Movatterモバイル変換


[0]ホーム

URL:


CN118550654A - Knowledge graph-based simulation resource scheduling method - Google Patents

Knowledge graph-based simulation resource scheduling method
Download PDF

Info

Publication number
CN118550654A
CN118550654ACN202410790801.6ACN202410790801ACN118550654ACN 118550654 ACN118550654 ACN 118550654ACN 202410790801 ACN202410790801 ACN 202410790801ACN 118550654 ACN118550654 ACN 118550654A
Authority
CN
China
Prior art keywords
simulation system
resource
system task
task resource
data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202410790801.6A
Other languages
Chinese (zh)
Other versions
CN118550654B (en
Inventor
张京涛
王培�
强杰
张波
周宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Defence University Of People's Liberation Army Joint Operation Institute
Original Assignee
National Defence University Of People's Liberation Army Joint Operation Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Defence University Of People's Liberation Army Joint Operation InstitutefiledCriticalNational Defence University Of People's Liberation Army Joint Operation Institute
Priority to CN202410790801.6ApriorityCriticalpatent/CN118550654B/en
Publication of CN118550654ApublicationCriticalpatent/CN118550654A/en
Application grantedgrantedCritical
Publication of CN118550654BpublicationCriticalpatent/CN118550654B/en
Activelegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Classifications

Landscapes

Abstract

The invention relates to the technical field of simulation resource data processing, in particular to a knowledge-graph-based simulation resource scheduling method. The method comprises the following steps: acquiring task resource information data of a simulation system, and performing resource characteristic connection prediction analysis and knowledge graph connection construction to obtain a task resource knowledge graph of the simulation system; performing task resource demand analysis and resource state monitoring according to the simulation system task resource knowledge graph to obtain simulation system task resource state information data; performing task priority statistical analysis and resource dynamic matching scheduling according to the simulation system task resource state information data to obtain a simulation system task resource dynamic scheduling result; and carrying out simulation task and resource dynamic change monitoring and real-time scheduling optimization on the simulation system task resource information data to obtain a simulation system task resource real-time scheduling optimization result. The invention can realize intelligent scheduling and optimized allocation of simulation resources.

Description

Translated fromChinese
一种基于知识图谱的仿真资源调度方法A simulation resource scheduling method based on knowledge graph

技术领域Technical Field

本发明涉及仿真资源数据处理技术领域,尤其涉及一种基于知识图谱的仿真资源调度方法。The present invention relates to the technical field of simulation resource data processing, and in particular to a simulation resource scheduling method based on knowledge graph.

背景技术Background Art

基于知识图谱的仿真资源调度方法是一种利用知识图谱技术和相应的计算机处理技术相结合的方法,旨在解决仿真系统中资源调度的难题。在现代社会,各种系统如交通仿真系统、计算机仿真系统、3D仿真系统等都涉及到仿真资源的合理调度和利用,而这种方法通过利用知识图谱技术,能够将各种资源、任务、约束条件等知识以图谱的形式进行建模和表示,从而形成一个包含丰富领域知识的知识图谱,并通过在这个知识图谱的基础上进行资源调度分析,以模拟了真实仿真系统中资源的调度过程,通过模拟不同的资源分配方案和策略,评估其对系统性能的影响,从而找到最优的资源调度方案。然而,传统的仿真资源调度方法通常基于静态规则或者简单的调度优化算法,存在着资源利用效率低以及难以满足复杂多变任务需求的问题。The simulation resource scheduling method based on knowledge graph is a method that combines knowledge graph technology with corresponding computer processing technology, aiming to solve the problem of resource scheduling in simulation systems. In modern society, various systems such as traffic simulation systems, computer simulation systems, 3D simulation systems, etc. involve the reasonable scheduling and utilization of simulation resources. This method uses knowledge graph technology to model and represent various resources, tasks, constraints and other knowledge in the form of graphs, thereby forming a knowledge graph containing rich domain knowledge, and through the resource scheduling analysis based on this knowledge graph, it simulates the scheduling process of resources in the real simulation system, and through simulating different resource allocation schemes and strategies, evaluates their impact on system performance, and thus finds the optimal resource scheduling scheme. However, traditional simulation resource scheduling methods are usually based on static rules or simple scheduling optimization algorithms, and have the problems of low resource utilization efficiency and difficulty in meeting complex and changing task requirements.

发明内容Summary of the invention

基于此,本发明有必要提供一种基于知识图谱的仿真资源调度方法,以解决至少一个上述技术问题。Based on this, it is necessary for the present invention to provide a simulation resource scheduling method based on knowledge graph to solve at least one of the above technical problems.

为实现上述目的,一种基于知识图谱的仿真资源调度方法,包括以下步骤:To achieve the above purpose, a simulation resource scheduling method based on knowledge graph includes the following steps:

步骤S1:获取仿真系统任务资源信息数据,并对仿真系统任务资源信息数据进行资源特性连接预测分析,以得到仿真系统任务资源特性连接关系数据;基于仿真系统任务资源特性连接关系数据对仿真系统任务资源信息数据进行知识图谱连接构建,以得到仿真系统任务资源知识图谱;Step S1: Acquire simulation system task resource information data, and perform resource characteristic connection prediction analysis on the simulation system task resource information data to obtain simulation system task resource characteristic connection relationship data; perform knowledge graph connection construction on the simulation system task resource information data based on the simulation system task resource characteristic connection relationship data to obtain a simulation system task resource knowledge graph;

步骤S2:根据仿真系统任务资源知识图谱对仿真系统任务资源信息数据进行任务资源需求分析,得到仿真系统任务资源需求信息数据;对仿真系统任务资源需求信息数据进行资源状态监测处理,得到仿真系统任务资源状态信息数据;Step S2: performing task resource demand analysis on the simulation system task resource information data according to the simulation system task resource knowledge graph to obtain the simulation system task resource demand information data; performing resource status monitoring processing on the simulation system task resource demand information data to obtain the simulation system task resource status information data;

步骤S3:根据仿真系统任务资源状态信息数据进行任务优先级统计分析,以生成仿真系统任务资源需求优先级序列;基于仿真系统任务资源需求信息数据对仿真系统任务资源需求优先级序列进行资源动态匹配调度,以得到仿真系统任务资源动态调度结果;Step S3: performing task priority statistics analysis according to the simulation system task resource status information data to generate a simulation system task resource requirement priority sequence; performing resource dynamic matching scheduling on the simulation system task resource requirement priority sequence based on the simulation system task resource requirement information data to obtain a simulation system task resource dynamic scheduling result;

步骤S4:对仿真系统任务资源信息数据进行仿真任务及资源动态变化监测,以得到仿真系统任务实时状态动态变化数据以及仿真系统任务资源动态变化数据;基于仿真系统任务实时状态动态变化数据以及仿真系统任务资源动态变化数据对仿真系统任务资源动态调度结果进行实时调度优化,以得到仿真系统任务资源实时调度优化结果。Step S4: Monitor the dynamic changes of simulation tasks and resources on the simulation system task resource information data to obtain the real-time dynamic change data of the simulation system task status and the dynamic change data of the simulation system task resources; based on the real-time dynamic change data of the simulation system task status and the dynamic change data of the simulation system task resources, perform real-time scheduling optimization on the dynamic scheduling results of the simulation system task resources to obtain the real-time scheduling optimization results of the simulation system task resources.

本发明首先通过从仿真系统中获取必要的仿真任务资源信息,能够为后续的分析和优化提供基础数据,这包括从仿真系统中收集各种资源的配置、状态、使用情况等信息,为仿真系统整体运行的监控和管理提供数据支持。通过准确获取任务资源信息数据,可以为后续的知识图谱构建、资源调度和优化提供必要的依据,从而提高仿真系统的资源调度效率和可靠性。通过对仿真系统任务资源信息数据进行资源特性连接预测分析,以实现对仿真系统任务所需资源之间关联关系的分析和预测,发现潜在的资源连接模式和规律,为后续的资源优化和配置提供指导,这一步骤涉及仿真系统任务所需资源之间关系的挖掘和建模,以及对资源连接特性的预测和分析,从而为系统资源的合理调配和优化提供依据。通过深入理解资源之间的连接关系,可以更好地利用资源,提高系统的整体效率和性能。同时,通过基于仿真系统任务资源特性连接关系数据对仿真系统任务资源信息数据进行知识图谱连接构建,以实现将资源之间的关联关系通过图谱的形式呈现出来,从而为后续的资源管理和优化提供直观的可视化支持。该知识图谱连接的构建过程涉及资源之间关系的抽取、建模和可视化,使得系统资源之间的关联关系一目了然。通过知识图谱的构建,可以帮助用户更好地理解仿真任务资源之间的连接关系,发现潜在的优化空间,从而为后续的资源调度处理过程提供了数据支持。其次,通过根据仿真系统任务资源知识图谱对仿真系统任务资源信息数据进行任务资源需求分析,在这一步骤中,能够根据已有的仿真系统任务资源需求模式数据,并利用预测分析技术对未来资源需求进行预测和分析,从而形成一个全面的仿真系统任务资源需求信息数据集,这个数据集是基于历史数据和需求模式识别结果进行的预测分析,为系统的资源规划和调度提供了重要参考,使系统能够提前应对资源需求的变化和波动,从而提高系统的灵活性和响应能力,这一步骤的关键在于能够为仿真系统提供了资源需求的预测和分析能力,使系统能够更加智能地进行资源管理和调度,从而为后续的处理过程提供了基础数据保障。通过对仿真系统任务资源需求信息数据进行资源状态监测处理,以从中提取出有计算资源以及存储资源相关的需求状态数据,这个数据集整合了计算资源和存储资源的需求状态信息,从而为后续的资源管理和调度提供了全面的数据支持,这一步骤的关键在于能够提供了对仿真系统资源状态的全面了解,使得仿真系统能够更加智能地进行资源调度和管理,从而提高了后续调度处理过程的效率和性能。然后,通过根据仿真系统任务资源状态信息数据进行任务优先级统计分析,这意味着仿真系统可以根据任务的完成情况和等待时间,对其仿真任务资源需求的优先级进行排序和调整,通过这种分析,可以更有效地分配资源,提高任务执行效率,减少任务延迟,并最大程度地满足系统的需求。通过基于仿真系统任务资源需求信息数据对仿真系统任务资源需求优先级序列进行资源动态匹配调度,这项处理过程是根据仿真系统当前的资源状态和任务的优先级,动态地调整资源分配,以最大程度地满足系统任务的需求。通过资源动态匹配调度,可以更灵活地应对复杂多变的任务需求,从而提高资源利用率,优化系统性能,确保任务的顺利执行。最后,通过对仿真系统任务资源信息数据进行仿真任务动态变化监测,能够实时捕捉任务的状态变化情况,包括任务的新增、删除、修改等,这项监测处理过程能够帮助系统管理者及时了解仿真系统任务的实时变化状态,以便做出及时的响应和调整,确保仿真系统能够顺利运行,从而为系统后续的资源调度和优化提供了重要的数据支持。并且,通过对仿真系统任务资源信息数据进行资源动态变化监测,可以实时监测任务资源的动态变化情况,包括资源的增加、减少、重新分配等,这项监测处理过程能够帮助及时调整资源的分配策略,以适应仿真系统任务运行时资源的变化需求,从而确保仿真系统任务能够持续稳定地运行。此外,还通过基于仿真系统任务实时状态动态变化数据以及仿真系统任务资源动态变化数据对仿真系统任务资源动态调度结果进行实时调度优化,能够及时调整任务资源的分配和调度,以适应系统运行时的变化需求,这项实时调度优化能够帮助更加灵活地应对仿真系统运行时的变化情况,确保仿真系统能够持续高效地运行,从而提高仿真系统的稳定性和可靠性。The present invention first obtains necessary simulation task resource information from the simulation system, which can provide basic data for subsequent analysis and optimization, including collecting configuration, status, usage and other information of various resources from the simulation system, and providing data support for monitoring and management of the overall operation of the simulation system. By accurately obtaining task resource information data, it can provide necessary basis for subsequent knowledge graph construction, resource scheduling and optimization, thereby improving the resource scheduling efficiency and reliability of the simulation system. By performing resource characteristic connection prediction analysis on the simulation system task resource information data, the analysis and prediction of the association relationship between the resources required for the simulation system tasks can be realized, and potential resource connection patterns and laws can be discovered to provide guidance for subsequent resource optimization and configuration. This step involves mining and modeling the relationship between the resources required for the simulation system tasks, as well as the prediction and analysis of resource connection characteristics, thereby providing a basis for the reasonable allocation and optimization of system resources. By deeply understanding the connection relationship between resources, resources can be better utilized and the overall efficiency and performance of the system can be improved. At the same time, by connecting the relationship data of the simulation system task resource characteristics to the simulation system task resource information data, a knowledge graph is constructed to present the relationship between resources in the form of a graph, thereby providing intuitive visualization support for subsequent resource management and optimization. The construction process of the knowledge graph connection involves the extraction, modeling and visualization of the relationship between resources, making the relationship between system resources clear at a glance. Through the construction of the knowledge graph, users can better understand the connection relationship between simulation task resources and discover potential optimization space, thereby providing data support for the subsequent resource scheduling process. Secondly, by analyzing the task resource demand of the simulation system task resource information data according to the simulation system task resource knowledge graph, in this step, it is possible to predict and analyze future resource demand based on the existing simulation system task resource demand pattern data and use predictive analysis technology to form a comprehensive simulation system task resource demand information data set. This data set is a predictive analysis based on historical data and demand pattern recognition results, which provides an important reference for the system's resource planning and scheduling, enabling the system to respond to changes and fluctuations in resource demand in advance, thereby improving the system's flexibility and responsiveness. The key to this step is that it can provide the simulation system with the ability to predict and analyze resource demand, enabling the system to manage and schedule resources more intelligently, thereby providing basic data guarantee for subsequent processing processes. By performing resource status monitoring on the simulation system task resource demand information data, the demand status data related to computing resources and storage resources can be extracted from it. This data set integrates the demand status information of computing resources and storage resources, thereby providing comprehensive data support for subsequent resource management and scheduling. The key to this step is that it can provide a comprehensive understanding of the simulation system resource status, enabling the simulation system to schedule and manage resources more intelligently, thereby improving the efficiency and performance of the subsequent scheduling process. Then, by performing task priority statistics analysis based on the task resource status information data of the simulation system, it means that the simulation system can sort and adjust the priority of its simulation task resource requirements according to the completion status and waiting time of the task. Through this analysis, resources can be allocated more effectively, task execution efficiency can be improved, task delay can be reduced, and system requirements can be met to the greatest extent. By dynamically matching and scheduling the priority sequence of the task resource requirements of the simulation system based on the task resource requirement information data of the simulation system, this process dynamically adjusts resource allocation according to the current resource status of the simulation system and the priority of the task to meet the requirements of the system tasks to the greatest extent. Through dynamic resource matching and scheduling, complex and changing task requirements can be more flexibly responded to, thereby improving resource utilization, optimizing system performance, and ensuring the smooth execution of tasks. Finally, by monitoring the dynamic changes of simulation tasks on the task resource information data of the simulation system, the status changes of tasks can be captured in real time, including the addition, deletion, and modification of tasks. This monitoring process can help system managers to timely understand the real-time changes of the tasks of the simulation system, so as to make timely responses and adjustments to ensure the smooth operation of the simulation system, thereby providing important data support for the subsequent resource scheduling and optimization of the system. Moreover, by monitoring the dynamic changes of the task resource information data of the simulation system, the dynamic changes of the task resources can be monitored in real time, including the increase, decrease, and reallocation of resources. This monitoring process can help to adjust the resource allocation strategy in time to adapt to the changing resource requirements when the simulation system tasks are running, thereby ensuring that the simulation system tasks can run continuously and stably. In addition, by optimizing the dynamic scheduling results of the simulation system task resources based on the dynamic change data of the real-time status of the simulation system tasks and the dynamic change data of the task resources of the simulation system, the allocation and scheduling of the task resources can be adjusted in time to adapt to the changing requirements when the system is running. This real-time scheduling optimization can help to more flexibly respond to the changes in the simulation system when it is running, ensuring that the simulation system can run continuously and efficiently, thereby improving the stability and reliability of the simulation system.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

通过阅读参照以下附图所作的对非限制性实施所作的详细描述,本发明的其它特征、目的和优点将会变得更明显:Other features, objects and advantages of the present invention will become more apparent from the detailed description of non-limiting embodiments thereof made with reference to the following drawings:

图1为本发明基于知识图谱的仿真资源调度方法的步骤流程示意图;FIG1 is a schematic diagram of the steps of a simulation resource scheduling method based on a knowledge graph according to the present invention;

图2为图1中步骤S1的详细步骤流程示意图;FIG2 is a schematic diagram of a detailed step flow chart of step S1 in FIG1 ;

图3为图2中步骤S14的详细步骤流程示意图。FIG. 3 is a schematic diagram of a detailed flow chart of step S14 in FIG. 2 .

具体实施方式DETAILED DESCRIPTION

下面结合附图对本发明专利的技术方法进行清楚、完整的描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域所属的技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following is a clear and complete description of the technical method of the present invention in conjunction with the accompanying drawings. Obviously, the described embodiments are part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by technicians in this field without creative work are within the scope of protection of the present invention.

此外,附图仅为本发明的示意性图解,并非一定是按比例绘制。图中相同的附图标记表示相同或类似的部分,因而将省略对它们的重复描述。附图中所示的一些方框图是功能实体,不一定必须与物理或逻辑上独立的实体相对应。可以采用软件形式来实现功能实体,或在一个或多个硬件模块或集成电路中实现这些功能实体,或在不同网络和/或处理器方法和/或微控制器方法中实现这些功能实体。In addition, the accompanying drawings are only schematic illustrations of the present invention and are not necessarily drawn to scale. The same reference numerals in the figures represent the same or similar parts, and their repeated description will be omitted. Some of the block diagrams shown in the accompanying drawings are functional entities and do not necessarily correspond to physically or logically independent entities. The functional entities can be implemented in software form, or implemented in one or more hardware modules or integrated circuits, or implemented in different networks and/or processor methods and/or microcontroller methods.

应当理解的是,虽然在这里可能使用了术语“第一”、“第二”等等来描述各个单元,但是这些单元不应当受这些术语限制。使用这些术语仅仅是为了将一个单元与另一个单元进行区分。举例来说,在不背离示例性实施例的范围的情况下,第一单元可以被称为第二单元,并且类似地第二单元可以被称为第一单元。这里所使用的术语“和/或”包括其中一个或更多所列出的相关联项目的任意和所有组合。It should be understood that, although the terms "first", "second", etc. may be used herein to describe various units, these units should not be limited by these terms. These terms are used only to distinguish one unit from another unit. For example, without departing from the scope of the exemplary embodiments, the first unit may be referred to as the second unit, and similarly the second unit may be referred to as the first unit. The term "and/or" used herein includes any and all combinations of one or more of the listed associated items.

为实现上述目的,请参阅图1至图3,本发明提供了一种基于知识图谱的仿真资源调度方法,所述方法包括以下步骤:To achieve the above object, please refer to Figures 1 to 3. The present invention provides a simulation resource scheduling method based on knowledge graph, and the method includes the following steps:

步骤S1:获取仿真系统任务资源信息数据,并对仿真系统任务资源信息数据进行资源特性连接预测分析,以得到仿真系统任务资源特性连接关系数据;基于仿真系统任务资源特性连接关系数据对仿真系统任务资源信息数据进行知识图谱连接构建,以得到仿真系统任务资源知识图谱;Step S1: Acquire simulation system task resource information data, and perform resource characteristic connection prediction analysis on the simulation system task resource information data to obtain simulation system task resource characteristic connection relationship data; perform knowledge graph connection construction on the simulation system task resource information data based on the simulation system task resource characteristic connection relationship data to obtain a simulation system task resource knowledge graph;

步骤S2:根据仿真系统任务资源知识图谱对仿真系统任务资源信息数据进行任务资源需求分析,得到仿真系统任务资源需求信息数据;对仿真系统任务资源需求信息数据进行资源状态监测处理,得到仿真系统任务资源状态信息数据;Step S2: performing task resource demand analysis on the simulation system task resource information data according to the simulation system task resource knowledge graph to obtain the simulation system task resource demand information data; performing resource status monitoring processing on the simulation system task resource demand information data to obtain the simulation system task resource status information data;

步骤S3:根据仿真系统任务资源状态信息数据进行任务优先级统计分析,以生成仿真系统任务资源需求优先级序列;基于仿真系统任务资源需求信息数据对仿真系统任务资源需求优先级序列进行资源动态匹配调度,以得到仿真系统任务资源动态调度结果;Step S3: performing task priority statistics analysis according to the simulation system task resource status information data to generate a simulation system task resource requirement priority sequence; performing resource dynamic matching scheduling on the simulation system task resource requirement priority sequence based on the simulation system task resource requirement information data to obtain a simulation system task resource dynamic scheduling result;

步骤S4:对仿真系统任务资源信息数据进行仿真任务及资源动态变化监测,以得到仿真系统任务实时状态动态变化数据以及仿真系统任务资源动态变化数据;基于仿真系统任务实时状态动态变化数据以及仿真系统任务资源动态变化数据对仿真系统任务资源动态调度结果进行实时调度优化,以得到仿真系统任务资源实时调度优化结果。Step S4: Monitor the dynamic changes of simulation tasks and resources on the simulation system task resource information data to obtain the real-time dynamic change data of the simulation system task status and the dynamic change data of the simulation system task resources; based on the real-time dynamic change data of the simulation system task status and the dynamic change data of the simulation system task resources, perform real-time scheduling optimization on the dynamic scheduling results of the simulation system task resources to obtain the real-time scheduling optimization results of the simulation system task resources.

本发明实施例中,请参考图1所示,为本发明基于知识图谱的仿真资源调度方法的步骤流程示意图,在本实例中,所述基于知识图谱的仿真资源调度方法包括以下步骤:In an embodiment of the present invention, please refer to FIG. 1, which is a schematic diagram of the steps of the simulation resource scheduling method based on the knowledge graph of the present invention. In this example, the simulation resource scheduling method based on the knowledge graph includes the following steps:

步骤S1:获取仿真系统任务资源信息数据,并对仿真系统任务资源信息数据进行资源特性连接预测分析,以得到仿真系统任务资源特性连接关系数据;基于仿真系统任务资源特性连接关系数据对仿真系统任务资源信息数据进行知识图谱连接构建,以得到仿真系统任务资源知识图谱;Step S1: Acquire simulation system task resource information data, and perform resource characteristic connection prediction analysis on the simulation system task resource information data to obtain simulation system task resource characteristic connection relationship data; perform knowledge graph connection construction on the simulation system task resource information data based on the simulation system task resource characteristic connection relationship data to obtain a simulation system task resource knowledge graph;

本发明实施例通过使用系统日志、监控工具或者数据库查询等方式从仿真系统中获取必要的仿真任务资源信息,包括各种任务资源的配置、状态、使用情况等信息,以确保资源信息数据的完整性和准确性,从而得到仿真系统任务资源信息数据。其次,通过分析识别仿真系统任务中各项资源的配置情况以及使用类型,同时,通过结合分析得到的配置情况以及使用类型对仿真系统任务资源信息数据中相应的仿真系统任务资源进行特性的连接预测分析,以预测不同仿真系统任务资源之间的连接关系,并实现对仿真系统任务所需资源之间关联关系的分析和预测,包括不同计算资源之间的依赖关系或存储资源与计算资源之间的互联关系等,然后,通过结合预测得到的仿真系统任务资源特性连接关系对仿真系统任务资源信息数据中相应仿真系统任务资源的知识关系进行知识图谱的连接构建,使其将仿真系统任务资源之间的连接关系以图谱的形式表示出来,并更直观地展现仿真系统任务中资源之间的关联性和依赖关系,最终得到仿真系统任务资源知识图谱。The embodiment of the present invention obtains necessary simulation task resource information from the simulation system by using system logs, monitoring tools or database queries, including configuration, status, usage and other information of various task resources, so as to ensure the integrity and accuracy of resource information data, thereby obtaining simulation system task resource information data. Secondly, by analyzing and identifying the configuration and usage types of various resources in the simulation system task, at the same time, by combining the configuration and usage types obtained by the analysis, the corresponding simulation system task resources in the simulation system task resource information data are subjected to characteristic connection prediction analysis, so as to predict the connection relationship between different simulation system task resources, and realize the analysis and prediction of the association relationship between resources required for the simulation system task, including the dependency relationship between different computing resources or the interconnection relationship between storage resources and computing resources, etc. Then, by combining the predicted characteristic connection relationship of the simulation system task resources, the knowledge relationship of the corresponding simulation system task resources in the simulation system task resource information data is connected and constructed as a knowledge graph, so that the connection relationship between the simulation system task resources is represented in the form of a graph, and the relevance and dependency relationship between resources in the simulation system task are more intuitively displayed, and finally the simulation system task resource knowledge graph is obtained.

步骤S2:根据仿真系统任务资源知识图谱对仿真系统任务资源信息数据进行任务资源需求分析,得到仿真系统任务资源需求信息数据;对仿真系统任务资源需求信息数据进行资源状态监测处理,得到仿真系统任务资源状态信息数据;Step S2: performing task resource demand analysis on the simulation system task resource information data according to the simulation system task resource knowledge graph to obtain the simulation system task resource demand information data; performing resource status monitoring processing on the simulation system task resource demand information data to obtain the simulation system task resource status information data;

本发明实施例通过结合构建得到的仿真系统任务资源知识图谱使用模式识别分析方法对仿真系统任务资源信息数据中相对应的仿真系统任务资源进行分析和识别,以识别和分析任务资源之间的模式和规律,包括资源之间的相互依赖、需求模式等,并通过结合分析得到的任务资源需求模式对仿真系统任务资源信息数据中相对应的仿真系统任务资源进行资源需求的预测分析,以预测对应仿真系统任务未来资源的需求情况,包括计算资源和存储资源等,并使其能够提前应对资源需求的变化和波动,同时监测整合不同类型资源的需求状态信息,并更全面地理解仿真系统任务资源的使用情况和需求趋势,最终得到仿真系统任务资源状态信息数据。The embodiment of the present invention uses a pattern recognition analysis method in combination with the constructed simulation system task resource knowledge graph to analyze and identify the corresponding simulation system task resources in the simulation system task resource information data, so as to identify and analyze the patterns and rules between the task resources, including the mutual dependence and demand patterns between the resources, and performs a predictive analysis of the resource demand of the corresponding simulation system task resources in the simulation system task resource information data by combining the task resource demand pattern obtained by the analysis, so as to predict the future resource demand of the corresponding simulation system task, including computing resources and storage resources, and enable it to respond to changes and fluctuations in resource demand in advance, while monitoring and integrating the demand status information of different types of resources, and more comprehensively understanding the usage and demand trends of the simulation system task resources, so as to finally obtain the simulation system task resource status information data.

步骤S3:根据仿真系统任务资源状态信息数据进行任务优先级统计分析,以生成仿真系统任务资源需求优先级序列;基于仿真系统任务资源需求信息数据对仿真系统任务资源需求优先级序列进行资源动态匹配调度,以得到仿真系统任务资源动态调度结果;Step S3: performing task priority statistics analysis according to the simulation system task resource status information data to generate a simulation system task resource requirement priority sequence; performing resource dynamic matching scheduling on the simulation system task resource requirement priority sequence based on the simulation system task resource requirement information data to obtain a simulation system task resource dynamic scheduling result;

本发明实施例通过根据分析得到的仿真系统任务资源状态信息数据使用相应的预测分析算法进行分析,以预测分析仿真系统中任务的类型、资源需求以及系统当前的负载情况等因素,并结合分析得到的相关因素预测对应仿真系统任务的完成情况,同时,通过使用时间的统计方法获取各个仿真系统任务的完成时间以及延迟时间,并通过使用差异计算方法分别对各个仿真系统任务的完成时间以及延迟时间进行差异计算并累积求和,以统计获取相应仿真系统任务完成的等待时间,同时对统计获取得到的等待时间进行算术平均计算,其次,通过结合分析得到的任务完成情况以及任务完成平均等待时间对仿真系统任务资源状态信息数据进行优先级的统计分析,以综合考虑仿真系统任务的紧急程度和对仿真系统的影响程度确定各个仿真系统任务内资源的优先级排序情况,然后,通过结合分析得到的仿真系统任务资源需求信息数据中相应仿真系统任务对应的资源需求状况对优先级排序序列内相对应的仿真系统任务进行资源的匹配分析,以充分考虑对仿真系统任务的重要性、紧急程度以及资源需求量等有效地分配系统任务资源,并根据匹配后得到的资源匹配结果使用智能调度算法和技术针对不同的仿真系统任务的优先级和资源需求设计出最优的资源调度策略,通过根据设计出的资源智能调度策略对优先级排序序列内相对应的仿真系统任务进行资源的实时调度处理,以动态调整仿真系统任务的资源分配,并满足仿真系统任务运行的实时需求,最终得到仿真系统任务资源动态调度结果。The embodiment of the present invention uses a corresponding prediction analysis algorithm to analyze the simulation system task resource status information data obtained by analysis, so as to predict and analyze factors such as the type of task in the simulation system, resource requirements, and the current load condition of the system, and predicts the completion status of the corresponding simulation system task in combination with the relevant factors obtained by analysis. At the same time, the completion time and delay time of each simulation system task are obtained by using a time statistics method, and the completion time and delay time of each simulation system task are calculated and accumulated by using a difference calculation method to statistically obtain the waiting time for the completion of the corresponding simulation system task, and the waiting time obtained by statistics is calculated by arithmetic average. Secondly, the priority of the simulation system task resource status information data is statistically analyzed by combining the task completion status and the average waiting time for task completion obtained by analysis, so as to comprehensively consider the urgency of the simulation system task. and the degree of influence on the simulation system, determine the priority ranking of resources in each simulation system task, and then, perform resource matching analysis on the corresponding simulation system tasks in the priority ranking sequence by combining the resource demand status corresponding to the corresponding simulation system tasks in the simulation system task resource demand information data obtained by analysis, so as to fully consider the importance, urgency and resource demand of the simulation system tasks, and effectively allocate system task resources, and use intelligent scheduling algorithms and technologies according to the resource matching results obtained after matching to design the optimal resource scheduling strategy for different simulation system task priorities and resource requirements, and perform real-time resource scheduling processing on the corresponding simulation system tasks in the priority ranking sequence according to the designed resource intelligent scheduling strategy, so as to dynamically adjust the resource allocation of the simulation system tasks, and meet the real-time requirements of the simulation system task operation, and finally obtain the dynamic scheduling result of the simulation system task resources.

步骤S4:对仿真系统任务资源信息数据进行仿真任务及资源动态变化监测,以得到仿真系统任务实时状态动态变化数据以及仿真系统任务资源动态变化数据;基于仿真系统任务实时状态动态变化数据以及仿真系统任务资源动态变化数据对仿真系统任务资源动态调度结果进行实时调度优化,以得到仿真系统任务资源实时调度优化结果。Step S4: Monitor the dynamic changes of simulation tasks and resources on the simulation system task resource information data to obtain the real-time dynamic change data of the simulation system task status and the dynamic change data of the simulation system task resources; based on the real-time dynamic change data of the simulation system task status and the dynamic change data of the simulation system task resources, perform real-time scheduling optimization on the dynamic scheduling results of the simulation system task resources to obtain the real-time scheduling optimization results of the simulation system task resources.

本发明实施例通过使用任务监测方法对仿真系统任务资源信息数据进行监测,以根据其资源的变化信息来实时捕获仿真系统任务的动态变化情况,包括监测仿真任务的新增、删除、修改等,以便及时了解仿真系统任务的实时状态动态变化情况,从而得到仿真系统任务实时状态动态变化数据。同时,通过使用资源变化监测方法对仿真系统任务资源信息数据进行监测,以实时监测任务资源的动态变化情况,包括资源的增加、减少、重新分配等,以便适应仿真系统任务运行时资源的变化需求,从而得到仿真系统任务资源动态变化数据。其次,通过结合分析得到的仿真系统任务实时状态动态变化数据以及仿真系统任务资源动态变化数据生成相应的资源调度优化策略,以根据实时任务状态和资源动态变化情况动态地调整相对应仿真系统任务资源的分配和调度,然后,通过结合优化后的资源调度优化策略重新对相对应仿真任务的仿真系统任务资源动态调度结果进行实时的调度优化,以根据资源调度优化策略对任务资源进行实时优化,以适应仿真系统任务运行时的变化需求来及时调整任务资源的分配和调度,最终得到仿真系统任务资源实时调度优化结果。The embodiment of the present invention monitors the task resource information data of the simulation system by using the task monitoring method, so as to capture the dynamic changes of the simulation system tasks in real time according to the change information of its resources, including monitoring the addition, deletion, modification, etc. of the simulation tasks, so as to timely understand the real-time state dynamic changes of the simulation system tasks, thereby obtaining the real-time state dynamic change data of the simulation system tasks. At the same time, the task resource information data of the simulation system is monitored by using the resource change monitoring method, so as to monitor the dynamic changes of the task resources in real time, including the increase, reduction, and reallocation of resources, etc., so as to adapt to the change requirements of the resources when the simulation system tasks are running, thereby obtaining the dynamic change data of the simulation system task resources. Secondly, by combining the real-time dynamic change data of the simulation system task status and the dynamic change data of the simulation system task resources obtained by analysis, a corresponding resource scheduling optimization strategy is generated to dynamically adjust the allocation and scheduling of the corresponding simulation system task resources according to the real-time task status and dynamic changes of resources. Then, by combining the optimized resource scheduling optimization strategy, the dynamic scheduling results of the simulation system task resources of the corresponding simulation task are re-scheduled and optimized in real time. The task resources are optimized in real time according to the resource scheduling optimization strategy, so as to timely adjust the allocation and scheduling of task resources to adapt to the changing needs during the operation of the simulation system task, and finally obtain the real-time scheduling optimization result of the simulation system task resources.

本发明首先通过从仿真系统中获取必要的仿真任务资源信息,能够为后续的分析和优化提供基础数据,这包括从仿真系统中收集各种资源的配置、状态、使用情况等信息,为仿真系统整体运行的监控和管理提供数据支持。通过准确获取任务资源信息数据,可以为后续的知识图谱构建、资源调度和优化提供必要的依据,从而提高仿真系统的资源调度效率和可靠性。通过对仿真系统任务资源信息数据进行资源特性连接预测分析,以实现对仿真系统任务所需资源之间关联关系的分析和预测,发现潜在的资源连接模式和规律,为后续的资源优化和配置提供指导,这一步骤涉及仿真系统任务所需资源之间关系的挖掘和建模,以及对资源连接特性的预测和分析,从而为系统资源的合理调配和优化提供依据。通过深入理解资源之间的连接关系,可以更好地利用资源,提高系统的整体效率和性能。同时,通过基于仿真系统任务资源特性连接关系数据对仿真系统任务资源信息数据进行知识图谱连接构建,以实现将资源之间的关联关系通过图谱的形式呈现出来,从而为后续的资源管理和优化提供直观的可视化支持。该知识图谱连接的构建过程涉及资源之间关系的抽取、建模和可视化,使得系统资源之间的关联关系一目了然。通过知识图谱的构建,可以帮助用户更好地理解仿真任务资源之间的连接关系,发现潜在的优化空间,从而为后续的资源调度处理过程提供了数据支持。其次,通过根据仿真系统任务资源知识图谱对仿真系统任务资源信息数据进行任务资源需求分析,在这一步骤中,能够根据已有的仿真系统任务资源需求模式数据,并利用预测分析技术对未来资源需求进行预测和分析,从而形成一个全面的仿真系统任务资源需求信息数据集,这个数据集是基于历史数据和需求模式识别结果进行的预测分析,为系统的资源规划和调度提供了重要参考,使系统能够提前应对资源需求的变化和波动,从而提高系统的灵活性和响应能力,这一步骤的关键在于能够为仿真系统提供了资源需求的预测和分析能力,使系统能够更加智能地进行资源管理和调度,从而为后续的处理过程提供了基础数据保障。通过对仿真系统任务资源需求信息数据进行资源状态监测处理,以从中提取出有计算资源以及存储资源相关的需求状态数据,这个数据集整合了计算资源和存储资源的需求状态信息,从而为后续的资源管理和调度提供了全面的数据支持,这一步骤的关键在于能够提供了对仿真系统资源状态的全面了解,使得仿真系统能够更加智能地进行资源调度和管理,从而提高了后续调度处理过程的效率和性能。然后,通过根据仿真系统任务资源状态信息数据进行任务优先级统计分析,这意味着仿真系统可以根据任务的完成情况和等待时间,对其仿真任务资源需求的优先级进行排序和调整,通过这种分析,可以更有效地分配资源,提高任务执行效率,减少任务延迟,并最大程度地满足系统的需求。通过基于仿真系统任务资源需求信息数据对仿真系统任务资源需求优先级序列进行资源动态匹配调度,这项处理过程是根据仿真系统当前的资源状态和任务的优先级,动态地调整资源分配,以最大程度地满足系统任务的需求。通过资源动态匹配调度,可以更灵活地应对复杂多变的任务需求,从而提高资源利用率,优化系统性能,确保任务的顺利执行。最后,通过对仿真系统任务资源信息数据进行仿真任务动态变化监测,能够实时捕捉任务的状态变化情况,包括任务的新增、删除、修改等,这项监测处理过程能够帮助系统管理者及时了解仿真系统任务的实时变化状态,以便做出及时的响应和调整,确保仿真系统能够顺利运行,从而为系统后续的资源调度和优化提供了重要的数据支持。并且,通过对仿真系统任务资源信息数据进行资源动态变化监测,可以实时监测任务资源的动态变化情况,包括资源的增加、减少、重新分配等,这项监测处理过程能够帮助及时调整资源的分配策略,以适应仿真系统任务运行时资源的变化需求,从而确保仿真系统任务能够持续稳定地运行。此外,还通过基于仿真系统任务实时状态动态变化数据以及仿真系统任务资源动态变化数据对仿真系统任务资源动态调度结果进行实时调度优化,能够及时调整任务资源的分配和调度,以适应系统运行时的变化需求,这项实时调度优化能够帮助更加灵活地应对仿真系统运行时的变化情况,确保仿真系统能够持续高效地运行,从而提高仿真系统的稳定性和可靠性。The present invention first obtains necessary simulation task resource information from the simulation system, which can provide basic data for subsequent analysis and optimization, including collecting configuration, status, usage and other information of various resources from the simulation system, and providing data support for monitoring and management of the overall operation of the simulation system. By accurately obtaining task resource information data, it can provide necessary basis for subsequent knowledge graph construction, resource scheduling and optimization, thereby improving the resource scheduling efficiency and reliability of the simulation system. By performing resource characteristic connection prediction analysis on the simulation system task resource information data, the analysis and prediction of the association relationship between the resources required for the simulation system tasks can be realized, and potential resource connection patterns and laws can be discovered to provide guidance for subsequent resource optimization and configuration. This step involves mining and modeling the relationship between the resources required for the simulation system tasks, as well as the prediction and analysis of resource connection characteristics, thereby providing a basis for the reasonable allocation and optimization of system resources. By deeply understanding the connection relationship between resources, resources can be better utilized and the overall efficiency and performance of the system can be improved. At the same time, by connecting the relationship data of the simulation system task resource characteristics to the simulation system task resource information data, a knowledge graph is constructed to present the relationship between resources in the form of a graph, thereby providing intuitive visualization support for subsequent resource management and optimization. The construction process of the knowledge graph connection involves the extraction, modeling and visualization of the relationship between resources, making the relationship between system resources clear at a glance. Through the construction of the knowledge graph, users can better understand the connection relationship between simulation task resources and discover potential optimization space, thereby providing data support for the subsequent resource scheduling process. Secondly, by analyzing the task resource demand of the simulation system task resource information data according to the simulation system task resource knowledge graph, in this step, it is possible to predict and analyze future resource demand based on the existing simulation system task resource demand pattern data and use predictive analysis technology to form a comprehensive simulation system task resource demand information data set. This data set is a predictive analysis based on historical data and demand pattern recognition results, which provides an important reference for the system's resource planning and scheduling, enabling the system to respond to changes and fluctuations in resource demand in advance, thereby improving the system's flexibility and responsiveness. The key to this step is that it can provide the simulation system with the ability to predict and analyze resource demand, enabling the system to manage and schedule resources more intelligently, thereby providing basic data guarantee for subsequent processing processes. By performing resource status monitoring on the simulation system task resource demand information data, the demand status data related to computing resources and storage resources can be extracted from it. This data set integrates the demand status information of computing resources and storage resources, thereby providing comprehensive data support for subsequent resource management and scheduling. The key to this step is that it can provide a comprehensive understanding of the simulation system resource status, enabling the simulation system to schedule and manage resources more intelligently, thereby improving the efficiency and performance of the subsequent scheduling process. Then, by performing task priority statistics analysis based on the task resource status information data of the simulation system, it means that the simulation system can sort and adjust the priority of its simulation task resource requirements according to the completion status and waiting time of the task. Through this analysis, resources can be allocated more effectively, task execution efficiency can be improved, task delay can be reduced, and system requirements can be met to the greatest extent. By dynamically matching and scheduling the priority sequence of the task resource requirements of the simulation system based on the task resource requirement information data of the simulation system, this process dynamically adjusts resource allocation according to the current resource status of the simulation system and the priority of the task to meet the requirements of the system tasks to the greatest extent. Through dynamic resource matching and scheduling, complex and changing task requirements can be more flexibly responded to, thereby improving resource utilization, optimizing system performance, and ensuring the smooth execution of tasks. Finally, by monitoring the dynamic changes of simulation tasks on the task resource information data of the simulation system, the status changes of tasks can be captured in real time, including the addition, deletion, and modification of tasks. This monitoring process can help system managers to timely understand the real-time changes of the tasks of the simulation system, so as to make timely responses and adjustments to ensure the smooth operation of the simulation system, thereby providing important data support for the subsequent resource scheduling and optimization of the system. Moreover, by monitoring the dynamic changes of the task resource information data of the simulation system, the dynamic changes of the task resources can be monitored in real time, including the increase, decrease, and reallocation of resources. This monitoring process can help to adjust the resource allocation strategy in time to adapt to the changing resource requirements when the simulation system tasks are running, thereby ensuring that the simulation system tasks can run continuously and stably. In addition, by optimizing the dynamic scheduling results of the simulation system task resources based on the dynamic change data of the real-time status of the simulation system tasks and the dynamic change data of the task resources of the simulation system, the allocation and scheduling of the task resources can be adjusted in time to adapt to the changing requirements when the system is running. This real-time scheduling optimization can help to more flexibly respond to the changes in the simulation system when it is running, ensuring that the simulation system can run continuously and efficiently, thereby improving the stability and reliability of the simulation system.

优选地,步骤S1包括以下步骤:Preferably, step S1 comprises the following steps:

步骤S11:获取仿真系统任务资源信息数据;Step S11: Acquire simulation system task resource information data;

步骤S12:对仿真系统任务资源信息数据进行任务资源配置识别分析,以得到仿真系统任务资源配置状况数据;Step S12: performing task resource configuration identification and analysis on the simulation system task resource information data to obtain simulation system task resource configuration status data;

步骤S13:基于仿真系统任务资源配置状况数据对仿真系统任务资源信息数据进行资源类型统计分析,得到仿真系统任务资源类型数据;Step S13: performing resource type statistical analysis on the simulation system task resource information data based on the simulation system task resource configuration status data to obtain simulation system task resource type data;

步骤S14:根据仿真系统任务资源配置状况数据以及仿真系统任务资源类型数据对仿真系统任务资源信息数据进行资源特性连接预测分析,以得到仿真系统任务资源特性连接关系数据;Step S14: performing resource characteristic connection prediction analysis on the simulation system task resource information data according to the simulation system task resource configuration status data and the simulation system task resource type data to obtain simulation system task resource characteristic connection relationship data;

步骤S15:基于仿真系统任务资源特性连接关系数据对仿真系统任务资源信息数据进行知识图谱连接构建,以得到仿真系统任务资源知识图谱。Step S15: Based on the simulation system task resource characteristic connection relationship data, a knowledge graph is constructed to connect the simulation system task resource information data to obtain a simulation system task resource knowledge graph.

作为本发明的一个实施例,参考图2所示,为图1中步骤S1的详细步骤流程示意图,在本实施例中步骤S1包括以下步骤:As an embodiment of the present invention, referring to FIG2 , which is a detailed flow chart of step S1 in FIG1 , in this embodiment, step S1 includes the following steps:

步骤S11:获取仿真系统任务资源信息数据;Step S11: Acquire simulation system task resource information data;

本发明实施例通过使用系统日志、监控工具或者数据库查询等方式从仿真系统中获取必要的仿真任务资源信息,包括各种任务资源的配置、状态、使用情况等信息,以确保资源信息数据的完整性和准确性,最终得到仿真系统任务资源信息数据。The embodiment of the present invention obtains necessary simulation task resource information from the simulation system by using system logs, monitoring tools or database queries, including the configuration, status, usage and other information of various task resources, to ensure the integrity and accuracy of the resource information data, and finally obtains the simulation system task resource information data.

步骤S12:对仿真系统任务资源信息数据进行任务资源配置识别分析,以得到仿真系统任务资源配置状况数据;Step S12: performing task resource configuration identification and analysis on the simulation system task resource information data to obtain simulation system task resource configuration status data;

本发明实施例通过使用资源配置识别分析方法对收集到的仿真系统任务资源信息数据进行分析,以识别仿真系统任务中各项资源的配置情况,包括确定每个仿真系统任务所需资源的类型、数量、分布等信息,最终得到仿真系统任务资源配置状况数据。The embodiment of the present invention analyzes the collected simulation system task resource information data by using a resource configuration identification and analysis method to identify the configuration status of various resources in the simulation system task, including determining the type, quantity, distribution and other information of the resources required for each simulation system task, and finally obtains the simulation system task resource configuration status data.

步骤S13:基于仿真系统任务资源配置状况数据对仿真系统任务资源信息数据进行资源类型统计分析,得到仿真系统任务资源类型数据;Step S13: performing resource type statistical analysis on the simulation system task resource information data based on the simulation system task resource configuration status data to obtain simulation system task resource type data;

本发明实施例通过结合分析得到的仿真系统任务资源配置状况数据对仿真系统任务资源信息数据进行资源类型的统计分析,以根据仿真系统任务中各类资源的数量、比例和分布情况确定仿真系统中不同资源的使用类型,最终得到仿真系统任务资源类型数据。The embodiment of the present invention performs statistical analysis of resource types on simulation system task resource information data by combining the simulation system task resource configuration status data obtained through analysis, so as to determine the usage types of different resources in the simulation system according to the quantity, proportion and distribution of various resources in the simulation system tasks, and finally obtain simulation system task resource type data.

步骤S14:根据仿真系统任务资源配置状况数据以及仿真系统任务资源类型数据对仿真系统任务资源信息数据进行资源特性连接预测分析,以得到仿真系统任务资源特性连接关系数据;Step S14: performing resource characteristic connection prediction analysis on the simulation system task resource information data according to the simulation system task resource configuration status data and the simulation system task resource type data to obtain simulation system task resource characteristic connection relationship data;

本发明实施例通过结合分析得到的仿真系统任务资源配置状况数据以及仿真系统任务资源类型数据对仿真系统任务资源信息数据中相应的仿真系统任务资源进行特性的连接预测分析,以预测不同仿真系统任务资源之间的连接关系,并实现对仿真系统任务所需资源之间关联关系的分析和预测,包括不同计算资源之间的依赖关系或存储资源与计算资源之间的互联关系等,最终得到仿真系统任务资源特性连接关系数据。The embodiment of the present invention performs characteristic connection prediction analysis on the corresponding simulation system task resources in the simulation system task resource information data by combining the simulation system task resource configuration status data and the simulation system task resource type data obtained by analysis, so as to predict the connection relationship between different simulation system task resources, and realize the analysis and prediction of the association relationship between the resources required for the simulation system tasks, including the dependency relationship between different computing resources or the interconnection relationship between storage resources and computing resources, etc., and finally obtains the simulation system task resource characteristic connection relationship data.

步骤S15:基于仿真系统任务资源特性连接关系数据对仿真系统任务资源信息数据进行知识图谱连接构建,以得到仿真系统任务资源知识图谱。Step S15: Based on the simulation system task resource characteristic connection relationship data, a knowledge graph is constructed to connect the simulation system task resource information data to obtain a simulation system task resource knowledge graph.

本发明实施例通过结合预测得到的仿真系统任务资源特性连接关系数据对仿真系统任务资源信息数据中相应仿真系统任务资源的知识关系进行知识图谱的连接构建,使其将仿真系统任务资源之间的连接关系以图谱的形式表示出来,并更直观地展现仿真系统任务中资源之间的关联性和依赖关系,最终得到仿真系统任务资源知识图谱。The embodiment of the present invention connects and constructs a knowledge graph of the knowledge relationships of corresponding simulation system task resources in the simulation system task resource information data in combination with the predicted connection relationship data of the simulation system task resource characteristics, so that the connection relationship between the simulation system task resources is represented in the form of a graph, and the correlation and dependency relationship between the resources in the simulation system tasks are more intuitively displayed, and finally a simulation system task resource knowledge graph is obtained.

本发明首先通过从仿真系统中获取必要的仿真任务资源信息,能够为后续的分析和优化提供基础数据,这包括从仿真系统中收集各种资源的配置、状态、使用情况等信息,为仿真系统整体运行的监控和管理提供数据支持。通过准确获取任务资源信息数据,可以为后续的知识图谱构建、资源调度和优化提供必要的依据,从而提高仿真系统的资源调度效率和可靠性。其次,通过对仿真系统任务资源信息数据进行任务资源配置识别分析,以识别仿真系统中各项资源的配置情况,并对其进行分析和整理,为后续的资源管理和优化提供基础,这一步骤涉及对资源配置信息的提取、解析和分类,从而形成了仿真系统任务整体资源配置的概览。通过深入了解仿真系统任务资源的配置状况,可以及时发现潜在的问题和瓶颈,并采取相应的措施进行调整和优化,提升仿真系统的性能和稳定性。然后,通过基于仿真系统任务资源配置状况数据对仿真系统任务资源信息数据进行资源类型统计分析,能够从宏观的角度分析仿真系统中各类资源的分布和使用情况,为资源管理和规划提供参考依据。通过对资源类型的统计分析,可以了解仿真系统任务中各类资源的数量、比例和分布情况,为后续处理过程的优化和规划提供数据支持,这有助于合理配置资源,提高资源利用率,降低仿真系统运行成本,从而为后续的处理过程提供了基础数据保障。接下来,通过根据仿真系统任务资源配置状况数据以及仿真系统任务资源类型数据对仿真系统任务资源信息数据进行资源特性连接预测分析,以实现对仿真系统任务所需资源之间关联关系的分析和预测,发现潜在的资源连接模式和规律,为后续的资源优化和配置提供指导,这一步骤涉及仿真系统任务所需资源之间关系的挖掘和建模,以及对资源连接特性的预测和分析,从而为系统资源的合理调配和优化提供依据。通过深入理解资源之间的连接关系,可以更好地利用资源,提高系统的整体效率和性能。最后,通过基于仿真系统任务资源特性连接关系数据对仿真系统任务资源信息数据进行知识图谱连接构建,以实现将资源之间的关联关系通过图谱的形式呈现出来,从而为后续的资源管理和优化提供直观的可视化支持。该知识图谱连接的构建过程涉及资源之间关系的抽取、建模和可视化,使得系统资源之间的关联关系一目了然。通过知识图谱的构建,可以帮助用户更好地理解仿真任务资源之间的连接关系,发现潜在的优化空间,从而为后续的资源调度处理过程提供了数据支持。The present invention first obtains necessary simulation task resource information from the simulation system, which can provide basic data for subsequent analysis and optimization, including collecting configuration, status, usage and other information of various resources from the simulation system, and providing data support for monitoring and management of the overall operation of the simulation system. By accurately obtaining task resource information data, it can provide necessary basis for subsequent knowledge graph construction, resource scheduling and optimization, thereby improving the resource scheduling efficiency and reliability of the simulation system. Secondly, by performing task resource configuration identification and analysis on the simulation system task resource information data, the configuration of various resources in the simulation system is identified, and the configuration is analyzed and sorted, providing a basis for subsequent resource management and optimization. This step involves extracting, parsing and classifying resource configuration information, thereby forming an overview of the overall resource configuration of the simulation system task. By deeply understanding the configuration status of the simulation system task resources, potential problems and bottlenecks can be discovered in time, and corresponding measures can be taken to adjust and optimize, thereby improving the performance and stability of the simulation system. Then, by performing resource type statistical analysis on the simulation system task resource information data based on the simulation system task resource configuration status data, the distribution and usage of various resources in the simulation system can be analyzed from a macro perspective, providing a reference basis for resource management and planning. Through the statistical analysis of resource types, we can understand the quantity, proportion and distribution of various resources in the simulation system tasks, and provide data support for the optimization and planning of subsequent processing processes, which helps to reasonably allocate resources, improve resource utilization, and reduce the operating cost of the simulation system, thereby providing basic data guarantee for the subsequent processing process. Next, by performing resource characteristic connection prediction analysis on the simulation system task resource information data based on the simulation system task resource configuration status data and the simulation system task resource type data, the analysis and prediction of the relationship between the resources required for the simulation system tasks can be realized, and potential resource connection patterns and laws can be discovered to provide guidance for subsequent resource optimization and configuration. This step involves mining and modeling the relationship between the resources required for the simulation system tasks, as well as the prediction and analysis of resource connection characteristics, so as to provide a basis for the reasonable allocation and optimization of system resources. By deeply understanding the connection relationship between resources, resources can be better utilized and the overall efficiency and performance of the system can be improved. Finally, by constructing the knowledge graph connection of the simulation system task resource information data based on the simulation system task resource characteristic connection relationship data, the relationship between resources can be presented in the form of a graph, thereby providing intuitive visualization support for subsequent resource management and optimization. The construction process of the knowledge graph connection involves the extraction, modeling and visualization of the relationship between resources, making the relationship between system resources clear at a glance. Through the construction of the knowledge graph, users can better understand the connection relationship between simulation task resources and discover potential optimization space, thereby providing data support for the subsequent resource scheduling process.

优选地,步骤S14包括以下步骤:Preferably, step S14 comprises the following steps:

步骤S141:根据仿真系统任务资源配置状况数据对仿真系统任务资源信息数据进行任务执行时间预测分析,得到仿真系统任务执行时间预测数据;Step S141: performing task execution time prediction analysis on the simulation system task resource information data according to the simulation system task resource configuration status data to obtain simulation system task execution time prediction data;

步骤S142:根据仿真系统任务资源配置状况数据以及仿真系统任务资源类型数据对仿真系统任务资源信息数据进行资源利用率评估分析,得到仿真系统任务资源类型利用率数据;Step S142: performing resource utilization evaluation and analysis on the simulation system task resource information data according to the simulation system task resource configuration status data and the simulation system task resource type data, to obtain the simulation system task resource type utilization data;

步骤S143:基于仿真系统任务执行时间预测数据以及仿真系统任务资源类型利用率数据对仿真系统任务资源信息数据进行任务资源关联挖掘分析,以得到仿真系统任务资源关联关系数据;Step S143: performing task resource association mining analysis on the simulation system task resource information data based on the simulation system task execution time prediction data and the simulation system task resource type utilization rate data to obtain simulation system task resource association relationship data;

步骤S144:基于仿真系统任务资源关联关系数据对仿真系统任务资源信息数据进行任务资源关联网络构建,以得到仿真系统任务资源关联连接网络;Step S144: constructing a task resource association network for the simulation system task resource information data based on the simulation system task resource association relationship data to obtain a simulation system task resource association connection network;

步骤S145:根据仿真系统任务资源关联连接网络对仿真系统任务资源信息数据进行资源特性连接预测分析,以得到仿真系统任务资源特性连接关系数据。Step S145: performing resource characteristic connection prediction analysis on the simulation system task resource information data according to the simulation system task resource associated connection network to obtain simulation system task resource characteristic connection relationship data.

作为本发明的一个实施例,参考图3所示,为图2中步骤S14的详细步骤流程示意图,在本实施例中步骤S14包括以下步骤:As an embodiment of the present invention, referring to FIG. 3 , which is a detailed flow chart of step S14 in FIG. 2 , in this embodiment, step S14 includes the following steps:

步骤S141:根据仿真系统任务资源配置状况数据对仿真系统任务资源信息数据进行任务执行时间预测分析,得到仿真系统任务执行时间预测数据;Step S141: performing task execution time prediction analysis on the simulation system task resource information data according to the simulation system task resource configuration status data to obtain simulation system task execution time prediction data;

本发明实施例通过根据仿真系统任务资源配置状况数据对仿真系统任务资源信息数据中相应的仿真系统任务资源进行分析,以分析仿真系统任务所需资源的配置情况以及资源之间的调度和协调关系对其任务的执行时间进行预测,以预测推断任务执行所需的时间,最终得到仿真系统任务执行时间预测数据。The embodiment of the present invention analyzes the corresponding simulation system task resources in the simulation system task resource information data according to the simulation system task resource configuration status data, so as to analyze the configuration of the resources required for the simulation system task and the scheduling and coordination relationship between the resources, and predict the execution time of the task, so as to predict the time required for the execution of the inferred task, and finally obtain the simulation system task execution time prediction data.

步骤S142:根据仿真系统任务资源配置状况数据以及仿真系统任务资源类型数据对仿真系统任务资源信息数据进行资源利用率评估分析,得到仿真系统任务资源类型利用率数据;Step S142: performing resource utilization evaluation and analysis on the simulation system task resource information data according to the simulation system task resource configuration status data and the simulation system task resource type data, to obtain the simulation system task resource type utilization data;

本发明实施例结合分析得到的仿真系统任务资源配置状况数据以及仿真系统任务资源类型数据对仿真系统任务资源信息数据中相应仿真系统任务资源的利用率进行评估分析,以评估确定仿真系统任务中各类资源的利用率,也即各类资源被有效利用的程度,最终得到仿真系统任务资源类型利用率数据。The embodiment of the present invention combines the simulation system task resource configuration status data and the simulation system task resource type data obtained by analysis to evaluate and analyze the utilization of the corresponding simulation system task resources in the simulation system task resource information data, so as to evaluate and determine the utilization of various types of resources in the simulation system tasks, that is, the degree to which various types of resources are effectively utilized, and finally obtain the simulation system task resource type utilization data.

步骤S143:基于仿真系统任务执行时间预测数据以及仿真系统任务资源类型利用率数据对仿真系统任务资源信息数据进行任务资源关联挖掘分析,以得到仿真系统任务资源关联关系数据;Step S143: performing task resource association mining analysis on the simulation system task resource information data based on the simulation system task execution time prediction data and the simulation system task resource type utilization rate data to obtain simulation system task resource association relationship data;

本发明实施例通过结合分析得到的仿真系统任务执行时间预测数据以及仿真系统任务资源类型利用率数据使用关联规则挖掘算法对仿真系统任务资源信息数据中相应的仿真系统任务资源进行分析,以从仿真系统任务执行时间和资源利用率的角度出发,挖掘出任务与资源之间的关联关系,最终得到仿真系统任务资源关联关系数据。The embodiment of the present invention uses an association rule mining algorithm to analyze the corresponding simulation system task resources in the simulation system task resource information data by combining the simulation system task execution time prediction data and the simulation system task resource type utilization data obtained by analysis, so as to mine the association relationship between tasks and resources from the perspective of simulation system task execution time and resource utilization, and finally obtain simulation system task resource association relationship data.

步骤S144:基于仿真系统任务资源关联关系数据对仿真系统任务资源信息数据进行任务资源关联网络构建,以得到仿真系统任务资源关联连接网络;Step S144: constructing a task resource association network for the simulation system task resource information data based on the simulation system task resource association relationship data to obtain a simulation system task resource association connection network;

本发明实施例通过结合分析得到的仿真系统任务资源关联关系数据中仿真系统任务与资源之间的依赖和影响关联关系对仿真系统任务资源信息数据中相应的仿真系统任务资源进行网络连接构建,将任务与资源之间的关联关系以网络的形式表示出来,从而形成任务资源关联连接网络,最终得到仿真系统任务资源关联连接网络。The embodiment of the present invention constructs a network connection for the corresponding simulation system task resources in the simulation system task resource information data by combining the dependency and influence association relationship between the simulation system tasks and resources in the simulation system task resource association relationship data obtained by analysis, and expresses the association relationship between the tasks and resources in the form of a network, thereby forming a task resource association connection network, and finally obtaining a simulation system task resource association connection network.

步骤S145:根据仿真系统任务资源关联连接网络对仿真系统任务资源信息数据进行资源特性连接预测分析,以得到仿真系统任务资源特性连接关系数据。Step S145: performing resource characteristic connection prediction analysis on the simulation system task resource information data according to the simulation system task resource associated connection network to obtain simulation system task resource characteristic connection relationship data.

本发明实施例通过结合构建得到的仿真系统任务资源关联连接网络对仿真系统任务资源信息数据中相应的仿真系统任务资源进行特性的连接预测分析,以预测不同仿真系统任务资源之间的连接关系,例如资源之间的依赖关系或者资源利用率与任务执行时间之间的关联关系等,最终得到仿真系统任务资源特性连接关系数据。The embodiment of the present invention performs characteristic connection prediction analysis on the corresponding simulation system task resources in the simulation system task resource information data in combination with the constructed simulation system task resource associated connection network, so as to predict the connection relationship between different simulation system task resources, such as the dependency relationship between resources or the association relationship between resource utilization and task execution time, and finally obtains the simulation system task resource characteristic connection relationship data.

本发明首先通过根据仿真系统任务资源配置状况数据对仿真系统任务资源信息数据进行任务执行时间预测分析,以结合仿真系统任务执行过程中资源配置的使用情况对任务执行时间进行预测,这一步骤能够将资源配置与任务执行时间之间的关系进行建模和分析,以预测任务执行的时间,从而帮助后续的处理过程规划和调度任务,以提高后续资源调度处理的效率和性能。通过准确预测任务执行时间,可以更好地安排资源,避免资源的浪费和系统的闲置,从而提高系统的整体利用率和性能。其次,通过根据仿真系统任务资源配置状况数据以及仿真系统任务资源类型数据进行资源利用率评估分析,以综合考虑系统中各类资源的配置情况和使用情况,对资源的利用率进行评估分析,为资源的合理配置和优化提供依据,这一步骤将资源类型的配置信息与资源利用率进行关联分析,了解各类资源的利用情况,为资源的合理调配和优化提供数据支持。通过评估资源的利用率,可以及时发现资源的瓶颈和不足,采取相应的措施进行优化,从而为后续的处理过程提供了基础数据保障。然后,通过基于仿真系统任务执行时间预测数据以及仿真系统任务资源类型利用率数据对仿真系统任务资源信息数据进行任务资源关联挖掘分析,能够从任务执行时间和资源利用率的角度出发,挖掘任务资源之间的关联关系,为后续处理过程的资源调度和任务分配提供指导,这一步骤能够将任务执行时间预测数据和资源利用率数据结合起来,通过数据挖掘技术发现任务与资源之间的潜在关联关系,为资源管理和任务调度提供决策支持。通过分析任务与资源之间的关联关系,可以更合理地分配资源,从而为后续的关联网络构建过程提供了数据支持。接下来,通过基于仿真系统任务资源关联关系数据对仿真系统任务资源信息数据进行任务资源关联网络构建,以实现将任务与资源之间的关联关系以网络的形式呈现出来,并帮助用户直观地理解系统中任务和资源之间的联系,为系统的资源调度和任务分配提供可视化支持,这一步骤能够将任务与资源之间的关联关系转化为网络结构,通过网络图的形式展现出来,使得系统中任务与资源之间的关联关系一目了然。通过构建任务与资源之间的关联网络,可以帮助用户更好地理解系统的运行情况,为系统的资源管理和任务调度提供决策依据。最后,通过根据仿真系统任务资源关联连接网络对仿真系统任务资源信息数据进行资源特性连接预测分析,以发现任务与资源之间的潜在连接模式和规律,为系统的资源优化和任务调度提供指导。这一步骤将任务与资源之间的关联连接网络进行分析和预测,探索任务与资源之间的连接特性,为系统的资源管理和任务调度提供优化方向。通过预测任务与资源之间的连接关系,可以更好地规划资源和调度任务,从而为系统资源的合理调配和优化提供依据。The present invention firstly predicts and analyzes the task execution time of the simulation system task resource information data according to the simulation system task resource configuration status data, so as to predict the task execution time in combination with the use of resource configuration in the simulation system task execution process. This step can model and analyze the relationship between resource configuration and task execution time, so as to predict the time of task execution, thereby helping the subsequent processing process planning and scheduling tasks, so as to improve the efficiency and performance of subsequent resource scheduling processing. By accurately predicting the task execution time, resources can be better arranged, and the waste of resources and the idleness of the system can be avoided, so as to improve the overall utilization rate and performance of the system. Secondly, by evaluating and analyzing the resource utilization rate according to the simulation system task resource configuration status data and the simulation system task resource type data, the configuration and use of various resources in the system are comprehensively considered, and the utilization rate of resources is evaluated and analyzed, so as to provide a basis for the reasonable configuration and optimization of resources. This step associates the configuration information of the resource type with the resource utilization rate, understands the use of various resources, and provides data support for the reasonable allocation and optimization of resources. By evaluating the utilization rate of resources, the bottleneck and deficiency of resources can be discovered in time, and corresponding measures can be taken to optimize, so as to provide basic data guarantee for the subsequent processing process. Then, by performing task resource association mining and analysis on the task resource information data of the simulation system based on the task execution time prediction data of the simulation system and the task resource type utilization data of the simulation system, the association relationship between task resources can be mined from the perspective of task execution time and resource utilization, providing guidance for resource scheduling and task allocation in the subsequent processing process. This step can combine the task execution time prediction data and resource utilization data, discover the potential association relationship between tasks and resources through data mining technology, and provide decision support for resource management and task scheduling. By analyzing the association relationship between tasks and resources, resources can be allocated more reasonably, thereby providing data support for the subsequent association network construction process. Next, by constructing the task resource association network of the simulation system task resource information data based on the task resource association relationship data of the simulation system, the association relationship between tasks and resources can be presented in the form of a network, and users can intuitively understand the connection between tasks and resources in the system, providing visual support for the resource scheduling and task allocation of the system. This step can convert the association relationship between tasks and resources into a network structure and present it in the form of a network diagram, making the association relationship between tasks and resources in the system clear at a glance. By constructing the association network between tasks and resources, users can better understand the operation of the system and provide a decision-making basis for the system's resource management and task scheduling. Finally, by performing resource characteristic connection prediction analysis on the simulation system's task resource information data based on the simulation system's task resource association connection network, the potential connection patterns and rules between tasks and resources can be discovered, providing guidance for the system's resource optimization and task scheduling. This step analyzes and predicts the association connection network between tasks and resources, explores the connection characteristics between tasks and resources, and provides optimization directions for the system's resource management and task scheduling. By predicting the connection relationship between tasks and resources, resources and scheduling tasks can be better planned, thereby providing a basis for the rational allocation and optimization of system resources.

优选地,步骤S144包括以下步骤:Preferably, step S144 includes the following steps:

对仿真系统任务资源信息数据进行任务节点及资源节点抽取处理,以得到仿真系统任务节点以及仿真系统任务资源节点;Extracting task nodes and resource nodes from the task resource information data of the simulation system to obtain the task nodes of the simulation system and the task resource nodes of the simulation system;

本发明实施例通过使用相应的数据抽取方法对仿真系统任务资源信息数据进行处理,以将仿真系统任务资源信息数据中涉及的任务和资源分别提取出来并进行数据节点的标注,以此通过任务节点代表仿真系统中的任务,而资源节点则代表仿真系统中可供任务使用的资源,例如CPU、内存等,最终得到仿真系统任务节点以及仿真系统任务资源节点。The embodiment of the present invention processes the simulation system task resource information data by using the corresponding data extraction method to extract the tasks and resources involved in the simulation system task resource information data respectively and mark the data nodes, so that the task nodes represent the tasks in the simulation system, and the resource nodes represent the resources available for the tasks in the simulation system, such as CPU, memory, etc., and finally obtain the simulation system task nodes and simulation system task resource nodes.

优选地,对仿真系统任务节点以及仿真系统任务资源节点进行随机采样处理,以得到仿真系统任务随机采样点以及仿真系统任务资源随机采样点;Preferably, random sampling is performed on the simulation system task nodes and the simulation system task resource nodes to obtain the simulation system task random sampling points and the simulation system task resource random sampling points;

本发明实施例通过使用随机采样方法对抽取得到的仿真系统任务节点以及仿真系统任务资源节点进行处理,以从中随机选择一部分具有代表性的任务节点和资源节点样本,以便在后续的分析处理过程中进行更有效的处理和分析,最终得到仿真系统任务随机采样点以及仿真系统任务资源随机采样点。The embodiment of the present invention processes the extracted simulation system task nodes and simulation system task resource nodes by using a random sampling method to randomly select a portion of representative task node and resource node samples therefrom, so as to perform more effective processing and analysis in the subsequent analysis and processing process, and finally obtain the simulation system task random sampling points and the simulation system task resource random sampling points.

优选地,对仿真系统任务随机采样点以及仿真系统任务资源随机采样点进行潜在影响程度评估分析,以得到仿真系统任务节点与资源节点之间的潜在影响程度系数;Preferably, a potential impact degree evaluation and analysis is performed on the random sampling points of the simulation system tasks and the random sampling points of the simulation system task resources to obtain a potential impact degree coefficient between the simulation system task nodes and the resource nodes;

本发明实施例通过使用影响评估算法对仿真系统任务随机采样点以及仿真系统任务资源随机采样点进行分析,以评估分析任务节点与资源节点之间的潜在影响程度,也即它们之间的关联程度或者相互影响程度,最终得到仿真系统任务节点与资源节点之间的潜在影响程度系数。The embodiment of the present invention analyzes the random sampling points of the simulation system tasks and the random sampling points of the simulation system task resources by using an impact assessment algorithm to evaluate the potential impact degree between the task nodes and the resource nodes, that is, the degree of association or mutual influence between them, and finally obtains the potential impact degree coefficient between the simulation system task nodes and the resource nodes.

优选地,根据仿真系统任务节点与资源节点之间的潜在影响程度系数对仿真系统任务节点以及仿真系统任务资源节点进行潜在影响关系挖掘分析,得到仿真系统任务资源潜在影响连接关系数据;Preferably, the potential impact relationship mining analysis is performed on the simulation system task nodes and the simulation system task resource nodes according to the potential impact degree coefficient between the simulation system task nodes and the resource nodes to obtain the simulation system task resource potential impact connection relationship data;

本发明实施例通过结合评估分析得到的仿真系统任务节点与资源节点之间的潜在影响程度系数对仿真系统任务节点以及仿真系统任务资源节点之间的影响关系进行挖掘分析,以发现任务节点与资源节点之间存在的潜在影响关系,即它们之间存在的相互作用或依赖关系,最终得到仿真系统任务资源潜在影响连接关系数据。The embodiment of the present invention mines and analyzes the influence relationship between the simulation system task nodes and the simulation system task resource nodes by combining the potential influence degree coefficient between the simulation system task nodes and the resource nodes obtained by evaluation analysis, so as to discover the potential influence relationship between the task nodes and the resource nodes, that is, the interaction or dependency relationship between them, and finally obtain the potential influence connection relationship data of the simulation system task resources.

优选地,基于仿真系统任务资源关联关系数据以及仿真系统任务资源潜在影响连接关系数据对仿真系统任务节点以及仿真系统任务资源节点进行任务资源关联网络构建,以得到仿真系统任务资源关联连接网络。Preferably, a task resource association network is constructed for the simulation system task nodes and the simulation system task resource nodes based on the simulation system task resource association relationship data and the simulation system task resource potential impact connection relationship data to obtain a simulation system task resource association connection network.

本发明实施例通过结合分析得到的仿真系统任务资源关联关系数据以及仿真系统任务资源潜在影响连接关系数据对仿真系统任务节点以及仿真系统任务资源节点进行关联网络的连接构建,以建立任务节点和资源节点之间的关联连接网络,来展现它们之间的关系和交互情况,并使其能够更直观地理解仿真系统中任务与资源之间的连接关系,最终得到仿真系统任务资源关联连接网络。The embodiment of the present invention constructs a connection network for the simulation system task nodes and the simulation system task resource nodes by combining the simulation system task resource association relationship data and the simulation system task resource potential impact connection relationship data obtained through analysis, so as to establish an association connection network between the task nodes and the resource nodes to show the relationship and interaction between them, and enable a more intuitive understanding of the connection relationship between tasks and resources in the simulation system, and finally obtain a simulation system task resource association connection network.

本发明首先通过对仿真系统任务资源信息数据进行任务节点及资源节点抽取处理,以实现对仿真系统中的任务和资源节点进行抽取处理,这样能够将仿真系统中涉及的任务和资源分别提取出来,从而为后续的分析和建模提供基础数据,这一步骤能够将仿真系统中的复杂信息进行了简化和提炼,将任务和资源进行了分类和归纳,为后续步骤的进行奠定了基础。其次,通过对仿真系统任务节点以及仿真系统任务资源节点进行随机采样处理,以通过随机采样的方式从任务节点和资源节点中抽取样本数据,来代表仿真系统中的任务和资源情况,为后续的分析和建模提供具有代表性的数据样本,这一步骤通过随机采样的方式获取样本数据,能够更好地反映系统中任务和资源的整体情况,减少了因为数据偏差而造成的分析误差。然后,通过对仿真系统任务随机采样点以及仿真系统任务资源随机采样点进行潜在影响程度评估分析,以评估它们之间的潜在影响程度,从而揭示任务与资源之间的关联程度,并为后续的关联关系挖掘提供依据,这一步骤通过对样本数据进行评估分析,以确定任务节点与资源节点之间的潜在影响程度系数,为后续步骤中的关联关系挖掘提供了基础。接下来,通过根据仿真系统任务节点与资源节点之间的潜在影响程度系数对仿真系统任务节点以及仿真系统任务资源节点进行潜在影响关系挖掘分析,以发现它们之间存在的潜在影响关系,为系统中任务与资源之间的关联提供深入理解,这一步骤通过分析潜在影响关系,揭示了任务节点与资源节点之间更深层次的关联,从而为系统的任务资源管理和调度提供了更为全面的信息。最后,通过基于仿真系统任务资源关联关系数据以及仿真系统任务资源潜在影响连接关系数据对仿真系统任务节点以及仿真系统任务资源节点进行任务资源关联网络构建,能够将任务节点与资源节点之间的关联关系通过网络结构进行建模,从而形成任务资源关联连接网络,以直观展现任务与资源之间的关联情况,从而为仿真系统的任务调度和资源管理提供直观可视化支持,这一步骤通过构建任务资源关联连接网络,能够将任务节点与资源节点之间的关联关系以网络图的形式呈现出来,从而为仿真系统的资源管理和任务调度提供了直观的参考依据,有助于系统运行的优化和提升。The present invention firstly extracts the task nodes and resource nodes of the simulation system task resource information data to realize the extraction of the task and resource nodes in the simulation system, so that the tasks and resources involved in the simulation system can be extracted respectively, thereby providing basic data for subsequent analysis and modeling. This step can simplify and refine the complex information in the simulation system, classify and summarize the tasks and resources, and lay a foundation for the subsequent steps. Secondly, by performing random sampling processing on the simulation system task nodes and the simulation system task resource nodes, sample data is extracted from the task nodes and resource nodes by random sampling to represent the task and resource situation in the simulation system, and provide representative data samples for subsequent analysis and modeling. This step obtains sample data by random sampling, which can better reflect the overall situation of tasks and resources in the system and reduce the analysis error caused by data deviation. Then, by evaluating and analyzing the potential impact degree of the random sampling points of the simulation system tasks and the random sampling points of the simulation system task resources, the potential impact degree between them is evaluated, so as to reveal the degree of association between tasks and resources and provide a basis for the subsequent mining of association relationships. This step evaluates and analyzes the sample data to determine the potential impact degree coefficient between the task nodes and the resource nodes, which provides a basis for mining association relationships in subsequent steps. Next, by mining and analyzing the potential impact relationship of the simulation system task nodes and the simulation system task resource nodes according to the potential impact degree coefficient between the simulation system task nodes and the resource nodes, the potential impact relationship between them is discovered, providing an in-depth understanding of the association between tasks and resources in the system. This step reveals a deeper level of association between task nodes and resource nodes by analyzing the potential impact relationship, thus providing more comprehensive information for the system's task resource management and scheduling. Finally, by constructing a task resource association network for the simulation system task nodes and the simulation system task resource nodes based on the simulation system task resource association relationship data and the simulation system task resource potential impact connection relationship data, the association relationship between the task nodes and the resource nodes can be modeled through the network structure, thereby forming a task resource association connection network to intuitively display the association between tasks and resources, thereby providing intuitive visual support for the task scheduling and resource management of the simulation system. This step, by constructing a task resource association connection network, can present the association relationship between the task nodes and the resource nodes in the form of a network diagram, thereby providing an intuitive reference basis for the resource management and task scheduling of the simulation system, which is helpful for optimizing and improving the system operation.

优选地,步骤S15包括以下步骤:Preferably, step S15 comprises the following steps:

步骤S151:对仿真系统任务资源信息数据进行资源特性实体识别分析,以得到仿真系统任务资源特性实体数据集;Step S151: performing resource characteristic entity recognition analysis on the simulation system task resource information data to obtain a simulation system task resource characteristic entity data set;

本发明实施例通过使用实体识别方法对仿真系统任务资源信息数据进行分析,以识别并提取出代表资源特性的实体,包括但不限于任务类型、资源类型、属性等,最终得到仿真系统任务资源特性实体数据集。The embodiment of the present invention analyzes the simulation system task resource information data by using an entity recognition method to identify and extract entities representing resource characteristics, including but not limited to task type, resource type, attributes, etc., and finally obtains a simulation system task resource characteristic entity data set.

步骤S152:基于仿真系统任务资源特性实体数据集对仿真系统任务资源信息数据进行资源属性挖掘分析,得到仿真系统任务资源属性数据集;Step S152: performing resource attribute mining and analysis on the simulation system task resource information data based on the simulation system task resource characteristic entity data set to obtain a simulation system task resource attribute data set;

本发明实施例通过结合分析得到的仿真系统任务资源特性实体数据集对仿真系统任务资源信息数据中相应的仿真系统任务资源进行属性的挖掘分析,以深入挖掘出仿真系统资源的属性信息,包括资源的性能特征、技术规格、使用约束、容量、速度等,最终得到仿真系统任务资源属性数据集。The embodiment of the present invention performs attribute mining and analysis on the corresponding simulation system task resources in the simulation system task resource information data by combining the simulation system task resource characteristic entity data set obtained by analysis, so as to deeply mine the attribute information of the simulation system resources, including the performance characteristics, technical specifications, usage constraints, capacity, speed, etc. of the resources, and finally obtain the simulation system task resource attribute data set.

步骤S153:基于仿真系统任务资源特性连接关系数据对仿真系统任务资源特性实体数据集以及仿真系统任务资源属性数据集进行资源知识关系抽取处理,得到仿真系统任务资源特性知识关系数据;Step S153: extracting resource knowledge relationships from the simulation system task resource characteristic entity data set and the simulation system task resource attribute data set based on the simulation system task resource characteristic connection relationship data to obtain simulation system task resource characteristic knowledge relationship data;

本发明实施例通过结合分析得到的仿真系统任务资源特性连接关系数据对仿真系统任务资源特性实体数据集以及仿真系统任务资源属性数据集之间的知识关系进行抽取处理,以从资源数据中提取出各种资源实体与属性之间的知识关系,例如依赖关系、影响关系等,以此来建立各种仿真系统任务资源之间的联系,最终得到仿真系统任务资源特性知识关系数据。The embodiment of the present invention extracts and processes the knowledge relationship between the simulation system task resource characteristic entity data set and the simulation system task resource attribute data set by combining the simulation system task resource characteristic connection relationship data obtained by analysis, so as to extract the knowledge relationship between various resource entities and attributes from the resource data, such as dependency relationship, influence relationship, etc., so as to establish the connection between various simulation system task resources and finally obtain the simulation system task resource characteristic knowledge relationship data.

步骤S154:根据仿真系统任务资源特性知识关系数据对仿真系统任务资源特性实体数据集以及仿真系统任务资源属性数据集进行知识图谱连接构建,以得到仿真系统任务资源知识图谱。Step S154: construct a knowledge graph by connecting the simulation system task resource characteristic entity data set and the simulation system task resource attribute data set according to the simulation system task resource characteristic knowledge relationship data to obtain a simulation system task resource knowledge graph.

本发明实施例通过结合分析得到的仿真系统任务资源特性知识关系数据对相对应的仿真系统任务资源特性实体数据集以及仿真系统任务资源属性数据集进行知识图谱的连接构建,以将资源特性实体和其属性以及它们之间的关系以图形形式表示,最终得到仿真系统任务资源知识图谱。The embodiment of the present invention connects and constructs a knowledge graph of the corresponding simulation system task resource characteristic entity data set and the simulation system task resource attribute data set by combining the simulation system task resource characteristic knowledge relationship data obtained by analysis, so as to represent the resource characteristic entities and their attributes as well as the relationship between them in a graphical form, and finally obtain a simulation system task resource knowledge graph.

本发明首先通过对仿真系统任务资源信息数据进行资源特性实体识别分析,能够从仿真系统任务资源信息数据中准确识别出各种资源的特性实体,包括但不限于任务类型、资源类型、属性等,从而形成一个全面的仿真系统任务资源特性实体数据集,这一步骤的关键在于能够为后续的资源属性挖掘和知识关系抽取提供了准确的实体识别基础,从而为仿真系统的资源管理和调度提供了精准的数据支持。其次,通过基于仿真系统任务资源特性实体数据集对仿真系统任务资源信息数据进行资源属性挖掘分析,旨在深入挖掘仿真系统任务资源信息数据中潜藏的各种属性信息,包括资源的性能特征、技术规格、使用约束等,从而形成一个综合的仿真系统任务资源属性数据集,这一步骤的关键在于能够为仿真系统中资源的特性和属性进行了全面的挖掘和归纳,为后续的知识关系抽取和知识图谱构建提供了充分的数据基础。然后,通过基于仿真系统任务资源特性连接关系数据对仿真系统任务资源特性实体数据集以及仿真系统任务资源属性数据集进行资源知识关系抽取处理,能够发现资源之间的潜在关联和相互作用,从而形成一个完整的仿真系统任务资源特性知识关系数据集,这一步骤的关键在于挖掘资源之间的关联关系,揭示资源之间的相互影响和依赖关系,为系统的资源优化配置和任务调度提供了深入的理解和支持。最后,通过根据仿真系统任务资源特性知识关系数据对仿真系统任务资源特性实体数据集以及仿真系统任务资源属性数据集进行知识图谱连接构建,以形成一个完整的仿真系统任务资源知识图谱,能够直观展现资源之间的关系网络和属性特征,为系统的智能决策和优化提供了重要的参考依据,这一步骤的关键在于能够将资源的特性和知识关系以图谱的形式呈现出来,从而为仿真系统的资源管理和任务规划提供了直观和有效的支持。The present invention firstly performs resource characteristic entity recognition analysis on the task resource information data of the simulation system, and can accurately identify characteristic entities of various resources from the task resource information data of the simulation system, including but not limited to task type, resource type, attribute, etc., thereby forming a comprehensive task resource characteristic entity data set of the simulation system. The key of this step is that it can provide an accurate entity recognition basis for subsequent resource attribute mining and knowledge relationship extraction, thereby providing accurate data support for resource management and scheduling of the simulation system. Secondly, by performing resource attribute mining and analysis on the task resource information data of the simulation system based on the task resource characteristic entity data set of the simulation system, it aims to deeply mine various attribute information hidden in the task resource information data of the simulation system, including the performance characteristics, technical specifications, usage constraints, etc. of the resources, thereby forming a comprehensive task resource attribute data set of the simulation system. The key of this step is that it can comprehensively mine and summarize the characteristics and attributes of the resources in the simulation system, and provide a sufficient data basis for the subsequent knowledge relationship extraction and knowledge graph construction. Then, by extracting resource knowledge relationships from the entity dataset of task resource characteristics of the simulation system and the attribute dataset of task resource characteristics of the simulation system based on the connection relationship data of the task resource characteristics of the simulation system, the potential associations and interactions between resources can be discovered, thereby forming a complete knowledge relationship dataset of task resource characteristics of the simulation system. The key to this step is to mine the associations between resources, reveal the mutual influence and dependency between resources, and provide in-depth understanding and support for the optimal resource configuration and task scheduling of the system. Finally, by connecting and constructing the knowledge graph of the entity dataset of task resource characteristics of the simulation system and the attribute dataset of task resource characteristics of the simulation system according to the knowledge relationship data of the task resource characteristics of the simulation system, a complete knowledge graph of task resource of the simulation system is formed, which can intuitively display the relationship network and attribute characteristics between resources, and provide an important reference basis for the intelligent decision-making and optimization of the system. The key to this step is to be able to present the characteristics and knowledge relationships of resources in the form of a graph, thereby providing intuitive and effective support for the resource management and task planning of the simulation system.

优选地,步骤S2包括以下步骤:Preferably, step S2 comprises the following steps:

步骤S21:根据仿真系统任务资源知识图谱对仿真系统任务资源信息数据进行任务资源需求模式识别分析,得到仿真系统任务资源需求模式数据;Step S21: performing task resource demand pattern recognition analysis on the simulation system task resource information data according to the simulation system task resource knowledge graph to obtain simulation system task resource demand pattern data;

本发明实施例通过结合构建得到的仿真系统任务资源知识图谱使用模式识别分析方法对仿真系统任务资源信息数据中相对应的仿真系统任务资源进行分析和识别,以识别和分析任务资源之间的模式和规律,包括资源之间的相互依赖、需求模式等,最终得到仿真系统任务资源需求模式数据。The embodiment of the present invention uses a pattern recognition analysis method in combination with the constructed simulation system task resource knowledge graph to analyze and identify the corresponding simulation system task resources in the simulation system task resource information data, so as to identify and analyze the patterns and rules between the task resources, including the mutual dependence and demand patterns between the resources, and finally obtain the simulation system task resource demand pattern data.

步骤S22:基于仿真系统任务资源需求模式数据对仿真系统任务资源信息数据进行资源需求预测分析,得到仿真系统任务资源需求信息数据;Step S22: performing resource demand forecasting analysis on the simulation system task resource information data based on the simulation system task resource demand pattern data to obtain the simulation system task resource demand information data;

本发明实施例通过结合分析得到的仿真系统任务资源需求模式数据对仿真系统任务资源信息数据中相对应的仿真系统任务资源进行资源需求的预测分析,以预测对应仿真系统任务未来资源的需求情况,包括计算资源和存储资源等,并使其能够提前应对资源需求的变化和波动,最终得到仿真系统任务资源需求信息数据。The embodiment of the present invention performs a predictive analysis on the resource requirements of the corresponding simulation system task resources in the simulation system task resource information data by combining the simulation system task resource requirement pattern data obtained by analysis, so as to predict the future resource requirements of the corresponding simulation system tasks, including computing resources and storage resources, etc., and enable it to respond to changes and fluctuations in resource requirements in advance, and finally obtain simulation system task resource requirement information data.

步骤S23:对仿真系统任务资源需求信息数据进行计算资源状态监测,得到仿真系统任务计算资源需求状态数据;Step S23: performing computing resource status monitoring on the simulation system task resource requirement information data to obtain the simulation system task computing resource requirement status data;

本发明实施例通过对仿真系统任务资源需求信息数据中计算资源的使用情况进行实时监测和分析,从中提取出计算资源的需求状态数据,包括但不限于计算资源的利用率、负载情况等,最终得到仿真系统任务计算资源需求状态数据。The embodiment of the present invention monitors and analyzes the usage of computing resources in the simulation system task resource demand information data in real time, extracts the demand status data of computing resources, including but not limited to the utilization rate and load conditions of computing resources, and finally obtains the simulation system task computing resource demand status data.

步骤S24:对仿真系统任务资源需求信息数据进行存储资源状态监测,得到仿真系统任务存储资源需求状态数据;Step S24: monitoring the storage resource status of the simulation system task resource requirement information data to obtain the simulation system task storage resource requirement status data;

本发明实施例通过对仿真系统任务资源需求信息数据中存储资源的使用情况进行实时监测和分析,以实时监测仿真系统中存储资源的使用情况和状态,并从中提取出存储资源的需求状态数据,包括但不限于存储资源的利用率、可用空间等,最终得到仿真系统任务存储资源需求状态数据。The embodiment of the present invention monitors the usage and status of storage resources in the simulation system in real time by performing real-time monitoring and analysis on the usage of storage resources in the simulation system task resource demand information data, and extracts the storage resource demand status data therefrom, including but not limited to the utilization rate of storage resources, available space, etc., and finally obtains the simulation system task storage resource demand status data.

步骤S25:将仿真系统任务计算资源需求状态数据以及仿真系统任务存储资源需求状态数据进行数据合并,得到仿真系统任务资源状态信息数据。Step S25: merging the simulation system task computing resource requirement status data and the simulation system task storage resource requirement status data to obtain simulation system task resource status information data.

本发明实施例通过数据合并方法将监测得到的仿真系统任务计算资源需求状态数据以及仿真系统任务存储资源需求状态数据进行合并,以整合不同类型资源的需求状态信息,并更全面地理解仿真系统任务资源的使用情况和需求趋势,最终得到仿真系统任务资源状态信息数据。The embodiment of the present invention merges the monitored simulation system task computing resource demand status data and the simulation system task storage resource demand status data through a data merging method to integrate the demand status information of different types of resources, and more comprehensively understand the usage and demand trends of the simulation system task resources, and finally obtain the simulation system task resource status information data.

本发明首先通过根据仿真系统任务资源知识图谱对仿真系统任务资源信息数据进行任务资源需求模式识别分析,这一步骤能够识别和分析任务资源之间的模式和规律,包括资源之间的相互依赖、需求模式等,进而形成一个全面的仿真系统任务资源需求模式数据集,这个数据集是基于实际数据进行模式识别的结果,能够为后续的资源管理和规划提供了可靠的数据支持。通过深入挖掘任务资源之间的内在联系,能够提高了仿真系统对资源需求的理解和预测能力,为资源的合理分配和调度提供了重要参考依据,从而提高了仿真系统的资源调度效率和性能。其次,通过基于仿真系统任务资源需求模式数据对仿真系统任务资源信息数据进行资源需求预测分析,在这一步骤中,能够根据已有的仿真系统任务资源需求模式数据,并利用预测分析技术对未来资源需求进行预测和分析,从而形成一个全面的仿真系统任务资源需求信息数据集,这个数据集是基于历史数据和需求模式识别结果进行的预测分析,为系统的资源规划和调度提供了重要参考,使系统能够提前应对资源需求的变化和波动,从而提高系统的灵活性和响应能力,这一步骤的关键在于能够为仿真系统提供了资源需求的预测和分析能力,使系统能够更加智能地进行资源管理和调度,从而为后续的处理过程提供了基础数据保障。然后,通过对仿真系统任务资源需求信息数据进行计算资源状态监测,从中提取出计算资源的需求状态数据,包括但不限于计算资源的利用率、负载情况等,这个数据集是基于对资源需求信息的实时监测和分析得出的,能够为系统的计算资源管理和优化提供了实时数据支持,这一步骤的关键在于使得仿真系统能够实时监测和了解计算资源的状态,及时调整资源分配策略,从而保障仿真系统的稳定运行和高效性能。接下来,通过对仿真系统任务资源需求信息数据进行存储资源状态监测,以从中提取出存储资源的需求状态数据,包括但不限于存储资源的利用率、可用空间等,这个数据集是基于对资源需求信息的实时监测和分析得出的,为系统的存储资源管理和优化提供了实时数据支持,这一步骤的关键在于使得系统能够实时监测和了解存储资源的状态,及时调整资源分配策略,从而为后续的数据合并处理过程提供了数据支持。最后,通过将仿真系统任务计算资源需求状态数据以及仿真系统任务存储资源需求状态数据进行数据合并,以形成一个全面的仿真系统任务资源状态信息数据集,这个数据集整合了计算资源和存储资源的需求状态信息,从而为后续的资源管理和调度提供了全面的数据支持,这一步骤的关键在于能够提供了对仿真系统资源状态的全面了解,使得仿真系统能够更加智能地进行资源调度和管理,从而提高了后续调度处理过程的效率和性能。The present invention firstly performs task resource demand pattern recognition analysis on the task resource information data of the simulation system according to the task resource knowledge graph of the simulation system. This step can identify and analyze the patterns and rules between task resources, including the mutual dependence and demand patterns between resources, and then form a comprehensive simulation system task resource demand pattern data set. This data set is the result of pattern recognition based on actual data, and can provide reliable data support for subsequent resource management and planning. By deeply exploring the internal connection between task resources, the simulation system can improve its understanding and prediction ability of resource demand, provide an important reference basis for the reasonable allocation and scheduling of resources, and thus improve the resource scheduling efficiency and performance of the simulation system. Secondly, by predicting and analyzing the resource demand of the simulation system task resource information data based on the simulation system task resource demand pattern data, in this step, it is possible to predict and analyze the future resource demand based on the existing simulation system task resource demand pattern data and use the prediction analysis technology to form a comprehensive simulation system task resource demand information data set. This data set is based on the prediction analysis of historical data and demand pattern recognition results, which provides an important reference for the system's resource planning and scheduling, enabling the system to respond to changes and fluctuations in resource demand in advance, thereby improving the system's flexibility and responsiveness. The key to this step is that it can provide the simulation system with the ability to predict and analyze resource demand, enabling the system to manage and schedule resources more intelligently, thereby providing basic data guarantee for subsequent processing. Then, by monitoring the computing resource status of the simulation system task resource demand information data, the computing resource demand status data is extracted from it, including but not limited to the utilization rate and load of computing resources. This data set is based on real-time monitoring and analysis of resource demand information, and can provide real-time data support for the system's computing resource management and optimization. The key to this step is that the simulation system can monitor and understand the status of computing resources in real time, and adjust the resource allocation strategy in time, thereby ensuring the stable operation and efficient performance of the simulation system. Next, by monitoring the storage resource status of the simulation system task resource demand information data, the storage resource demand status data can be extracted from it, including but not limited to the utilization rate of storage resources, available space, etc. This data set is based on the real-time monitoring and analysis of resource demand information, and provides real-time data support for the system's storage resource management and optimization. The key to this step is to enable the system to monitor and understand the status of storage resources in real time, and adjust the resource allocation strategy in time, thereby providing data support for the subsequent data merging process. Finally, by merging the simulation system task computing resource demand status data and the simulation system task storage resource demand status data, a comprehensive simulation system task resource status information data set is formed. This data set integrates the demand status information of computing resources and storage resources, thereby providing comprehensive data support for subsequent resource management and scheduling. The key to this step is to provide a comprehensive understanding of the simulation system resource status, so that the simulation system can more intelligently schedule and manage resources, thereby improving the efficiency and performance of the subsequent scheduling process.

优选地,步骤S3包括以下步骤:Preferably, step S3 comprises the following steps:

步骤S31:根据仿真系统任务资源状态信息数据进行任务完成预测分析,以得到仿真系统任务完成情况信息数据;Step S31: performing task completion prediction analysis based on the simulation system task resource status information data to obtain simulation system task completion status information data;

本发明实施例通过根据分析得到的仿真系统任务资源状态信息数据使用相应的预测分析算法进行分析,以预测分析仿真系统中任务的类型、资源需求以及系统当前的负载情况等因素,并结合分析得到的相关因素预测对应仿真系统任务的完成情况,最终得到仿真系统任务完成情况信息数据。The embodiment of the present invention uses a corresponding predictive analysis algorithm to analyze the simulation system task resource status information data obtained by analysis to predict factors such as the type of task in the simulation system, resource requirements, and the current load conditions of the system, and predicts the completion status of the corresponding simulation system tasks in combination with the relevant factors obtained by analysis, and finally obtains the simulation system task completion status information data.

步骤S32:通过仿真系统任务完成情况信息数据获取各个仿真系统任务的完成时间以及延迟时间,并根据各个仿真系统任务的完成时间以及延迟时间进行差异平均分析,以得到仿真系统任务完成平均等待时间;Step S32: obtaining the completion time and delay time of each simulation system task through the simulation system task completion information data, and performing difference average analysis according to the completion time and delay time of each simulation system task to obtain the average waiting time for the simulation system task completion;

本发明实施例通过根据分析得到的仿真系统任务完成情况信息数据使用时间的统计方法获取各个仿真系统任务的完成时间以及延迟时间,并通过使用差异计算方法分别对各个仿真系统任务的完成时间以及延迟时间进行差异计算并累积求和,以统计获取相应仿真系统任务完成的等待时间,同时对统计获取得到的等待时间进行算术平均计算,最终得到仿真系统任务完成平均等待时间。The embodiment of the present invention obtains the completion time and delay time of each simulation system task by using a statistical method based on the time of the simulation system task completion information data obtained by analysis, and performs difference calculation on the completion time and delay time of each simulation system task respectively and accumulates the sum, so as to statistically obtain the waiting time for the completion of the corresponding simulation system task, and at the same time performs arithmetic average calculation on the waiting time obtained by statistics, and finally obtains the average waiting time for the completion of the simulation system task.

步骤S33:基于仿真系统任务完成情况信息数据以及仿真系统任务完成平均等待时间对仿真系统任务资源状态信息数据进行任务优先级统计分析,以生成仿真系统任务资源需求优先级序列;Step S33: performing task priority statistical analysis on the simulation system task resource status information data based on the simulation system task completion status information data and the average waiting time for the simulation system task completion to generate a simulation system task resource requirement priority sequence;

本发明实施例通过结合分析得到的仿真系统任务完成情况信息数据以及仿真系统任务完成平均等待时间对仿真系统任务资源状态信息数据进行优先级的统计分析,以综合考虑仿真系统任务的紧急程度和对仿真系统的影响程度确定各个仿真系统任务内资源的优先级排序情况,这一序列将决定仿真系统任务在资源分配上的优先顺序,确保系统任务资源得到最合理的利用,以满足任务的紧急性和重要性需求,最终生成仿真系统任务资源需求优先级序列。The embodiment of the present invention performs a statistical analysis of the priority of the simulation system task resource status information data by combining the simulation system task completion information data and the average waiting time for the simulation system task completion, so as to determine the priority sorting of resources within each simulation system task by comprehensively considering the urgency of the simulation system task and the degree of impact on the simulation system. This sequence will determine the priority of the simulation system tasks in resource allocation, ensure that the system task resources are used in the most reasonable way, so as to meet the urgency and importance requirements of the tasks, and finally generate a simulation system task resource requirement priority sequence.

步骤S34:基于仿真系统任务资源需求信息数据对仿真系统任务资源需求优先级序列进行资源动态匹配调度,以得到仿真系统任务资源动态调度结果。Step S34: performing dynamic resource matching and scheduling on the simulation system task resource requirement priority sequence based on the simulation system task resource requirement information data to obtain a simulation system task resource dynamic scheduling result.

本发明实施例通过结合分析得到的仿真系统任务资源需求信息数据中相应仿真系统任务对应的资源需求状况对仿真系统任务资源需求优先级序列内相对应的仿真系统任务进行资源的匹配分析,以充分考虑对仿真系统任务的重要性、紧急程度以及资源需求量等有效地分配系统任务资源,并根据匹配后得到的资源匹配结果使用智能调度算法和技术针对不同的仿真系统任务的优先级和资源需求设计出最优的资源调度策略,同时,通过根据设计得到的仿真系统任务资源智能调度策略对仿真系统任务资源需求优先级序列内相对应的仿真系统任务进行资源的实时调度处理,以动态调整仿真系统任务的资源分配,并满足仿真系统任务运行的实时需求,最终得到仿真系统任务资源动态调度结果。The embodiment of the present invention performs resource matching analysis on the corresponding simulation system tasks in the simulation system task resource requirement information data obtained by combining the resource requirement status corresponding to the corresponding simulation system tasks in the simulation system task resource requirement information data, so as to effectively allocate system task resources by fully considering the importance, urgency and resource requirement of the simulation system tasks, and uses intelligent scheduling algorithms and technologies to design the optimal resource scheduling strategy for different priorities and resource requirements of simulation system tasks according to the resource matching results obtained after matching. At the same time, the corresponding simulation system tasks in the simulation system task resource requirement priority sequence are subjected to real-time resource scheduling processing according to the designed simulation system task resource intelligent scheduling strategy, so as to dynamically adjust the resource allocation of the simulation system tasks and meet the real-time requirements of the simulation system task operation, and finally obtain the dynamic scheduling result of the simulation system task resources.

本发明首先通过根据仿真系统任务资源状态信息数据进行任务完成预测分析,以预测分析仿真系统中任务资源的使用情况、历史数据以及其他相关因素,这样可以预测对应仿真任务的完成情况,这有助于了解当前仿真任务的执行情况,从而提前发现可能存在的问题,以及为后续任务做出合理的安排。通过预测分析仿真系统任务的完成情况信息数据,可以提供对任务完成时间的预期,从而有助于优化资源利用和任务调度。其次,通过根据仿真系统任务完成情况信息数据获取各个仿真系统任务的完成时间以及延迟时间,进一步地,通过根据各个仿真系统任务的完成时间以及延迟时间进行差异平均分析,可以得到仿真系统任务完成的平均等待时间,这项分析处理过程有助于评估任务执行的效率和准确性,同时可以揭示系统中可能存在的瓶颈或优化空间,为后续的任务需求优先级排序处理过程提供了数据支持。然后,通过基于仿真系统任务完成情况信息数据以及仿真系统任务完成平均等待时间对仿真系统任务资源状态信息数据进行任务优先级统计分析,这意味着仿真系统可以根据任务的完成情况和等待时间,对其仿真任务资源需求的优先级进行排序和调整,通过这种分析,可以更有效地分配资源,提高任务执行效率,减少任务延迟,并最大程度地满足系统的需求。最后,通过基于仿真系统任务资源需求信息数据对仿真系统任务资源需求优先级序列进行资源动态匹配调度,这项处理过程是根据仿真系统当前的资源状态和任务的优先级,动态地调整资源分配,以最大程度地满足系统任务的需求。通过资源动态匹配调度,可以更灵活地应对不同任务的需求变化,提高资源利用率,优化系统性能,确保任务的顺利执行。The present invention firstly predicts and analyzes the task completion according to the task resource status information data of the simulation system, so as to predict and analyze the usage of the task resources in the simulation system, historical data and other related factors, so as to predict the completion of the corresponding simulation task, which helps to understand the execution of the current simulation task, so as to find possible problems in advance and make reasonable arrangements for subsequent tasks. By predicting and analyzing the completion information data of the simulation system task, it is possible to provide an expectation of the task completion time, which helps to optimize resource utilization and task scheduling. Secondly, by obtaining the completion time and delay time of each simulation system task according to the simulation system task completion information data, further, by performing a difference average analysis according to the completion time and delay time of each simulation system task, the average waiting time for the completion of the simulation system task can be obtained. This analysis and processing process helps to evaluate the efficiency and accuracy of task execution, and can also reveal the possible bottlenecks or optimization space in the system, providing data support for the subsequent task demand priority sorting process. Then, by performing task priority statistical analysis on the task resource status information data of the simulation system based on the task completion information data of the simulation system and the average waiting time for the task completion of the simulation system, it means that the simulation system can sort and adjust the priority of its simulation task resource requirements according to the task completion status and waiting time. Through this analysis, resources can be allocated more effectively, the task execution efficiency can be improved, task delays can be reduced, and the system requirements can be met to the greatest extent. Finally, by performing resource dynamic matching scheduling on the simulation system task resource requirement priority sequence based on the task resource requirement information data of the simulation system, this process is to dynamically adjust resource allocation according to the current resource status of the simulation system and the priority of the task, so as to meet the system task requirements to the greatest extent. Through dynamic resource matching scheduling, it is possible to respond more flexibly to the changes in the requirements of different tasks, improve resource utilization, optimize system performance, and ensure the smooth execution of tasks.

优选地,步骤S33包括以下步骤:Preferably, step S33 includes the following steps:

步骤S331:根据仿真系统任务完成情况信息数据以及仿真系统任务完成平均等待时间进行任务紧急完成影响评估分析,得到仿真系统任务紧急完成影响评估指标;Step S331: performing task emergency completion impact assessment analysis based on the simulation system task completion status information data and the average waiting time for the simulation system task completion to obtain the simulation system task emergency completion impact assessment index;

本发明实施例通过结合分析得到的仿真系统任务完成情况信息数据以及仿真系统任务完成平均等待时间对相应的仿真系统任务的紧急完成影响情况进行评估分析,以评估确定哪些评估指标对仿真系统任务具有较高的影响,并帮助仿真系统评估确定哪些任务具有较高的紧急性,最终得到仿真系统任务紧急完成影响评估指标。The embodiment of the present invention evaluates and analyzes the impact of urgent completion of corresponding simulation system tasks by combining the simulation system task completion information data and the average waiting time for simulation system task completion obtained by analysis, so as to evaluate and determine which evaluation indicators have a higher impact on the simulation system tasks, and help the simulation system evaluate and determine which tasks have a higher urgency, and finally obtain the simulation system task urgent completion impact evaluation indicators.

步骤S332:基于仿真系统任务完成情况信息数据对仿真系统任务资源状态信息数据进行任务资源利用评估分析,得到仿真系统任务资源利用率评估指标;Step S332: performing task resource utilization evaluation and analysis on the simulation system task resource status information data based on the simulation system task completion status information data to obtain a simulation system task resource utilization evaluation index;

本发明实施例通过结合分析得到的仿真系统任务完成情况信息数据对仿真系统任务资源状态信息数据中任务资源的利用情况进行评估分析,以确定任务资源的利用情况,并了解仿真系统任务资源的使用效率,包括CPU、内存、网络等资源的利用率,最终得到仿真系统任务资源利用率评估指标。The embodiment of the present invention evaluates and analyzes the utilization of task resources in the simulation system task resource status information data by combining the simulation system task completion information data obtained by analysis, so as to determine the utilization of task resources and understand the utilization efficiency of the simulation system task resources, including the utilization of CPU, memory, network and other resources, and finally obtains the simulation system task resource utilization evaluation index.

步骤S333:基于仿真系统任务完成情况信息数据对仿真系统任务资源状态信息数据进行任务资源依赖评估分析,以得到仿真系统任务资源间依赖关系评估指标;Step S333: performing task resource dependency evaluation and analysis on the simulation system task resource status information data based on the simulation system task completion status information data to obtain a dependency relationship evaluation index between simulation system task resources;

本发明实施例通过结合分析得到的仿真系统任务完成情况信息数据对仿真系统任务资源状态信息数据中相对应仿真系统任务所需资源之间的依赖关系进行评估分析,以确定任务资源之间的依赖关系,包括任务资源之间的相互依赖以及对共享资源的依赖情况,并评估确定与任务资源之间的依赖关系相关的指标参数,最终得到仿真系统任务资源间依赖关系评估指标。The embodiment of the present invention evaluates and analyzes the dependency relationship between resources required for corresponding simulation system tasks in the simulation system task resource status information data by combining the simulation system task completion status information data obtained by analysis, so as to determine the dependency relationship between task resources, including the mutual dependency between task resources and the dependency on shared resources, and evaluates and determines the indicator parameters related to the dependency relationship between task resources, and finally obtains the dependency evaluation indicator between simulation system task resources.

步骤S334:将仿真系统任务紧急完成影响评估指标、仿真系统任务资源利用率评估指标以及仿真系统任务资源间依赖关系评估指标进行指标合并,以得到仿真系统任务资源评估指标集;对仿真系统任务资源评估指标集进行指标权重分配处理,得到仿真系统任务资源评估指标权重参数;Step S334: merging the simulation system task emergency completion impact assessment index, the simulation system task resource utilization assessment index, and the simulation system task resource dependency assessment index to obtain a simulation system task resource assessment index set; performing indicator weight allocation processing on the simulation system task resource assessment index set to obtain a simulation system task resource assessment index weight parameter;

本发明实施例通过将先前评估分析得到的仿真系统任务紧急完成影响评估指标、仿真系统任务资源利用率评估指标以及仿真系统任务资源间依赖关系评估指标进行合并,从而得到仿真系统任务资源评估指标集。然后,通过综合考虑任务的紧急程度、资源的利用情况以及任务与资源之间的依赖关系对仿真系统任务资源评估指标集中相应指标的重要程度影响情况进行权重分配,以确定各项指标的重要程度,最终得到仿真系统任务资源评估指标权重参数。The embodiment of the present invention combines the simulation system task emergency completion impact evaluation index, the simulation system task resource utilization evaluation index and the simulation system task resource dependency evaluation index obtained by the previous evaluation analysis, thereby obtaining a simulation system task resource evaluation index set. Then, by comprehensively considering the urgency of the task, the utilization of resources and the dependency between tasks and resources, the importance of the corresponding indicators in the simulation system task resource evaluation index set is weighted to determine the importance of each indicator, and finally obtain the simulation system task resource evaluation index weight parameter.

步骤S335:基于仿真系统任务资源评估指标权重参数对仿真系统任务资源评估指标集进行优先级综合评估分析,以得到仿真系统任务资源优先级评估得分;Step S335: performing a priority comprehensive evaluation and analysis on the simulation system task resource evaluation indicator set based on the simulation system task resource evaluation indicator weight parameter to obtain a simulation system task resource priority evaluation score;

本发明实施例通过结合分配得到的仿真系统任务资源评估指标权重参数对仿真系统任务资源评估指标集中相对应的资源评估指标进行累积求和,以综合考虑各项指标的权重来量化确定每个任务资源的优先级评分,最终得到仿真系统任务资源优先级评估得分。The embodiment of the present invention accumulates and sums the corresponding resource evaluation indicators in the simulation system task resource evaluation indicator set by combining the allocated simulation system task resource evaluation indicator weight parameters, so as to quantitatively determine the priority score of each task resource by comprehensively considering the weight of each indicator, and finally obtain the simulation system task resource priority evaluation score.

步骤S336:根据仿真系统任务资源优先级评估得分对仿真系统任务资源状态信息数据进行任务优先级统计分析,以生成仿真系统任务资源需求优先级序列。Step S336: Perform task priority statistical analysis on the simulation system task resource status information data according to the simulation system task resource priority evaluation score to generate a simulation system task resource requirement priority sequence.

本发明实施例通过结合分析得到的仿真系统任务资源优先级评估得分对仿真系统任务资源状态信息数据中相对应的仿真系统任务资源进行优先级的排序统计,以根据任务的优先级情况生成相应任务资源需求优先级序列,这一序列将决定仿真系统任务在资源分配上的优先顺序,确保系统任务资源得到最合理的利用,以满足任务的紧急性和重要性需求,最终生成仿真系统任务资源需求优先级序列。The embodiment of the present invention prioritizes and statistics the corresponding simulation system task resources in the simulation system task resource status information data by combining the simulation system task resource priority evaluation scores obtained through analysis, so as to generate a corresponding task resource requirement priority sequence according to the task priority situation. This sequence will determine the priority of the simulation system tasks in resource allocation, ensure that the system task resources are used in the most reasonable way, so as to meet the urgency and importance requirements of the tasks, and finally generate a simulation system task resource requirement priority sequence.

本发明首先通过根据仿真系统任务完成情况信息数据以及仿真系统任务完成平均等待时间进行任务紧急完成影响评估分析,能够客观评估任务的紧急程度,并将其转化为紧急完成影响评估指标,这一评估指标可以帮助仿真系统确定哪些任务具有较高的紧急性,从而在资源分配和调度时优先处理这些任务,以最大程度地满足系统的紧急需求,提高整体运行效率。其次,通过基于仿真系统任务完成情况信息数据对仿真系统任务资源状态信息数据进行任务资源利用评估分析,可以综合考虑任务完成情况和资源状态,从而得到任务资源利用率评估指标,这一指标能够反映仿真系统资源的有效利用程度,有助于系统管理者了解资源的分配情况,进而调整资源分配策略,提高资源利用效率,确保仿真系统能够充分发挥其潜力。然后,通过基于仿真系统任务完成情况信息数据对仿真系统任务资源状态信息数据进行任务资源依赖评估分析,能够评估任务与资源之间的依赖关系,并将其转化为任务资源间依赖关系评估指标,这一指标可以帮助了解任务和资源之间的相互影响,从而更好地规划资源的分配和调度策略,确保任务能够顺利完成并且资源得到合理利用。同时,通过将任务紧急完成影响评估指标、任务资源利用率评估指标以及任务资源间依赖关系评估指标进行指标合并,能够综合考虑任务的紧急程度、资源的利用情况以及任务与资源之间的依赖关系,从而得到综合评估指标集。通过对综合评估指标集进行权重分配处理,可以确定各项指标的重要程度,为后续的优先级综合评估提供依据。接下来,通过基于仿真系统任务资源评估指标权重参数对仿真系统任务资源评估指标集进行优先级综合评估分析,能够综合考虑各项指标的重要程度,从而量化评估得到任务资源优先级评估得分,这一评估得分能够帮助更好地了解任务和资源的优先级情况,从而优化资源分配和调度策略,并确保仿真系统任务能够高效稳定地运行。最后,通过根据仿真系统任务资源优先级评估得分对仿真系统任务资源状态信息数据进行任务优先级统计分析,能够根据任务的优先级情况生成任务资源需求优先级序列,这一序列可以帮助合理安排任务的执行顺序,优先处理重要性较高的任务,从而提高仿真系统的运行效率和响应速度,满足用户的需求。The present invention firstly performs task emergency completion impact assessment analysis based on simulation system task completion information data and simulation system task completion average waiting time, and can objectively assess the urgency of tasks and convert it into an emergency completion impact assessment index. This assessment index can help the simulation system determine which tasks have higher urgency, so as to give priority to these tasks during resource allocation and scheduling, so as to meet the emergency needs of the system to the greatest extent and improve the overall operation efficiency. Secondly, by performing task resource utilization assessment analysis on simulation system task resource status information data based on simulation system task completion information data, the task completion status and resource status can be comprehensively considered, so as to obtain a task resource utilization rate assessment index. This index can reflect the effective utilization degree of simulation system resources, help system managers understand the resource allocation situation, and then adjust the resource allocation strategy, improve resource utilization efficiency, and ensure that the simulation system can give full play to its potential. Then, by performing task resource dependency assessment analysis on simulation system task resource status information data based on simulation system task completion information data, the dependency relationship between tasks and resources can be assessed, and it can be converted into a task resource dependency assessment index. This index can help understand the mutual influence between tasks and resources, so as to better plan resource allocation and scheduling strategies, and ensure that tasks can be successfully completed and resources are reasonably utilized. At the same time, by merging the task emergency completion impact evaluation index, task resource utilization evaluation index and task resource dependency evaluation index, the urgency of the task, the utilization of resources and the dependency between tasks and resources can be comprehensively considered, thereby obtaining a comprehensive evaluation index set. By weighting the comprehensive evaluation index set, the importance of each indicator can be determined, providing a basis for the subsequent priority comprehensive evaluation. Next, by performing a priority comprehensive evaluation analysis on the simulation system task resource evaluation index set based on the simulation system task resource evaluation index weight parameter, the importance of each indicator can be comprehensively considered, thereby quantitatively evaluating and obtaining the task resource priority evaluation score. This evaluation score can help better understand the priority of tasks and resources, thereby optimizing resource allocation and scheduling strategies, and ensuring that the simulation system tasks can run efficiently and stably. Finally, by performing task priority statistical analysis on the simulation system task resource status information data according to the simulation system task resource priority evaluation score, a task resource demand priority sequence can be generated according to the priority of the task. This sequence can help reasonably arrange the execution order of tasks and give priority to tasks with higher importance, thereby improving the operation efficiency and response speed of the simulation system and meeting user needs.

优选地,步骤S34包括以下步骤:Preferably, step S34 includes the following steps:

步骤S341:基于仿真系统任务资源需求信息数据对仿真系统任务资源需求优先级序列进行资源匹配分析,以得到仿真系统任务优先级序列资源匹配结果;Step S341: performing resource matching analysis on the simulation system task resource requirement priority sequence based on the simulation system task resource requirement information data to obtain a simulation system task priority sequence resource matching result;

本发明实施例通过结合分析得到的仿真系统任务资源需求信息数据中相应仿真系统任务对应的资源需求状况对仿真系统任务资源需求优先级序列内相对应的仿真系统任务进行资源的匹配分析,以充分考虑对仿真系统任务的重要性、紧急程度以及资源需求量等有效地分配系统任务资源,并确保高优先级序列内仿真系统任务能够得到优先满足,最终得到仿真系统任务优先级序列资源匹配结果。The embodiment of the present invention performs resource matching analysis on the corresponding simulation system tasks in the simulation system task resource requirement information data obtained by combining the resource requirement status corresponding to the corresponding simulation system tasks in the simulation system task resource requirement information data, so as to fully consider the importance, urgency and resource requirement of the simulation system tasks, effectively allocate system task resources, and ensure that the simulation system tasks in the high priority sequence can be met first, and finally obtain the simulation system task priority sequence resource matching result.

步骤S342:根据仿真系统任务优先级序列资源匹配结果进行智能调度设计分析,得到仿真系统任务资源智能调度策略;Step S342: Perform intelligent scheduling design analysis based on the simulation system task priority sequence resource matching result to obtain the simulation system task resource intelligent scheduling strategy;

本发明实施例通过根据匹配后得到的仿真系统任务优先级序列资源匹配结果使用智能调度算法和技术针对不同的仿真系统任务的优先级和资源需求设计出最优的资源调度策略,以最大程度地提高仿真系统任务对资源的高效管理和利用,最终得到仿真系统任务资源智能调度策略。The embodiment of the present invention uses intelligent scheduling algorithms and technologies to design the optimal resource scheduling strategy for the priorities and resource requirements of different simulation system tasks based on the simulation system task priority sequence resource matching results obtained after matching, so as to maximize the efficient management and utilization of resources by simulation system tasks, and finally obtain the simulation system task resource intelligent scheduling strategy.

步骤S343:根据仿真系统任务资源智能调度策略对仿真系统任务资源需求优先级序列进行资源实时调度处理,以得到仿真系统任务资源动态调度结果。Step S343: Perform real-time resource scheduling processing on the simulation system task resource requirement priority sequence according to the simulation system task resource intelligent scheduling strategy to obtain the simulation system task resource dynamic scheduling result.

本发明实施例通过根据设计得到的仿真系统任务资源智能调度策略对仿真系统任务资源需求优先级序列内相对应的仿真系统任务进行资源的实时调度处理,以动态调整仿真系统任务的资源分配,并满足仿真系统任务运行的实时需求,使得仿真系统更加灵活、高效地响应不同任务的需求变化,最终得到仿真系统任务资源动态调度结果。The embodiment of the present invention performs real-time resource scheduling processing on the simulation system tasks corresponding to the simulation system task resource requirement priority sequence according to the designed simulation system task resource intelligent scheduling strategy, so as to dynamically adjust the resource allocation of the simulation system tasks and meet the real-time requirements of the simulation system task operation, so that the simulation system can respond to the demand changes of different tasks more flexibly and efficiently, and finally obtain the dynamic scheduling result of the simulation system task resources.

本发明首先通过基于仿真系统任务资源需求信息数据对仿真系统任务资源需求优先级序列进行资源匹配分析,为了有效地分配系统任务资源,以满足任务的执行需求,通过分析任务的优先级序列和资源的可用情况,可以找到最佳的资源分配方案,从而提高系统的资源利用效率,并确保高优先级任务得到优先满足,这项分析处理过程可以帮助仿真系统管理者更好地了解资源分配情况,及时调整资源分配策略,以满足仿真系统任务的运行需求。然后,通过根据仿真系统任务优先级序列资源匹配结果进行智能调度设计分析,能够根据对应仿真系统任务的资源需求来设计出更加高效的任务调度策略,通过综合考虑任务的优先级、资源的可用性和系统的运行状态,可以设计出智能的调度策略,以最大程度地提高系统的性能和效率,这项分析处理过程有助于优化系统的任务执行顺序,减少任务的等待时间,提高任务的执行速度,并确保仿真系统任务能够快速响应用户的需求。最后,通过根据仿真系统任务资源智能调度策略对仿真系统任务资源需求优先级序列进行资源实时调度处理,能够动态地调整任务的执行顺序和资源的分配情况,以适应系统运行时的变化。通过实时调度处理,可以根据当前的系统状态和任务的优先级,动态地调整资源的分配,确保系统能够及时响应用户的需求,并优化系统的性能,这项处理过程能够有效地减少任务的等待时间和资源的浪费,从而提高仿真系统任务的整体运行效率和稳定性。The present invention firstly performs resource matching analysis on the priority sequence of task resource requirements of the simulation system based on the task resource requirement information data of the simulation system. In order to effectively allocate system task resources to meet the execution requirements of the tasks, the optimal resource allocation scheme can be found by analyzing the priority sequence of the tasks and the availability of resources, thereby improving the resource utilization efficiency of the system and ensuring that high-priority tasks are met first. This analysis and processing process can help the simulation system manager to better understand the resource allocation situation and adjust the resource allocation strategy in time to meet the operation requirements of the simulation system tasks. Then, by performing intelligent scheduling design analysis according to the resource matching results of the priority sequence of the simulation system tasks, a more efficient task scheduling strategy can be designed according to the resource requirements of the corresponding simulation system tasks. By comprehensively considering the priority of the tasks, the availability of resources and the operation status of the system, an intelligent scheduling strategy can be designed to maximize the performance and efficiency of the system. This analysis and processing process helps to optimize the task execution order of the system, reduce the waiting time of the tasks, improve the execution speed of the tasks, and ensure that the simulation system tasks can quickly respond to the needs of users. Finally, by performing real-time resource scheduling on the priority sequence of task resource requirements of the simulation system according to the intelligent scheduling strategy of the simulation system task resources, the execution order of tasks and the allocation of resources can be adjusted dynamically to adapt to changes in the system runtime. Through real-time scheduling, the allocation of resources can be dynamically adjusted according to the current system status and task priority to ensure that the system can respond to user needs in a timely manner and optimize system performance. This process can effectively reduce the waiting time of tasks and the waste of resources, thereby improving the overall operation efficiency and stability of simulation system tasks.

优选地,步骤S4包括以下步骤:Preferably, step S4 comprises the following steps:

步骤S41:对仿真系统任务资源信息数据进行仿真任务动态变化监测,以得到仿真系统任务实时状态动态变化数据;Step S41: monitoring the dynamic changes of simulation tasks on the simulation system task resource information data to obtain the dynamic changes of the real-time status of the simulation system tasks;

本发明实施例通过使用任务监测方法对仿真系统任务资源信息数据进行监测,以根据其资源的变化信息来实时捕获仿真系统任务的动态变化情况,包括监测仿真任务的新增、删除、修改等,以便及时了解仿真系统任务的实时状态动态变化情况,最终得到仿真系统任务实时状态动态变化数据。The embodiment of the present invention monitors the simulation system task resource information data by using a task monitoring method to capture the dynamic changes of the simulation system tasks in real time according to the change information of its resources, including monitoring the addition, deletion, modification, etc. of simulation tasks, so as to timely understand the real-time dynamic changes of the status of the simulation system tasks, and finally obtain the real-time dynamic changes of the status of the simulation system tasks.

步骤S42:对仿真系统任务资源信息数据进行资源变化时序预测分析,得到仿真系统任务资源状态变化趋势数据;Step S42: performing resource change time series prediction analysis on the simulation system task resource information data to obtain simulation system task resource state change trend data;

本发明实施例通过使用时序变化预测分析技术对仿真系统任务资源信息数据的资源变化进行预测分析,以预测仿真系统任务资源状态的变化趋势,包括资源的需求量、使用率、剩余量等,并使其能够提前预知出现的资源短缺或过剩情况,最终得到仿真系统任务资源状态变化趋势数据。The embodiment of the present invention predicts and analyzes the resource changes of the simulation system task resource information data by using the time series change prediction and analysis technology to predict the changing trend of the simulation system task resource status, including the resource demand, utilization rate, remaining amount, etc., and enables it to predict the resource shortage or surplus in advance, and finally obtain the simulation system task resource status change trend data.

步骤S43:基于仿真系统任务资源状态变化趋势数据对仿真系统任务资源信息数据进行资源动态变化监测,以得到仿真系统任务资源动态变化数据;Step S43: monitoring the dynamic change of the task resource information data of the simulation system based on the state change trend data of the task resource of the simulation system, so as to obtain the dynamic change data of the task resource of the simulation system;

本发明实施例通过结合分析得到的仿真系统任务资源状态变化趋势数据使用资源变化监测方法对仿真系统任务资源信息数据进行监测,以实时监测任务资源的动态变化情况,包括资源的增加、减少、重新分配等,以便适应仿真系统任务运行时资源的变化需求,最终得到仿真系统任务资源动态变化数据。The embodiment of the present invention uses a resource change monitoring method to monitor the simulation system task resource information data by combining the simulation system task resource status change trend data obtained through analysis, so as to monitor the dynamic changes of task resources in real time, including increase, decrease, and reallocation of resources, so as to adapt to the changing needs of resources when the simulation system tasks are running, and finally obtain the dynamic change data of the simulation system task resources.

步骤S44:根据仿真系统任务实时状态动态变化数据以及仿真系统任务资源动态变化数据进行资源调度优化更新,以生成仿真系统任务资源调度优化策略;Step S44: performing resource scheduling optimization and updating according to the dynamic change data of the real-time status of the simulation system tasks and the dynamic change data of the simulation system task resources, so as to generate a simulation system task resource scheduling optimization strategy;

本发明实施例通过结合分析得到的仿真系统任务实时状态动态变化数据以及仿真系统任务资源动态变化数据生成相应的资源调度优化策略,以根据实时任务状态和资源动态变化情况动态地调整相对应仿真系统任务资源的分配和调度,来最大程度地提高仿真系统的性能和效率,并确保仿真任务能够按时完成并且资源得到合理利用,最终生成仿真系统任务资源调度优化策略。The embodiment of the present invention generates a corresponding resource scheduling optimization strategy by combining the real-time dynamic change data of the simulation system task status and the dynamic change data of the simulation system task resources obtained by analysis, so as to dynamically adjust the allocation and scheduling of the corresponding simulation system task resources according to the real-time task status and the dynamic change of resources, so as to maximize the performance and efficiency of the simulation system, ensure that the simulation tasks can be completed on time and the resources are reasonably utilized, and finally generate a simulation system task resource scheduling optimization strategy.

步骤S45:基于仿真系统任务资源调度优化策略对仿真系统任务资源动态调度结果进行实时调度优化,以得到仿真系统任务资源实时调度优化结果。Step S45: Based on the simulation system task resource scheduling optimization strategy, the simulation system task resource dynamic scheduling result is optimized in real time to obtain the simulation system task resource real-time scheduling optimization result.

本发明实施例通过结合动态优化更新后的仿真系统任务资源调度优化策略重新对相对应仿真任务的仿真系统任务资源动态调度结果进行实时的调度优化,以根据资源调度优化策略对任务资源进行实时优化,以适应仿真系统任务运行时的变化需求来及时调整任务资源的分配和调度,最终得到仿真系统任务资源实时调度优化结果。The embodiment of the present invention performs real-time scheduling optimization on the dynamic scheduling results of the simulation system task resources of the corresponding simulation tasks in combination with the simulation system task resource scheduling optimization strategy after dynamic optimization update, so as to optimize the task resources in real time according to the resource scheduling optimization strategy, so as to timely adjust the allocation and scheduling of task resources to adapt to the changing needs during the operation of the simulation system tasks, and finally obtain the real-time scheduling optimization results of the simulation system task resources.

本发明首先通过对仿真系统任务资源信息数据进行仿真任务动态变化监测,能够实时捕捉任务的状态变化情况,包括任务的新增、删除、修改等,这项监测处理过程能够帮助系统管理者及时了解仿真系统任务的实时变化状态,以便做出及时的响应和调整,确保仿真系统能够顺利运行,该实时状态动态变化数据的获取能够为系统后续的资源调度和优化提供了重要的数据支持。其次,通过对仿真系统任务资源信息数据进行资源变化时序预测分析,可以预测任务资源状态的变化趋势,包括资源的需求量、使用率、剩余量等,这有助于系统管理者更好地规划资源的分配和调度,提前预知出现的资源短缺或过剩情况,从而采取相应的措施,保证系统的稳定性和高效性。然后,通过基于仿真系统任务资源状态变化趋势数据对仿真系统任务资源信息数据进行资源动态变化监测,可以实时监测任务资源的动态变化情况,包括资源的增加、减少、重新分配等,这项监测处理过程能够帮助及时调整资源的分配策略,以适应仿真系统任务运行时资源的变化需求,从而确保仿真系统任务能够持续稳定地运行。接下来,通过根据仿真系统任务实时状态动态变化数据以及仿真系统任务资源动态变化数据进行资源调度优化更新,可以生成更加有效的资源调度优化策略,这项优化处理方法能够根据系统实时的状态和资源的变化情况,动态地调整资源的分配和调度,以最大程度地提高系统的性能和效率,从而确保任务能够按时完成并且资源得到合理利用。最后,通过基于仿真系统任务资源调度优化策略对仿真系统任务资源动态调度结果进行实时调度优化,能够及时调整任务资源的分配和调度,以适应系统运行时的变化需求,这项实时调度优化能够帮助更加灵活地应对仿真系统运行时的变化情况,确保仿真系统能够持续高效地运行,从而提高仿真系统的稳定性和可靠性。The present invention firstly monitors the dynamic changes of simulation tasks on the task resource information data of the simulation system, and can capture the state changes of tasks in real time, including the addition, deletion, modification, etc. of tasks. This monitoring process can help the system manager to timely understand the real-time change state of the simulation system tasks, so as to make timely response and adjustment, and ensure that the simulation system can run smoothly. The acquisition of the real-time state dynamic change data can provide important data support for the subsequent resource scheduling and optimization of the system. Secondly, by performing resource change time series prediction analysis on the task resource information data of the simulation system, the change trend of the task resource state can be predicted, including the demand, utilization rate, and remaining amount of resources, which helps the system manager to better plan the allocation and scheduling of resources, predict the shortage or surplus of resources in advance, and take corresponding measures to ensure the stability and efficiency of the system. Then, by monitoring the dynamic changes of resources on the task resource information data of the simulation system based on the change trend data of the task resource state of the simulation system, the dynamic changes of the task resources can be monitored in real time, including the increase, reduction, and reallocation of resources, and this monitoring process can help to timely adjust the resource allocation strategy to adapt to the change demand of resources when the simulation system tasks are running, so as to ensure that the simulation system tasks can run continuously and stably. Next, by optimizing and updating resource scheduling according to the dynamic change data of the real-time status of the simulation system tasks and the dynamic change data of the simulation system task resources, a more effective resource scheduling optimization strategy can be generated. This optimization processing method can dynamically adjust the allocation and scheduling of resources according to the real-time status of the system and the changes in resources to maximize the performance and efficiency of the system, thereby ensuring that tasks can be completed on time and resources are reasonably used. Finally, by performing real-time scheduling optimization on the dynamic scheduling results of the simulation system task resources based on the simulation system task resource scheduling optimization strategy, the allocation and scheduling of task resources can be adjusted in time to adapt to the changing needs of the system during operation. This real-time scheduling optimization can help to more flexibly respond to changes in the simulation system during operation, ensuring that the simulation system can continue to run efficiently, thereby improving the stability and reliability of the simulation system.

因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在申请文件的等同要件的含义和范围内的所有变化涵括在本发明内。Therefore, the embodiments should be regarded as illustrative and non-restrictive from all points, and the scope of the present invention is limited by the appended claims rather than the above description, and it is intended that all changes falling within the meaning and range of equivalent elements of the application documents are included in the present invention.

以上所述仅是本发明的具体实施方式,使本领域技术人员能够理解或实现本发明。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所发明的原理和新颖特点相一致的最宽的范围。The above description is only a specific embodiment of the present invention, so that those skilled in the art can understand or implement the present invention. Various modifications to these embodiments will be apparent to those skilled in the art, and the general principles defined herein may be implemented in other embodiments without departing from the spirit or scope of the present invention. Therefore, the present invention will not be limited to the embodiments shown herein, but should conform to the widest scope consistent with the principles and novel features invented herein.

Claims (10)

Translated fromChinese
1.一种基于知识图谱的仿真资源调度方法,其特征在于,包括以下步骤:1. A simulation resource scheduling method based on knowledge graph, characterized in that it includes the following steps:步骤S1:获取仿真系统任务资源信息数据,并对仿真系统任务资源信息数据进行资源特性连接预测分析,以得到仿真系统任务资源特性连接关系数据;基于仿真系统任务资源特性连接关系数据对仿真系统任务资源信息数据进行知识图谱连接构建,以得到仿真系统任务资源知识图谱;Step S1: Acquire simulation system task resource information data, and perform resource characteristic connection prediction analysis on the simulation system task resource information data to obtain simulation system task resource characteristic connection relationship data; perform knowledge graph connection construction on the simulation system task resource information data based on the simulation system task resource characteristic connection relationship data to obtain a simulation system task resource knowledge graph;步骤S2:根据仿真系统任务资源知识图谱对仿真系统任务资源信息数据进行任务资源需求分析,得到仿真系统任务资源需求信息数据;对仿真系统任务资源需求信息数据进行资源状态监测处理,得到仿真系统任务资源状态信息数据;Step S2: performing task resource demand analysis on the simulation system task resource information data according to the simulation system task resource knowledge graph to obtain the simulation system task resource demand information data; performing resource status monitoring processing on the simulation system task resource demand information data to obtain the simulation system task resource status information data;步骤S3:根据仿真系统任务资源状态信息数据进行任务优先级统计分析,以生成仿真系统任务资源需求优先级序列;基于仿真系统任务资源需求信息数据对仿真系统任务资源需求优先级序列进行资源动态匹配调度,以得到仿真系统任务资源动态调度结果;Step S3: performing task priority statistics analysis according to the simulation system task resource status information data to generate a simulation system task resource requirement priority sequence; performing resource dynamic matching scheduling on the simulation system task resource requirement priority sequence based on the simulation system task resource requirement information data to obtain a simulation system task resource dynamic scheduling result;步骤S4:对仿真系统任务资源信息数据进行仿真任务及资源动态变化监测,以得到仿真系统任务实时状态动态变化数据以及仿真系统任务资源动态变化数据;基于仿真系统任务实时状态动态变化数据以及仿真系统任务资源动态变化数据对仿真系统任务资源动态调度结果进行实时调度优化,以得到仿真系统任务资源实时调度优化结果。Step S4: Monitor the dynamic changes of simulation tasks and resources on the simulation system task resource information data to obtain the real-time dynamic change data of the simulation system task status and the dynamic change data of the simulation system task resources; based on the real-time dynamic change data of the simulation system task status and the dynamic change data of the simulation system task resources, perform real-time scheduling optimization on the dynamic scheduling results of the simulation system task resources to obtain the real-time scheduling optimization results of the simulation system task resources.2.根据权利要求1所述的基于知识图谱的仿真资源调度方法,其特征在于,步骤S1包括以下步骤:2. The simulation resource scheduling method based on knowledge graph according to claim 1 is characterized in that step S1 comprises the following steps:步骤S11:获取仿真系统任务资源信息数据;Step S11: Acquire simulation system task resource information data;步骤S12:对仿真系统任务资源信息数据进行任务资源配置识别分析,以得到仿真系统任务资源配置状况数据;Step S12: performing task resource configuration identification and analysis on the simulation system task resource information data to obtain simulation system task resource configuration status data;步骤S13:基于仿真系统任务资源配置状况数据对仿真系统任务资源信息数据进行资源类型统计分析,得到仿真系统任务资源类型数据;Step S13: performing resource type statistical analysis on the simulation system task resource information data based on the simulation system task resource configuration status data to obtain simulation system task resource type data;步骤S14:根据仿真系统任务资源配置状况数据以及仿真系统任务资源类型数据对仿真系统任务资源信息数据进行资源特性连接预测分析,以得到仿真系统任务资源特性连接关系数据;Step S14: performing resource characteristic connection prediction analysis on the simulation system task resource information data according to the simulation system task resource configuration status data and the simulation system task resource type data to obtain simulation system task resource characteristic connection relationship data;步骤S15:基于仿真系统任务资源特性连接关系数据对仿真系统任务资源信息数据进行知识图谱连接构建,以得到仿真系统任务资源知识图谱。Step S15: Based on the simulation system task resource characteristic connection relationship data, a knowledge graph is constructed to connect the simulation system task resource information data to obtain a simulation system task resource knowledge graph.3.根据权利要求2所述的基于知识图谱的仿真资源调度方法,其特征在于,步骤S14包括以下步骤:3. The simulation resource scheduling method based on knowledge graph according to claim 2, characterized in that step S14 comprises the following steps:步骤S141:根据仿真系统任务资源配置状况数据对仿真系统任务资源信息数据进行任务执行时间预测分析,得到仿真系统任务执行时间预测数据;Step S141: performing task execution time prediction analysis on the simulation system task resource information data according to the simulation system task resource configuration status data to obtain simulation system task execution time prediction data;步骤S142:根据仿真系统任务资源配置状况数据以及仿真系统任务资源类型数据对仿真系统任务资源信息数据进行资源利用率评估分析,得到仿真系统任务资源类型利用率数据;Step S142: performing resource utilization evaluation and analysis on the simulation system task resource information data according to the simulation system task resource configuration status data and the simulation system task resource type data, to obtain the simulation system task resource type utilization data;步骤S143:基于仿真系统任务执行时间预测数据以及仿真系统任务资源类型利用率数据对仿真系统任务资源信息数据进行任务资源关联挖掘分析,以得到仿真系统任务资源关联关系数据;Step S143: performing task resource association mining analysis on the simulation system task resource information data based on the simulation system task execution time prediction data and the simulation system task resource type utilization rate data to obtain simulation system task resource association relationship data;步骤S144:基于仿真系统任务资源关联关系数据对仿真系统任务资源信息数据进行任务资源关联网络构建,以得到仿真系统任务资源关联连接网络;Step S144: constructing a task resource association network for the simulation system task resource information data based on the simulation system task resource association relationship data to obtain a simulation system task resource association connection network;步骤S145:根据仿真系统任务资源关联连接网络对仿真系统任务资源信息数据进行资源特性连接预测分析,以得到仿真系统任务资源特性连接关系数据。Step S145: performing resource characteristic connection prediction analysis on the simulation system task resource information data according to the simulation system task resource associated connection network to obtain simulation system task resource characteristic connection relationship data.4.根据权利要求3所述的基于知识图谱的仿真资源调度方法,其特征在于,步骤S144包括以下步骤:4. The method for scheduling simulation resources based on knowledge graph according to claim 3, characterized in that step S144 comprises the following steps:对仿真系统任务资源信息数据进行任务节点及资源节点抽取处理,以得到仿真系统任务节点以及仿真系统任务资源节点;Extracting task nodes and resource nodes from the task resource information data of the simulation system to obtain the task nodes of the simulation system and the task resource nodes of the simulation system;对仿真系统任务节点以及仿真系统任务资源节点进行随机采样处理,以得到仿真系统任务随机采样点以及仿真系统任务资源随机采样点;Performing random sampling processing on the simulation system task nodes and the simulation system task resource nodes to obtain the simulation system task random sampling points and the simulation system task resource random sampling points;对仿真系统任务随机采样点以及仿真系统任务资源随机采样点进行潜在影响程度评估分析,以得到仿真系统任务节点与资源节点之间的潜在影响程度系数;Perform potential impact evaluation and analysis on the random sampling points of simulation system tasks and the random sampling points of simulation system task resources to obtain the potential impact coefficient between the simulation system task nodes and resource nodes;根据仿真系统任务节点与资源节点之间的潜在影响程度系数对仿真系统任务节点以及仿真系统任务资源节点进行潜在影响关系挖掘分析,得到仿真系统任务资源潜在影响连接关系数据;According to the potential influence degree coefficient between the simulation system task nodes and the resource nodes, the simulation system task nodes and the simulation system task resource nodes are mined and analyzed for potential influence relationships, and the simulation system task resource potential influence connection relationship data is obtained;基于仿真系统任务资源关联关系数据以及仿真系统任务资源潜在影响连接关系数据对仿真系统任务节点以及仿真系统任务资源节点进行任务资源关联网络构建,以得到仿真系统任务资源关联连接网络。Based on the simulation system task resource association relationship data and the simulation system task resource potential impact connection relationship data, a task resource association network is constructed for the simulation system task nodes and the simulation system task resource nodes to obtain a simulation system task resource association connection network.5.根据权利要求2所述的基于知识图谱的仿真资源调度方法,其特征在于,步骤S15包括以下步骤:5. The simulation resource scheduling method based on knowledge graph according to claim 2, characterized in that step S15 comprises the following steps:步骤S151:对仿真系统任务资源信息数据进行资源特性实体识别分析,以得到仿真系统任务资源特性实体数据集;Step S151: performing resource characteristic entity recognition analysis on the simulation system task resource information data to obtain a simulation system task resource characteristic entity data set;步骤S152:基于仿真系统任务资源特性实体数据集对仿真系统任务资源信息数据进行资源属性挖掘分析,得到仿真系统任务资源属性数据集;Step S152: performing resource attribute mining and analysis on the simulation system task resource information data based on the simulation system task resource characteristic entity data set to obtain a simulation system task resource attribute data set;步骤S153:基于仿真系统任务资源特性连接关系数据对仿真系统任务资源特性实体数据集以及仿真系统任务资源属性数据集进行资源知识关系抽取处理,得到仿真系统任务资源特性知识关系数据;Step S153: extracting resource knowledge relationships from the simulation system task resource characteristic entity data set and the simulation system task resource attribute data set based on the simulation system task resource characteristic connection relationship data to obtain simulation system task resource characteristic knowledge relationship data;步骤S154:根据仿真系统任务资源特性知识关系数据对仿真系统任务资源特性实体数据集以及仿真系统任务资源属性数据集进行知识图谱连接构建,以得到仿真系统任务资源知识图谱。Step S154: construct a knowledge graph by connecting the simulation system task resource characteristic entity data set and the simulation system task resource attribute data set according to the simulation system task resource characteristic knowledge relationship data to obtain a simulation system task resource knowledge graph.6.根据权利要求1所述的基于知识图谱的仿真资源调度方法,其特征在于,步骤S2包括以下步骤:6. The method for scheduling simulation resources based on knowledge graph according to claim 1, characterized in that step S2 comprises the following steps:步骤S21:根据仿真系统任务资源知识图谱对仿真系统任务资源信息数据进行任务资源需求模式识别分析,得到仿真系统任务资源需求模式数据;Step S21: performing task resource demand pattern recognition analysis on the simulation system task resource information data according to the simulation system task resource knowledge graph to obtain simulation system task resource demand pattern data;步骤S22:基于仿真系统任务资源需求模式数据对仿真系统任务资源信息数据进行资源需求预测分析,得到仿真系统任务资源需求信息数据;Step S22: performing resource demand forecasting analysis on the simulation system task resource information data based on the simulation system task resource demand pattern data to obtain the simulation system task resource demand information data;步骤S23:对仿真系统任务资源需求信息数据进行计算资源状态监测,得到仿真系统任务计算资源需求状态数据;Step S23: performing computing resource status monitoring on the simulation system task resource requirement information data to obtain the simulation system task computing resource requirement status data;步骤S24:对仿真系统任务资源需求信息数据进行存储资源状态监测,得到仿真系统任务存储资源需求状态数据;Step S24: monitoring the storage resource status of the simulation system task resource requirement information data to obtain the simulation system task storage resource requirement status data;步骤S25:将仿真系统任务计算资源需求状态数据以及仿真系统任务存储资源需求状态数据进行数据合并,得到仿真系统任务资源状态信息数据。Step S25: merging the simulation system task computing resource requirement status data and the simulation system task storage resource requirement status data to obtain simulation system task resource status information data.7.根据权利要求1所述的基于知识图谱的仿真资源调度方法,其特征在于,步骤S3包括以下步骤:7. The simulation resource scheduling method based on knowledge graph according to claim 1, characterized in that step S3 comprises the following steps:步骤S31:根据仿真系统任务资源状态信息数据进行任务完成预测分析,以得到仿真系统任务完成情况信息数据;Step S31: performing task completion prediction analysis based on the simulation system task resource status information data to obtain simulation system task completion status information data;步骤S32:通过仿真系统任务完成情况信息数据获取各个仿真系统任务的完成时间以及延迟时间,并根据各个仿真系统任务的完成时间以及延迟时间进行差异平均分析,以得到仿真系统任务完成平均等待时间;Step S32: obtaining the completion time and delay time of each simulation system task through the simulation system task completion information data, and performing difference average analysis according to the completion time and delay time of each simulation system task to obtain the average waiting time for the simulation system task completion;步骤S33:基于仿真系统任务完成情况信息数据以及仿真系统任务完成平均等待时间对仿真系统任务资源状态信息数据进行任务优先级统计分析,以生成仿真系统任务资源需求优先级序列;Step S33: performing task priority statistical analysis on the simulation system task resource status information data based on the simulation system task completion status information data and the average waiting time for the simulation system task completion to generate a simulation system task resource requirement priority sequence;步骤S34:基于仿真系统任务资源需求信息数据对仿真系统任务资源需求优先级序列进行资源动态匹配调度,以得到仿真系统任务资源动态调度结果。Step S34: performing dynamic resource matching and scheduling on the simulation system task resource requirement priority sequence based on the simulation system task resource requirement information data to obtain a simulation system task resource dynamic scheduling result.8.根据权利要求7所述的基于知识图谱的仿真资源调度方法,其特征在于,步骤S33包括以下步骤:8. The method for scheduling simulation resources based on knowledge graph according to claim 7, wherein step S33 comprises the following steps:步骤S331:根据仿真系统任务完成情况信息数据以及仿真系统任务完成平均等待时间进行任务紧急完成影响评估分析,得到仿真系统任务紧急完成影响评估指标;Step S331: performing task emergency completion impact assessment analysis based on the simulation system task completion status information data and the average waiting time for the simulation system task completion to obtain the simulation system task emergency completion impact assessment index;步骤S332:基于仿真系统任务完成情况信息数据对仿真系统任务资源状态信息数据进行任务资源利用评估分析,得到仿真系统任务资源利用率评估指标;Step S332: performing task resource utilization evaluation and analysis on the simulation system task resource status information data based on the simulation system task completion status information data to obtain a simulation system task resource utilization evaluation index;步骤S333:基于仿真系统任务完成情况信息数据对仿真系统任务资源状态信息数据进行任务资源依赖评估分析,以得到仿真系统任务资源间依赖关系评估指标;Step S333: performing task resource dependency evaluation and analysis on the simulation system task resource status information data based on the simulation system task completion status information data to obtain a dependency relationship evaluation index between simulation system task resources;步骤S334:将仿真系统任务紧急完成影响评估指标、仿真系统任务资源利用率评估指标以及仿真系统任务资源间依赖关系评估指标进行指标合并,以得到仿真系统任务资源评估指标集;对仿真系统任务资源评估指标集进行指标权重分配处理,得到仿真系统任务资源评估指标权重参数;Step S334: merging the simulation system task emergency completion impact assessment index, the simulation system task resource utilization assessment index, and the simulation system task resource dependency assessment index to obtain a simulation system task resource assessment index set; performing indicator weight allocation processing on the simulation system task resource assessment index set to obtain a simulation system task resource assessment index weight parameter;步骤S335:基于仿真系统任务资源评估指标权重参数对仿真系统任务资源评估指标集进行优先级综合评估分析,以得到仿真系统任务资源优先级评估得分;Step S335: performing a priority comprehensive evaluation and analysis on the simulation system task resource evaluation indicator set based on the simulation system task resource evaluation indicator weight parameter to obtain a simulation system task resource priority evaluation score;步骤S336:根据仿真系统任务资源优先级评估得分对仿真系统任务资源状态信息数据进行任务优先级统计分析,以生成仿真系统任务资源需求优先级序列。Step S336: Perform task priority statistical analysis on the simulation system task resource status information data according to the simulation system task resource priority evaluation score to generate a simulation system task resource requirement priority sequence.9.根据权利要求7所述的基于知识图谱的仿真资源调度方法,其特征在于,步骤S34包括以下步骤:9. The method for scheduling simulation resources based on knowledge graph according to claim 7, wherein step S34 comprises the following steps:步骤S341:基于仿真系统任务资源需求信息数据对仿真系统任务资源需求优先级序列进行资源匹配分析,以得到仿真系统任务优先级序列资源匹配结果;Step S341: performing resource matching analysis on the simulation system task resource requirement priority sequence based on the simulation system task resource requirement information data to obtain a simulation system task priority sequence resource matching result;步骤S342:根据仿真系统任务优先级序列资源匹配结果进行智能调度设计分析,得到仿真系统任务资源智能调度策略;Step S342: Perform intelligent scheduling design analysis based on the simulation system task priority sequence resource matching result to obtain the simulation system task resource intelligent scheduling strategy;步骤S343:根据仿真系统任务资源智能调度策略对仿真系统任务资源需求优先级序列进行资源实时调度处理,以得到仿真系统任务资源动态调度结果。Step S343: Perform real-time resource scheduling processing on the simulation system task resource requirement priority sequence according to the simulation system task resource intelligent scheduling strategy to obtain the simulation system task resource dynamic scheduling result.10.根据权利要求1所述的基于知识图谱的仿真资源调度方法,其特征在于,步骤S4包括以下步骤:10. The method for scheduling simulation resources based on knowledge graph according to claim 1, wherein step S4 comprises the following steps:步骤S41:对仿真系统任务资源信息数据进行仿真任务动态变化监测,以得到仿真系统任务实时状态动态变化数据;Step S41: monitoring the dynamic changes of simulation tasks on the simulation system task resource information data to obtain the dynamic changes of the real-time status of the simulation system tasks;步骤S42:对仿真系统任务资源信息数据进行资源变化时序预测分析,得到仿真系统任务资源状态变化趋势数据;Step S42: performing resource change time series prediction analysis on the simulation system task resource information data to obtain simulation system task resource state change trend data;步骤S43:基于仿真系统任务资源状态变化趋势数据对仿真系统任务资源信息数据进行资源动态变化监测,以得到仿真系统任务资源动态变化数据;Step S43: monitoring the dynamic change of the task resource information data of the simulation system based on the state change trend data of the task resource of the simulation system, so as to obtain the dynamic change data of the task resource of the simulation system;步骤S44:根据仿真系统任务实时状态动态变化数据以及仿真系统任务资源动态变化数据进行资源调度优化更新,以生成仿真系统任务资源调度优化策略;Step S44: performing resource scheduling optimization and updating according to the dynamic change data of the real-time status of the simulation system tasks and the dynamic change data of the simulation system task resources, so as to generate a simulation system task resource scheduling optimization strategy;步骤S45:基于仿真系统任务资源调度优化策略对仿真系统任务资源动态调度结果进行实时调度优化,以得到仿真系统任务资源实时调度优化结果。Step S45: Based on the simulation system task resource scheduling optimization strategy, the simulation system task resource dynamic scheduling result is optimized in real time to obtain the simulation system task resource real-time scheduling optimization result.
CN202410790801.6A2024-06-192024-06-19Knowledge graph-based simulation resource scheduling methodActiveCN118550654B (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN202410790801.6ACN118550654B (en)2024-06-192024-06-19Knowledge graph-based simulation resource scheduling method

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN202410790801.6ACN118550654B (en)2024-06-192024-06-19Knowledge graph-based simulation resource scheduling method

Publications (2)

Publication NumberPublication Date
CN118550654Atrue CN118550654A (en)2024-08-27
CN118550654B CN118550654B (en)2024-12-27

Family

ID=92448168

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN202410790801.6AActiveCN118550654B (en)2024-06-192024-06-19Knowledge graph-based simulation resource scheduling method

Country Status (1)

CountryLink
CN (1)CN118550654B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN119088573A (en)*2024-11-062024-12-06北京卓翼智能科技有限公司 A software architecture supporting very large-scale simulation
CN119446450A (en)*2024-10-232025-02-14佛山市佛盈盘古信息科技有限公司 Emergency platform work order management method based on digital twin and artificial intelligence

Citations (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN112307217A (en)*2020-09-162021-02-02北京中兵数字科技集团有限公司Knowledge graph model construction method and device, and storage medium
US20220284071A1 (en)*2020-03-042022-09-08Karl Louis DenninghoffTransitory salient attention capture to draw attention to digital document parts
CN116227193A (en)*2023-02-282023-06-06中科南京人工智能创新研究院 A method and system for dynamically measuring resource satisfaction of complex system simulation based on multi-task scenarios
CN117171366A (en)*2023-11-032023-12-05国网信息通信产业集团有限公司Knowledge graph construction method and system for power grid dispatching operation situation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
US20220284071A1 (en)*2020-03-042022-09-08Karl Louis DenninghoffTransitory salient attention capture to draw attention to digital document parts
CN112307217A (en)*2020-09-162021-02-02北京中兵数字科技集团有限公司Knowledge graph model construction method and device, and storage medium
CN116227193A (en)*2023-02-282023-06-06中科南京人工智能创新研究院 A method and system for dynamically measuring resource satisfaction of complex system simulation based on multi-task scenarios
CN117171366A (en)*2023-11-032023-12-05国网信息通信产业集团有限公司Knowledge graph construction method and system for power grid dispatching operation situation

Cited By (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN119446450A (en)*2024-10-232025-02-14佛山市佛盈盘古信息科技有限公司 Emergency platform work order management method based on digital twin and artificial intelligence
CN119088573A (en)*2024-11-062024-12-06北京卓翼智能科技有限公司 A software architecture supporting very large-scale simulation

Also Published As

Publication numberPublication date
CN118550654B (en)2024-12-27

Similar Documents

PublicationPublication DateTitle
CN118193169A (en) A task scheduling optimization method and system based on equipment status analysis
CN118550654B (en)Knowledge graph-based simulation resource scheduling method
CN118761745B (en)OA collaborative workflow optimization method applied to enterprise
CN118689639B (en)Cloud resource intelligent recovery method, system and terminal equipment
CN118519408B (en) A controller-based task scheduling method, system, device and storage medium
KR101953190B1 (en)A multidimensional recursive learning process and system used to discover complex dyadic or multiple counterparty relationships
CN119322682B (en)Self-adaptive calculation power scheduling system for large model training
CN117667585B (en) A method and system for evaluating operation and maintenance efficiency based on operation and maintenance quality management database
CN119201620A (en) Cloud computing analysis method, device, equipment and storage medium for SaaS system
CN118551040A (en)Business data visualization method and system for enterprise platform
CN118657384A (en) A method and system for building enterprise risk profiles based on artificial intelligence
CN119168122A (en) A multi-dimensional monitoring system and method for engineering project progress based on information technology
CN119721650A (en) Personnel dispatching method, device and computer storage medium
CN119761775B (en)Software project progress scheduling and supervising system based on AI
CN118674123A (en)Enterprise full-flow service resource scheduling optimization method and system based on big data
CN118735413A (en) Warehouse management model determination method and system
CN118735222A (en) Complex task scheduling decision method and system for power scenarios based on semantic big model
CN120162213A (en) Risk warning method, system and electronic equipment
CN119065840B (en)Cloud technology-based computer network information service management method and system
CN118277793B (en)VR panorama fortune dimension analysis system
CN118410622A (en)Reconfigurable complex equipment digital twin system reliability evaluation method and system
CN116151632A (en)Data architecture method
CN120256143B (en)Online resource management system and method based on AI large model
CN119561829B (en)Multi-agent-based deep reinforcement learning method and system
CN119883551B (en) A task scheduling method and system based on distributed computing

Legal Events

DateCodeTitleDescription
PB01Publication
PB01Publication
SE01Entry into force of request for substantive examination
SE01Entry into force of request for substantive examination
GR01Patent grant
GR01Patent grant

[8]ページ先頭

©2009-2025 Movatter.jp