技术领域Technical Field
本发明涉及人工智能技术领域,特别涉及一种多模态智能问答机器人以及其搭建方法。The present invention relates to the field of artificial intelligence technology, and in particular to a multimodal intelligent question-answering robot and a method for building the same.
背景技术Background Art
在人工智能和机器人技术快速发展的背景下,智能问答机器人已经成为人们日常生活和工作的重要助手。然而,现有的智能问答机器人大多数只能通过文本或语音进行交互,无法同时处理多种模态的信息,例如图像、视频等。这限制了智能问答机器人在一些场景下的应用,需要同时处理图像和文本信息的场景。With the rapid development of artificial intelligence and robotics, intelligent question-answering robots have become important assistants in people's daily lives and work. However, most of the existing intelligent question-answering robots can only interact through text or voice, and cannot process information in multiple modalities at the same time, such as images, videos, etc. This limits the application of intelligent question-answering robots in some scenarios, such as scenarios that need to process image and text information at the same time.
发明内容Summary of the invention
本发明要解决的技术问题是提供一种多模态智能问答机器人以及其搭建方法,能够接收、处理并响应来自用户的多种模态输入(如文本、语音、图像和视频),从而提高问答的准确性和效率。The technical problem to be solved by the present invention is to provide a multimodal intelligent question-answering robot and a method for building the same, which can receive, process and respond to multiple modal inputs (such as text, voice, image and video) from users, thereby improving the accuracy and efficiency of question-answering.
为了解决上述技术问题,本发明的技术方案为:In order to solve the above technical problems, the technical solution of the present invention is:
一种多模态智能问答机器人,包括:A multimodal intelligent question-answering robot, comprising:
用户接口层:用于接收用户的信息输入,并将机器人的回答输出给用户;User interface layer: used to receive user input and output the robot's answer to the user;
多模态预处理层:该层对用户的输入进行预处理,包括文本分词、语音转文本以及图像识别;Multimodal preprocessing layer: This layer preprocesses the user input, including text segmentation, speech-to-text conversion, and image recognition;
多模态信息融合层:负责将来自不同模态的信息进行融合,形成一个统一的特征表示;Multimodal information fusion layer: responsible for fusing information from different modalities to form a unified feature representation;
智能问答处理层:基于融合后的多模态特征,此层运行问答算法,从知识库中检索信息或进行推理,生成答案;Intelligent question-answering processing layer: Based on the fused multimodal features, this layer runs the question-answering algorithm, retrieves information from the knowledge base or performs reasoning to generate answers;
知识库:存储问答系统所需的各种知识,包括常识、专业知识和用户数据;Knowledge base: stores various knowledge required by the question-answering system, including common sense, expertise, and user data;
后端支持层:包括数据库、服务器和存储设备,为系统提供数据存储和计算支持。Backend support layer: includes databases, servers, and storage devices, providing data storage and computing support for the system.
本发明还提供了一种上述多模态智能问答机器人的搭建方法,包括以下步骤:The present invention also provides a method for building the multimodal intelligent question-answering robot, comprising the following steps:
(1)收集多种模态的信息,收集包括文本、语音、图像、视频信息;(1) Collect information in multiple modalities, including text, voice, image, and video information;
(2)信息预处理以及多模态信息融合的预处理,提取出信息中的关键特征,以便后续的多模态信息融合;(2) Information preprocessing and preprocessing of multimodal information fusion to extract key features from the information for subsequent multimodal information fusion;
(3)多模态信息融合,使用深度学习算法对多种模态的信息进行融合,得到一个统一的多模态特征表示;(3) Multimodal information fusion: using deep learning algorithms to fuse information from multiple modalities to obtain a unified multimodal feature representation;
(4)智能问答处理,根据多模态特征表示,使用自然语言处理技术生成回答;(4) Intelligent question-answering processing, using natural language processing technology to generate answers based on multimodal feature representation;
(5)用户交互,将生成的回答以文本、语音或图像的形式返回给用户。(5) User interaction: the generated answer is returned to the user in the form of text, voice or image.
进一步的,收集多种模态的信息的方式包括,通过传感器、摄像头、麦克风设备收集用户输入的文本、语音、图像和视频信息,从互联网、数据库等来源导入获取相关知识,以丰富问答机器人的知识库。Furthermore, the methods of collecting information in multiple modalities include collecting text, voice, image and video information input by users through sensors, cameras and microphone devices, and importing relevant knowledge from sources such as the Internet and databases to enrich the knowledge base of the question-answering robot.
进一步的,信息预处理包括对文本进行分词、词性标注、停用词去除;对语音进行降噪、特征提取;对图像进行目标检测、特征提取操作;对视频进行关键帧提取、特征提取。Furthermore, information preprocessing includes word segmentation, part-of-speech tagging, and stop word removal for text; noise reduction and feature extraction for speech; target detection and feature extraction operations for images; and key frame extraction and feature extraction for videos.
进一步的,多模态信息融合的预处理包括;Furthermore, the preprocessing of multimodal information fusion includes;
数据对齐、确保不同模态的信息在融合前是同步的;Data alignment, ensuring that information from different modalities is synchronized before fusion;
特征表示,将不同模态的数据转换为统一的特征表示,以便于融合和分析;Feature representation: converting data from different modalities into a unified feature representation for easy fusion and analysis;
特征选择,从融合后的特征中选择最相关的一组特征,以减少维度和提高模型的泛化能力;Feature selection, selecting the most relevant set of features from the fused features to reduce dimensionality and improve the generalization ability of the model;
特征降维,减少特征空间的维度,以减少过拟合和提高计算效率;Feature dimensionality reduction, reducing the dimension of the feature space to reduce overfitting and improve computational efficiency;
模型融合,结合多个模型的预测结果,以提高整体性能;Model fusion, combining the predictions of multiple models to improve overall performance;
模型训练和验证,训练融合模型并验证其性能。Model training and validation, train the ensemble model and validate its performance.
进一步的,多模态信息融合过程中采用卷积神经网络对图像和视频进行特征提取,采用循环神经网络或Transformer模型对文本和语音进行特征提取,然后通过多模态融合网络将不同模态的特征进行融合。Furthermore, in the process of multimodal information fusion, convolutional neural networks are used to extract features from images and videos, and recurrent neural networks or Transformer models are used to extract features from text and speech, and then the features of different modalities are fused through a multimodal fusion network.
进一步的,智能问答处理中,在生成回答阶段,将多模态特征表示输入到自然语言处理模型中,根据输入的多模态特征表示生成相应的回答,同时采用注意力机制技术,使模型能够关注到输入信息中的关键部分,提高回答的准确性。Furthermore, in intelligent question-answering processing, in the answer generation stage, the multimodal feature representation is input into the natural language processing model, and the corresponding answer is generated based on the input multimodal feature representation. At the same time, the attention mechanism technology is used to enable the model to focus on the key parts of the input information and improve the accuracy of the answer.
本发明的优点在于:The advantages of the present invention are:
本发明通过设计多模态融合网络,将不同模态的特征进行融合,得到一个统一的多模态特征表示,使用自然语言处理技术生成回答,可以将多模态特征表示转换为自然语言文本,根据输入的多模态特征表示生成相应的回答。本发明能够同时处理多种模态的信息,提高问答的准确性和效率;可以根据不同场景和用户需求,灵活地选择不同的模态进行交互;高问答的准确性和效率,通过融合多种模态的信息,适用于多种场景,可提供灵活的交互方式,满足不同用户的需求。The present invention fuses the features of different modalities by designing a multimodal fusion network to obtain a unified multimodal feature representation, generates answers using natural language processing technology, converts the multimodal feature representation into natural language text, and generates corresponding answers based on the input multimodal feature representation. The present invention can process information of multiple modalities at the same time to improve the accuracy and efficiency of question and answer; can flexibly select different modalities for interaction according to different scenarios and user needs; improves the accuracy and efficiency of question and answer, and is applicable to multiple scenarios by fusing information of multiple modalities, and can provide flexible interaction methods to meet the needs of different users.
具体实施方式DETAILED DESCRIPTION
下面对本发明的具体实施方式作进一步说明。在此需要说明的是,对于这些实施方式的说明用于帮助理解本发明,但并不构成对本发明的限定。此外,下面所描述的本发明各个实施方式中所涉及的技术特征只要彼此之间未构成冲突就可以相互组合。The specific embodiments of the present invention are further described below. It should be noted that the description of these embodiments is used to help understand the present invention, but does not constitute a limitation of the present invention. In addition, the technical features involved in each embodiment of the present invention described below can be combined with each other as long as they do not conflict with each other.
具体搭建方法和系统架构如下The specific construction method and system architecture are as follows
多模态智能问答机器人的搭建方法:How to build a multimodal intelligent question-answering robot:
一、收集多种模态的信息,系统通过各种传感器、摄像头、麦克风等设备捕获用户输入的多种模态信息,如文本消息、语音命令、图像和视频等。此外,系统还能从互联网、数据库等来源获取相关知识,以丰富其知识库。First, collect information in multiple modes. The system captures multiple modal information input by users through various sensors, cameras, microphones and other devices, such as text messages, voice commands, images and videos. In addition, the system can also obtain relevant knowledge from sources such as the Internet and databases to enrich its knowledge base.
二、信息预处理以及多模态信息融合的预处理,预处理过程包括对文本进行分词、词性标注、停用词去除等操作;对语音进行降噪、特征提取等操作;对图像进行目标检测、特征提取等操作;对视频进行关键帧提取、特征提取等操作。预处理的目的是提取出信息中的关键特征,以便后续的多模态信息融合。2. Information preprocessing and preprocessing of multimodal information fusion. The preprocessing process includes operations such as word segmentation, part-of-speech tagging, and stop word removal for text; noise reduction and feature extraction for speech; target detection and feature extraction for images; key frame extraction and feature extraction for videos. The purpose of preprocessing is to extract key features from information for subsequent multimodal information fusion.
下面将详细地扩展每个预处理步骤的目的和技术手段The purpose and technical means of each preprocessing step will be expanded in detail below.
2.1信息预处理2.1 Information Preprocessing
2.11文本预处理2.11 Text Preprocessing
(1)分词(Tokenization)(1) Tokenization
目的:将文本拆分成基本的语义单位(词或词组),以便更好地理解文本内容。Purpose: To break down text into basic semantic units (words or phrases) in order to better understand the text content.
技术手段:Technical means:
-中文分词:使用基于规则的方法(如正则表达式)、基于统计的方法(如隐马尔可夫模型HMM)、基于深度学习的方法(如BiLSTM+CRF)。- Chinese word segmentation: using rule-based methods (such as regular expressions), statistical methods (such as hidden Markov models HMM), and deep learning-based methods (such as BiLSTM+CRF).
-英文分词:通常使用空格和标点符号进行分割,但也会处理连字符、缩写等情况。- English word segmentation: usually uses spaces and punctuation marks for segmentation, but also handles hyphens, abbreviations, etc.
(2)词性标注(Part-of-Speech Tagging)(2) Part-of-Speech Tagging
目的:识别每个词的词性,帮助理解词在句子中的作用和句子的语法结构。Purpose: To identify the part of speech of each word and help understand the role of the word in the sentence and the grammatical structure of the sentence.
技术手段:Technical means:
-基于规则的方法:手动编写规则来标注词性。-Rule-based approach: Manually write rules to label parts of speech.
-基于统计的方法:使用条件随机场(CRF)、隐马尔可夫模型(HMM)等模型。-Statistical-based methods: using models such as Conditional Random Field (CRF), Hidden Markov Model (HMM), etc.
-基于深度学习的方法:使用卷积神经网络(CNN)、递归神经网络(RNN)、长短期记忆网络(LSTM)等模型。-Deep learning-based methods: using models such as convolutional neural networks (CNN), recurrent neural networks (RNN), and long short-term memory networks (LSTM).
(3)停用词去除(Stop Words Removal)(3) Stop Words Removal
目的:去除文本中频繁出现但对内容理解贡献不大的词,减少噪声,聚焦于更有意义的词。Purpose: Remove words that appear frequently in the text but do not contribute much to the understanding of the content, reduce noise, and focus on more meaningful words.
技术手段:Technical means:
-使用预定义的停用词列表,如NLTK、spaCy中的停用词列表。-Use predefined stop word lists, such as those in NLTK, spaCy.
-根据词频统计,去除高频但低信息的词。-Based on word frequency statistics, remove high-frequency but low-information words.
(4)词干提取(Stemming)和词形还原(Lemmatization)(4) Stemming and Lemmatization
目的:将词还原到其基本形式,减少词汇的多样性,统一文本中的同义词。Purpose: To restore words to their basic form, reduce vocabulary diversity, and unify synonyms in the text.
技术手段:Technical means:
-词干提取:使用启发式算法,如Porter Stemmer,去除词缀,得到词干。- Stemming: Use heuristic algorithms, such as Porter Stemmer, to remove affixes and obtain word stems.
-词形还原:使用词汇的词形数据库(如WordNet)来找到词的基本形式。- Lemmatization: Use a lexical database (such as WordNet) to find the base form of a word.
(5)实体识别(Named Entity Recognition,NER)(5) Named Entity Recognition (NER)
目的:识别文本中的专有名词,如人名、地名、组织名等。Purpose: To identify proper nouns in text, such as names of people, places, and organizations.
技术手段:Technical means:
-使用条件随机场(CRF)、双向LSTM(BiLSTM)等模型结合CRF层。-Use models such as Conditional Random Field (CRF), Bidirectional LSTM (BiLSTM) combined with CRF layer.
(6)语法和语义分析(6) Syntactic and semantic analysis
目的:深入理解句子的结构和意义。Purpose: To gain a deep understanding of sentence structure and meaning.
技术手段:Technical means:
-依存句法分析(Dependency Parsing):识别词之间的依赖关系。-Dependency Parsing: Identify the dependencies between words.
-意图和情感分析:使用分类模型来识别文本的意图和情感倾向。-Intent and Sentiment Analysis: Use classification models to identify the intent and sentiment of text.
2.12语音预处理2.12 Speech Preprocessing
(1)自动语音识别(Automatic Speech Recognition,ASR)(1) Automatic Speech Recognition (ASR)
目的:将语音信号转换为文本,以便进行文本分析。Purpose: Convert speech signals into text for text analysis.
技术手段:Technical means:
-声学模型:使用深度神经网络(DNN)、循环神经网络(RNN)、卷积神经网络(CNN)来识别语音信号的特征。-Acoustic model: Use deep neural network (DNN), recurrent neural network (RNN), convolutional neural network (CNN) to identify the characteristics of speech signals.
-语言模型:使用统计语言模型(如N-gram)或神经网络语言模型(如Transformer)来预测文本序列。- Language Model: Use statistical language models (such as N-gram) or neural network language models (such as Transformer) to predict text sequences.
-解码器:将声学模型和语言模型结合起来,找到最可能的文本序列。-Decoder: combines the acoustic model and the language model to find the most likely text sequence.
(2)语音信号处理(2) Speech Signal Processing
目的:提高语音信号的质量,减少噪声和回声等干扰。Purpose: To improve the quality of speech signals and reduce interference such as noise and echo.
技术手段:Technical means:
-预加重:提升高频部分的信号。-Pre-emphasis: Boost the high frequency part of the signal.
-降噪:使用谱减法、维纳滤波等方法去除噪声。-Noise reduction: Use spectral subtraction, Wiener filtering and other methods to remove noise.
-声学回声消除:使用线性回声消除器、非线性回声抑制等方法减少回声。-Acoustic echo cancellation: Reduce echo using methods such as linear echo canceller, nonlinear echo suppression, etc.
2.13图像/视频预处理2.13 Image/Video Preprocessing
(1)目标检测(Object Detection)(1) Object Detection
目的:在图像或视频帧中定位和识别感兴趣的目标。Purpose: To locate and identify objects of interest in an image or video frame.
技术手段:Technical means:
-基于区域的方法:如R-CNN、Fast R-CNN、Faster R-CNN。-Region-based methods: such as R-CNN, Fast R-CNN, Faster R-CNN.
-基于回归的方法:如YOLO、SSD。-Regression-based methods: such as YOLO and SSD.
-基于深度学习的方法:如RetinaNet、CenterNet。-Deep learning-based methods: such as RetinaNet and CenterNet.
(2)特征提取(Feature Extraction)(2) Feature Extraction
目的:从图像中提取有助于表示目标属性的特征。Purpose: To extract features from images that help represent the properties of the target.
技术手段:Technical means:
-传统方法:如SIFT、HOG、Haar-like特征。-Traditional methods: such as SIFT, HOG, and Haar-like features.
-深度学习方法:如使用预训练的CNN模型(如VGG、ResNet)提取特征。-Deep learning methods: such as using pre-trained CNN models (such as VGG, ResNet) to extract features.
(3)关键帧提取(Key Frame Extraction)(3) Key Frame Extraction
目的:从视频中选取具有代表性的帧,减少计算量并提高后续处理的效率。Purpose: To select representative frames from the video to reduce the amount of calculation and improve the efficiency of subsequent processing.
技术手段:Technical means:
-基于运动分析的方法:如差分图像法、光流法。-Methods based on motion analysis: such as differential image method and optical flow method.
-基于内容分析的方法:如使用图像的直方图、颜色特征来分析内容的显著变化。-Methods based on content analysis: such as using image histograms and color features to analyze significant changes in content.
(4)图像增强(Image Enhancement)(4) Image Enhancement
目的:改善图像质量,使图像更适合于特定的应用。Purpose: To improve image quality and make the image more suitable for specific applications.
技术手段:Technical means:
-直方图均衡化:改善图像的对比度。-Histogram Equalization: Improves the contrast of the image.
-降噪:使用滤波器(如高斯滤波、中值滤波)去除噪声。-Noise reduction: Use filters (such as Gaussian filtering, median filtering) to remove noise.
-超分辨率:使用深度学习模型提高图像的分辨率。-Super-resolution: Increase the resolution of images using deep learning models.
(5)图像分割(Image Segmentation)(5) Image Segmentation
目的:将图像分割成若干具有相似特征的区域。Purpose: Segment an image into several regions with similar features.
2.2多模态信息融合的预处理2.2 Preprocessing of multimodal information fusion
(1)数据对齐(DataAlignment)(1) Data Alignment
目的:由于不同模态的数据可能存在时间或空间上的不对齐,数据对齐的目的是确保不同模态的信息在融合前是同步的。Purpose: Since data from different modalities may be misaligned in time or space, the purpose of data alignment is to ensure that the information from different modalities is synchronized before fusion.
技术手段:Technical means:
-时间对齐:使用动态时间规整(Dynamic Time Warping,DTW)或基于深度学习的方法(如双向长短时记忆网络Bi-LSTM)来对齐时间序列数据。-Time alignment: Use Dynamic Time Warping (DTW) or deep learning-based methods such as Bi-LSTM to align time series data.
-空间对齐:使用特征匹配、特征点跟踪或3D重建技术来对齐图像和视频数据。-Spatial alignment: Use feature matching, feature point tracking, or 3D reconstruction techniques to align image and video data.
(2)特征表示(Feature Representation)(2) Feature Representation
目的:将不同模态的数据转换为统一的特征表示,以便于融合和分析。Purpose: Convert data from different modalities into a unified feature representation for easy fusion and analysis.
技术手段:Technical means:
-多模态特征提取:使用深度学习模型(如多模态卷积神经网络MM-CNN、多模态变换器MM-Transformer)来同时提取多种模态的特征。-Multimodal feature extraction: Use deep learning models (such as multimodal convolutional neural network MM-CNN, multimodal transformer MM-Transformer) to extract features of multiple modalities simultaneously.
-特征嵌入:将不同模态的特征映射到共享的嵌入空间中,使用度量学习(MetricLearning)或对抗性训练(Adversarial Training)来确保特征的可比性。-Feature embedding: Map features of different modalities into a shared embedding space and use metric learning or adversarial training to ensure feature comparability.
(3)特征选择(Feature Selection)(3) Feature Selection
目的:从融合后的特征中选择最相关的一组特征,以减少维度和提高模型的泛化能力。Purpose: Select the most relevant set of features from the fused features to reduce the dimension and improve the generalization ability of the model.
技术手段:Technical means:
-filter方法:基于特征的重要性评分(如互信息、相关系数)来选择特征。-Filter method: Select features based on their importance scores (such as mutual information, correlation coefficient).
-wrapper方法:使用模型作为子集选择过程的黑盒,评估不同特征子集的性能。-wrapper method: Use the model as a black box for the subset selection process and evaluate the performance of different feature subsets.
-embedded方法:在模型训练过程中嵌入特征选择,如使用L1正则化或基于树的方法(如随机森林、梯度提升机)。-Embedded methods: embed feature selection during model training, such as using L1 regularization or tree-based methods (such as random forests, gradient boosting machines).
(4)特征降维(Feature Dimensionality Reduction)(4) Feature Dimensionality Reduction
目的:减少特征空间的维度,以减少过拟合和提高计算效率。Purpose: Reduce the dimension of the feature space to reduce overfitting and improve computational efficiency.
技术手段:Technical means:
-主成分分析(PCA):通过线性变换找到能够最大化数据方差的新特征空间。-Principal Component Analysis (PCA): Finds a new feature space that maximizes the variance of the data through linear transformation.
-t-SNE(t-Distributed Stochastic Neighbor Embedding):用于可视化高维数据,通过非线性变换将数据映射到低维空间。-t-SNE (t-Distributed Stochastic Neighbor Embedding): used to visualize high-dimensional data and map the data to a low-dimensional space through nonlinear transformation.
-自编码器(Autoencoders):使用神经网络来学习数据的低维表示。-Autoencoders: Use neural networks to learn low-dimensional representations of data.
(5)模型融合(Model Fusion)(5) Model Fusion
目的:结合多个模型的预测结果,以提高整体性能。Purpose: Combine the predictions from multiple models to improve overall performance.
技术手段:Technical means:
-平均融合:简单地对多个模型的预测结果进行平均。-Average ensemble: Simply average the predictions of multiple models.
-加权融合:根据模型的性能给予不同的权重。-Weighted fusion: Give different weights according to the performance of the model.
-投票融合:对于分类任务,使用多数投票来决定最终预测。- Voting fusion: For classification tasks, majority voting is used to decide the final prediction.
-Stacking:使用多个模型的输出作为特征,训练一个新的模型来做出最终预测。-Stacking: Use the output of multiple models as features to train a new model to make the final prediction.
(6)模型训练和验证(Model Training andValidation)(6) Model Training and Validation
目的:训练融合模型并验证其性能。Purpose: To train the fusion model and verify its performance.
技术手段:Technical means:
-交叉验证:将数据分为多个折叠,轮流使用不同的折叠作为验证集。- Cross-validation: Split the data into multiple folds and use different folds as validation sets in turn.
-留出法(Hold-out):将数据分为训练集和测试集,使用训练集训练模型,并在测试集上评估性能。-Hold-out: Split the data into training and test sets, train the model using the training set, and evaluate the performance on the test set.
-Bootstrap:通过有放回抽样来估计模型的准确性。-Bootstrap: Estimate the accuracy of the model by sampling with replacement.
通过上述预处理步骤,我们可以为多模态学习任务准备高质量的数据集,从而提高模型的性能和可靠性。这些步骤可能需要根据具体的应用场景和数据特性进行调整和优化。Through the above preprocessing steps, we can prepare high-quality datasets for multimodal learning tasks, thereby improving the performance and reliability of the model. These steps may need to be adjusted and optimized according to the specific application scenarios and data characteristics.
三、多模态信息融合,使用深度学习算法对多种模态的信息进行融合,得到一个统一的多模态特征表示3. Multimodal information fusion: Use deep learning algorithms to fuse information from multiple modalities to obtain a unified multimodal feature representation
本发明的核心技术在于多模态信息融合算法。通过设计特定的多模态融合网络,系统能够将来自不同模态的特征进行融合,生成一个统一的多模态特征表示。这一过程中可能采用的技术包括卷积神经网络(CNN)用于图像和视频处理,循环神经网络(RNN)或Transformer模型用于文本和语音处理,以及注意力机制等技术来关注关键信息。The core technology of the present invention lies in the multimodal information fusion algorithm. By designing a specific multimodal fusion network, the system can fuse features from different modalities to generate a unified multimodal feature representation. The technologies that may be used in this process include convolutional neural networks (CNN) for image and video processing, recurrent neural networks (RNN) or Transformer models for text and speech processing, and attention mechanisms to focus on key information.
四、智能问答处理4. Intelligent Question and Answer Processing
基于融合后的多模态特征表示,系统使用自然语言处理技术生成回答。这可能涉及到序列到序列(Seq2Seq)模型、生成对抗网络(GANs)或其他先进的自然语言生成技术。此外,系统还可以从知识库中检索相关信息或进行逻辑推理,以提供更加准确和有用的回答。Based on the fused multimodal feature representation, the system generates answers using natural language processing techniques. This may involve sequence-to-sequence (Seq2Seq) models, generative adversarial networks (GANs), or other advanced natural language generation techniques. In addition, the system can retrieve relevant information from the knowledge base or perform logical reasoning to provide more accurate and useful answers.
五、用户交互5. User Interaction
根据用户的需求和场景,选择合适的模态进行交互。例如,当用户希望通过语音与问答机器人进行交互时,可以将生成的语音回答播放给用户;当用户希望通过文本与问答机器人进行交互时,可以将生成的文本回答显示给用户。此外,还可以根据用户的需求生成相应的图像回答。According to the user's needs and scenarios, select the appropriate mode for interaction. For example, when the user wants to interact with the question-answering robot through voice, the generated voice answer can be played to the user; when the user wants to interact with the question-answering robot through text, the generated text answer can be displayed to the user. In addition, corresponding image answers can also be generated according to the user's needs.
多模态智能问答机器人的系统架构如下:The system architecture of the multimodal intelligent question-answering robot is as follows:
用户接口层:此层负责接收用户的输入(如文本、语音、图像等),并将机器人的回答输出给用户(如文本、语音、图像等)。User interface layer: This layer is responsible for receiving user input (such as text, voice, images, etc.) and outputting the robot's answers to the user (such as text, voice, images, etc.).
多模态预处理层:该层对用户的输入进行预处理,如文本分词、语音转文本(ASR)、图像识别等。Multimodal preprocessing layer: This layer preprocesses the user input, such as text segmentation, speech-to-text (ASR), image recognition, etc.
多模态信息融合层:这是系统的核心层,负责将来自不同模态的信息(文本、语音、图像等)进行融合,形成一个统一的特征表示。Multimodal information fusion layer: This is the core layer of the system, responsible for fusing information from different modalities (text, voice, image, etc.) to form a unified feature representation.
智能问答处理层:基于融合后的多模态特征,此层运行问答算法,从知识库中检索信息或进行推理,生成答案。Intelligent question-answering processing layer: Based on the fused multimodal features, this layer runs the question-answering algorithm, retrieves information from the knowledge base or performs reasoning to generate answers.
知识库:存储问答系统所需的各种知识,如常识、专业知识、用户数据等。Knowledge base: stores various knowledge required by the question-answering system, such as common sense, expertise, user data, etc.
后端支持层:包括数据库、服务器、存储设备等,为系统提供数据存储和计算支持。Backend support layer: including databases, servers, storage devices, etc., providing data storage and computing support for the system.
其中多模态信息融合算法的流程The process of multimodal information fusion algorithm
流程描述:Process Description:
输入:接收来自不同模态的预处理后的数据(文本特征、语音特征、图像特征等)。Input: Receive pre-processed data from different modalities (text features, speech features, image features, etc.).
特征编码:对每个模态的特征进行编码,以便在统一的空间中进行比较和融合。Feature encoding: Encode the features of each modality so that they can be compared and fused in a unified space.
特征融合:使用适当的算法(如多模态融合网络、注意力机制等)将不同模态的特征进行融合,形成一个统一的多模态特征表示。Feature fusion: Use appropriate algorithms (such as multimodal fusion networks, attention mechanisms, etc.) to fuse features of different modalities to form a unified multimodal feature representation.
输出:输出融合后的多模态特征表示,供后续的智能问答处理层使用。Output: Output the fused multimodal feature representation for use in the subsequent intelligent question-answering processing layer.
其中关于自然语言处理技术的流程The process of natural language processing technology
流程描述:Process Description:
文本输入:接收用户输入的文本。Text input: Receive text input from the user.
文本预处理:对文本进行分词、词性标注、去除停用词、词干提取等预处理操作。Text preprocessing: perform preprocessing operations such as word segmentation, part-of-speech tagging, stop word removal, and stem extraction on the text.
文本表示:将预处理后的文本转换为计算机可以理解的数值表示(如词嵌入、TF-IDF等)。Text representation: Convert the preprocessed text into a numerical representation that can be understood by computers (such as word embedding, TF-IDF, etc.).
文本分析:进行句法分析、语义分析、情感分析等,提取文本中的关键信息。Text analysis: Perform syntactic analysis, semantic analysis, sentiment analysis, etc. to extract key information from the text.
智能问答:基于文本表示和分析结果,从知识库中检索信息或进行推理,生成自然语言回答。Intelligent question answering: Based on text representation and analysis results, information is retrieved or reasoned from the knowledge base to generate natural language answers.
文本输出:将生成的回答输出给用户。Text output: Output the generated answer to the user.
请注意,这些描述是基于一般性的多模态智能问答机器人架构和算法流程,实际的系统架构和算法可能会根据具体需求和技术选型有所不同。Please note that these descriptions are based on the general multimodal intelligent question-answering robot architecture and algorithm flow. The actual system architecture and algorithm may vary depending on specific needs and technology selection.
通过上述描述,可以看出本发明提出了一种高效、准确的多模态智能问答机器人系统,能够为用户提供更加便捷、智能的服务。From the above description, it can be seen that the present invention proposes an efficient and accurate multi-modal intelligent question-answering robot system, which can provide users with more convenient and intelligent services.
以上对本发明的实施方式作了详细说明,但本发明不限于所描述的实施方式。对于本领域的技术人员而言,在不脱离本发明原理和精神的情况下,对这些实施方式进行多种变化、修改、替换和变型,仍落入本发明的保护范围内。The embodiments of the present invention are described in detail above, but the present invention is not limited to the described embodiments. For those skilled in the art, various changes, modifications, substitutions and variations of these embodiments are made without departing from the principles and spirit of the present invention, and still fall within the protection scope of the present invention.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202410734142.4ACN118520091A (en) | 2024-06-07 | 2024-06-07 | Multi-mode intelligent question-answering robot and construction method thereof |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202410734142.4ACN118520091A (en) | 2024-06-07 | 2024-06-07 | Multi-mode intelligent question-answering robot and construction method thereof |
| Publication Number | Publication Date |
|---|---|
| CN118520091Atrue CN118520091A (en) | 2024-08-20 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202410734142.4APendingCN118520091A (en) | 2024-06-07 | 2024-06-07 | Multi-mode intelligent question-answering robot and construction method thereof |
| Country | Link |
|---|---|
| CN (1) | CN118520091A (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN118916531A (en)* | 2024-10-10 | 2024-11-08 | 深圳若愚科技有限公司 | Intent recognition method, device, equipment and storage medium based on multi-modal model |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN118916531A (en)* | 2024-10-10 | 2024-11-08 | 深圳若愚科技有限公司 | Intent recognition method, device, equipment and storage medium based on multi-modal model |
| CN118916531B (en)* | 2024-10-10 | 2025-01-03 | 深圳若愚科技有限公司 | Intent recognition method, device, equipment and storage medium based on multi-modal model |
| Publication | Publication Date | Title |
|---|---|---|
| Song | English speech recognition based on deep learning with multiple features | |
| Dashtipour et al. | A novel context-aware multimodal framework for persian sentiment analysis | |
| US20240378193A1 (en) | Machine learning system for digital assistants | |
| Zhang et al. | Advanced data exploitation in speech analysis: An overview | |
| CN113420807A (en) | Multi-mode fusion emotion recognition system and method based on multi-task learning and attention mechanism and experimental evaluation method | |
| Tran et al. | Ensemble application of ELM and GPU for real-time multimodal sentiment analysis | |
| CN116955699B (en) | Video cross-mode search model training method, searching method and device | |
| Shen et al. | WISE: Word-Level Interaction-Based Multimodal Fusion for Speech Emotion Recognition. | |
| CN115329779A (en) | Multi-person conversation emotion recognition method | |
| CN113392265A (en) | Multimedia processing method, device and equipment | |
| CN118709146A (en) | An emotional intelligence recognition method based on multimodal data fusion | |
| Ai et al. | A two-stage multimodal emotion recognition model based on graph contrastive learning | |
| Zhang | Voice keyword retrieval method using attention mechanism and multimodal information fusion | |
| CN115169472A (en) | Music matching method and device for multimedia data and computer equipment | |
| CN118468224A (en) | A multimodal sarcasm detection method based on visual instruction fine-tuning and demonstration learning enhancement | |
| Zhang | Ideological and political empowering english teaching: ideological education based on artificial intelligence in classroom emotion recognition | |
| Lai et al. | Multimodal sentiment analysis with asymmetric window multi-attentions | |
| CN118260711A (en) | Multi-mode emotion recognition method and device | |
| CN118520091A (en) | Multi-mode intelligent question-answering robot and construction method thereof | |
| CN119248924B (en) | Emotion analysis method and device for promoting multi-mode information fusion | |
| Bai et al. | Low-rank multimodal fusion algorithm based on context modeling | |
| Kim et al. | Msdlf-k: A multimodal feature learning approach for sentiment analysis in korean incorporating text and speech | |
| CN117725547B (en) | Emotion and cognitive evolution pattern recognition method based on cross-modal feature fusion network | |
| Yuan | [Retracted] A Classroom Emotion Recognition Model Based on a Convolutional Neural Network Speech Emotion Algorithm | |
| CN118643311A (en) | Multimodal representation optimization method for intent recognition based on text guidance |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |