2、下坡口尺寸H3,其中,H1=|z2-z1|,H2=|z3-z2|,H3=|z4-z3|;According to the three-dimensional coordinates of the groove feature points, the actual measured dimensions of the milling groove are obtained, including: the upper groove dimensionH1 , the blunt edge dimensionH2 , and the lower groove dimensionH3 , whereH1 = |z2 -z1 |,H2 = |z3 -z2 |,H3 = |z4 -z3 |;
作为本发明实施例的一种实施方式,步骤S6中,分别将计算的上坡口尺寸、钝边尺寸、下坡口尺寸与理论尺寸作差,得到3个差值h1、h2、h3,取3个差值的平均值作为最终的反馈调整量。As an implementation of the present invention, in step S6,the calculated upslope size, blunt edge size, downslope size are subtracted from the theoretical size to obtainthree difference valuesh1 ,h2 ,h3 ,and the average of the three difference values is taken as the final feedback adjustment amount.
作为本发明实施例的一种实施方式,步骤S7中,单目线激光检测装置中的工控主板将反馈调整量传输到PLC控制柜中的PLC控制器,PLC控制器基于反馈调整量控制伺服电机移动,进而控制铣刀盘移动对应距离,实现铣边坡口加工尺寸的实时调整。As an implementation mode of an embodiment of the present invention, in step S7, the industrial control mainboard in the monocular line laser detection device transmits the feedback adjustment amount to the PLC controller in the PLC control cabinet. The PLC controller controls the movement of the servo motor based on the feedback adjustment amount, and then controls the milling cutter disc to move a corresponding distance, thereby realizing real-time adjustment of the milling groove processing size.
以上所述的实施例仅是对本发明优选方式进行的描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。The embodiments described above are only descriptions of the preferred embodiments of the present invention and are not intended to limit the scope of the present invention. Without departing from the design spirit of the present invention, various modifications and improvements made to the technical solutions of the present invention by ordinary technicians in this field should fall within the protection scope determined by the claims of the present invention.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202411147696.0ACN118650189A (en) | 2024-08-21 | 2024-08-21 | A steel plate milling bevel processing size control system and method |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202411147696.0ACN118650189A (en) | 2024-08-21 | 2024-08-21 | A steel plate milling bevel processing size control system and method |
| Publication Number | Publication Date |
|---|---|
| CN118650189Atrue CN118650189A (en) | 2024-09-17 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202411147696.0APendingCN118650189A (en) | 2024-08-21 | 2024-08-21 | A steel plate milling bevel processing size control system and method |
| Country | Link |
|---|---|
| CN (1) | CN118650189A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN118809210A (en)* | 2024-09-20 | 2024-10-22 | 中科云谷科技有限公司 | Beveling method and beveling system for special-shaped workpieces |
| CN119870794A (en)* | 2024-12-31 | 2025-04-25 | 中国海洋石油集团有限公司 | K-type groove line laser characteristic point selection method for reinforcing ring |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN107798330A (en)* | 2017-11-10 | 2018-03-13 | 上海电力学院 | A kind of weld image characteristics information extraction method |
| CN107909571A (en)* | 2017-11-15 | 2018-04-13 | 广东工业大学 | A kind of weld beam shape method, system, equipment and computer-readable storage medium |
| WO2018123251A1 (en)* | 2016-12-28 | 2018-07-05 | 株式会社Subaru | Machining robot and machining method |
| CN110421353A (en)* | 2019-09-11 | 2019-11-08 | 哈尔滨理工大学 | Auxiliary complex milling machine tool and monitoring method are heated based on machine vision laser |
| CN112967239A (en)* | 2021-02-23 | 2021-06-15 | 湖南大学 | Groove defect detection method, computing equipment and readable storage medium |
| CN113333833A (en)* | 2021-06-29 | 2021-09-03 | 西安北辰亿科电子科技有限公司 | Plate groove detection tracking edge milling machine device and method |
| CN116245863A (en)* | 2023-03-20 | 2023-06-09 | 兰州理工大学 | Image processing method, storage medium and processor for narrow-gap U-shaped bevel |
| CN118295321A (en)* | 2024-03-05 | 2024-07-05 | 武汉重型机床集团有限公司 | Method for generating finish machining tool path of open-pore groove on surface of thin-wall part based on milling process |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2018123251A1 (en)* | 2016-12-28 | 2018-07-05 | 株式会社Subaru | Machining robot and machining method |
| CN107798330A (en)* | 2017-11-10 | 2018-03-13 | 上海电力学院 | A kind of weld image characteristics information extraction method |
| CN107909571A (en)* | 2017-11-15 | 2018-04-13 | 广东工业大学 | A kind of weld beam shape method, system, equipment and computer-readable storage medium |
| CN110421353A (en)* | 2019-09-11 | 2019-11-08 | 哈尔滨理工大学 | Auxiliary complex milling machine tool and monitoring method are heated based on machine vision laser |
| CN112967239A (en)* | 2021-02-23 | 2021-06-15 | 湖南大学 | Groove defect detection method, computing equipment and readable storage medium |
| CN113333833A (en)* | 2021-06-29 | 2021-09-03 | 西安北辰亿科电子科技有限公司 | Plate groove detection tracking edge milling machine device and method |
| CN116245863A (en)* | 2023-03-20 | 2023-06-09 | 兰州理工大学 | Image processing method, storage medium and processor for narrow-gap U-shaped bevel |
| CN118295321A (en)* | 2024-03-05 | 2024-07-05 | 武汉重型机床集团有限公司 | Method for generating finish machining tool path of open-pore groove on surface of thin-wall part based on milling process |
| Title |
|---|
| 刘自然;程晓辉;颜丙生;陈仁权;: "基于机器视觉的机床对刀自动测量系统", 组合机床与自动化加工技术, no. 09, 20 September 2017 (2017-09-20)* |
| 熊光明等: "无人驾驶车辆理论与设计:慕课版(第2版)", vol. 2, 30 April 2021, 北京理工大学出版社, pages: 64 - 67* |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN118809210A (en)* | 2024-09-20 | 2024-10-22 | 中科云谷科技有限公司 | Beveling method and beveling system for special-shaped workpieces |
| CN119870794A (en)* | 2024-12-31 | 2025-04-25 | 中国海洋石油集团有限公司 | K-type groove line laser characteristic point selection method for reinforcing ring |
| Publication | Publication Date | Title |
|---|---|---|
| CN118650189A (en) | A steel plate milling bevel processing size control system and method | |
| CN111696107B (en) | Molten pool contour image extraction method for realizing closed connected domain | |
| CN108637435A (en) | A kind of three-dimensional seam tracking system and method for view-based access control model and arc voltage sensing | |
| CN106181162B (en) | A kind of real-time weld joint tracking detection method based on machine vision | |
| CN101559512B (en) | Welding track detection and control method of plate butt weld based on laser ranging | |
| CN110153567A (en) | A Laser Cutting System Based on Image Recognition | |
| CN101574709B (en) | Automatic steel rotation method for medium plates | |
| CN102455171B (en) | A method for detecting the geometric shape of the back side of laser tailor welding seam | |
| CN112529858A (en) | Welding seam image processing method based on machine vision | |
| CN103500321B (en) | Vision guide welding robot weld seam method for quickly identifying based on double dynamic windows | |
| CN105844622A (en) | V-shaped groove weld joint detection method based on laser vision | |
| CN108458668A (en) | Slab edge and Head and Tail Shape automatic checkout system based on binocular vision and method | |
| Wu et al. | Research on robust laser vision feature extraction method for fillet welds with different reflective materials under uncertain interference | |
| CN107424144A (en) | Weld joint tracking image processing algorithm based on laser vision | |
| CN112365439B (en) | Method for synchronously detecting forming characteristics of GMAW welding seam of galvanized steel and direction of welding gun in real time | |
| CN110480127A (en) | A kind of seam tracking system and method based on structured light visual sensing | |
| CN108830822B (en) | Pantograph carbon skateboard abrasion identification method based on improved Canny operator | |
| CN117455831A (en) | Right-angle weld characteristic point identification method based on image contour second-order difference | |
| CN114211168A (en) | Method for correcting plane welding seam track based on image subtraction | |
| CN110751669A (en) | Novel CBOCP online infrared converter tapping steel flow automatic detection and tracking method and system | |
| CN117911516A (en) | A weld feature extraction method and system for line laser sensor | |
| CN115255565A (en) | Visual sensing detection method and application of narrow gap welding groove edge based on global pattern recognition | |
| CN107914067B (en) | A kind of welding gun deviation three-dimensional extracting method of the plate sheet welding based on passive vision sensing | |
| CN113551599A (en) | Welding seam position deviation visual tracking method based on structured light guidance | |
| CN117237308A (en) | Weld seam image processing method based on line structured light |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |