优先权声明Priority declaration
本申请要求于2021年12月8日提交的美国申请序列号17/545,711的优先权,该美国申请据此以引用方式全文并入本文。This application claims priority to U.S. application serial number 17/545,711 filed on December 8, 2021, which is hereby incorporated by reference in its entirety.
技术领域Technical Field
本发明整体涉及医疗设备,诸如分析物传感器,并且更具体地但非限制性地涉及用于补偿温度对分析物传感器的影响的系统、设备和方法。The present invention relates generally to medical devices, such as analyte sensors, and more particularly, but not by way of limitation, to systems, devices, and methods for compensating for the effects of temperature on analyte sensors.
背景技术Background technique
糖尿病是与身体产生或使用胰岛素有关的代谢病症。胰岛素是允许身体将葡萄糖用于能量或将葡萄糖储存为脂肪的激素。Diabetes is a metabolic disorder related to the body's production or use of insulin. Insulin is the hormone that allows the body to use glucose for energy or store glucose as fat.
当人吃含有碳水化合物的膳食时,食物被消化系统处理,消化系统在人的血液中产生葡萄糖。血糖可用于能量或作为脂肪储存。身体通常将血糖水平维持在一个范围内,该范围提供足够的能量来支持身体机能并且避免当葡萄糖水平太高或太低时可能出现的问题。血糖水平的调节取决于胰岛素的产生和使用,胰岛素调节血糖进入细胞的移动。When a person eats a meal containing carbohydrates, the food is processed by the digestive system, which produces glucose in the person's blood. Blood sugar can be used for energy or stored as fat. The body normally maintains blood sugar levels within a range that provides enough energy to support body functions and avoids problems that can occur when glucose levels are too high or too low. Regulation of blood sugar levels depends on the production and use of insulin, which regulates the movement of blood sugar into cells.
当身体不产生足够的胰岛素时,或者当身体不能有效地使用存在的胰岛素时,血糖水平可能会升高超过正常范围。具有高于正常血糖水平的病症或状态被称为“高血糖”。慢性高血糖可导致许多健康问题,诸如心血管疾病、白内障和其他眼睛问题、神经损伤(神经病)和肾损伤。高血糖还会导致急性问题,诸如糖尿病酮酸中毒,这是一种身体由于血糖和当身体不能使用葡萄糖时产生的酮的存在而变得过度酸性的病症或状态。具有低于正常血糖水平的病症或状态被称为“低血糖”。重度低血糖会导致急性危重症,这会导致癫痫发作或死亡。When the body does not produce enough insulin, or when the body cannot effectively use the insulin that is present, blood sugar levels may rise above the normal range. A condition or state with higher than normal blood sugar levels is called "hyperglycemia." Chronic high blood sugar levels can lead to many health problems, such as cardiovascular disease, cataracts and other eye problems, nerve damage (neuropathy), and kidney damage. High blood sugar can also lead to acute problems, such as diabetic ketoacidosis, which is a condition or state in which the body becomes overly acidic due to the presence of blood sugar and ketones produced when the body cannot use glucose. A condition or state with lower than normal blood sugar levels is called "hypoglycemia." Severe hypoglycemia can lead to acute critical illness, which can cause seizures or death.
糖尿病患者可接受胰岛素来控制血糖水平。例如,可通过用针手动注射来接受胰岛素。可穿戴胰岛素泵也是可用的。饮食和锻炼也会影响血糖水平。葡萄糖传感器可提供估计葡萄糖值,该值可用作患者或护理者的指导。Diabetics may take insulin to control blood sugar levels. For example, insulin may be taken by manual injection with a needle. Wearable insulin pumps are also available. Diet and exercise can also affect blood sugar levels. Glucose sensors can provide estimated glucose values that can be used as a guide for the patient or caregiver.
糖尿病病症有时被称为“1型”和“2型”。当胰岛素存在时,1型糖尿病患者通常能够使用胰岛素,但是由于胰腺的产生胰岛素的β细胞的问题,身体不能产生足够量的胰岛素。2型糖尿病患者可能产生一些胰岛素,但是由于患者对胰岛素的敏感性降低而出现“抗胰岛抗性”。结果是,即使体内存在胰岛素,患者的身体也无法充分利用胰岛素来有效调节血糖水平。Diabetes conditions are sometimes referred to as "type 1" and "type 2." People with type 1 diabetes are usually able to use insulin when it is present, but the body cannot produce adequate amounts of it due to problems with the insulin-producing beta cells of the pancreas. People with type 2 diabetes may produce some insulin, but develop "insulin resistance" due to the patient's decreased sensitivity to insulin. As a result, even though insulin is present in the body, the patient's body cannot fully use the insulin to effectively regulate blood sugar levels.
提供此背景技术是为了介绍以下发明内容和具体实施方式的简要上下文。此背景无意帮助确定所要求保护的主题的范围,也不被视为将所要求保护的主题限制于解决上文呈现的任何或所有缺点或问题的具体实施。This background is provided to introduce a brief context for the following summary and detailed description. This background is not intended to help determine the scope of the claimed subject matter, nor is it to be considered to limit the claimed subject matter to specific implementations that solve any or all of the disadvantages or problems presented above.
发明内容Summary of the invention
本文讨论了用于确定皮下温度或补偿温度对分析物传感器诸如葡萄糖传感器的影响的系统、设备和方法。Discussed herein are systems, devices, and methods for determining subcutaneous temperature or compensating for the effects of temperature on an analyte sensor, such as a glucose sensor.
主题(例如,系统)的一个实施例(例如,“实施例1”)可包括通过接收指示外部部件的温度参数的温度信号、接收指示体内葡萄糖浓度水平的葡萄糖信号以及基于葡萄糖信号、温度信号和延迟参数确定补偿葡萄糖浓度水平来确定温度补偿葡萄糖浓度水平。One embodiment (e.g., “Embodiment 1”) of a subject matter (e.g., a system) may include determining a temperature compensated glucose concentration level by receiving a temperature signal indicating a temperature parameter of an external component, receiving a glucose signal indicating a glucose concentration level in the body, and determining a compensated glucose concentration level based on the glucose signal, the temperature signal, and a delay parameter.
在实施例2中,实施例1的主题可任选地被配置为使得温度参数是温度、温度变化或温度偏移。In Example 2, the subject matter of Example 1 may optionally be configured such that the temperature parameter is a temperature, a temperature change, or a temperature offset.
在实施例3中,实施例1至2中的任一项或多项的主题可任选地被配置为使得在第一时间检测到温度参数并且在第一时间之后的第二时间检测到葡萄糖浓度水平,可被配置为使得延迟参数包括第一时间与第二时间之间的延迟时段,该延迟时段考虑了外部部件处的第一温度变化与靠近葡萄糖传感器的第二温度变化之间的延迟。In Example 3, the subject matter of any one or more of Examples 1 to 2 may optionally be configured such that a temperature parameter is detected at a first time and a glucose concentration level is detected at a second time after the first time, and may be configured such that a delay parameter includes a delay period between the first time and the second time, which delay period takes into account the delay between a first temperature change at the external component and a second temperature change near the glucose sensor.
在实施例4中,实施例1至3中的任一项或多项的主题可任选地包括基于温度变化率来调整延迟时段。In Example 4, the subject matter of any one or more of Examples 1 to 3 can optionally include adjusting the delay period based on a rate of temperature change.
在实施例5中,实施例1至4中的任一项或多项的主题可任选地包括基于检测到的状况或状态来调整延迟时段。In Example 5, the subject matter of any one or more of Examples 1 to 4 may optionally include adjusting the delay period based on a detected condition or state.
在实施例6中,实施例1至5中的任一项或多项的主题可任选地被配置为使得检测到的状况或状态包括温度的突然变化。In Example 6, the subject matter of any one or more of Examples 1 to 5 may optionally be configured such that the detected condition or state includes a sudden change in temperature.
在实施例7中,实施例5至6的主题可任选地被配置为使得检测到的状况或状态包括锻炼。In Example 7, the subject matter of Examples 5-6 may optionally be configured such that the detected condition or state includes exercise.
在实施例8中,实施例1至7中的任一项或多项的主题可任选地被配置为使得检测葡萄糖信号包括从可穿戴葡萄糖传感器接收葡萄糖信号。In Example 8, the subject matter of any one or more of Examples 1 to 7 may optionally be configured such that detecting the glucose signal comprises receiving the glucose signal from a wearable glucose sensor.
在实施例9中,实施例8的主题可任选地被配置为使得检测温度信号包括测量可穿戴葡萄糖传感器的部件的温度参数。In Example 9, the subject matter of Example 8 can optionally be configured such that detecting the temperature signal comprises measuring a temperature parameter of a component of the wearable glucose sensor.
在实施例10中,实施例8或9的主题可任选地被配置为使得确定补偿葡萄糖浓度水平包括在处理器上执行指令以接收葡萄糖信号和温度信号并且使用葡萄糖信号、温度信号和延迟参数来确定补偿葡萄糖浓度水平。In Example 10, the subject matter of Example 8 or 9 may optionally be configured such that determining the compensated glucose concentration level includes executing instructions on a processor to receive a glucose signal and a temperature signal and determine the compensated glucose concentration level using the glucose signal, the temperature signal, and a delay parameter.
在实施例11中,实施例8至10中的任一项或多项的主题可任选地包括将对应于温度参数的值存储在存储器电路中并且从存储器电路检索所存储的值以用于确定补偿葡萄糖浓度水平。In Example 11, the subject matter of any one or more of Examples 8 to 10 can optionally include storing a value corresponding to the temperature parameter in a memory circuit and retrieving the stored value from the memory circuit for use in determining the compensated glucose concentration level.
在实施例12中,实施例1至11中的任一项或多项的主题可任选地包括至少部分地基于补偿葡萄糖浓度水平来递送治疗。In Example 12, the subject matter of any one or more of Examples 1 to 11 can optionally include delivering therapy based at least in part on a compensating glucose concentration level.
主题(例如,系统)的一个实施例(例如,“实施例13”)可包括:被配置为生成表示葡萄糖浓度水平的葡萄糖信号的葡萄糖传感器电路;被配置为生成指示温度参数的温度信号的温度传感器电路;以及被配置为基于葡萄糖信号、温度信号和延迟参数来确定补偿葡萄糖浓度水平的处理器。One embodiment (e.g., “Embodiment 13”) of a subject matter (e.g., a system) may include: a glucose sensor circuit configured to generate a glucose signal representing a glucose concentration level; a temperature sensor circuit configured to generate a temperature signal indicating a temperature parameter; and a processor configured to determine a compensated glucose concentration level based on the glucose signal, the temperature signal, and a delay parameter.
在实施例14中,实施例13的主题可被配置为使得温度参数是温度、温度变化或温度偏移。In Example 14, the subject matter of Example 13 may be configured such that the temperature parameter is a temperature, a temperature change, or a temperature offset.
在实施例15中,实施例13或14的主题可被配置为使得延迟参数包括考虑了温度传感器电路处的第一温度变化与葡萄糖传感器电路处的第二温度变化之间的延迟的延迟时段。In Example 15, the subject matter of Example 13 or 14 may be configured such that the delay parameter includes a delay period that accounts for a delay between a first temperature change at the temperature sensor circuit and a second temperature change at the glucose sensor circuit.
在实施例16中,实施例15的主题可被配置为使得处理器基于使用温度参数确定的温度变化率来调整延迟时段。In Example 16, the subject matter of Example 15 may be configured such that the processor adjusts the delay period based on a rate of temperature change determined using a temperature parameter.
在实施例17中,实施例15或16的主题可被配置为使得处理器基于检测到的状况或所确定的状态来调整延迟时段。In Example 17, the subject matter of Example 15 or 16 may be configured such that the processor adjusts the delay period based on the detected condition or determined state.
在实施例18中,实施例13至17中的任一项或任何组合的主题可被配置为使得处理器执行指令以接收葡萄糖信号和温度信号并且应用延迟参数以确定补偿葡萄糖浓度水平。In Example 18, the subject matter of any one or any combination of Examples 13 to 17 may be configured such that a processor executes instructions to receive a glucose signal and a temperature signal and apply a delay parameter to determine a compensated glucose concentration level.
在实施例19中,实施例13至19中的任一项或任何组合的主题还可包括存储器电路,该存储器电路可被配置为使得系统将对应于温度参数的值存储在存储器电路中,并且处理器稍后从存储器检索所存储的值以用于确定补偿葡萄糖浓度水平。In Example 19, the subject matter of any one or any combination of Examples 13 to 19 may also include a memory circuit that can be configured such that the system stores a value corresponding to a temperature parameter in the memory circuit and the processor later retrieves the stored value from the memory for use in determining a compensated glucose concentration level.
在实施例20中,实施例13至19中的任一项或任何组合的主题可被配置为使得葡萄糖传感器电路包括可操作地耦合到被配置为生成葡萄糖信号的电子电路的电极和位于该电极的至少一部分上的膜,该膜包括被配置为在体内催化来自与膜接触的生物流体的葡萄糖和氧的反应的酶。In Example 20, the subject matter of any one or any combination of Examples 13 to 19 may be configured such that the glucose sensor circuit includes an electrode operably coupled to an electronic circuit configured to generate a glucose signal and a membrane located on at least a portion of the electrode, the membrane including an enzyme configured to catalyze a reaction of glucose and oxygen from a biological fluid in contact with the membrane in vivo.
确定温度补偿葡萄糖浓度水平的主题(例如,系统、设备和方法)的一个实施例(实施例21)可包括:接收葡萄糖传感器信号;接收温度参数信号;接收第三传感器信号;使用第三传感器信号评估温度参数信号以生成评估温度参数信号;以及基于评估温度参数信号和葡萄糖传感器信号来确定温度补偿葡萄糖浓度水平。One embodiment (Example 21) of the subject matter (e.g., systems, devices, and methods) of determining a temperature compensated glucose concentration level may include: receiving a glucose sensor signal; receiving a temperature parameter signal; receiving a third sensor signal; evaluating the temperature parameter signal using the third sensor signal to generate an estimated temperature parameter signal; and determining the temperature compensated glucose concentration level based on the evaluated temperature parameter signal and the glucose sensor signal.
在实施例22中,实施例21的主题可被配置为使得接收第三传感器信号包括接收心率信号。In Example 22, the subject matter of Example 21 may be configured such that receiving a third sensor signal includes receiving a heart rate signal.
在实施例23中,实施例21或22的主题可被配置为使得接收第三信号包括接收压力信号。In Example 23, the subject matter of Example 21 or 22 may be configured such that receiving the third signal includes receiving a pressure signal.
在实施例24中,实施例21至23中的任一项或任何组合的主题可被配置为使得接收第三信号包括接收活动信号。In Example 24, the subject matter of any one or any combination of Examples 21 to 23 may be configured such that receiving the third signal includes receiving an activity signal.
在实施例25中,实施例21至24中的任一项或任何组合的主题可被配置为使得接收第三传感器信号包括接收位置信号。In Example 25, the subject matter of any one or any combination of Examples 21 to 24 may be configured such that receiving the third sensor signal includes receiving a position signal.
在实施例26中,实施例21至25中的任一项或任何组合的主题可被配置为使得评估温度参数信号包括确定在具有已知温度特性的位置处的存在。In Example 26, the subject matter of any one or any combination of Examples 21 to 25 may be configured such that evaluating the temperature parameter signal includes determining the presence at a location having a known temperature characteristic.
在实施例27中,实施例21至26中的任一项或任何组合的主题可被配置为使得该方法包括确定在具有已知环境温度特性的位置处的存在。In Example 27, the subject matter of any one or any combination of Examples 21 to 26 may be configured such that the method includes determining presence at a location having known ambient temperature characteristics.
在实施例28中,实施例21至27中的任一项或任何组合的主题可被配置为使得该方法包括确定在具有浸入式水环境的位置处的存在。In Example 28, the subject matter of any one or any combination of Examples 21 to 27 may be configured such that the method includes determining presence at a location having an immersive water environment.
在实施例29中,实施例28的主题可被配置为使得浸入式水环境是水池或海滩。In Example 29, the subject matter of Example 28 may be configured such that the immersive water environment is a pool or a beach.
在实施例30中,实施例21至29中的任一项或任何组合的主题可被配置为使得接收第三传感器信号包括从环境温度传感器接收温度信息。In Example 30, the subject matter of any one or any combination of Examples 21 to 29 may be configured such that receiving the third sensor signal includes receiving temperature information from an ambient temperature sensor.
在实施例31中,实施例21至30中的任一项或任何组合的主题可被配置为使得接收第三传感器信号包括从可穿戴设备接收信息。In Example 31, the subject matter of any one or any combination of Examples 21 to 30 may be configured such that receiving the third sensor signal includes receiving information from a wearable device.
在实施例32中,实施例31的主题可被配置为使得接收第三传感器信号包括从手表接收信息。In Example 32, the subject matter of Example 31 may be configured such that receiving the third sensor signal includes receiving information from a watch.
在实施例33中,实施例21至32中的任一项或任何组合的主题可被配置为使得接收第三传感器信号包括从生理温度传感器接收温度信息。在一些实施例中,主题可包括具有温度传感器的手表或其他可穿戴设备。In Example 33, the subject matter of any one or any combination of Examples 21 to 32 may be configured such that receiving the third sensor signal includes receiving temperature information from a physiological temperature sensor. In some embodiments, the subject matter may include a watch or other wearable device with a temperature sensor.
在实施例34中,实施例21至33中的任一项或任何组合的主题可被配置为使得接收温度参数信号包括接收指示温度、温度变化或温度偏移的信号。In Example 34, the subject matter of any one or any combination of Examples 21 to 33 may be configured such that receiving a temperature parameter signal includes receiving a signal indicative of a temperature, a temperature change, or a temperature offset.
在实施例35中,实施例21至34中的任一项或任何组合的主题可被配置为使得接收第三信号包括接收加速度计信号。In Example 35, the subject matter of any one or any combination of Examples 21 to 34 may be configured such that receiving the third signal includes receiving an accelerometer signal.
在实施例36中,实施例21至35中的任一项或任何组合的主题还可包括使用第三信号检测锻炼。In Example 36, the subject matter of any one or any combination of Examples 21 to 35 may further include detecting exercise using a third signal.
在实施例37中,实施例21至36中的任一项或任何组合的主题可被配置为使得评估温度参数信号包括确定温度参数信号的变化与锻炼会话一致。In Example 37, the subject matter of any one or any combination of Examples 21 to 36 may be configured such that evaluating the temperature parameter signal includes determining that a change in the temperature parameter signal is consistent with an exercise session.
在实施例38中,实施例21至37中的任一项或任何组合的主题可被配置为使得评估温度参数信号包括确定温度参数信号与由于锻炼引起的升高体温的发生一致。In Example 38, the subject matter of any one or any combination of Examples 21 to 37 may be configured such that evaluating the temperature parameter signal includes determining that the temperature parameter signal is consistent with the occurrence of elevated body temperature due to exercise.
在实施例39中,实施例21至38中的任一项或任何组合的主题可被配置为使得确定温度补偿葡萄糖浓度水平包括将温度参数信号应用于锻炼模型。In Example 39, the subject matter of any one or any combination of Examples 21 to 38 may be configured such that determining the temperature compensated glucose concentration level comprises applying a temperature parameter signal to an exercise model.
在实施例40中,实施例21至39中的任一项或任何组合的主题可被配置为使得该方法包括当检测到锻炼并且温度参数信号的变化指示温度降低(其可例如表明在较冷温度环境或对流冷却环境中的锻炼)时应用锻炼模型。In Example 40, the subject matter of any one or any combination of Examples 21 to 39 may be configured such that the method includes applying an exercise model when exercise is detected and a change in the temperature parameter signal indicates a decrease in temperature (which may, for example, indicate exercise in a cooler temperature environment or a convection cooling environment).
在实施例41中,实施例21至40中的任一项或任何组合的主题可被配置为使得第三信号包括心率信号、呼吸信号、压力信号或活动信号,并且根据心率信号、呼吸信号、压力信号或活动信号中的上升来检测锻炼。In Example 41, the subject matter of any one or any combination of Examples 21 to 40 may be configured such that the third signal includes a heart rate signal, a breathing signal, a stress signal, or an activity signal, and exercise is detected based on a rise in the heart rate signal, the breathing signal, the stress signal, or the activity signal.
主题(例如,系统、设备和方法)的一个实施例(“实施例42”)是一种被配置为生成表示受者体内葡萄糖浓度的第一信号的葡萄糖传感器,其中该传感器包括:被配置为生成表示温度的第二信号的温度传感器;以及基于第三信号来评估第二信号并至少部分地基于第一信号和第二信号的评估来生成温度补偿葡萄糖浓度水平的处理器。One embodiment (“Embodiment 42”) of the subject matter (e.g., systems, devices, and methods) is a glucose sensor configured to generate a first signal representing a glucose concentration in a subject, wherein the sensor comprises: a temperature sensor configured to generate a second signal representing a temperature; and a processor that evaluates the second signal based on a third signal and generates a temperature compensated glucose concentration level based at least in part on the evaluation of the first signal and the second signal.
在实施例43中,实施例42的主题可被配置为使得处理器通过使用第三信号确证检测到的温度或温度变化来评估第二信号。In Example 43, the subject matter of Example 42 may be configured such that the processor evaluates the second signal by corroborating the detected temperature or temperature change using the third signal.
在实施例44中,实施例42或43的主题可被配置为使得处理器基于第三信号来确定状况或状态并基于该状况或状态来确证检测到的温度或温度变化。In Example 44, the subject matter of Example 42 or 43 may be configured such that the processor determines a condition or state based on the third signal and validates the detected temperature or temperature change based on the condition or state.
在实施例45中,实施例42至44中的任一项或任何组合的主题可被配置为使得状况或状态是位置、周围环境、活动状况或状态或生理状况。In Example 45, the subject matter of any one or any combination of Examples 42 to 44 may be configured such that the condition or state is a location, surrounding environment, activity condition or state, or a physiological condition.
在实施例46中,实施例42至45中的任一项或任何组合的主题可被配置为使得处理器至少部分地基于第三信号来暂停温度补偿。In Example 46, the subject matter of any one or any combination of Examples 42 to 45 may be configured such that the processor suspends temperature compensation based at least in part on the third signal.
在实施例47中,实施例42至46中的任一项或任何组合的主题可被配置为使得处理器至少部分地基于第三信号来检测锻炼。In Example 47, the subject matter of any one or any combination of Examples 42 to 46 may be configured such that the processor detects exercise based at least in part on the third signal.
在实施例48中,实施例47的主题可被配置为使得响应于检测到锻炼,处理器在第二信号指示温度下降的情况下仍暂停温度补偿可被配置为使得当受者在较冷(例如,较冷户外或对流冷却)环境中锻炼时,处理器避免不正确的温度补偿。In Example 48, the subject matter of Example 47 may be configured such that, in response to detecting exercise, the processor suspends temperature compensation even when the second signal indicates a drop in temperature. The subject matter of Example 47 may be configured such that the processor avoids incorrect temperature compensation when the recipient exercises in a cooler (e.g., cooler outdoors or convection cooled) environment.
在实施例49中,实施例42至48中的任一项或任何组合的主题可被配置为使得处理器至少部分地基于第三信号来指定温度补偿模型。In Example 49, the subject matter of any one or any combination of Examples 42 to 48 may be configured such that the processor specifies the temperature compensation model based at least in part on the third signal.
在实施例50中,实施例42至49中的任一项或任何组合的主题还可包括第三传感器,该第三传感器生成第三信号。In Example 50, the subject matter of any one or any combination of Examples 42 to 49 may further include a third sensor that generates a third signal.
在实施例51中,实施例42至50中的任一项或任何组合的主题可被配置为使得第三信号包括位置信息,并且处理器至少部分地基于位置信息来评估第二信号。In Example 51, the subject matter of any one or any combination of Examples 42 to 50 may be configured such that the third signal includes location information, and the processor evaluates the second signal based at least in part on the location information.
在实施例52中,实施例42至51中的任一项或任何组合的主题可被配置为使得第三信号包括活动信息,并且处理器至少部分地基于活动信息来评估第二信号。In Example 52, the subject matter of any one or any combination of Examples 42 to 51 may be configured such that the third signal includes activity information, and the processor evaluates the second signal based at least in part on the activity information.
在实施例53中,实施例42至52中的任一项或任何组合的主题可被配置为使得温度补偿葡萄糖传感器系统包括可穿戴连续葡萄糖监测仪,该可穿戴连续葡萄糖监测仪包括葡萄糖传感器和温度传感器。In Example 53, the subject matter of any one or any combination of Examples 42 to 52 may be configured such that the temperature compensated glucose sensor system includes a wearable continuous glucose monitor including a glucose sensor and a temperature sensor.
在实施例54中,实施例42至53中的任一项或任何组合的主题可被配置为使得温度补偿葡萄糖传感器系统包括活动传感器并且第三信号包括来自活动传感器的活动信息。In Example 54, the subject matter of any one or any combination of Examples 42 to 53 may be configured such that the temperature compensated glucose sensor system includes an activity sensor and the third signal includes activity information from the activity sensor.
在实施例55中,实施例42至54中的任一项或任何组合的主题可被配置为使得第三信号包括受者的心率、呼吸速率或压力。In Example 55, the subject matter of any one or any combination of Examples 42 to 54 may be configured such that the third signal includes the recipient's heart rate, breathing rate, or pressure.
在实施例56中,实施例42至55中的任一项或任何组合的主题可被配置为使得处理器基于心率、呼吸速率或压力的变化来检测锻炼。In Example 56, the subject matter of any one or any combination of Examples 42 to 55 may be configured such that the processor detects exercise based on changes in heart rate, breathing rate, or pressure.
在实施例57中,实施例42至56中的任一项或任何组合的主题可被配置为使得处理器至少部分地基于锻炼的检测来确证由第二信号指示的升高体温。In Example 57, the subject matter of any one or any combination of Examples 42-56 may be configured such that the processor validates the elevated body temperature indicated by the second signal based at least in part on the detection of exercise.
在实施例58中,实施例42至56中的任一项或任何组合的主题可被配置为使得处理器响应于检测到锻炼而减小、逐渐减小、限高或暂停温度补偿。In Example 58, the subject matter of any one or any combination of Examples 42 to 56 may be configured such that the processor reduces, tapers, caps, or suspends temperature compensation in response to detecting exercise.
在实施例59中,实施例42至58中的任一项或任何组合的主题可被配置为使得第三信号包括来自被配置为检测受者血液参数的光学传感器的信号。In Example 59, the subject matter of any one or any combination of Examples 42 to 58 may be configured such that the third signal comprises a signal from an optical sensor configured to detect a blood parameter of the recipient.
在实施例60中,实施例59的主题还可包括光学传感器,该光学传感器包括光源和光检测器,该光检测器被配置为在受者位于光学传感器下方的区域中检测血液流速或红细胞数目。In Example 60, the subject matter of Example 59 may further include an optical sensor including a light source and a light detector configured to detect a blood flow rate or a red blood cell count in a region of the subject located below the optical sensor.
主题(例如,系统、设备和方法)的一个实施例(“实施例61”)可包括通过以下方式对连续葡萄糖传感器进行温度补偿:从温度数据确定模式;从连续葡萄糖传感器接收葡萄糖信号,该葡萄糖信号指示葡萄糖浓度水平;以及至少部分地基于传感器葡萄糖信号和模式来确定温度补偿葡萄糖浓度水平。One embodiment (“Embodiment 61”) of the subject matter (e.g., systems, devices, and methods) may include temperature compensating a continuous glucose sensor by: determining a pattern from temperature data; receiving a glucose signal from the continuous glucose sensor, the glucose signal indicating a glucose concentration level; and determining a temperature compensated glucose concentration level based at least in part on the sensor glucose signal and the pattern.
在实施例62中,实施例61的主题可被配置为使得确定模式包括确定温度变化的模式,并且该方法包括根据模式来补偿葡萄糖浓度水平。In Example 62, the subject matter of Example 61 can be configured such that determining the pattern includes determining a pattern of temperature change, and the method includes compensating the glucose concentration level based on the pattern.
在实施例63中,实施例61或62的主题还可包括接收温度参数,将温度参数与模式进行比较,以及至少部分地基于该比较来确定温度补偿葡萄糖浓度水平。In Example 63, the subject matter of Example 61 or 62 may further include receiving a temperature parameter, comparing the temperature parameter to a pattern, and determining a temperature compensated glucose concentration level based at least in part on the comparison.
在实施例64中,实施例63的主题可被配置为使得模式包括与生理周期相关的温度模式。In Example 64, the subject matter of Example 63 may be configured such that the patterns include temperature patterns associated with physiological cycles.
在实施例65中,实施例63或64的主题可被配置为使得该方法包括基于与模式的比较来确定温度参数是否可靠并且在温度参数被确定为可靠时使用温度参数对葡萄糖浓度水平进行温度补偿。In Example 65, the subject matter of Example 63 or 64 may be configured such that the method includes determining whether the temperature parameter is reliable based on the comparison with the pattern and temperature compensating the glucose concentration level using the temperature parameter when the temperature parameter is determined to be reliable.
在实施例66中,实施例63至65中的任一项或任何组合的主题可被配置为使得该方法包括至少部分地基于温度参数与模式的比较来确定补偿程度。例如,补偿程度可基于所定义的范围或置信区间。In Example 66, the subject matter of any one or any combination of Examples 63 to 65 can be configured such that the method includes determining a degree of compensation based at least in part on a comparison of the temperature parameter to the pattern. For example, the degree of compensation can be based on a defined range or confidence interval.
在实施例67中,实施例61至66中的任一项或任何组合的主题可被配置为使得确定模式包括确定状况或状态以及确定温度补偿葡萄糖浓度水平至少部分地基于所确定的状况或状态。In Example 67, the subject matter of any one or any combination of Examples 61 to 66 may be configured such that the determining mode includes determining a condition or state and determining the temperature-compensated glucose concentration level based at least in part on the determined condition or state.
在实施例68中,实施例67的主题可被配置为使得确定状况或状态包括将温度参数应用于状态模型。In Example 68, the subject matter of Example 67 may be configured such that determining a condition or state includes applying a temperature parameter to a state model.
在实施例69中,实施例67或68的主题可被配置使得确定状况或状态包括将葡萄糖浓度水平、碳水化合物敏感性、时间、活动、心率、呼吸速率、姿势、胰岛素递送、进餐时间或进餐量中的一者或多者应用于状态模型。In Example 69, the subject matter of Example 67 or 68 may be configured such that determining a condition or state includes applying one or more of glucose concentration level, carbohydrate sensitivity, time, activity, heart rate, breathing rate, posture, insulin delivery, meal timing, or meal size to a state model.
在实施例70中,实施例67至69中的任一项或任何组合的主题可被配置为使得确定状况或状态包括确定锻炼状况或状态,该方法包括基于该锻炼状况或状态来调整基于温度补偿的模型。In Example 70, the subject matter of any one or any combination of Examples 67 to 69 may be configured such that determining a condition or state includes determining an exercise condition or state, the method including adjusting a temperature compensation based model based on the exercise condition or state.
主题(例如,系统、设备和方法)的一个实施例(“实施例71”)可包括:被配置为生成表示葡萄糖浓度水平的葡萄糖信号的葡萄糖传感器电路;被配置为生成指示温度参数的温度信号的温度传感器电路;以及接收葡萄糖信号和温度信号并至少部分地基于葡萄糖信号和从温度信号确定的模式来确定温度补偿葡萄糖浓度水平的处理器。One embodiment (“Embodiment 71”) of the subject matter (e.g., systems, devices, and methods) may include: a glucose sensor circuit configured to generate a glucose signal representing a glucose concentration level; a temperature sensor circuit configured to generate a temperature signal indicative of a temperature parameter; and a processor that receives the glucose signal and the temperature signal and determines a temperature-compensated glucose concentration level based at least in part on the glucose signal and a pattern determined from the temperature signal.
在实施例72中,实施例71的主题可被配置为使得处理器基于温度信号来确定温度参数,将温度参数与模式进行比较,以及至少部分地基于该比较来确定温度补偿葡萄糖浓度水平。In Example 72, the subject matter of Example 71 may be configured such that the processor determines a temperature parameter based on the temperature signal, compares the temperature parameter to the pattern, and determines a temperature compensated glucose concentration level based at least in part on the comparison.
在实施例73中,实施例71或72的主题可被配置为使得处理器基于与模式的比较来确定温度参数是否可靠以及在温度参数被确定为可靠时使用温度参数对葡萄糖浓度水平进行温度补偿。In Example 73, the subject matter of Example 71 or 72 may be configured such that the processor determines whether the temperature parameter is reliable based on the comparison with the pattern and uses the temperature parameter to temperature compensate the glucose concentration level when the temperature parameter is determined to be reliable.
在实施例74中,实施例72或73的主题可被配置为使得处理器至少部分地基于温度参数与模式的比较来确定补偿程度。In Example 74, the subject matter of Example 72 or 73 may be configured such that the processor determines the degree of compensation based at least in part on a comparison of the temperature parameter to the pattern.
在实施例75中,实施例71至74中的任一项或任何组合的主题可被配置为使得模式包括状态模型并且处理器至少部分地基于将温度参数应用于状态模型来确定温度补偿葡萄糖浓度水平。In Example 75, the subject matter of any one or any combination of Examples 71 to 74 may be configured such that the mode includes a state model and the processor determines the temperature compensated glucose concentration level based at least in part on applying the temperature parameter to the state model.
在实施例76中,实施例75的主题可被配置使得处理器通过另外将葡萄糖浓度水平、碳水化合物敏感性、时间、活动、心率、呼吸速率、姿势、胰岛素递送、进餐时间或进餐量中的一者或多者应用于状态模型来确定温度补偿葡萄糖浓度水平。In Example 76, the subject matter of Example 75 may be configured such that the processor determines temperature compensated glucose concentration level by additionally applying one or more of glucose concentration level, carbohydrate sensitivity, time, activity, heart rate, breathing rate, posture, insulin delivery, meal timing, or meal size to the state model.
在实施例77中,实施例75或76的主题可被配置为使得处理器确定锻炼状况或状态并且至少部分地基于锻炼状况或状态来调整温度补偿模型。In Example 77, the subject matter of Example 75 or 76 may be configured such that the processor determines an exercise condition or state and adjusts the temperature compensation model based at least in part on the exercise condition or state.
在实施例78中,实施例71至77中的任一项或任何组合的主题还可包括:包括可执行指令的存储器电路,该可执行指令用于从温度信号确定模式并基于模式确定温度补偿葡萄糖浓度水平;被配置为从存储器检索指令并执行指令的处理器。In Example 78, the subject matter of any one or any combination of Examples 71 to 77 may also include: a memory circuit including executable instructions for determining a pattern from a temperature signal and determining a temperature-compensated glucose concentration level based on the pattern; and a processor configured to retrieve instructions from the memory and execute the instructions.
在实施例79中,实施例71至78中的任一项或任何组合的主题可被配置为使得处理器经由通信电路从远程系统接收关于模式的信息。In Example 79, the subject matter of any one or any combination of Examples 71 to 78 may be configured such that the processor receives information about the mode from a remote system via the communication circuit.
在实施例80中,实施例79的主题可被配置为使得远程系统基于温度信号接收温度参数信息并从温度参数信息确定模式。In Example 80, the subject matter of Example 79 may be configured such that the remote system receives temperature parameter information based on the temperature signal and determines the mode from the temperature parameter information.
主题(例如,方法、系统或设备)的一个实施例(“实施例81”)可包括:从指示连续葡萄糖传感器系统的部件的温度参数的第一信号确定第一值;接收指示葡萄糖浓度水平的葡萄糖传感器信号,将第一值与参考值进行比较;以及基于葡萄糖传感器信号和第一信号与参考值的比较来确定温度补偿葡萄糖水平。One embodiment (“Embodiment 81”) of a subject matter (e.g., a method, system, or device) may include: determining a first value from a first signal indicating a temperature parameter of a component of a continuous glucose sensor system; receiving a glucose sensor signal indicating a glucose concentration level, comparing the first value to a reference value; and determining a temperature compensated glucose level based on the glucose sensor signal and the comparison of the first signal to the reference value.
在实施例82中,实施例81的主题可被配置为使得该方法包括基于第一值与参考值的变化而从参考状况或状态确定温度差,而不针对参考值校准温度。In Example 82, the subject matter of Example 81 may be configured such that the method includes determining a temperature difference from a reference condition or state based on a change in the first value from the reference value without calibrating the temperature to the reference value.
在实施例83中,实施例81或82的主题还可包括从第一信号确定参考值。In Example 83, the subject matter of Example 81 or 82 may further include determining a reference value from the first signal.
在实施例84中,实施例83的主题可被配置为使得连续葡萄糖传感器系统包括可插入受者中的葡萄糖传感器,并且在将葡萄糖传感器插入受者中之后的指定时段期间确定参考值。In Example 84, the subject matter of Example 83 may be configured such that the continuous glucose sensor system includes a glucose sensor insertable into a recipient, and the reference value is determined during a specified period of time after the glucose sensor is inserted into the recipient.
在实施例85中,实施例83或84的主题可被配置为使得连续葡萄糖传感器系统包括可插入受者中的葡萄糖传感器,并且在激活葡萄糖传感器之后的指定时段期间确定参考值。In Example 85, the subject matter of Example 83 or 84 may be configured such that the continuous glucose sensor system includes a glucose sensor insertable into a recipient, and the reference value is determined during a specified period of time after activation of the glucose sensor.
在实施例86中,实施例83至85中的任一项或任何组合的主题可被配置为使得参考值是在制造过程期间确定的。In Example 86, the subject matter of any one or any combination of Examples 83 to 85 may be configured such that the reference value is determined during the manufacturing process.
在实施例87中,实施例83至86中的任一项或任何组合的主题可被配置为使得该方法包括在第一时段期间确定参考值并且在第二时段期间确定第一值,第二时段发生在第一时段之后。参考值可以例如是长期平均值,而第一值可以是短期平均值。In Example 87, the subject matter of any one or any combination of Examples 83 to 86 may be configured such that the method includes determining a reference value during a first time period and determining the first value during a second time period, the second time period occurring after the first time period. The reference value may be, for example, a long-term average, and the first value may be a short-term average.
在实施例88中,实施例87的主题还可包括基于在第二时段之后的第三时段获得的一个或多个温度信号值来更新参考值。In Example 88, the subject matter of Example 87 may further include updating the reference value based on one or more temperature signal values obtained in a third period after the second period.
在实施例89中,实施例83至88中的任一项或任何组合的主题可被配置为使得确定参考值包括确定从第一信号获得的多个样本值的平均值。In Example 89, the subject matter of any one or any combination of Examples 83 to 88 may be configured such that determining the reference value includes determining an average of a plurality of sample values obtained from the first signal.
在实施例90中,实施例81至89中的任一项或任何组合的主题可被配置为使得温度补偿葡萄糖水平至少部分地基于温度依赖灵敏度值来确定,温度依赖灵敏度值基于第一值与参考值的偏差而变化。In Example 90, the subject matter of any one or any combination of Examples 81 to 89 may be configured such that the temperature compensated glucose level is determined based at least in part on a temperature dependent sensitivity value that varies based on a deviation of the first value from a reference value.
主题(例如,系统、设备和方法)的一个实施例(“实施例91”)可包括:被配置为生成表示葡萄糖浓度水平的葡萄糖信号的葡萄糖传感器电路;被配置为生成指示温度参数的第一信号的温度传感器电路;以及被配置为基于葡萄糖信号及第一信号与参考值的偏差来确定温度补偿葡萄糖水平的处理器。One embodiment (“Embodiment 91”) of the subject matter (e.g., systems, devices, and methods) may include: a glucose sensor circuit configured to generate a glucose signal representing a glucose concentration level; a temperature sensor circuit configured to generate a first signal indicative of a temperature parameter; and a processor configured to determine a temperature compensated glucose level based on the glucose signal and a deviation of the first signal from a reference value.
在实施例92中,实施例91的主题可被配置为使得处理器确定第一信号与参考值的偏差,而不确定对应于参考值的温度。In Example 92, the subject matter of Example 91 may be configured such that the processor determines a deviation of the first signal from a reference value without determining a temperature corresponding to the reference value.
在实施例93中,实施例91或92的主题可被配置为使得处理器基于第一信号来确定参考值。In Example 93, the subject matter of Example 91 or 92 may be configured such that the processor determines a reference value based on the first signal.
在实施例94中,实施例93的主题可被配置为使得处理器基于在第一时段期间从第一信号获得的多个样本值来确定参考值。In Example 94, the subject matter of Example 93 may be configured such that the processor determines the reference value based on a plurality of sample values obtained from the first signal during the first period.
在实施例95中,实施例93或94的主题可被配置为使得处理器基于在激活或插入葡萄糖传感器之后的指定时段期间从第一信号获得的多个样本值来确定参考值。In Example 95, the subject matter of Example 93 or 94 may be configured such that the processor determines the reference value based on a plurality of sample values obtained from the first signal during a designated period after activation or insertion of the glucose sensor.
在实施例96中,实施例93至95中的任一项或任何组合的主题可被配置为使得处理器循环地更新参考值。In Example 96, the subject matter of any one or any combination of Examples 93 to 95 may be configured such that the processor cyclically updates the reference value.
在实施例97中,实施例91至96中的任一项或任何组合的主题可被配置使得处理器将参考值确定为在指定时段期间从第一信号获得的多个样本值的平均值。In Example 97, the subject matter of any one or any combination of Examples 91 to 96 may be configured such that the processor determines the reference value as an average of a plurality of sample values obtained from the first signal during a specified period of time.
在实施例98中,实施例91至97中的任一项或任何组合的主题可被配置为使得处理器基于葡萄糖信号及基于与参考值的偏差而变化的温度依赖灵敏度值来确定温度补偿葡萄糖水平。In Example 98, the subject matter of any one or any combination of Examples 91 to 97 may be configured such that the processor determines a temperature compensated glucose level based on the glucose signal and a temperature dependent sensitivity value that varies based on a deviation from a reference value.
在实施例99中,实施例91至98中的任一项或任何组合的主题可被配置为使得处理器基于模型来确定温度补偿葡萄糖浓度水平,该模型可被配置为使得从葡萄糖信号确定的葡萄糖传感器值和基于第一信号的样本值被应用于模型。In Example 99, the subject matter of any one or any combination of Examples 91 to 98 may be configured such that the processor determines a temperature compensated glucose concentration level based on a model, which model may be configured such that a glucose sensor value determined from a glucose signal and a sample value based on the first signal are applied to the model.
在实施例100中,实施例91至100中的任一项或任何组合的主题还可包括存储器电路和位于该存储器电路上的所存储可执行指令,以基于葡萄糖信号及第一信号与参考值的偏差来确定温度补偿葡萄糖浓度水平。In Example 100, the subject matter of any one or any combination of Examples 91 to 100 may also include a memory circuit and executable instructions stored on the memory circuit to determine a temperature compensated glucose concentration level based on the glucose signal and the deviation of the first signal from a reference value.
主题(例如,方法、系统或设备)的一个实施例(“实施例101”)可包括:接收指示葡萄糖浓度水平的葡萄糖信号;接收指示温度参数的温度信号;检测状况或状态;以及至少部分地基于葡萄糖信号、温度信号和检测到的状况或状态来确定温度补偿葡萄糖浓度水平。One embodiment ("Embodiment 101") of a subject matter (e.g., a method, system, or device) may include: receiving a glucose signal indicating a glucose concentration level; receiving a temperature signal indicating a temperature parameter; detecting a condition or state; and determining a temperature compensated glucose concentration level based at least in part on the glucose signal, the temperature signal, and the detected condition or state.
在实施例102中,实施例101的主题可被配置为使得状况或状态包括葡萄糖信号的高变化率,其中在葡萄糖信号经历高变化率的时段期间减少或暂停温度补偿。In Example 102, the subject matter of Example 101 may be configured such that the condition or state includes a high rate of change of the glucose signal, wherein temperature compensation is reduced or suspended during periods when the glucose signal experiences a high rate of change.
在实施例103中,实施例101或102的主题可被配置为使得状况或状态包括温度信号的突然变化。In Example 103, the subject matter of Example 101 or 102 may be configured such that the condition or state includes a sudden change in the temperature signal.
在实施例104中,实施例103的主题可被配置为使得响应于检测到温度的突然变化而减少或暂停温度补偿。In Example 104, the subject matter of Example 103 may be configured such that temperature compensation is reduced or suspended in response to detecting a sudden change in temperature.
在实施例105中,实施例103或104的主题可被配置为使得确定温度补偿葡萄糖浓度水平包括使用先前温度信号值来代替与温度的突然变化相关联的温度信号值。In Example 105, the subject matter of Example 103 or 104 may be configured such that determining the temperature compensated glucose concentration level includes using a previous temperature signal value to replace the temperature signal value associated with the sudden change in temperature.
在实施例106中,实施例103至105中的任一项或任何组合的主题可被配置为使得确定温度补偿葡萄糖浓度水平包括基于先前温度信号值来确定外推温度信号值并且使用该外推温度信号值来代替与温度的突然变化相关联的温度信号值。In Example 106, the subject matter of any one or any combination of Examples 103 to 105 may be configured such that determining the temperature compensated glucose concentration level includes determining an extrapolated temperature signal value based on previous temperature signal values and using the extrapolated temperature signal value to replace the temperature signal value associated with the sudden change in temperature.
在实施例107中,实施例106的主题可被配置为使得响应于检测到温度的突然变化而调用延迟模型,该延迟模型指定用于确定温度补偿葡萄糖水平的延迟时段。In Example 107, the subject matter of Example 106 may be configured such that in response to detecting a sudden change in temperature, a delay model is invoked that specifies a delay period for determining a temperature compensated glucose level.
在实施例108中,实施例101至107中的任一项或任何组合的主题可被配置为使得状况或状态是在连续血糖监测系统上存在辐射热。In Example 108, the subject matter of any one or any combination of Examples 101 to 107 may be configured such that the condition or state is the presence of radiant heat on the continuous glucose monitoring system.
在实施例109中,实施例101至108中的任一项或任何组合的主题可被配置为使得状况或状态是发热,其中响应于检测到发热而减少或暂停温度补偿。In Example 109, the subject matter of any one or any combination of Examples 101 to 108 may be configured such that the condition or state is fever, wherein temperature compensation is reduced or suspended in response to detecting fever.
在实施例110中,实施例109的主题可被配置为使得状况或状态包括锻炼。In Example 110, the subject matter of Example 109 may be configured such that the condition or state includes exercise.
在实施例111中,实施例110的主题可被配置为使得该方法包括在检测到锻炼时减小、逐渐减小、限高或暂停温度补偿。In Example 111, the subject matter of Example 110 may be configured such that the method includes reducing, tapering, capping, or pausing temperature compensation when exercise is detected.
在实施例112中,实施例101至111中的任一项或任何组合的主题可被配置为使得方法包括使用线性模型来确定温度补偿葡萄糖浓度水平。In Example 112, the subject matter of any one or any combination of Examples 101 to 111 can be configured such that the method includes determining the temperature compensated glucose concentration level using a linear model.
在实施例113中,实施例112的主题还可包括接收血糖校准值,其中在接收到血糖校准值时更新温度补偿增益和偏移。In Example 113, the subject matter of Example 112 may further include receiving a blood glucose calibration value, wherein the temperature compensation gain and offset are updated when the blood glucose calibration value is received.
在实施例114中,实施例101至113中的任一项或任何组合的主题可被配置为使得方法包括使用时间序列模型来确定温度补偿葡萄糖浓度水平。In Example 114, the subject matter of any one or any combination of Examples 101 to 113 may be configured such that the method includes determining the temperature compensated glucose concentration level using a time series model.
在实施例115中,实施例101至114中的任一项或任何组合的主题可被配置为使得方法包括使用偏微分方程式来确定温度补偿葡萄糖浓度水平。In Example 115, the subject matter of any one or any combination of Examples 101 to 114 can be configured such that the method includes determining the temperature compensated glucose concentration level using a partial differential equation.
在实施例116中,实施例101至115中的任一项或任何组合的主题可被配置为使得方法包括使用概率模型来确定温度补偿葡萄糖浓度水平。In Example 116, the subject matter of any one or any combination of Examples 101 to 115 can be configured such that the method includes determining the temperature compensated glucose concentration level using a probabilistic model.
在实施例117中,实施例101至116中的任一项或任何组合的主题可被配置为使得方法包括使用状态模型来确定温度补偿葡萄糖浓度水平。In Example 117, the subject matter of any one or any combination of Examples 101 to 116 can be configured such that the method includes determining the temperature compensated glucose concentration level using a state model.
在实施例118中,实施例101至117中的任一项或任何组合的主题可被配置为使得状况或状态包括体重指数(BMI)值。In Example 118, the subject matter of any one or any combination of Examples 101 to 117 may be configured such that the condition or state includes a body mass index (BMI) value.
在实施例119中,实施例101至118中的任一项或任何组合的主题可被配置为使得该方法包括使用温度信号来确定长期平均值,其中温度补偿葡萄糖浓度水平是使用该长期平均值确定的。In Example 119, the subject matter of any one or any combination of Examples 101 to 118 can be configured such that the method includes determining a long-term average using the temperature signal, wherein the temperature compensated glucose concentration level is determined using the long-term average.
在实施例120中,实施例101至119中的任一项或任何组合的主题可被配置为使得从连续葡萄糖传感器接收指示状况或状态的葡萄糖信号,并且状况或状态是连续葡萄糖传感器上的压迫。In Example 120, the subject matter of any one or any combination of Examples 101 to 119 may be configured such that a glucose signal indicative of a condition or state is received from a continuous glucose sensor, and the condition or state is stress on the continuous glucose sensor.
在实施例121中,实施例120的主题可被配置为使得至少部分地基于葡萄糖信号的快速下降来检测压迫。In Example 121, the subject matter of Example 120 may be configured such that stress is detected based at least in part on a rapid drop in the glucose signal.
在实施例122中,实施例120或121的主题可被配置为使得状况或状态是睡眠期间的压迫。In Example 122, the subject matter of Example 120 or 121 may be configured such that the condition or state is stress during sleep.
在实施例123中,实施例101至122中的任一项或任何组合的主题可被配置为使得状况或状态是睡眠。In Example 123, the subject matter of any one or any combination of Examples 101 to 122 may be configured such that the condition or state is sleep.
在实施例124中,实施例123的主题,其中使用温度、姿势、活动和心率中的一者或多者来检测睡眠,并且该方法包括基于检测到的睡眠来应用指定的葡萄糖警报触发。In Example 124, the subject matter of Example 123, wherein sleep is detected using one or more of temperature, posture, activity, and heart rate, and the method includes applying a specified glucose alarm trigger based on the detected sleep.
在实施例125中,实施例101至124中的任一项或任何组合的主题还可包括递送胰岛素治疗,其中至少部分地基于温度补偿葡萄糖水平来确定治疗。In Example 125, the subject matter of any one or any combination of Examples 101-124 may further include delivering insulin therapy, wherein the therapy is determined based at least in part on temperature compensated glucose levels.
主题(例如,系统、设备和方法)的实施例(“实施例126”)可包括:被配置为生成表示葡萄糖浓度水平的葡萄糖信号的葡萄糖传感器电路;被配置为生成指示温度参数的温度信号的温度传感器电路;以及被配置为基于葡萄糖信号、温度信号和检测到的状况或状态来确定补偿葡萄糖浓度水平的处理器。An embodiment (“Embodiment 126”) of the subject matter (e.g., systems, devices, and methods) may include: a glucose sensor circuit configured to generate a glucose signal representing a glucose concentration level; a temperature sensor circuit configured to generate a temperature signal indicative of a temperature parameter; and a processor configured to determine a compensated glucose concentration level based on the glucose signal, the temperature signal, and a detected condition or state.
在实施例127中,实施例126的主题可被配置为使得状况或状态包括葡萄糖信号的高变化率,并且处理器在葡萄糖信号的高变化率时段期间减小、暂停、逐渐减小或限高温度补偿。In Example 127, the subject matter of Example 126 may be configured such that the condition or state includes a high rate of change of the glucose signal, and the processor reduces, suspends, tapers, or caps temperature compensation during periods of high rate of change of the glucose signal.
在实施例128中,实施例126或127的主题可被配置为使得状况或状态包括温度信号的突然变化,并且可被配置为使得处理器响应于检测到温度的突然变化而减小、暂停、逐渐减小或限高温度补偿。In Example 128, the subject matter of Example 126 or 127 may be configured such that the condition or state includes a sudden change in the temperature signal, and may be configured such that the processor reduces, suspends, gradually reduces, or limits temperature compensation in response to detecting the sudden change in temperature.
在实施例129中,实施例126至128中的任一项或任何组合的主题可被配置为使得状况或状态包括锻炼,并且可被配置为使得当检测到锻炼时处理器减小、逐渐减小、限高或暂停温度补偿。In Example 129, the subject matter of any one or any combination of Examples 126 to 128 may be configured such that the condition or state includes exercise, and may be configured such that the processor reduces, tapers, caps, or suspends temperature compensation when exercise is detected.
在实施例130中,实施例126至129中的任一项或任何组合的主题还可包括被配置为检测连续血糖监测系统上的辐射热的第二温度传感器电路,并且其中检测到的状况或状态包括由第二温度传感器电路检测到的辐射热。In Example 130, the subject matter of any one or any combination of Examples 126 to 129 may also include a second temperature sensor circuit configured to detect radiant heat on the continuous glucose monitoring system, and wherein the detected condition or state includes radiant heat detected by the second temperature sensor circuit.
主题(例如,设备、系统或方法)的一个实施例(“实施例131”)可包括:具有被配置用于体内插入受者的远侧端部和被配置用于操作地耦合到电路的近侧端部的细长部分;以及位于细长部分的近侧端部处的温度传感器。One embodiment (“Embodiment 131”) of a subject matter (e.g., a device, system, or method) may include: an elongated portion having a distal end configured for insertion into a recipient within the body and a proximal end configured for operative coupling to a circuit; and a temperature sensor located at the proximal end of the elongated portion.
在实施例132中,实施例131的主题可被配置为使得温度传感器包括热敏电阻器。In Example 132, the subject matter of Example 131 may be configured such that the temperature sensor includes a thermistor.
在实施例133中,实施例131或132的主题可被配置为使得温度传感器包括温度可变电阻涂层。In Example 133, the subject matter of Example 131 or 132 may be configured such that the temperature sensor includes a temperature variable resistance coating.
在实施例134中,实施例131至133中的任一项或任何组合的主题可被配置为使得温度传感器包括热电偶。In Example 134, the subject matter of any one or any combination of Examples 131 to 133 may be configured such that the temperature sensor includes a thermocouple.
在实施例135中,实施例134的主题可被配置为使得细长部分包括从近侧端部延伸到远侧端部的第一线材,并且热电偶包括第一线材和接合到第一线材以形成热电偶的第二线材。In Example 135, the subject matter of Example 134 can be configured such that the elongated portion includes a first wire extending from a proximal end to a distal end, and the thermocouple includes the first wire and a second wire joined to the first wire to form the thermocouple.
在实施例136中,实施例135的主题可被配置为使得第一线材是钽或钽合金并且第二线材是铂或铂合金。In Example 136, the subject matter of Example 135 may be configured such that the first wire is tantalum or a tantalum alloy and the second wire is platinum or a platinum alloy.
在实施例137中,实施例135或136的主题还可包括耦合到葡萄糖传感器的发射器,该发射器上的第一电触点耦合到第一线材并且该发射器上的第二电触点耦合到第二线材。In Example 137, the subject matter of Example 135 or 136 may further include a transmitter coupled to the glucose sensor, a first electrical contact on the transmitter coupled to the first wire and a second electrical contact on the transmitter coupled to the second wire.
主题(例如,方法、系统或设备)的一个实施例(“实施例138”)可包括:接收温度信号的校准值;从温度传感器接收指示温度参数的温度信号;从连续葡萄糖传感器接收指示葡萄糖浓度水平的葡萄糖信号;以及至少部分地基于葡萄糖信号、温度信号和校准值来确定温度补偿葡萄糖浓度水平。One embodiment (“Embodiment 138”) of a subject matter (e.g., a method, system, or device) may include: receiving a calibration value for a temperature signal; receiving a temperature signal indicating a temperature parameter from a temperature sensor; receiving a glucose signal indicating a glucose concentration level from a continuous glucose sensor; and determining a temperature compensated glucose concentration level based at least in part on the glucose signal, the temperature signal, and the calibration value.
在实施例139中,实施例138的主题可被配置为使得接收温度信号的校准值包括在具有已知温度的制造步骤期间获得校准。In Example 139, the subject matter of Example 138 may be configured such that receiving a calibration value for the temperature signal includes obtaining a calibration during a manufacturing step having a known temperature.
在实施例140中,实施例138或139的主题可被配置为使得接收温度信号的校准值包括在将连续葡萄糖传感器插入受者中之后的指定时段期间获得温度。In Example 140, the subject matter of Example 138 or 139 may be configured such that receiving a calibration value of the temperature signal includes obtaining the temperature during a specified period of time after the continuous glucose sensor is inserted into the recipient.
主题(例如,方法、系统或设备)的一个实施例(“实施例141”)可包括接收指示受者身上的连续葡萄糖传感器的部件的温度的温度信号,以及至少部分地基于接收到的温度信号来确定受者身上的连续葡萄糖传感器的解剖位置。One embodiment ("Embodiment 141") of a subject matter (e.g., a method, system, or device) may include receiving a temperature signal indicative of a temperature of a component of a continuous glucose sensor on a recipient, and determining an anatomical location of the continuous glucose sensor on the recipient based at least in part on the received temperature signal.
在实施例142中,实施例141的主题可被配置为使得至少部分地基于感测温度来确定解剖位置。In Example 142, the subject matter of Example 141 may be configured such that the anatomical location is determined based at least in part on sensed temperature.
在实施例143中,实施例141或142的主题可被配置为使得至少部分地基于温度信号的可变性来确定解剖位置。In Example 143, the subject matter of Example 141 or 142 may be configured such that the anatomical location is determined based at least in part on the variability of the temperature signal.
主题(例如,方法、系统或设备)的一个实施例(“实施例144”)可包括:从连续葡萄糖监测仪上的温度传感器接收指示温度参数的温度信号;以及从温度信号确定连续葡萄糖监测仪被重启。One embodiment ("Embodiment 144") of a subject matter (eg, a method, system, or apparatus) may include: receiving a temperature signal indicative of a temperature parameter from a temperature sensor on a continuous glucose monitor; and determining from the temperature signal that the continuous glucose monitor was restarted.
在实施例145中,实施例144的主题可被配置为使得从温度信号确定连续葡萄糖监测仪被重启包括将传感器启动之前的第一温度信号值与传感器启动之后的第二温度信号值进行比较,并且在比较满足相似性条件时宣告连续葡萄糖监测仪被重启。In Example 145, the subject matter of Example 144 may be configured such that determining from the temperature signal that the continuous glucose monitor is restarted includes comparing a first temperature signal value before sensor activation with a second temperature signal value after sensor activation, and declaring that the continuous glucose monitor is restarted when the comparison satisfies a similarity condition.
在实施例146中,实施例144或145的主题可被配置为使得相似性条件是温度范围。In Example 146, the subject matter of Example 144 or 145 can be configured such that the similarity condition is a temperature range.
主题(例如,系统、设备和方法)的一个实施例(“实施例147”)可包括:被配置为生成表示葡萄糖浓度水平的葡萄糖信号的葡萄糖传感器电路;被配置为生成指示温度参数的温度信号的温度传感器电路;被配置为偏转来自温度传感器电路的热的热偏转器;以及被配置为至少部分地基于葡萄糖信号和温度信号来确定补偿葡萄糖浓度水平的处理器。One embodiment (“Embodiment 147”) of the subject matter (e.g., systems, devices, and methods) may include: a glucose sensor circuit configured to generate a glucose signal representing a glucose concentration level; a temperature sensor circuit configured to generate a temperature signal indicative of a temperature parameter; a heat deflector configured to deflect heat from the temperature sensor circuit; and a processor configured to determine a compensated glucose concentration level based at least in part on the glucose signal and the temperature signal.
主题(例如,系统、设备和方法)的一个实施例(“实施例148”)可包括:被配置为生成表示受者的葡萄糖浓度水平的葡萄糖信号的葡萄糖传感器电路;被配置为生成指示靠近受者的第一温度参数的第一温度信号的第一温度传感器电路;被配置为生成指示第二温度参数的第二温度信号的第二温度传感器电路;以及被配置为至少部分地基于葡萄糖信号、第一温度信号和第二温度信号来确定补偿葡萄糖浓度水平的处理器。One embodiment (“Embodiment 148”) of the subject matter (e.g., systems, devices, and methods) may include: a glucose sensor circuit configured to generate a glucose signal representing a glucose concentration level of a recipient; a first temperature sensor circuit configured to generate a first temperature signal indicating a first temperature parameter proximate to the recipient; a second temperature sensor circuit configured to generate a second temperature signal indicating a second temperature parameter; and a processor configured to determine a compensated glucose concentration level based at least in part on the glucose signal, the first temperature signal, and the second temperature signal.
在实施例149中,实施例148的主题可被配置为使得处理器部分地基于第一温度传感器电路与第二温度传感器电路之间的温度梯度来确定补偿葡萄糖浓度水平。In Example 149, the subject matter of Example 148 may be configured such that the processor determines the compensated glucose concentration level based in part on a temperature gradient between the first temperature sensor circuit and the second temperature sensor circuit.
在实施例150中,实施例148或149的主题可被配置为使得处理器部分地基于第一温度传感器电路与第二温度传感器电路之间的热通量的估计值来确定补偿葡萄糖浓度水平。In Example 150, the subject matter of Example 148 or 149 may be configured such that the processor determines the compensated glucose concentration level based in part on an estimate of the heat flux between the first temperature sensor circuit and the second temperature sensor circuit.
在实施例151中,实施例148至150中的任一项或任何组合的主题可被配置为使得第二温度电路被配置为生成指示环境温度的温度信号。In Example 151, the subject matter of any one or any combination of Examples 148 to 150 may be configured such that the second temperature circuit is configured to generate a temperature signal indicative of an ambient temperature.
在实施例152中,实施例148至151中的任一项或任何组合的主题可被配置为使得处理器被配置为生成指示耦合到葡萄糖传感器电路的发射器的温度的温度信号。In Example 152, the subject matter of any one or any combination of Examples 148 to 151 may be configured such that the processor is configured to generate a temperature signal indicative of a temperature of a transmitter coupled to the glucose sensor circuit.
主题(例如,方法、设备或系统)的一个实施例(“实施例153”)可包括:从葡萄糖传感器接收表示受者的葡萄糖浓度水平的葡萄糖信号;接收指示靠近受者或葡萄糖传感器的第一温度参数的第一温度信号;接收指示第二温度参数的第二温度信号;以及至少部分地基于葡萄糖信号、第一温度信号和第二温度信号来确定补偿葡萄糖浓度水平。One embodiment (“Embodiment 153”) of a subject matter (e.g., a method, apparatus, or system) may include: receiving a glucose signal from a glucose sensor representing a glucose concentration level of a recipient; receiving a first temperature signal indicating a first temperature parameter proximate to the recipient or the glucose sensor; receiving a second temperature signal indicating a second temperature parameter; and determining a compensated glucose concentration level based at least in part on the glucose signal, the first temperature signal, and the second temperature signal.
在实施例154中,实施例153的主题可被配置为使得从耦合到葡萄糖传感器的第一温度传感器接收第一温度信号,从耦合到葡萄糖传感器的第二温度传感器接收第二温度信号。In Example 154, the subject matter of Example 153 may be configured such that a first temperature signal is received from a first temperature sensor coupled to the glucose sensor, and a second temperature signal is received from a second temperature sensor coupled to the glucose sensor.
在实施例155中,实施例154的主题可被配置为使得至少部分地基于第一温度传感器与第二温度传感器之间的温度梯度来确定补偿葡萄糖浓度水平。In Example 155, the subject matter of Example 154 may be configured such that the compensated glucose concentration level is determined based at least in part on a temperature gradient between the first temperature sensor and the second temperature sensor.
在实施例156中,实施例154或155的主题可被配置为使得至少部分地基于第一温度传感器与第二温度传感器之间的热通量来确定补偿葡萄糖浓度水平。In Example 156, the subject matter of Example 154 or 155 may be configured such that the compensated glucose concentration level is determined based at least in part on a heat flux between the first temperature sensor and the second temperature sensor.
在实施例157中,实施例154至156中的任一项或任何组合的主题还可包括检测第一温度信号的上升和第二温度信号的下降以及基于检测到的上升和下降来调整温度补偿模型。In Example 157, the subject matter of any one or any combination of Examples 154 to 156 may further include detecting a rise in the first temperature signal and a fall in the second temperature signal and adjusting the temperature compensation model based on the detected rise and fall.
在实施例158中,实施例157的主题可被配置为使得该方法包括至少部分地基于检测到的上升和下降来检测锻炼(例如,户外锻炼或对流冷却锻炼)以及基于检测到锻炼来调整或应用温度补偿模型。In Example 158, the subject matter of Example 157 may be configured such that the method includes detecting exercise (e.g., outdoor exercise or convection cooling exercise) based at least in part on the detected ascents and descents and adjusting or applying a temperature compensation model based on the detected exercise.
在实施例159中,实施例154至158中的任一项或任何组合的主题还可包括至少部分地基于第二温度信号来确定温度变化是由于辐射热或环境热量所致以及基于该确定来调整或应用温度补偿模型。In Example 159, the subject matter of any one or any combination of Examples 154 to 158 may also include determining, based at least in part on the second temperature signal, whether the temperature change is due to radiant heat or ambient heat and adjusting or applying a temperature compensation model based on the determination.
主题(例如,方法、系统或设备)的一个实施例(“实施例160”)可通过以下方式来确定葡萄糖浓度水平:接收温度传感器信号;接收葡萄糖传感器信号;将温度传感器信号和葡萄糖传感器信号应用于模型;以及从模型接收与葡萄糖浓度水平有关的输出,其中模型对葡萄糖传感器信号的多个温度依赖影响进行补偿。One embodiment (“Embodiment 160”) of a subject matter (e.g., a method, system, or apparatus) may determine a glucose concentration level by: receiving a temperature sensor signal; receiving a glucose sensor signal; applying the temperature sensor signal and the glucose sensor signal to a model; and receiving an output related to the glucose concentration level from the model, wherein the model compensates for multiple temperature-dependent effects of the glucose sensor signal.
在实施例161中,实施例161的主题可被配置为使得输出是补偿葡萄糖浓度水平。In Example 161, the subject matter of Example 161 can be configured such that the output is a compensated glucose concentration level.
在实施例162中,实施例161的主题还可包括基于补偿葡萄糖浓度值递送治疗。In Example 162, the subject matter of Example 161 can further include delivering therapy based on the compensated glucose concentration value.
在实施例163中,实施例161的主题可被配置为使得模型对传感器灵敏度、局部葡萄糖水平、隔室偏差和非酶偏差中的两个或更多个进行补偿。在一些示例中,模型可对传感器灵敏度、局部葡萄糖水平、隔室偏差和非酶偏差中的三个或更多个进行补偿。在一些示例中,除了传感器灵敏度、局部葡萄糖水平、隔室偏差和非酶偏差之外,模型还可考虑另外的温度依赖因素。In Example 163, the subject matter of Example 161 can be configured so that the model compensates for two or more of sensor sensitivity, local glucose level, compartment bias, and non-enzyme bias. In some examples, the model can compensate for three or more of sensor sensitivity, local glucose level, compartment bias, and non-enzyme bias. In some examples, in addition to sensor sensitivity, local glucose level, compartment bias, and non-enzyme bias, the model can also consider additional temperature-dependent factors.
主题(例如,方法、系统或设备)的一个实施例(实施例164)可包括:通过确定指示传感器部件的电导率的第一值来确定估计分析物值水平;确定指示传感器部件的电导率的第二值;接收表示受者的估计分析物值的信号;以及至少部分地基于第二值与第一值的比较来确定补偿估计分析物值水平。第一值和第二值可以例如是电导率或电阻或电阻抗。One embodiment (Embodiment 164) of a subject matter (e.g., a method, system, or device) may include: determining an estimated analyte value level by determining a first value indicative of conductivity of a sensor component; determining a second value indicative of conductivity of the sensor component; receiving a signal representing an estimated analyte value of a subject; and determining a compensated estimated analyte value level based at least in part on a comparison of the second value to the first value. The first value and the second value may be, for example, conductivity or resistance or electrical impedance.
在实施例165中,实施例164的主题可被配置为使得确定第一值包括确定平均电导率。In Example 165, the subject matter of Example 164 may be configured such that determining the first value includes determining an average conductivity.
在实施例166中,实施例164或实施例165的主题可任选地包括确定与第一值时间相关的第一估计皮下温度以及确定与第二值时间相关的第二估计皮下温度,其中至少部分地基于第二值与第一值的比较来确定第二估计皮下温度。In Example 166, the subject matter of Example 164 or Example 165 may optionally include determining a first estimated subcutaneous temperature associated with a first value time and determining a second estimated subcutaneous temperature associated with a second value time, wherein the second estimated subcutaneous temperature is determined at least in part based on a comparison of the second value to the first value.
在实施例167中,实施例166的主题可任选地包括确定与第二值时间相关的第三估计皮下温度,基于第三估计皮下温度与第二估计皮下温度的比较来确定是否满足某个条件,以及响应于满足该条件来宣告错误或触发重置。In Example 167, the subject matter of Example 166 may optionally include determining a third estimated subcutaneous temperature associated with the second value time, determining whether a condition is satisfied based on a comparison of the third estimated subcutaneous temperature with the second estimated subcutaneous temperature, and declaring an error or triggering a reset in response to satisfying the condition.
在实施例168中,实施例167的主题可任选地包括触发重置,其中触发重置包括基于第三估计温度和第二值或基于第三电导率值和与第三电导率值时间相关的第四估计皮下温度来确定后续估计皮下温度。In Example 168, the subject matter of Example 167 can optionally include triggering a reset, wherein triggering a reset includes determining a subsequent estimated subcutaneous temperature based on the third estimated temperature and the second value or based on the third conductivity value and a fourth estimated subcutaneous temperature time-correlated with the third conductivity value.
在实施例169中,实施例164至168中的任一项或任何组合的主题可任选地包括补偿电导率值的漂移。In Example 169, the subject matter of any one or any combination of Examples 164 to 168 can optionally include compensating for drift in conductivity values.
在实施例170中,实施例164至169中的任一项或任何组合的主题可任选地被配置为使得补偿漂移包括应用滤波器。In Example 170, the subject matter of any one or any combination of Examples 164 to 169 may optionally be configured such that compensating for drift includes applying a filter.
主题(例如,方法、系统或设备)的一个实施例(实施例171)可包括:确定指示传感器部件在第一时间的电导率的第一值;确定指示传感器部件在稍后时间的电导率的第二值;以及至少部分地基于第二值与第一值的比较来确定估计皮下温度。One embodiment (Embodiment 171) of a subject matter (e.g., a method, system, or device) may include: determining a first value indicative of conductivity of a sensor component at a first time; determining a second value indicative of conductivity of the sensor component at a later time; and determining an estimated subcutaneous temperature based at least in part on a comparison of the second value to the first value.
主题(例如,方法、系统或设备)的一个实施例(实施例172)可包括:由分析物传感器系统从分析物传感器系统的系统温度传感器获取第一数据;将第一数据应用于经训练的温度补偿模型,该经训练的温度补偿模型用于生成补偿温度值;以及至少部分地基于补偿温度值来确定估计分析物值。One embodiment (Example 172) of a subject matter (e.g., a method, system, or device) may include: acquiring, by an analyte sensor system, first data from a system temperature sensor of the analyte sensor system; applying the first data to a trained temperature compensation model, the trained temperature compensation model being used to generate a compensated temperature value; and determining an estimated analyte value based at least in part on the compensated temperature value.
在实施例173中,实施例172的主题可被配置为使得第一数据包括来自系统温度传感器的未补偿温度值或原始温度传感器数据中的至少一者。In Example 173, the subject matter of Example 172 may be configured such that the first data includes at least one of an uncompensated temperature value from a system temperature sensor or raw temperature sensor data.
在实施例174中,实施例172至173中的任一项或多项的主题可被配置为使得经训练的温度补偿模型响应于第一数据返回第一温度传感器参数并且还可包括至少部分地基于第一温度传感器参数生成补偿温度值。In Example 174, the subject matter of any one or more of Examples 172 to 173 may be configured such that the trained temperature compensation model returns first temperature sensor parameters in response to the first data and may further include generating a compensated temperature value based at least in part on the first temperature sensor parameters.
在实施例175中,实施例172至174中的任一项或多项的主题可被配置为使得经训练的温度补偿模型返回系统温度传感器偏移和系统温度传感器斜率,并且还包括从系统温度传感器接收原始传感器数据;以及至少部分地基于原始传感器数据、系统温度传感器偏移和系统温度传感器斜率来生成补偿温度值。In Example 175, the subject matter of any one or more of Examples 172 to 174 may be configured such that a trained temperature compensation model returns a system temperature sensor offset and a system temperature sensor slope, and also includes receiving raw sensor data from the system temperature sensor; and generating a compensated temperature value based at least in part on the raw sensor data, the system temperature sensor offset, and the system temperature sensor slope.
主题(例如,方法、系统或设备)的一个实施例(实施例176)可包括:分析物传感器;系统温度传感器;以及控制电路。该控制电路可被配置为执行包括以下的操作:从分析物传感器系统的系统温度传感器获取第一数据;将第一数据应用于经训练的温度补偿模型,该经训练的温度补偿模型用于生成补偿温度值;以及至少部分地基于补偿温度值来确定估计分析物值。An embodiment (Embodiment 176) of a subject matter (e.g., a method, system, or device) may include: an analyte sensor; a system temperature sensor; and a control circuit. The control circuit may be configured to perform operations including: acquiring first data from a system temperature sensor of an analyte sensor system; applying the first data to a trained temperature compensation model, the trained temperature compensation model being used to generate a compensated temperature value; and determining an estimated analyte value based at least in part on the compensated temperature value.
在实施例177中,实施例176的主题可被配置为使得第一数据包括来自系统温度传感器的未补偿温度值或原始温度传感器数据中的至少一者。In Example 177, the subject matter of Example 176 may be configured such that the first data includes at least one of an uncompensated temperature value from a system temperature sensor or raw temperature sensor data.
在实施例178中,实施例176至177中的任一项或多项的主题可被配置为使得经训练的温度补偿模型响应于第一数据返回第一温度传感器参数并且还可包括至少部分地基于第一温度传感器参数生成补偿温度值。In Example 178, the subject matter of any one or more of Examples 176 to 177 may be configured such that the trained temperature compensation model returns first temperature sensor parameters in response to the first data and may further include generating a compensated temperature value based at least in part on the first temperature sensor parameters.
在实施例179中,实施例176至178中的任一项或多项的主题可被配置为使得经训练的温度补偿模型返回系统温度传感器偏移和系统温度传感器斜率,并且还可包括从系统温度传感器接收原始传感器数据;以及至少部分地基于原始传感器数据、系统温度传感器偏移和系统温度传感器斜率来生成补偿温度值。In Example 179, the subject matter of any one or more of Examples 176 to 178 may be configured such that a trained temperature compensation model returns a system temperature sensor offset and a system temperature sensor slope, and may also include receiving raw sensor data from the system temperature sensor; and generating a compensated temperature value based at least in part on the raw sensor data, the system temperature sensor offset, and the system temperature sensor slope.
在实施例180中,实施例176至179中的任一项或多项的主题还可包括包含系统温度传感器的专用集成电路(ASIC)。In Example 180, the subject matter of any one or more of Examples 176 to 179 may further include an application specific integrated circuit (ASIC) including a system temperature sensor.
主题(例如,方法、系统或设备)的一个实施例(实施例181)可包括确定温度补偿葡萄糖浓度水平。该确定可包括:接收葡萄糖传感器信号;接收温度参数信号;至少部分地基于葡萄糖传感器信号或温度参数信号来检测锻炼状况或状态;以及修改应用于葡萄糖传感器信号的温度补偿。One embodiment (Embodiment 181) of a subject matter (e.g., a method, system, or device) may include determining a temperature compensated glucose concentration level. The determination may include: receiving a glucose sensor signal; receiving a temperature parameter signal; detecting an exercise condition or state based at least in part on the glucose sensor signal or the temperature parameter signal; and modifying a temperature compensation applied to the glucose sensor signal.
在实施例182中,实施例181的主题可包括确定葡萄糖传感器信号的本底噪声大于第一阈值。In Example 182, the subject matter of Example 181 can include determining that a noise floor of the glucose sensor signal is greater than a first threshold.
在实施例183中,实施例181至182中的任一项或多项的主题可包括确定温度参数信号的本底噪声大于第二阈值。In Example 183, the subject matter of any one or more of Examples 181 to 182 may include determining that a noise floor of the temperature parameter signal is greater than a second threshold.
在实施例184中,实施例181至183中的任一项或多项的主题可包括:确定葡萄糖传感器信号的本底噪声大于第一阈值;以及确定温度参数信号的本底噪声大于第二阈值。In Example 184, the subject matter of any one or more of Examples 181 to 183 may include: determining that a background noise of the glucose sensor signal is greater than a first threshold; and determining that a background noise of the temperature parameter signal is greater than a second threshold.
在实施例185中,实施例181至184中的任一项或多项的主题可被配置为使得修改温度补偿包括:将锻炼模型应用于温度参数信号以生成评估温度参数信号;以及使用评估温度参数生成温度补偿葡萄糖浓度值。In Example 185, the subject matter of any one or more of Examples 181 to 184 may be configured such that modifying temperature compensation includes: applying an exercise model to a temperature parameter signal to generate an estimated temperature parameter signal; and generating a temperature compensated glucose concentration value using the estimated temperature parameter.
在实施例186中,实施例181至185中的任一项或多项的主题可被配置为使得检测锻炼状况或状态包括确定温度参数信号的变化率的分布满足分类器。In Example 186, the subject matter of any one or more of Examples 181 to 185 may be configured such that detecting an exercise condition or state includes determining that a distribution of a rate of change of a temperature parameter signal satisfies a classifier.
在实施例187中,实施例181至186中的任一项或多项的主题可被配置为使得检测锻炼状况或状态包括确定温度参数信号的变化率的分布小于阈值。In Example 187, the subject matter of any one or more of Examples 181 to 186 may be configured such that detecting an exercise condition or state includes determining that a distribution of a rate of change of a temperature parameter signal is less than a threshold value.
主题(例如,方法、系统或设备)的一个实施例(实施例188)可包括:包括被配置为生成表示受者中的葡萄糖浓度的第一信号的葡萄糖传感器的温度补偿葡萄糖传感器系统;被配置为生成表示温度的第二信号的温度传感器;以及处理器。该处理器可被编程为执行包括以下的操作:至少部分地基于第一信号或第二信号来检测锻炼状况或状态;以及修改应用于第一信号的温度补偿。One embodiment (Embodiment 188) of a subject matter (e.g., a method, system, or device) may include: a temperature compensated glucose sensor system including a glucose sensor configured to generate a first signal representing a glucose concentration in a subject; a temperature sensor configured to generate a second signal representing a temperature; and a processor. The processor may be programmed to perform operations including: detecting an exercise condition or state based at least in part on the first signal or the second signal; and modifying a temperature compensation applied to the first signal.
在实施例189中,实施例188的主题可被配置为使得这些操作还包括确定第一信号的本底噪声大于第一阈值。In Example 189, the subject matter of Example 188 may be configured such that the operations further include determining that a noise floor of the first signal is greater than a first threshold.
在实施例190中,实施例188至189中的任一项或多项的主题可被配置为使得操作还包括确定第二信号的本底噪声大于第二阈值。In Example 190, the subject matter of any one or more of Examples 188 to 189 may be configured such that the operations further include determining that a noise floor of the second signal is greater than a second threshold.
在实施例191中,实施例188至190中的任一项或多项的主题可被配置为使得操作还包括:确定第一信号的本底噪声大于第一阈值;以及确定第二信号的本底噪声大于第二阈值。In Example 191, the subject matter of any one or more of Examples 188 to 190 may be configured such that the operation further includes: determining that the noise floor of the first signal is greater than a first threshold; and determining that the noise floor of the second signal is greater than a second threshold.
在实施例192中,实施例188至191中的任一项或多项的主题可被配置为使得修改温度补偿包括:将锻炼模型应用于第二信号以生成评估第二信号;以及使用评估第二信号生成温度补偿葡萄糖浓度值。In Example 192, the subject matter of any one or more of Examples 188 to 191 may be configured such that modifying the temperature compensation includes: applying the training model to the second signal to generate an estimated second signal; and generating the temperature compensated glucose concentration value using the estimated second signal.
在实施例193中,实施例188至192中的任一项或多项的主题可被配置为使得检测锻炼状况或状态包括确定第二信号的变化率的分布满足分类器。In Example 193, the subject matter of any one or more of Examples 188 to 192 may be configured such that detecting an exercise condition or state includes determining that a distribution of a rate of change of the second signal satisfies a classifier.
在实施例194中,实施例188至193中的任一项或多项的主题可被配置为使得检测锻炼状况或状态包括确定第二信号的变化率的分布小于阈值。In Example 194, the subject matter of any one or more of Examples 188 to 193 may be configured such that detecting an exercise condition or state includes determining that a distribution of a rate of change of the second signal is less than a threshold value.
主题(例如,方法、系统或设备)的一个实施例(“实施例195”)可包括测量分析物传感器系统处的温度的处理器实现的方法。该方法可包括:在第一传感器会话期间,访问存储在分析物传感器系统处的周期性温度的记录;从周期性温度的记录确定峰值温度;以及基于峰值温度执行响应动作。One embodiment (“Embodiment 195”) of a subject matter (e.g., a method, system, or apparatus) may include a processor-implemented method of measuring a temperature at an analyte sensor system. The method may include: accessing a record of periodic temperatures stored at the analyte sensor system during a first sensor session; determining a peak temperature from the record of periodic temperatures; and performing a response action based on the peak temperature.
在实施例196中,实施例195的主题可包括确定峰值温度超过峰值温度阈值,其中响应动作包括中止第一传感器会话。In Example 196, the subject matter of Example 195 may include determining that the peak temperature exceeds a peak temperature threshold, wherein the response action includes terminating the first sensor session.
在实施例197中,实施例195至196中的任一项或多项的主题可包括:至少部分地基于峰值温度来确定初始传感器会话参数;从分析物传感器系统的分析物传感器接收原始传感器数据;以及使用初始会话参数和原始传感器数据生成估计分析物值。In Example 197, the subject matter of any one or more of Examples 195 to 196 may include: determining initial sensor session parameters based at least in part on the peak temperature; receiving raw sensor data from an analyte sensor of the analyte sensor system; and generating an estimated analyte value using the initial session parameters and the raw sensor data.
在实施例198中,实施例195至197中的任一项或多项的主题可被配置为使得初始传感器会话参数包括灵敏度或基线。In Example 198, the subject matter of any one or more of Examples 195 to 197 may be configured such that the initial sensor session parameters include a sensitivity or a baseline.
在实施例199中,实施例195至198中的任一项或多项的主题可包括:在第一传感器会话之前,测量分析物传感器系统处的第一温度;将第一温度写入周期性温度的记录;等待一个周期;以及测量分析物传感器系统处的第二温度。In Example 199, the subject matter of any one or more of Examples 195 to 198 may include: before a first sensor session, measuring a first temperature at the analyte sensor system; writing the first temperature to a record of periodic temperatures; waiting for a period; and measuring a second temperature at the analyte sensor system.
主题的一个实施例(“实施例200”)可包括温度补偿分析物传感器系统。该温度补偿分析物传感器系统可包括:被配置为生成表示受者中的估计分析物值的第一信号的分析物传感器;被配置为生成表示温度的第二信号的温度传感器;以及处理器。该处理器可被编程为执行包括以下的操作:在第一传感器会话期间,访问存储在分析物传感器系统处的周期性温度的记录;从周期性温度的记录确定峰值温度;以及基于峰值温度执行响应动作。One embodiment of the subject matter ("Embodiment 200") may include a temperature compensated analyte sensor system. The temperature compensated analyte sensor system may include: an analyte sensor configured to generate a first signal representing an estimated analyte value in a subject; a temperature sensor configured to generate a second signal representing a temperature; and a processor. The processor may be programmed to perform operations including: accessing a record of periodic temperatures stored at the analyte sensor system during a first sensor session; determining a peak temperature from the record of periodic temperatures; and performing a response action based on the peak temperature.
在实施例201中,实施例200的主题可被配置为使得操作还包括确定峰值温度超过峰值温度阈值,其中响应动作包括中止第一传感器会话。In embodiment 201 , the subject matter of embodiment 200 may be configured such that the operations further include determining that the peak temperature exceeds a peak temperature threshold, wherein the responsive action includes terminating the first sensor session.
在实施例202中,实施例200至201中的任一项或多项的主题可被配置为使得操作还包括:至少部分地基于峰值温度来确定初始传感器会话参数;从分析物传感器系统的分析物传感器接收原始传感器数据;以及使用初始会话参数和原始传感器数据生成估计分析物值。In embodiment 202, the subject matter of any one or more of embodiments 200 to 201 may be configured such that the operation also includes: determining initial sensor session parameters based at least in part on the peak temperature; receiving raw sensor data from an analyte sensor of the analyte sensor system; and generating an estimated analyte value using the initial session parameters and the raw sensor data.
在实施例203中,实施例200至202中的任一项或多项的主题可被配置为使得初始传感器会话参数包括灵敏度或基线。In embodiment 203, the subject matter of any one or more of embodiments 200 to 202 may be configured such that the initial sensor session parameters include a sensitivity or a baseline.
在实施例204中,实施例200至203中的任一项或多项的主题可被配置为使得操作还包括:在第一传感器会话之前,测量分析物传感器系统处的第一温度;将第一温度写入周期性温度的记录;等待一个周期;以及测量分析物传感器系统处的第二温度。In embodiment 204, the subject matter of any one or more of embodiments 200 to 203 may be configured such that the operation also includes: before the first sensor session, measuring a first temperature at the analyte sensor system; writing the first temperature to a record of periodic temperatures; waiting for a period; and measuring a second temperature at the analyte sensor system.
主题(例如,方法、系统或设备)的一个实施例(“实施例205”)可包括温度感测分析物传感器系统。该温度感测分析物传感器系统可包括:二极管;以及电子电路;采样保持电路,以及双斜率积分模数转换器(ADC)。电子电路可被配置为执行包括以下的操作:在第一时段内向二极管施加第一电流,其中当第一电流被提供到二极管时二极管上的电压降具有第一电压值;在第一时段之后的第二时段内向二极管施加与第一电流不同的第二电流,其中当第二电流被提供到二极管时二极管上的电压降具有第二电压值。采样保持电路可被配置为当第一电压被施加到二极管时接收第一电压值并且生成指示第一电压的输出。双斜率积分模数转换器(ADC)可包括被耦合以从采样保持电路的输出接收第一电压值的第一输入以及被耦合以接收二极管上的电压降的第二输入。双斜率积分ADC的输出从第一电压值衰减到第二电压值的时间可能与二极管处的温度成比例。One embodiment ("Embodiment 205") of a subject matter (e.g., a method, system, or device) may include a temperature sensing analyte sensor system. The temperature sensing analyte sensor system may include: a diode; and an electronic circuit; a sample and hold circuit, and a dual slope integrating analog-to-digital converter (ADC). The electronic circuit may be configured to perform operations including: applying a first current to the diode during a first time period, wherein a voltage drop across the diode when the first current is provided to the diode has a first voltage value; applying a second current different from the first current to the diode during a second time period after the first time period, wherein the voltage drop across the diode when the second current is provided to the diode has a second voltage value. The sample and hold circuit may be configured to receive the first voltage value when the first voltage is applied to the diode and generate an output indicating the first voltage. The dual slope integrating analog-to-digital converter (ADC) may include a first input coupled to receive the first voltage value from the output of the sample and hold circuit and a second input coupled to receive the voltage drop across the diode. The time for the output of the dual slope integrating ADC to decay from the first voltage value to the second voltage value may be proportional to the temperature at the diode.
在实施例206中,实施例205的主题还可包括比较器,该比较器被耦合以将采样保持电路的输出与双斜率积分模数电路的输出进行比较。In embodiment 206, the subject matter of embodiment 205 may further include a comparator coupled to compare the output of the sample and hold circuit with the output of the dual slope integrating analog-to-digital circuit.
在实施例207中,实施例205至206中的任一项或多项的主题还可包括数字计数器。操作还可包括:在双斜率积分ADC的输出的峰值处启动数字计数器;以及在比较器的输出发生变化时确定数字计数器的值。In embodiment 207, the subject matter of any one or more of embodiments 205 to 206 may further include a digital counter. The operations may further include: starting the digital counter at a peak of the output of the dual slope integrating ADC; and determining a value of the digital counter when the output of the comparator changes.
在实施例208中,实施例205至207中的任一项或多项的主题可被配置为使得数字计数器的值指示双斜率积分ADC的输出从第一电压值衰减到第二电压值的时间与二极管处的温度成比例。In embodiment 208, the subject matter of any one or more of embodiments 205 to 207 may be configured such that the value of the digital counter indicates the time for the output of the dual slope integrating ADC to decay from a first voltage value to a second voltage value is proportional to the temperature at the diode.
在实施例209中,实施例205至208中的任一项或多项的主题还可包括被配置为生成比较器的输出与时钟信号之间的逻辑和的“与”电路,其中当第一电流被施加到二极管时,时钟信号为低。In embodiment 209, the subject matter of any one or more of embodiments 205 to 208 may further include an AND circuit configured to generate a logical sum between the output of the comparator and a clock signal, wherein the clock signal is low when the first current is applied to the diode.
在实施例210中,实施例205至209中的任一项或多项的主题可被配置为使得二极管包括二极管连接式晶体管。In Example 210, the subject matter of any one or more of Examples 205 to 209 may be configured such that the diode comprises a diode-connected transistor.
在实施例211中,实施例205至210中的任一项或多项的主题可被配置为使得分析物传感器系统的分析物传感器被插入受者的皮肤,并且二极管被定位成靠近受者的皮肤。In Example 211, the subject matter of any one or more of Examples 205 to 210 may be configured such that an analyte sensor of the analyte sensor system is inserted into the skin of a recipient and the diode is positioned proximate to the skin of the recipient.
在实施例212中,实施例205至211中的任一项或多项的主题还可包括:提供第一电流的第一恒定电流源;以及第二脉冲电流源,其中第二电流包括第一电流与当第二脉冲电流源接通时由第二脉冲电流源提供的电流之和。In embodiment 212, the subject matter of any one or more of embodiments 205 to 211 may also include: a first constant current source providing a first current; and a second pulse current source, wherein the second current includes the sum of the first current and a current provided by the second pulse current source when the second pulse current source is turned on.
主题(例如,方法、系统或设备)的一个实施例(“实施例213”)可包括:在第一时段内向二极管施加第一电流持续,其中当第一电流被提供到二极管时二极管上的电压降具有第一电压值;在第一时段之后施加与第一电流不同的第二电流,其中当第二电流被提供到二极管时二极管上的电压降具有第二电压值;以及将第一电压值和第二电压值提供给双斜率积分模数转换器(ADC),其中双斜率积分ADC的输出从第一电压值衰减到第二电压值的时间与二极管处的温度成比例。One embodiment (“Embodiment 213”) of a subject matter (e.g., a method, system, or device) may include: applying a first current to a diode continuously for a first time period, wherein a voltage drop across the diode has a first voltage value when the first current is provided to the diode; applying a second current different from the first current after the first time period, wherein the voltage drop across the diode has a second voltage value when the second current is provided to the diode; and providing the first voltage value and the second voltage value to a dual slope integrating analog-to-digital converter (ADC), wherein the time for the output of the dual slope integrating ADC to decay from the first voltage value to the second voltage value is proportional to the temperature at the diode.
在实施例214中,实施例213的主题可包括将采样保持电路的输出与双斜率积分模数电路的输出进行比较以生成比较器输出。In embodiment 214, the subject matter of embodiment 213 may include comparing the output of the sample and hold circuit with the output of the dual slope integrating analog-to-digital circuit to generate a comparator output.
在实施例215中,实施例213至214中的任一项或多项的主题可包括:在双斜率积分ADC的输出的峰值处启动数字计数器;以及在比较器输出发生变化时确定数字计数器的值。In Embodiment 215, the subject matter of any one or more of Embodiments 213 to 214 may include: starting a digital counter at a peak of the output of the dual slope integrating ADC; and determining a value of the digital counter when a change occurs in the comparator output.
在实施例216中,实施例213至215中的任一项或多项的主题可被配置为使得数字计数器的值指示双斜率积分ADC的输出从第一电压值衰减到第二电压值的时间与二极管处的温度成比例。In embodiment 216, the subject matter of any one or more of embodiments 213 to 215 may be configured such that the value of the digital counter indicates the time for the output of the dual slope integrating ADC to decay from a first voltage value to a second voltage value is proportional to the temperature at the diode.
在实施例217中,实施例213至216中的任一项或多项的主题可包括被配置为生成比较器的输出与时钟信号之间的逻辑和的“与”电路。当第一电流被施加到二极管时,时钟信号可为低。In Example 217, the subject matter of any one or more of Examples 213 to 216 may include an AND circuit configured to generate a logical sum between an output of the comparator and a clock signal. When the first current is applied to the diode, the clock signal may be low.
在实施例218中,实施例213至217中的任一项或多项的主题可被配置为使得二极管包括二极管连接式晶体管。In Example 218, the subject matter of any one or more of Examples 213 to 217 may be configured such that the diode includes a diode-connected transistor.
在实施例219中,实施例213至218中的任一项或多项的主题可被配置为使得分析物传感器系统的分析物传感器被插入受者的皮肤,并且其中二极管被定位成靠近受者的皮肤。In Example 219, the subject matter of any one or more of Examples 213 to 218 may be configured such that an analyte sensor of the analyte sensor system is inserted into the skin of a recipient, and wherein the diode is positioned proximate to the skin of the recipient.
主题(例如,方法、系统或设备)的一个实施例(“实施例220”)可包括确定葡萄糖浓度水平的方法。该方法可包括:接收温度传感器信号;从插入受者的插入部位的葡萄糖传感器接收葡萄糖传感器信号;以及将温度传感器信号和葡萄糖传感器信号应用于描述插入部位处的葡萄糖浓度与受者处的血糖浓度之间的差的模型,以生成受者的补偿血糖浓度。One embodiment ("Embodiment 220") of a subject matter (e.g., a method, system, or apparatus) may include a method of determining a glucose concentration level. The method may include: receiving a temperature sensor signal; receiving a glucose sensor signal from a glucose sensor inserted into an insertion site of a recipient; and applying the temperature sensor signal and the glucose sensor signal to a model describing a difference between a glucose concentration at the insertion site and a blood glucose concentration at the recipient to generate a compensated blood glucose concentration for the recipient.
在实施例221中,实施例220的主题可包括:至少部分地基于温度传感器信号来确定模型时间参数;以及至少部分地基于模型时间参数来确定补偿血糖浓度。In Example 221, the subject matter of Example 220 may include: determining a model time parameter based at least in part on the temperature sensor signal; and determining a compensated blood glucose concentration based at least in part on the model time parameter.
在实施例222中,实施例220至221中的任一项或多项的主题可被配置为使得模型时间参数应用于插入部位处的葡萄糖浓度以及应用于血糖浓度。In Example 222, the subject matter of any one or more of Examples 220-221 may be configured such that the model time parameters are applied to the glucose concentration at the insertion site as well as to the blood glucose concentration.
在实施例223中,实施例220至222中的任一项或多项的主题还可包括确定描述受者的葡萄糖消耗。补偿血糖浓度可至少部分地基于葡萄糖消耗。In Example 223, the subject matter of any one or more of Examples 220 to 222 can further include determining a glucose consumption describing the recipient. The compensated blood glucose concentration can be based at least in part on the glucose consumption.
在实施例224中,实施例220至223中的任一项或多项的主题还可包括使用恒定细胞层葡萄糖浓度来确定葡萄糖消耗。In Example 224, the subject matter of any one or more of Examples 220 to 223 can further include determining glucose consumption using a constant cell layer glucose concentration.
在实施例225中,实施例220至224中的任一项或多项的主题还可包括使用可变细胞层葡萄糖浓度来确定葡萄糖消耗。In Example 225, the subject matter of any one or more of Examples 220 to 224 can further include using a variable cell layer glucose concentration to determine glucose consumption.
在实施例226中,实施例220至225中的任一项或多项的主题可包括使用线性变化细胞层葡萄糖浓度来确定葡萄糖消耗。In Example 226, the subject matter of any one or more of Examples 220-225 can include determining glucose consumption using a linearly varying cell layer glucose concentration.
主题(例如,方法、系统或设备)的一个实施例(“实施例227”)可包括温度补偿葡萄糖传感器系统。该温度补偿葡萄糖传感器系统可包括:葡萄糖传感器;以及传感器电子器件。传感器电子器件可被配置为执行包括以下的操作:接收温度传感器信号;从插入受者的插入部位的葡萄糖传感器接收葡萄糖传感器信号;以及将温度传感器信号和葡萄糖传感器信号应用于描述插入部位处的葡萄糖浓度与受者处的血糖浓度之间的差的模型,以生成受者的补偿血糖浓度。One embodiment ("Embodiment 227") of a subject matter (e.g., a method, system, or apparatus) may include a temperature compensated glucose sensor system. The temperature compensated glucose sensor system may include: a glucose sensor; and sensor electronics. The sensor electronics may be configured to perform operations including: receiving a temperature sensor signal; receiving the glucose sensor signal from a glucose sensor inserted into an insertion site of a recipient; and applying the temperature sensor signal and the glucose sensor signal to a model describing a difference between a glucose concentration at the insertion site and a blood glucose concentration at the recipient to generate a compensated blood glucose concentration for the recipient.
在实施例228中,实施例227的主题被配置为使得操作还包括:至少部分地基于温度传感器信号来确定模型时间参数;以及至少部分地基于模型时间参数来确定补偿血糖浓度。In Example 228, the subject matter of Example 227 is configured such that the operations further include: determining a model time parameter based at least in part on the temperature sensor signal; and determining a compensated blood glucose concentration based at least in part on the model time parameter.
在实施例229中,实施例227至228中的任一项或多项的主题可被配置为使得模型时间参数应用于插入部位处的葡萄糖浓度以及应用于血糖浓度。In Example 229, the subject matter of any one or more of Examples 227-228 may be configured such that the model time parameters are applied to the glucose concentration at the insertion site as well as to the blood glucose concentration.
在实施例230中,实施例227至229中的任一项或多项的主题可被配置使得操作还包括确定描述受者的葡萄糖消耗,其中补偿血糖浓度至少部分地基于葡萄糖消耗。In Example 230, the subject matter of any one or more of Examples 227-229 can be configured such that the operations further include determining a method describing glucose consumption of the recipient, wherein the compensated blood glucose concentration is based at least in part on the glucose consumption.
在实施例231中,实施例227至230中的任一项或多项的主题可被配置为使得操作还包括使用恒定细胞层葡萄糖浓度来确定葡萄糖消耗。In Example 231, the subject matter of any one or more of Examples 227 to 230 can be configured such that the operations further include determining glucose consumption using a constant cell layer glucose concentration.
在实施例232中,实施例227至230中的任一项或多项的主题可被配置为使得操作还包括使用可变细胞层葡萄糖浓度来确定葡萄糖消耗。In Example 232, the subject matter of any one or more of Examples 227 to 230 can be configured such that the operations further include determining glucose consumption using the variable cell layer glucose concentration.
在实施例233中,实施例227至231中的任一项或多项的主题可被配置为使得操作还包括使用线性变化细胞层葡萄糖浓度来确定葡萄糖消耗。In Example 233, the subject matter of any one or more of Examples 227 to 231 can be configured such that the operations further include determining glucose consumption using a linearly varying cell layer glucose concentration.
实施例234是一种用于生成估计分析物值的分析物传感器系统,包括:体外温度传感器;体内分析物传感器;以及至少一个处理器,该至少一个处理器被编程为执行包括以下的操作:从体内分析物传感器获取第一传感器信号;从体外温度传感器获取第一温度信号;至少部分地基于第一温度信号生成第一分析物传感器温度;确定第一分析物传感器温度满足温度条件;至少部分地基于第一分析物传感器温度生成第一温度补偿灵敏度;以及至少部分地基于第一传感器信号和第一温度补偿灵敏度生成第一估计分析物值。Embodiment 234 is an analyte sensor system for generating an estimated analyte value, comprising: an in vitro temperature sensor; an in vivo analyte sensor; and at least one processor programmed to perform operations comprising: acquiring a first sensor signal from the in vivo analyte sensor; acquiring a first temperature signal from the in vitro temperature sensor; generating a first analyte sensor temperature based at least in part on the first temperature signal; determining that the first analyte sensor temperature satisfies a temperature condition; generating a first temperature compensation sensitivity based at least in part on the first analyte sensor temperature; and generating a first estimated analyte value based at least in part on the first sensor signal and the first temperature compensation sensitivity.
在实施例235中,实施例234的主题任选地包括其中确定第一分析物传感器温度满足温度条件包括确定第一分析物传感器温度在第一温度范围内。In Example 235, the subject matter of Example 234 optionally includes where determining that the first analyte sensor temperature satisfies the temperature condition includes determining that the first analyte sensor temperature is within a first temperature range.
在实施例236中,实施例234至235中的任一项或多项的主题任选地包括其中确定第一分析物传感器温度满足温度条件包括:使用第一分析物传感器温度和由先前温度信号指示的至少一个先前分析物传感器温度生成温度变化率;以及确定温度变化率满足变化率条件。In Example 236, the subject matter of any one or more of Examples 234 to 235 optionally includes where determining that a first analyte sensor temperature satisfies a temperature condition comprises: generating a temperature change rate using the first analyte sensor temperature and at least one previous analyte sensor temperature indicated by a previous temperature signal; and determining that the temperature change rate satisfies the change rate condition.
在实施例237中,实施例234至236中的任一项或多项的主题任选地包括还包括以下的操作:使用第一温度信号生成第一体外温度;以及使用第一体外温度生成第一分析物传感器温度。In Example 237, the subject matter of any one or more of Examples 234 to 236 optionally includes further comprising the operations of: generating a first in vitro temperature using the first temperature signal; and generating a first analyte sensor temperature using the first in vitro temperature.
在实施例238中,实施例237的主题任选地包括其中确定由第一温度信号指示的第一体外温度满足温度条件包括确定第一体外温度与第一分析物传感器温度之间的差小于阈值。In Example 238, the subject matter of Example 237 optionally includes where determining that the first in vitro temperature indicated by the first temperature signal satisfies the temperature condition includes determining that a difference between the first in vitro temperature and the first analyte sensor temperature is less than a threshold.
在实施例239中,实施例234至238中的任一项或多项的主题任选地包括还包括以下的操作:确定由来自体外温度传感器的第二温度信号指示的第二分析物传感器温度不满足温度条件;以及响应于确定由第二温度信号指示的第二分析物传感器温度不满足温度条件,执行响应动作。In Example 239, the subject matter of any one or more of Examples 234 to 238 optionally includes the following operations: determining that the second analyte sensor temperature indicated by the second temperature signal from the in vitro temperature sensor does not satisfy the temperature condition; and in response to determining that the second analyte sensor temperature indicated by the second temperature signal does not satisfy the temperature condition, performing a response action.
在实施例240中,实施例239的主题任选地包括响应动作,该响应动作包括:至少部分地基于默认分析物传感器温度生成第二温度补偿灵敏度;以及至少部分地基于第二分析物传感器信号和第二温度补偿灵敏度生成第二估计分析物值。In Example 240, the subject matter of Example 239 optionally includes a response action comprising: generating a second temperature compensated sensitivity based at least in part on a default analyte sensor temperature; and generating a second estimated analyte value based at least in part on a second analyte sensor signal and the second temperature compensated sensitivity.
在实施例241中,实施例239至240中的任一项或多项的主题任选地包括响应动作,该响应动作包括暂停在与分析物传感器相关联的显示器处显示分析物值。In Example 241, the subject matter of any one or more of Examples 239 to 240 optionally includes a response action comprising pausing display of the analyte value at a display associated with the analyte sensor.
在实施例242中,实施例239至241中的任一项或多项的主题任选地包括响应动作,该响应动作包括至少部分地基于第二分析物传感器信号和非温度补偿灵敏度生成第二估计分析物值。In Example 242, the subject matter of any one or more of Examples 239 to 241 optionally includes a response action comprising generating a second estimated analyte value based at least in part on the second analyte sensor signal and the non-temperature compensated sensitivity.
在实施例243中,实施例234至242中的任一项或多项的主题任选地包括还包括以下的操作:从体内分析物传感器接收第二传感器信号;至少部分地基于第一分析物传感器温度生成第二温度补偿灵敏度;以及至少部分地基于第二传感器信号和第二温度补偿灵敏度生成第二估计分析物值。In Example 243, the subject matter of any one or more of Examples 234 to 242 optionally includes also including the following operations: receiving a second sensor signal from an in vivo analyte sensor; generating a second temperature compensated sensitivity based at least in part on the first analyte sensor temperature; and generating a second estimated analyte value based at least in part on the second sensor signal and the second temperature compensated sensitivity.
在实施例244中,实施例234至243中的任一项或多项的主题任选地包括还包括以下的操作:在生成第一温度补偿灵敏度之前,确定第一温度信号满足温度信号条件。In Example 244, the subject matter of any one or more of Examples 234 to 243 optionally includes further comprising the following operation: before generating the first temperature compensation sensitivity, determining that the first temperature signal satisfies a temperature signal condition.
在实施例245中,实施例244的主题任选地包括其中确定第一温度信号满足温度信号条件由体外温度传感器执行。In Example 245, the subject matter of Example 244 optionally includes where determining that the first temperature signal satisfies the temperature signal condition is performed by an in vitro temperature sensor.
实施例246是一种用于生成估计分析物值的方法,包括:从体内分析物传感器获取第一传感器信号;从体外温度传感器获取第一温度信号;至少部分地基于第一温度信号生成第一分析物传感器温度;确定第一分析物传感器温度满足温度条件;至少部分地基于第一分析物传感器温度生成第一温度补偿灵敏度;以及至少部分地基于第一传感器信号和第一温度补偿灵敏度生成第一估计分析物值。Embodiment 246 is a method for generating an estimated analyte value, comprising: obtaining a first sensor signal from an in vivo analyte sensor; obtaining a first temperature signal from an in vitro temperature sensor; generating a first analyte sensor temperature based at least in part on the first temperature signal; determining that the first analyte sensor temperature satisfies a temperature condition; generating a first temperature compensation sensitivity based at least in part on the first analyte sensor temperature; and generating a first estimated analyte value based at least in part on the first sensor signal and the first temperature compensation sensitivity.
在实施例247中,实施例246的主题任选地包括其中确定第一分析物传感器温度满足温度条件包括确定第一分析物传感器温度在第一温度范围内。In Example 247, the subject matter of Example 246 optionally includes where determining that the first analyte sensor temperature satisfies the temperature condition includes determining that the first analyte sensor temperature is within a first temperature range.
在实施例248中,实施例246至247中的任一项或多项的主题任选地包括其中确定第一分析物传感器温度满足温度条件包括:使用第一分析物传感器温度和由先前温度信号指示的至少一个先前分析物传感器温度生成温度变化率;以及确定温度变化率满足变化率条件。In Example 248, the subject matter of any one or more of Examples 246 to 247 optionally includes where determining that the first analyte sensor temperature satisfies the temperature condition comprises: generating a temperature change rate using the first analyte sensor temperature and at least one previous analyte sensor temperature indicated by a previous temperature signal; and determining that the temperature change rate satisfies the change rate condition.
在实施例249中,实施例246至248中的任一项或多项的主题任选地包括:使用第一温度信号生成第一体外温度;以及使用第一体外温度生成第一分析物传感器温度。In Example 249, the subject matter of any one or more of Examples 246 to 248 optionally includes: generating a first in vitro temperature using the first temperature signal; and generating a first analyte sensor temperature using the first in vitro temperature.
在实施例250中,实施例249的主题任选地包括其中确定由第一温度信号指示的第一体外温度满足温度条件包括确定第一体外温度与第一分析物传感器温度之间的差小于阈值。In Example 250, the subject matter of Example 249 optionally includes where determining that the first in vitro temperature indicated by the first temperature signal satisfies the temperature condition includes determining that a difference between the first in vitro temperature and the first analyte sensor temperature is less than a threshold.
在实施例251中,实施例246至250中的任一项或多项的主题任选地包括:确定由第二温度信号指示的第二分析物传感器温度不满足温度条件;以及响应于确定由第二温度信号指示的第二分析物传感器温度不满足温度条件,执行响应动作。In Example 251, the subject matter of any one or more of Examples 246 to 250 optionally includes: determining that the second analyte sensor temperature indicated by the second temperature signal does not satisfy the temperature condition; and in response to determining that the second analyte sensor temperature indicated by the second temperature signal does not satisfy the temperature condition, performing a response action.
在实施例252中,实施例251的主题任选地包括响应动作,该响应动作包括:至少部分地基于默认分析物传感器温度生成第二温度补偿灵敏度;以及至少部分地基于第二分析物传感器信号和第二温度补偿灵敏度生成第二估计分析物值。In Example 252, the subject matter of Example 251 optionally includes a response action comprising: generating a second temperature compensated sensitivity based at least in part on a default analyte sensor temperature; and generating a second estimated analyte value based at least in part on a second analyte sensor signal and the second temperature compensated sensitivity.
在实施例253中,实施例251至252中的任一项或多项的主题任选地包括响应动作,该响应动作包括暂停在与分析物传感器相关联的显示器处显示分析物值。In Example 253, the subject matter of any one or more of Examples 251 to 252 optionally includes a response action comprising pausing display of the analyte value at a display associated with the analyte sensor.
在实施例254中,实施例251至253中的任一项或多项的主题任选地包括响应动作,该响应动作包括至少部分地基于第二分析物传感器信号和非温度补偿灵敏度生成第二估计分析物值。In Example 254, the subject matter of any one or more of Examples 251 to 253 optionally includes a response action comprising generating a second estimated analyte value based at least in part on the second analyte sensor signal and the non-temperature compensated sensitivity.
在实施例255中,实施例246至254中的任一项或多项的主题任选地包括:从体内分析物传感器接收第二传感器信号;至少部分地基于第一分析物传感器温度生成第二温度补偿灵敏度;以及至少部分地基于第二传感器信号和第二温度补偿灵敏度生成第二估计分析物值。In Example 255, the subject matter of any one or more of Examples 246 to 254 optionally includes: receiving a second sensor signal from an in vivo analyte sensor; generating a second temperature compensated sensitivity based at least in part on the first analyte sensor temperature; and generating a second estimated analyte value based at least in part on the second sensor signal and the second temperature compensated sensitivity.
在实施例256中,实施例246至255中的任一项或多项的主题任选地包括在生成第一温度补偿灵敏度之前,确定第一温度信号满足温度信号条件。In Example 256, the subject matter of any one or more of Examples 246 to 255 optionally includes determining that the first temperature signal satisfies a temperature signal condition before generating the first temperature compensated sensitivity.
在实施例257中,实施例256的主题任选地包括其中确定第一温度信号满足温度信号条件由体外温度传感器执行。In Example 257, the subject matter of Example 256 optionally includes where determining that the first temperature signal satisfies the temperature signal condition is performed by an in vitro temperature sensor.
实施例258是一种用于生成估计分析物值的分析物传感器系统,包括:体外温度传感器;体内分析物传感器;以及至少一个处理器,该至少一个处理器被编程为执行包括以下的操作:从体内分析物传感器获取第一传感器信号;从体外温度传感器获取第一温度信号;从一组温度补偿模型中选择第一温度补偿模型,该选择至少部分地基于第一温度信号;至少部分地基于第一温度信号和第一温度补偿模型生成第一分析物传感器温度;至少部分地基于第一分析物传感器温度生成第一温度补偿灵敏度;以及至少部分地基于第一传感器信号和第一温度补偿灵敏度生成第一估计分析物值。Embodiment 258 is an analyte sensor system for generating an estimated analyte value, comprising: an in vitro temperature sensor; an in vivo analyte sensor; and at least one processor programmed to perform operations comprising: acquiring a first sensor signal from the in vivo analyte sensor; acquiring a first temperature signal from the in vitro temperature sensor; selecting a first temperature compensation model from a set of temperature compensation models, the selection being based at least in part on the first temperature signal; generating a first analyte sensor temperature based at least in part on the first temperature signal and the first temperature compensation model; generating a first temperature compensation sensitivity based at least in part on the first analyte sensor temperature; and generating a first estimated analyte value based at least in part on the first sensor signal and the first temperature compensation sensitivity.
在实施例259中,实施例258的主题任选地包括温度补偿模型组包括分段线性模型,其中第一温度补偿模型对应于分段线性模型在第一温度范围内的第一段,并且第二温度补偿模型对应于分段线性模型在与第一温度范围不同的第二温度范围内的第二段。In Example 259, the subject matter of Example 258 optionally includes the temperature compensation model group including a piecewise linear model, wherein a first temperature compensation model corresponds to a first segment of the piecewise linear model within a first temperature range, and a second temperature compensation model corresponds to a second segment of the piecewise linear model within a second temperature range different from the first temperature range.
在实施例260中,实施例258至259中的任一项或多项的主题任选地包括还包括以下的操作:使用第一温度信号来确定体内分析物传感器的温度变化率,其中第一温度补偿模型对应于温度变化率。In Example 260, the subject matter of any one or more of Examples 258 to 259 optionally includes further comprising the operation of determining a rate of temperature change of the in vivo analyte sensor using the first temperature signal, wherein the first temperature compensation model corresponds to the rate of temperature change.
在实施例261中,实施例258至260中的任一项或多项的主题任选地包括还包括以下的操作:生成由体外温度传感器指示的体外温度与第一分析物传感器温度之间的差,第一温度补偿模型对应于该差。In Example 261, the subject matter of any one or more of Examples 258 to 260 optionally includes further comprising the operation of generating a difference between an in vitro temperature indicated by the in vitro temperature sensor and a first analyte sensor temperature, the first temperature compensation model corresponding to the difference.
在实施例262中,实施例258至261中的任一项或多项的主题任选地包括其中第一温度补偿模型具有第一线性增益,并且其中温度补偿模型组还包括具有与第一线性增益不同的第二线性增益的第二温度补偿模型。In Example 262, the subject matter of any one or more of Examples 258 to 261 optionally includes wherein the first temperature compensation model has a first linear gain, and wherein the temperature compensation model group further includes a second temperature compensation model having a second linear gain different from the first linear gain.
在实施例263中,实施例258至262中的任一项或多项的主题任选地包括其中温度补偿模型组包括第一温度补偿模型和第二温度补偿模型,并且其中第一温度补偿模型或第二温度补偿模型中的至少一者是常数。In Example 263, the subject matter of any one or more of Examples 258 to 262 optionally includes wherein the temperature compensation model group includes a first temperature compensation model and a second temperature compensation model, and wherein at least one of the first temperature compensation model or the second temperature compensation model is a constant.
在实施例264中,实施例258至263中的任一项或多项的主题任选地包括还包括以下的操作:从体内分析物传感器获取第二传感器信号;从体外温度传感器获取第二温度信号;至少部分地基于第二温度信号生成第二分析物传感器温度:确定第二分析物传感器温度不满足温度条件;以及响应于确定第二分析物传感器温度不满足温度条件,执行响应动作。In Example 264, the subject matter of any one or more of Examples 258 to 263 optionally includes the following operations: acquiring a second sensor signal from an in vivo analyte sensor; acquiring a second temperature signal from an in vitro temperature sensor; generating a second analyte sensor temperature based at least in part on the second temperature signal; determining that the second analyte sensor temperature does not satisfy a temperature condition; and in response to determining that the second analyte sensor temperature does not satisfy the temperature condition, performing a response action.
在实施例265中,实施例264的主题任选地包括响应动作,该响应动作包括:至少部分地基于默认分析物传感器温度生成第二温度补偿灵敏度;以及至少部分地基于第二传感器信号和第二温度补偿灵敏度生成第二估计分析物值。In Example 265, the subject matter of Example 264 optionally includes a response action comprising: generating a second temperature compensated sensitivity based at least in part on a default analyte sensor temperature; and generating a second estimated analyte value based at least in part on the second sensor signal and the second temperature compensated sensitivity.
在实施例266中,实施例264至265中的任一项或多项的主题任选地包括响应动作,该响应动作包括暂停在与分析物传感器相关联的显示器处显示分析物值。In Example 266, the subject matter of any one or more of Examples 264 to 265 optionally includes a response action comprising pausing display of the analyte value at a display associated with the analyte sensor.
在实施例267中,实施例264至266中的任一项或多项的主题任选地包括响应动作,该响应动作包括至少部分地基于第二传感器信号和非温度补偿灵敏度生成第二估计分析物值。In Example 267, the subject matter of any one or more of Examples 264 to 266 optionally includes a response action comprising generating a second estimated analyte value based at least in part on the second sensor signal and the non-temperature compensated sensitivity.
在实施例268中,实施例258至267中的任一项或多项的主题任选地包括还包括以下的操作:从体内分析物传感器接收第二传感器信号;至少部分地基于第一分析物传感器温度生成第二温度补偿灵敏度;以及至少部分地基于第二传感器信号和第二温度补偿灵敏度生成第二估计分析物值。In Example 268, the subject matter of any one or more of Examples 258 to 267 optionally includes also including the following operations: receiving a second sensor signal from an in vivo analyte sensor; generating a second temperature compensated sensitivity based at least in part on the first analyte sensor temperature; and generating a second estimated analyte value based at least in part on the second sensor signal and the second temperature compensated sensitivity.
在实施例269中,实施例258至268中的任一项或多项的主题任选地包括还包括以下的操作:在生成第一温度补偿灵敏度之前,确定第一温度信号满足温度信号条件。In Example 269, the subject matter of any one or more of Examples 258 to 268 optionally includes further comprising the following operation: before generating the first temperature compensation sensitivity, determining that the first temperature signal satisfies a temperature signal condition.
在实施例270中,实施例269的主题任选地包括其中确定第一温度信号满足温度信号条件由体外温度传感器执行。In Example 270, the subject matter of Example 269 optionally includes where determining that the first temperature signal satisfies the temperature signal condition is performed by an in vitro temperature sensor.
实施例271是一种用于生成估计分析物值的方法,包括:从体内分析物传感器获取第一传感器信号;从体外温度传感器获取第一温度信号;从一组温度补偿模型中选择第一温度补偿模型,该选择至少部分地基于第一温度信号;至少部分地基于第一温度信号和第一温度补偿模型生成第一分析物传感器温度;至少部分地基于第一分析物传感器温度生成第一温度补偿灵敏度;以及至少部分地基于第一传感器信号和第一温度补偿灵敏度生成第一估计分析物值。Embodiment 271 is a method for generating an estimated analyte value, comprising: obtaining a first sensor signal from an in vivo analyte sensor; obtaining a first temperature signal from an in vitro temperature sensor; selecting a first temperature compensation model from a set of temperature compensation models, the selection being based at least in part on the first temperature signal; generating a first analyte sensor temperature based at least in part on the first temperature signal and the first temperature compensation model; generating a first temperature compensation sensitivity based at least in part on the first analyte sensor temperature; and generating a first estimated analyte value based at least in part on the first sensor signal and the first temperature compensation sensitivity.
在实施例272中,实施例271的主题任选地包括温度补偿模型组包括分段线性模型,其中第一温度补偿模型对应于分段线性模型在第一温度范围内的第一段,并且第二温度补偿模型对应于分段线性模型在与第一温度范围不同的第二温度范围内的第二段。In Example 272, the subject matter of Example 271 optionally includes the temperature compensation model group including a piecewise linear model, wherein a first temperature compensation model corresponds to a first segment of the piecewise linear model within a first temperature range, and a second temperature compensation model corresponds to a second segment of the piecewise linear model within a second temperature range different from the first temperature range.
在实施例273中,实施例271至272中的任一项或多项的主题任选地包括使用第一温度信号来确定体内分析物传感器的温度变化率,其中第一温度补偿模型对应于温度变化率。In Example 273, the subject matter of any one or more of Examples 271 to 272 optionally includes determining a rate of change of temperature of the in vivo analyte sensor using the first temperature signal, wherein the first temperature compensation model corresponds to the rate of change of temperature.
在实施例274中,实施例271至273中的任一项或多项的主题任选地包括生成由体外温度传感器指示的体外温度与第一分析物传感器温度之间的差,第一温度补偿模型对应于该差。In Example 274, the subject matter of any one or more of Examples 271 to 273 optionally includes generating a difference between an in vitro temperature indicated by the in vitro temperature sensor and a first analyte sensor temperature, the first temperature compensation model corresponding to the difference.
在实施例275中,实施例271至274中的任一项或多项的主题任选地包括其中第一温度补偿模型具有第一线性增益,并且其中温度补偿模型组还包括具有与第一线性增益不同的第二线性增益的第二温度补偿模型。In Example 275, the subject matter of any one or more of Examples 271 to 274 optionally includes wherein the first temperature compensation model has a first linear gain, and wherein the temperature compensation model group further includes a second temperature compensation model having a second linear gain different from the first linear gain.
在实施例276中,实施例271至275中的任一项或多项的主题任选地包括其中温度补偿模型组包括第一温度补偿模型和第二温度补偿模型,并且其中第一温度补偿模型或第二温度补偿模型中的至少一者是常数。In Example 276, the subject matter of any one or more of Examples 271 to 275 optionally includes wherein the temperature compensation model group includes a first temperature compensation model and a second temperature compensation model, and wherein at least one of the first temperature compensation model or the second temperature compensation model is a constant.
在实施例277中,实施例271至276中的任一项或多项的主题任选地包括:从体内分析物传感器获取第二传感器信号;从体外温度传感器获取第二温度信号;至少部分地基于第二温度信号生成第二分析物传感器温度:确定第二分析物传感器温度不满足温度条件;以及响应于确定第二分析物传感器温度不满足温度条件,执行响应动作。In Example 277, the subject matter of any one or more of Examples 271 to 276 optionally includes: acquiring a second sensor signal from an in vivo analyte sensor; acquiring a second temperature signal from an in vitro temperature sensor; generating a second analyte sensor temperature based at least in part on the second temperature signal: determining that the second analyte sensor temperature does not satisfy a temperature condition; and in response to determining that the second analyte sensor temperature does not satisfy the temperature condition, performing a response action.
在实施例278中,实施例277的主题任选地包括响应动作,该响应动作包括:至少部分地基于默认分析物传感器温度生成第二温度补偿灵敏度;以及至少部分地基于第二传感器信号和第二温度补偿灵敏度生成第二估计分析物值。In Example 278, the subject matter of Example 277 optionally includes a response action comprising: generating a second temperature compensated sensitivity based at least in part on a default analyte sensor temperature; and generating a second estimated analyte value based at least in part on the second sensor signal and the second temperature compensated sensitivity.
在实施例279中,实施例277至278中的任一项或多项的主题任选地包括响应动作,该响应动作包括暂停在与分析物传感器相关联的显示器处显示分析物值。In Example 279, the subject matter of any one or more of Examples 277 to 278 optionally includes a response action comprising pausing display of the analyte value at a display associated with the analyte sensor.
在实施例280中,实施例277至279中的任一项或多项的主题任选地包括响应动作,该响应动作包括至少部分地基于第二传感器信号和非温度补偿灵敏度生成第二估计分析物值。In Example 280, the subject matter of any one or more of Examples 277 to 279 optionally includes a response action comprising generating a second estimated analyte value based at least in part on the second sensor signal and the non-temperature compensated sensitivity.
在实施例281中,实施例271至280中的任一项或多项的主题任选地包括:从体内分析物传感器接收第二传感器信号;至少部分地基于第一分析物传感器温度生成第二温度补偿灵敏度;以及至少部分地基于第二传感器信号和第二温度补偿灵敏度生成第二估计分析物值。In Example 281, the subject matter of any one or more of Examples 271 to 280 optionally includes: receiving a second sensor signal from an in vivo analyte sensor; generating a second temperature compensated sensitivity based at least in part on the first analyte sensor temperature; and generating a second estimated analyte value based at least in part on the second sensor signal and the second temperature compensated sensitivity.
在实施例282中,实施例271至281中的任一项或多项的主题任选地包括在生成第一温度补偿灵敏度之前,确定第一温度信号满足温度信号范围。In Example 282, the subject matter of any one or more of Examples 271 to 281 optionally includes determining, before generating the first temperature compensation sensitivity, that the first temperature signal satisfies a temperature signal range.
在实施例283中,实施例282的主题任选地包括其中确定第一温度信号满足温度信号范围由体外温度传感器执行。In Example 283, the subject matter of Example 282 optionally includes wherein determining that the first temperature signal satisfies the temperature signal range is performed by an in vitro temperature sensor.
实施例284是一种用于生成估计葡萄糖值的葡萄糖传感器系统,包括:体外温度传感器;体内分析物传感器;以及至少一个处理器,该至少一个处理器被编程为执行包括以下的操作:从体内葡萄糖传感器获取第一传感器信号;从体外温度传感器获取第一温度信号;至少部分地基于第一温度信号生成第一葡萄糖传感器温度;至少部分地基于第一葡萄糖传感器温度生成第一温度补偿灵敏度;至少部分地基于第一葡萄糖传感器温度生成第一温度补偿非葡萄糖信号;以及至少部分地基于第一传感器信号、第一温度补偿灵敏度和第一温度补偿非葡萄糖信号生成第一估计葡萄糖值。Embodiment 284 is a glucose sensor system for generating an estimated glucose value, comprising: an in vitro temperature sensor; an in vivo analyte sensor; and at least one processor programmed to perform operations comprising: acquiring a first sensor signal from the in vivo glucose sensor; acquiring a first temperature signal from the in vitro temperature sensor; generating a first glucose sensor temperature based at least in part on the first temperature signal; generating a first temperature compensated sensitivity based at least in part on the first glucose sensor temperature; generating a first temperature compensated non-glucose signal based at least in part on the first glucose sensor temperature; and generating a first estimated glucose value based at least in part on the first sensor signal, the first temperature compensated sensitivity, and the first temperature compensated non-glucose signal.
在实施例285中,实施例284的主题任选地包括还包括以下的操作:从体内葡萄糖传感器获取第二传感器信号;从体外温度传感器获取第二温度信号;至少部分地基于第二温度信号生成第二葡萄糖传感器温度;确定第二葡萄糖传感器温度不满足温度条件;至少部分地基于默认温度生成第二温度补偿非葡萄糖信号;以及至少部分地基于第二传感器信号和第二温度补偿非葡萄糖信号生成第二估计葡萄糖值。In Example 285, the subject matter of Example 284 optionally includes the following operations: acquiring a second sensor signal from an in vivo glucose sensor; acquiring a second temperature signal from an in vitro temperature sensor; generating a second glucose sensor temperature based at least in part on the second temperature signal; determining that the second glucose sensor temperature does not meet the temperature condition; generating a second temperature compensated non-glucose signal based at least in part on a default temperature; and generating a second estimated glucose value based at least in part on the second sensor signal and the second temperature compensated non-glucose signal.
在实施例286中,实施例284至285中的任一项或多项的主题任选地包括其中生成第一温度补偿非葡萄糖信号包括:确定第一葡萄糖传感器温度与参考葡萄糖传感器温度之间的差;以及将非葡萄糖补偿因子应用于该差。In Example 286, the subject matter of any one or more of Examples 284 to 285 optionally includes where generating a first temperature compensated non-glucose signal comprises: determining a difference between a first glucose sensor temperature and a reference glucose sensor temperature; and applying a non-glucose compensation factor to the difference.
在实施例287中,实施例284至286中的任一项或多项的主题任选地包括还包括以下的操作:在生成第一温度补偿灵敏度之前,确定第一葡萄糖传感器温度满足温度条件。In Example 287, the subject matter of any one or more of Examples 284 to 286 optionally includes further comprising the operation of: determining that the first glucose sensor temperature satisfies a temperature condition before generating the first temperature compensated sensitivity.
在实施例288中,实施例287的主题任选地包括其中确定第一葡萄糖传感器温度满足温度条件包括确定第一葡萄糖传感器温度在第一温度范围内。In Example 288, the subject matter of Example 287 optionally includes where determining that the first glucose sensor temperature satisfies the temperature condition includes determining that the first glucose sensor temperature is within a first temperature range.
在实施例289中,实施例287至288中的任一项或多项的主题任选地包括其中确定第一葡萄糖传感器温度满足温度条件包括:使用第一葡萄糖传感器温度和由先前温度信号指示的至少一个先前葡萄糖传感器温度生成温度变化率;以及确定温度变化率不超出变化率条件。In Example 289, the subject matter of any one or more of Examples 287 to 288 optionally includes where determining that the first glucose sensor temperature satisfies a temperature condition comprises: generating a temperature change rate using the first glucose sensor temperature and at least one previous glucose sensor temperature indicated by a previous temperature signal; and determining that the temperature change rate does not exceed the change rate condition.
在实施例290中,实施例287至289中的任一项或多项的主题任选地包括还包括以下的操作:使用第一温度信号生成第一体外温度;以及使用第一体外温度生成第一葡萄糖传感器温度。In Example 290, the subject matter of any one or more of Examples 287 to 289 optionally includes further comprising the operations of: generating a first extracorporeal temperature using the first temperature signal; and generating a first glucose sensor temperature using the first extracorporeal temperature.
在实施例291中,实施例290的主题任选地包括其中确定由第一温度信号指示的第一体外温度满足温度条件包括确定第一体外温度与第一葡萄糖传感器温度之间的差小于阈值。In Example 291, the subject matter of Example 290 optionally includes where determining that the first external body temperature indicated by the first temperature signal satisfies the temperature condition includes determining that a difference between the first external body temperature and the first glucose sensor temperature is less than a threshold.
在实施例292中,实施例284至291中的任一项或多项的主题任选地包括还包括以下的操作:从体内葡萄糖传感器获取第二传感器信号;从体外温度传感器获取第二温度信号;至少部分地基于第二温度信号生成第二葡萄糖传感器温度;确定第二葡萄糖传感器温度不满足温度条件;以及响应于确定第二葡萄糖传感器温度超出温度条件,执行响应动作。In Example 292, the subject matter of any one or more of Examples 284 to 291 optionally includes also the following operations: acquiring a second sensor signal from an in vivo glucose sensor; acquiring a second temperature signal from an in vitro temperature sensor; generating a second glucose sensor temperature based at least in part on the second temperature signal; determining that the second glucose sensor temperature does not meet the temperature condition; and in response to determining that the second glucose sensor temperature exceeds the temperature condition, performing a response action.
在实施例293中,实施例292的主题任选地包括响应动作,该响应动作包括:至少部分地基于默认葡萄糖传感器温度生成第二温度补偿灵敏度;以及至少部分地基于第二传感器信号和第二温度补偿灵敏度生成第二估计葡萄糖值。In Example 293, the subject matter of Example 292 optionally includes a response action comprising: generating a second temperature compensated sensitivity based at least in part on a default glucose sensor temperature; and generating a second estimated glucose value based at least in part on the second sensor signal and the second temperature compensated sensitivity.
在实施例294中,实施例292至293中的任一项或多项的主题任选地包括响应动作,该响应动作包括暂停在与葡萄糖传感器相关联的显示器处显示葡萄糖浓度。In Example 294, the subject matter of any one or more of Examples 292 to 293 optionally includes a response action comprising pausing display of the glucose concentration at a display associated with the glucose sensor.
在实施例295中,实施例292至294中的任一项或多项的主题任选地包括响应动作,该响应动作包括至少部分地基于第二传感器信号和非温度补偿灵敏度生成第二估计葡萄糖值。In Example 295, the subject matter of any one or more of Examples 292 to 294 optionally includes a response action comprising generating a second estimated glucose value based at least in part on the second sensor signal and the non-temperature compensated sensitivity.
在实施例296中,实施例284至295中的任一项或多项的主题任选地包括还包括以下的操作:从体内葡萄糖传感器接收第二传感器信号;至少部分地基于第一葡萄糖传感器温度生成第二温度补偿灵敏度;以及至少部分地基于第二传感器信号和第二温度补偿灵敏度生成第二估计葡萄糖值。In Example 296, the subject matter of any one or more of Examples 284 to 295 optionally includes also including the following operations: receiving a second sensor signal from an in vivo glucose sensor; generating a second temperature compensation sensitivity based at least in part on the first glucose sensor temperature; and generating a second estimated glucose value based at least in part on the second sensor signal and the second temperature compensation sensitivity.
在实施例297中,实施例284至296中的任一项或多项的主题任选地包括还包括以下的操作:在生成第一温度补偿灵敏度之前,确定第一温度信号满足温度信号条件。In Example 297, the subject matter of any one or more of Examples 284 to 296 optionally includes further comprising the following operation: before generating the first temperature compensation sensitivity, determining that the first temperature signal satisfies a temperature signal condition.
在实施例298中,实施例297的主题任选地包括其中确定第一温度信号满足温度信号条件由体外温度传感器执行。In Example 298, the subject matter of Example 297 optionally includes where determining that the first temperature signal satisfies the temperature signal condition is performed by an in vitro temperature sensor.
实施例299是一种用于生成估计葡萄糖值的方法,包括:从体内葡萄糖传感器获取第一传感器信号;从体外温度传感器获取第一温度信号;至少部分地基于第一温度信号生成第一葡萄糖传感器温度;至少部分地基于第一葡萄糖传感器温度生成第一温度补偿灵敏度;至少部分地基于第一葡萄糖传感器温度生成第一温度补偿非葡萄糖信号;以及至少部分地基于第一传感器信号、第一温度补偿灵敏度和第一温度补偿非葡萄糖信号生成第一估计葡萄糖值。Embodiment 299 is a method for generating an estimated glucose value, comprising: acquiring a first sensor signal from an in vivo glucose sensor; acquiring a first temperature signal from an in vitro temperature sensor; generating a first glucose sensor temperature based at least in part on the first temperature signal; generating a first temperature compensation sensitivity based at least in part on the first glucose sensor temperature; generating a first temperature compensated non-glucose signal based at least in part on the first glucose sensor temperature; and generating a first estimated glucose value based at least in part on the first sensor signal, the first temperature compensation sensitivity, and the first temperature compensated non-glucose signal.
在实施例300中,实施例299的主题任选地包括:从体内葡萄糖传感器获取第二传感器信号;从体外温度传感器获取第二温度信号;至少部分地基于第二温度信号生成第二葡萄糖传感器温度;确定第二葡萄糖传感器温度不满足温度条件;至少部分地基于默认温度生成第二温度补偿非葡萄糖信号;以及至少部分地基于第二传感器信号和第二温度补偿非葡萄糖信号生成第二估计葡萄糖值。In Example 300, the subject matter of Example 299 optionally includes: acquiring a second sensor signal from an in vivo glucose sensor; acquiring a second temperature signal from an in vitro temperature sensor; generating a second glucose sensor temperature based at least in part on the second temperature signal; determining that the second glucose sensor temperature does not meet a temperature condition; generating a second temperature compensated non-glucose signal based at least in part on a default temperature; and generating a second estimated glucose value based at least in part on the second sensor signal and the second temperature compensated non-glucose signal.
在实施例301中,实施例299至300中的任一项或多项的主题任选地包括其中生成第一温度补偿非葡萄糖信号包括:确定第一葡萄糖传感器温度与参考葡萄糖传感器温度之间的差;以及将非葡萄糖补偿因子应用于该差。In Example 301, the subject matter of any one or more of Examples 299 to 300 optionally includes where generating a first temperature compensated non-glucose signal comprises: determining a difference between a first glucose sensor temperature and a reference glucose sensor temperature; and applying a non-glucose compensation factor to the difference.
在实施例302中,实施例299至301中的任一项或多项的主题任选地包括在生成第一温度补偿灵敏度之前,确定第一葡萄糖传感器温度满足温度条件。In Example 302, the subject matter of any one or more of Examples 299 to 301 optionally includes determining that the first glucose sensor temperature satisfies a temperature condition prior to generating the first temperature compensated sensitivity.
在实施例303中,实施例302的主题任选地包括其中确定第一葡萄糖传感器温度满足温度条件包括确定第一葡萄糖传感器温度在第一温度范围内。In Example 303, the subject matter of Example 302 optionally includes where determining that the first glucose sensor temperature satisfies the temperature condition includes determining that the first glucose sensor temperature is within a first temperature range.
在实施例304中,实施例302至303中的任一项或多项的主题任选地包括其中确定第一葡萄糖传感器温度满足温度条件包括:使用第一葡萄糖传感器温度和由先前温度信号指示的至少一个先前葡萄糖传感器温度生成温度变化率;以及确定温度变化率不超出变化率条件。In Example 304, the subject matter of any one or more of Examples 302 to 303 optionally includes where determining that the first glucose sensor temperature satisfies a temperature condition comprises: generating a temperature change rate using the first glucose sensor temperature and at least one previous glucose sensor temperature indicated by a previous temperature signal; and determining that the temperature change rate does not exceed the change rate condition.
在实施例305中,实施例302至304中的任一项或多项的主题任选地包括:使用第一温度信号生成第一体外温度;以及使用第一体外温度生成第一葡萄糖传感器温度。In Example 305, the subject matter of any one or more of Examples 302 to 304 optionally includes: generating a first external body temperature using the first temperature signal; and generating a first glucose sensor temperature using the first external body temperature.
在实施例306中,实施例305的主题任选地包括其中确定由第一温度信号指示的温度满足温度条件包括确定第一体外温度与第一葡萄糖传感器温度之间的差小于阈值。In Example 306, the subject matter of Example 305 optionally includes where determining that the temperature indicated by the first temperature signal satisfies the temperature condition includes determining that a difference between the first external body temperature and the first glucose sensor temperature is less than a threshold.
在实施例307中,实施例299至306中的任一项或多项的主题任选地包括:从体内葡萄糖传感器获取第二传感器信号;从体外温度传感器获取第二温度信号;至少部分地基于第二温度信号生成第二葡萄糖传感器温度;确定第二葡萄糖传感器温度不满足温度条件;以及响应于确定第二葡萄糖传感器温度超出温度条件,执行响应动作。In Example 307, the subject matter of any one or more of Examples 299 to 306 optionally includes: acquiring a second sensor signal from an in vivo glucose sensor; acquiring a second temperature signal from an in vitro temperature sensor; generating a second glucose sensor temperature based at least in part on the second temperature signal; determining that the second glucose sensor temperature does not satisfy a temperature condition; and in response to determining that the second glucose sensor temperature exceeds the temperature condition, performing a response action.
在实施例308中,实施例307的主题任选地包括响应动作,该响应动作包括:至少部分地基于默认葡萄糖传感器温度生成第二温度补偿灵敏度;以及至少部分地基于第二传感器信号和第二温度补偿灵敏度生成第二估计葡萄糖值。In Example 308, the subject matter of Example 307 optionally includes a response action comprising: generating a second temperature compensated sensitivity based at least in part on a default glucose sensor temperature; and generating a second estimated glucose value based at least in part on the second sensor signal and the second temperature compensated sensitivity.
在实施例309中,实施例307至308中的任一项或多项的主题任选地包括响应动作,该响应动作包括暂停在与葡萄糖传感器相关联的显示器处显示葡萄糖浓度。In Example 309, the subject matter of any one or more of Examples 307 to 308 optionally includes a response action comprising pausing display of the glucose concentration at a display associated with the glucose sensor.
在实施例310中,实施例307至309中的任一项或多项的主题任选地包括响应动作,该响应动作包括至少部分地基于第二传感器信号和非温度补偿灵敏度生成第二估计葡萄糖值。In Example 310, the subject matter of any one or more of Examples 307 to 309 optionally includes a response action comprising generating a second estimated glucose value based at least in part on the second sensor signal and the non-temperature compensated sensitivity.
在实施例311中,实施例299至310中的任一项或多项的主题任选地包括:从体内葡萄糖传感器接收第二传感器信号;至少部分地基于第一葡萄糖传感器温度生成第二温度补偿灵敏度;以及至少部分地基于第二传感器信号和第二温度补偿灵敏度生成第二估计葡萄糖值。In Example 311, the subject matter of any one or more of Examples 299 to 310 optionally includes: receiving a second sensor signal from an in vivo glucose sensor; generating a second temperature compensated sensitivity based at least in part on the first glucose sensor temperature; and generating a second estimated glucose value based at least in part on the second sensor signal and the second temperature compensated sensitivity.
在实施例312中,实施例299至311中的任一项或多项的主题任选地包括在生成第一温度补偿灵敏度之前,确定第一温度信号满足温度信号条件。In Example 312, the subject matter of any one or more of Examples 299 to 311 optionally includes determining that the first temperature signal satisfies a temperature signal condition before generating the first temperature compensated sensitivity.
在实施例313中,实施例312的主题任选地包括其中确定第一温度信号满足温度信号条件是由体外温度传感器执行的。In Example 313, the subject matter of Example 312 optionally includes where determining that the first temperature signal satisfies the temperature signal condition is performed by an in vitro temperature sensor.
主题(例如,系统或装置)的一个实施例(例如,“实施例314”)可任选地组合实施例1至313中的任一项或多项的任何部分或任何部分的组合,以包括用于执行实施例1至313的功能或方法中的任一项或多项的任何部分的“构件”,或者包括指令的“机器可读介质”(例如,大容量、非暂态等),该指令在由机器执行时使得机器执行实施例1至313的功能或方法中的任一项或多项的任何部分。An embodiment (e.g., "Embodiment 314") of a subject matter (e.g., a system or device) may optionally combine any portion or combination of any portion of any one or more of Embodiments 1 to 313 to include a "component" for performing any portion of any one or more of the functions or methods of Embodiments 1 to 313, or a "machine-readable medium" (e.g., large capacity, non-transitory, etc.) including instructions that, when executed by a machine, cause the machine to perform any portion of any one or more of the functions or methods of Embodiments 1 to 313.
本概述旨在提供本专利申请的主题的概述。其并不旨在提供对本公开的排他性或穷举性解释。包括详细描述以提供关于本专利申请的进一步信息。在阅读和理解以下详细描述并查看形成其一部分的附图之后,本公开的其他方面对于本领域技术人员将是显而易见的,这些详细描述和附图中的每一个不应被认为是限制性的。This summary is intended to provide an overview of the subject matter of this patent application. It is not intended to provide an exclusive or exhaustive explanation of the present disclosure. A detailed description is included to provide further information about this patent application. Other aspects of the present disclosure will be apparent to those skilled in the art upon reading and understanding the following detailed description and viewing the accompanying drawings that form a part thereof, and each of these detailed descriptions and drawings should not be considered limiting.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
在不必按比例绘制的附图中,类似的数字可在不同的视图中描述类似的部件。具有不同字母后缀的类似的数字可表示类似部件的不同示例。附图以举例的方式而不是以限制的方式一般性地示出了本文中讨论的各种实施方案。In the accompanying drawings that are not necessarily drawn to scale, like numbers may describe similar components in different views. Like numbers with different letter suffixes may represent different examples of similar components. The accompanying drawings generally illustrate various embodiments discussed herein by way of example and not by way of limitation.
图1是可包括温度传感器并且其中可实施温度补偿方法的示例分析物传感器系统的图。1 is a diagram of an example analyte sensor system that may include a temperature sensor and in which a temperature compensation method may be implemented.
图2A是示例分析物传感器系统的示意图。2A is a schematic diagram of an example analyte sensor system.
图2B是分析物传感器系统的示例传感器电子器件部分的示意图。2B is a schematic diagram of an example sensor electronics portion of an analyte sensor system.
图2C是与受者组织接合的示例分析物传感器系统的示意图。2C is a schematic diagram of an example analyte sensor system engaged with recipient tissue.
图2D是与受者组织接合的示例分析物传感器系统的示意图。2D is a schematic diagram of an example analyte sensor system engaged with recipient tissue.
图3是分析物传感器的远侧部分上的温度传感器的示意图。3 is a schematic diagram of a temperature sensor on a distal portion of an analyte sensor.
图4是分析物传感器的近侧部分上的示例温度传感器的示意图。4 is a schematic diagram of an example temperature sensor on a proximal portion of an analyte sensor.
图5A是分析物传感器的近侧部分上的另一个示例温度传感器的示意图。5A is a schematic diagram of another example temperature sensor on a proximal portion of an analyte sensor.
图5B是图5A所示的温度传感器的一部分的放大视图。FIG. 5B is an enlarged view of a portion of the temperature sensor shown in FIG. 5A .
图6是使用延迟参数确定温度补偿葡萄糖浓度水平的示例方法的流程图。6 is a flow chart of an example method for determining temperature compensated glucose concentration levels using a delay parameter.
图7是基于评估(例如,确证)温度值来确定温度补偿葡萄糖浓度水平的示例方法的流程图。7 is a flow chart of an example method for determining a temperature-compensated glucose concentration level based on evaluating (eg, validating) a temperature value.
图8是用于对连续葡萄糖传感器进行温度补偿的示例方法的示意图,该方法包括根据温度信息确定模式。8 is a schematic diagram of an example method for temperature compensating a continuous glucose sensor, the method including determining a mode based on temperature information.
图9是用于至少部分地基于检测到的状况或状态对连续血糖监测系统进行温度补偿的示例方法的流程图。9 is a flow chart of an example method for temperature compensating a continuous glucose monitoring system based at least in part on a detected condition or state.
图10是使用参考温度值对连续葡萄糖传感器系统进行温度补偿的方法的示意图。FIG. 10 is a schematic diagram of a method for temperature compensating a continuous glucose sensor system using a reference temperature value.
图11是示例连续葡萄糖传感器温度补偿方法的流程图。11 is a flow chart of an example continuous glucose sensor temperature compensation method.
图12是使用两个温度传感器进行温度补偿的示例方法的流程图。12 is a flow chart of an example method for temperature compensation using two temperature sensors.
图13是确定连续葡萄糖(或其他分析物)监测仪被重启的示例方法的流程图。13 is a flow chart of an example method for determining that a continuous glucose (or other analyte) monitor has been rebooted.
图14是确定传感器的解剖位置的示例方法的流程图。14 is a flow chart of an example method of determining an anatomical location of a sensor.
图15A示出了相对于时间绘制的葡萄糖传感器的输出。FIG. 15A shows the output of a glucose sensor plotted against time.
图15B示出了相对于时间绘制的温度传感器的输出。FIG. 15B shows the output of the temperature sensor plotted against time.
图15C示出了叠加在葡萄糖传感器输出上的温度,其中相关性明显。FIG. 15C shows temperature superimposed on the glucose sensor output, where the correlation is evident.
图15D示出了叠加在葡萄糖传感器输出上的温度,其中相关性不明显。FIG. 15D shows temperature superimposed on the glucose sensor output, where the correlation is not apparent.
图16是示出受者腹部上的传感器和受者手臂上的传感器的温度对时间的图形的图示。16 is a diagram showing a graph of temperature versus time for a sensor on a recipient's abdomen and a sensor on a recipient's arm.
图17是多个传感器设备在前24小时内的标准偏差对平均温度的图。17 is a graph of standard deviation versus average temperature for multiple sensor devices over the previous 24 hours.
图18A是温度对时间的图,其中从传感器中取出传感器电子器件封装一分钟的时段。18A is a graph of temperature versus time where the sensor electronics package was removed from the sensor for a period of one minute.
图18B是温度对时间的图,其中从传感器中取出传感器电子器件封装五分钟的时段。18B is a graph of temperature versus time where the sensor electronics package was removed from the sensor for a period of five minutes.
图19是可用于根据可在不同时间点接收到的两个或更多个输入来确定输出的示例模型的示意图。19 is a diagram of an example model that may be used to determine an output based on two or more inputs that may be received at different points in time.
图20A是使用模型来确定补偿葡萄糖浓度值的示例方法的流程图。20A is a flow chart of an example method for using a model to determine a compensated glucose concentration value.
图20B是使用模型来确定补偿葡萄糖浓度值的另一个示例方法的流程图。20B is a flow chart of another example method of using a model to determine a compensated glucose concentration value.
图21是示出相对于时间绘制的温度和阻抗的图。FIG. 21 is a graph showing temperature and impedance plotted against time.
图22是使用电导率或阻抗进行温度补偿的示例方法的流程图。22 is a flow chart of an example method for temperature compensation using conductivity or impedance.
图23是使用电导率或阻抗来确定估计皮下温度的示例方法的流程图。23 is a flow chart of an example method for determining estimated subcutaneous temperature using conductivity or impedance.
图24是用于训练温度补偿模型的示例方法的流程图。24 is a flow chart of an example method for training a temperature compensation model.
图25是用于利用经训练的温度补偿模型的示例方法的流程图。25 is a flow chart of an example method for utilizing a trained temperature compensation model.
图26是用于检测锻炼状况或状态的示例方法的流程图。26 is a flow chart of an example method for detecting an exercise condition or state.
图27是示出第一变化分布函数和第二变化分布函数的图,第一变化分布函数显示受者处于休息(例如,非锻炼)状况或状态,第二变化分布函数显示受者处于锻炼状况或状态。27 is a graph showing a first variation distribution function showing that the subject is in a resting (eg, non-exercise) condition or state and a second variation distribution function showing that the subject is in an exercise condition or state.
图28是用于使用温度参数信号样本中的变化率分布来检测锻炼状况或状态的示例方法的流程图。28 is a flow chart of an example method for detecting an exercise condition or state using a rate of change distribution in temperature parameter signal samples.
图29是用于记录在运输期间分析物传感器系统处的温度的示例方法的流程图。29 is a flow chart of an example method for recording temperature at an analyte sensor system during transport.
图30是用于以包括来自分析物传感器系统的运输和/或储存的周期性温度测量的记录的分析物传感器会话开始传感器会话的示例方法的流程图。30 is a flow diagram of an example method for beginning a sensor session with an analyte sensor session that includes recording of periodic temperature measurements from transport and/or storage of the analyte sensor system.
图31是可在分析物传感器系统处实施以使用二极管来测量温度的示例电路布置的图示。31 is a diagram of an example circuit arrangement that may be implemented at an analyte sensor system to measure temperature using a diode.
图32是使用二极管测量分析物传感器系统处的温度的方法的流程图。32 is a flow chart of a method of measuring temperature at an analyte sensor system using a diode.
图33例示了示例传感器插入部位,显示了传感器插入部位与受者毛细血管部位之间的细胞。FIG. 33 illustrates an example sensor insertion site showing cells between the sensor insertion site and a recipient capillary site.
图34是示出可在使用温度补偿来响应异常的分析物传感器系统中执行的处理流程的一个示例的图。34 is a diagram illustrating one example of a process flow that may be performed in an analyte sensor system that uses temperature compensation to respond to an anomaly.
图35是例示温度模型的框图。FIG. 35 is a block diagram illustrating a temperature model.
图36示出了例示体外温度TTx与体内传感器温度TWE之间的示例关系的图表,例示了触发异常的体内传感器温度TWE的范围。FIG. 36 shows a graph illustrating an example relationship between the external temperature TTx and the internal sensor temperature TWE , illustrating a range of the internal sensor temperature TWE that triggers an abnormality.
图37示出了图36的图表的一个版本,包括对应于当体外温度TTx高于上限温度和/或低于下限温度时的情况的区域。FIG. 37 shows a version of the diagram of FIG. 36 including regions corresponding to situations when the external body temperature TTx is above the upper temperature limit and/or below the lower temperature limit.
图38是示出可由分析物传感器系统执行以根据考虑了模型参数的体外温度测量结果确定体内传感器温度的处理流程的一个示例的流程图。38 is a flow chart illustrating one example of a process flow that may be performed by an analyte sensor system to determine in vivo sensor temperature from in vitro temperature measurements that take into account model parameters.
图39是示出基于所确定的体内传感器温度TWE来检测异常的一个示例的流程图。FIG. 39 is a flowchart showing an example of detecting abnormality based on the determined in-vivo sensor temperature TWE .
图40是例示体外温度TTx与体内传感器温度TWE之间的示例关系的图表。FIG. 40 is a graph illustrating an example relationship between the external body temperature TTx and the internal body sensor temperature TWE .
图41是示出可由分析物传感器系统执行以在体内传感器温度TWE的不同范围内使用多个温度模型的处理流程的一个示例的流程图。41 is a flow chart illustrating one example of a process flow that may be performed by an analyte sensor system to use multiple temperature models over different ranges of in vivo sensor temperature TWE .
图42是示出可由分析物传感器系统执行以在体内传感器温度TWE的不同范围内使用多个温度模型的处理流程4200的另一个示例的流程图。42 is a flow chart illustrating another example of a process flow 4200 that may be performed by an analyte sensor system to use multiple temperature models over different ranges of in vivo sensor temperature TWE .
图43是示出可由分析物传感器系统诸如葡萄糖传感器系统执行以确定温度补偿估计葡萄糖值的处理流程的一个示例的流程图。43 is a flow chart illustrating one example of a process flow that may be performed by an analyte sensor system, such as a glucose sensor system, to determine a temperature compensated estimated glucose value.
图44是示出可由分析物传感器系统执行以对来自体外温度传感器的信号进行上采样的处理流程的一个示例的流程图。44 is a flow chart illustrating one example of a process flow that may be performed by an analyte sensor system to upsample a signal from an in vitro temperature sensor.
图45是与受者组织接合的另一个示例分析物传感器系统的示意图。45 is a schematic diagram of another example analyte sensor system interfaced with recipient tissue.
图46是图45的示例布置沿着线AA截取的横截面图。46 is a cross-sectional view of the example arrangement of FIG. 45 taken along line AA.
具体实施方式Detailed ways
葡萄糖传感器的准确度对于患者、护理者和临床医生是重要的,因为从葡萄糖传感器获得的估计葡萄糖值可用于确定治疗或评估治疗有效性。许多因素可影响葡萄糖传感器的准确度。一个因素是温度。除了别的以外,本发明人已经认识到可采取步骤来补偿温度对葡萄糖传感器的影响,这可通过提高估计葡萄糖水平的准确性来改进传感器系统的性能,这继而可减小传感器系统的平均绝对相对偏差(MARD)。在葡萄糖水平的有效或指示范围内的MARD值是用于描述通过葡萄糖感测系统进行的葡萄糖测量的精度和准确度的常用方法。MARD是测量由葡萄糖传感器生成的估计葡萄糖值与参考测量之间的平均差异的数学计算的结果。MARD越低,认为设备越准确。The accuracy of glucose sensors is important for patients, caregivers and clinicians because the estimated glucose values obtained from glucose sensors can be used to determine treatment or evaluate treatment effectiveness. Many factors can affect the accuracy of glucose sensors. One factor is temperature. Among other things, the inventors have recognized that steps can be taken to compensate for the effects of temperature on glucose sensors, which can improve the performance of the sensor system by improving the accuracy of the estimated glucose level, which in turn can reduce the mean absolute relative deviation (MARD) of the sensor system. The MARD value within the effective or indicative range of glucose levels is a common method for describing the precision and accuracy of glucose measurements performed by a glucose sensing system. MARD is the result of a mathematical calculation measuring the average difference between the estimated glucose value generated by a glucose sensor and a reference measurement. The lower the MARD, the more accurate the device is considered.
定义definition
为了有利于理解各种示例,下面定义多个另外的术语。To facilitate understanding of the various examples, a number of additional terms are defined below.
如本文所用,术语“约”是广义术语,并且将向本领域普通技术人员给出其普通和惯用的含义(并且不限于特殊的或自定义的含义),并且当与任何数值或范围相关联时是指(但不限于此)理解术语修饰的量或条件可在所述量之外变化一些,只要实现实施方案的功能即可。As used herein, the term "about" is a broad term and will be given its ordinary and customary meaning to those of ordinary skill in the art (and is not limited to a specific or customized meaning), and when associated with any numerical value or range means (but is not limited to) the understanding that the amount or condition modified by the term may vary somewhat beyond the stated amount so long as the function of the embodiment is achieved.
如本文所用,术语“A/D转换器”是广义术语,并且将向本领域普通技术人员给出其普通和惯用的含义(并且不限于特殊的或自定义的含义),并且是指(但不限于此)将模拟电子信号转换成对应数字信号的硬件和/或软件。As used herein, the term "A/D converter" is a broad term and will be given its ordinary and customary meaning to those of ordinary skill in the art (and not limited to a special or customized meaning), and refers to (but is not limited to) hardware and/or software that converts analog electronic signals into corresponding digital signals.
如本文所用,术语“分析物”是广义术语,并且将向本领域普通技术人员给出其普通和惯用的含义(并且不限于特殊的或自定义的含义),并且是指(但不限于此)生物流体(例如,血液、间质液、脑脊髓液、淋巴液或尿液)中可被分析的物质或化学成分。分析物可包括天然存在的物质、人造物质、代谢物和/或反应产物。在一些实施方案中,用于通过本文所公开的传感器头、设备和方法测量的分析物是葡萄糖。然而,也设想了其他分析物,包括但不限于:乳酸盐;胆红素;酮;二氧化碳;钠;钾;无羧基凝血酶原;酰基肉碱;腺嘌呤磷酸核糖转移酶;腺苷脱氨酶;白蛋白;甲胎蛋白;氨基酸谱(精氨酸(克雷布斯循环)、组氨酸/尿刊酸、高半胱氨酸、苯丙氨酸/酪氨酸、色氨酸);雄烯二酮;安替比林;阿拉伯糖醇对映体;精氨酸酶;苯甲酰芽子碱(可卡因);生物素酶;生物蝶呤;c-反应蛋白;肉毒碱;肌肽酶;CD4;血浆铜蓝蛋白;鹅去氧胆酸;氯喹;胆固醇;胆碱酯酶;缀合的1-β羟基-胆酸;皮质醇;肌酸激酶;肌酸激酶MM同功酶;环孢菌素A;d-青霉胺;去乙基氯喹;硫酸脱氢表雄酮;DNA(乙酰化酶多态性、醇脱氢酶、α1-抗胰蛋白酶、囊性纤维化、杜氏营养不良症/贝克型肌肉萎缩症、分析物-6-磷酸脱氢酶、血红蛋白A、血红蛋白S、血红蛋白C、血红蛋白E、D-旁遮普、β-地中海贫血、乙型肝炎病毒、HCMV、HIV-1、HTLV-1、莱伯遗传性视神经病变、MCAD、RNA、PKU、间日疟原虫、性分化、21-脱氧皮质醇);去丁基卤泛群;二氢蝶啶还原酶;白喉/破伤风抗毒素;红细胞精氨酸酶;红细胞原卟啉;酯酶D;脂肪酸/酰基甘氨酸;游离β-人绒毛膜促性腺激素;游离红细胞卟啉;游离甲状腺素(FT4);游离三碘甲状腺原氨酸(FT3);富马酰乙酰乙酸酶;半乳糖/gal-1-磷酸;半乳糖-1-磷酸尿苷酰转移酶;庆大霉素;分析物-6-磷酸脱氢酶;谷胱甘肽;谷胱甘肽过氧化物酶;甘氨胆酸;糖基化血红蛋白;卤泛群;血红蛋白变体;己糖胺酶A;人红细胞碳酸酐酶I;17α-羟孕酮;次黄嘌呤磷酸核糖转移酶;免疫反应性胰蛋白酶;铅;脂蛋白((a)、B/A-1、β);溶菌酶;甲氟喹;奈替米星;苯巴比妥;苯妥英;植烷酸/降植烷酸;孕酮;催乳素;脯氨酸酶;嘌呤核苷磷酸化酶;奎宁;反向三碘甲状腺原氨酸(rT3);硒;血清胰脂肪酶;西索米星;生长调节素C;特异性抗体(腺病毒、抗核抗体、抗ζ抗体、虫媒病毒、奥耶斯基病病毒、登革热病毒、麦地那龙线虫、细粒棘球绦虫、痢疾阿米巴、肠道病毒、贾第鞭毛虫属、幽门螺杆菌、乙型肝炎病毒、疱疹病毒、HIV-1、IgE(特应性疾病)、流感病毒、杜氏利什曼原虫、钩端螺旋体、麻疹/痄腮/风疹、麻风分枝杆菌、肺炎支原体、肌红蛋白、盘尾丝虫、副流感病毒、恶性疟原虫、脊髓灰质炎病毒、铜绿假单胞菌、呼吸道合胞病毒、立克次氏体(恙虫病)、曼氏血吸虫、刚地弓形虫、苍白密螺旋体、克氏锥虫/兰氏锥虫、水泡性气孔炎病毒、班氏吴策线虫、黄热病病毒);特异性抗原(乙型肝炎病毒,HIV-1);琥珀酰基丙酮;磺胺多辛;茶碱;促甲状腺素(TSH);甲状腺素(T4);甲状腺素结合球蛋白;微量元素;转铁蛋白;UDP-半乳糖-4-差向异构酶;脲;尿卟啉原I合酶;维生素A;白血细胞;以及锌原卟啉。在某些实施方案中,天然存在于血液或间质液中的盐、糖、蛋白质、脂肪、维生素和激素也可构成分析物。分析物可天然存在于生物流体中,例如代谢产物、激素、抗原、抗体等。另选地,分析物可引入到身体中,例如用于成像的造影剂、放射性同位素、化学试剂、基于碳氟化合物的合成血液或者药物或药物组合物,包括但不限于:胰岛素;乙醇;大麻(大麻、四氢大麻酚、印度大麻);吸入剂(一氧化二氮、亚硝酸戊酯、亚硝酸丁酯、氯代烃、烃);可卡因(裂解可卡因);兴奋剂(苯丙胺、甲基苯丙胺、利他林、Cylert、Preludin、Didrex、PreState、Voranil、Sandrex、Plegine);镇静剂(巴比妥类、甲喹酮、安定剂诸如安定、利眠宁、眠尔通、舒宁、甲丁双脲、氯卓酸钾);致幻剂(苯环利定、麦角酸、墨斯卡灵、皮约特、裸盖菇素);麻醉剂(海洛因、可待因、吗啡、鸦片、哌替啶、Percocet、Percodan、Tussionex、芬太尼、Darvon、Talwin、Lomotil);特制药物(芬太尼、哌替啶、苯丙胺、甲基苯丙胺和苯环利定的类似物,例如,摇头丸);合成代谢类固醇;以及烟碱。药物和药物组合物的代谢产物也是预期的分析物。还可分析体内产生的分析物诸如神经化学物质和其他化学物质,诸如例如抗坏血酸、尿酸、多巴胺、去甲肾上腺素、3-甲氧基酪胺(3MT)、3,4-二羟基苯乙酸(DOPAC)、高香草酸(HVA)、5-羟基色胺(5HT)和5-羟基吲哚乙酸(FHIAA)。As used herein, the term "analyte" is a broad term and will be given its ordinary and customary meaning to those of ordinary skill in the art (and is not limited to a special or customary meaning), and refers to (but is not limited to) a substance or chemical component that can be analyzed in a biological fluid (e.g., blood, interstitial fluid, cerebrospinal fluid, lymph, or urine). Analytes can include naturally occurring substances, artificial substances, metabolites, and/or reaction products. In some embodiments, the analyte for measurement by the sensor head, device, and method disclosed herein is glucose. However, other analytes are also contemplated, including, but not limited to: lactate; bilirubin; ketones; carbon dioxide; sodium; potassium; carboxyl-free prothrombin; acylcarnitines; adenine phosphoribosyltransferase; adenosine deaminase; albumin; alpha-fetoprotein; amino acid profile (arginine (Krebs cycle), histidine/urocanic acid, homocysteine, phenylalanine/tyrosine, tryptophan); androstenedione; antipyrine; arabinitol enantiomers; arginase; benzoylecgonine (cocaine); biotinidase; biopterin; c-reactive protein; carnitine; carnosinase; CD4; ceruloplasmin; chenodeoxycholic acid; chloroquine; cholesterol; cholinesterase; conjugated 1-beta hydroxy-cholic acid; cortisol; creatine kinase; creatine kinase MM isozyme; cyclosporin A; d-penicillamine; desethylchloroquine; dehydroepiandrosterone sulfate; DNA (acetylase polymorphism, alcohol dehydrogenase, α1-antibody Trypsin, cystic fibrosis, Duchenne dystrophy/Becker muscular dystrophy, analyte-6-phosphate dehydrogenase, hemoglobin A, hemoglobin S, hemoglobin C, hemoglobin E, D-Punjab, beta-thalassemia, hepatitis B virus, HCMV, HIV-1, HTLV-1, Leber hereditary optic neuropathy, MCAD, RNA, PKU, Plasmodium vivax, sexual differentiation, 21-deoxycortisol); desbutyl halofantrine; dihydropteridine reductase; diphtheria/tetanus antitoxin; erythrocyte arginase; erythrocyte protoporphyrin; esterase D; fatty acids/acylglycines; free beta-human chorionic gonadotropin; free erythrocyte porphyrin; free thyroxine (FT4); free triiodothyronine (FT3); fumaryl acetoacetase; galactose/gal-1-phosphate; galactose-1-phosphate uridyltransferase; gentamicin analyte-6-phosphate dehydrogenase; glutathione; glutathione peroxidase; glycocholic acid; glycosylated hemoglobin; halofantrine; hemoglobin variant; hexosaminidase A; human erythrocyte carbonic anhydrase I; 17α-hydroxyprogesterone; hypoxanthine phosphoribosyltransferase; immunoreactive trypsin; lead; lipoprotein ((a), B/A-1, β); lysozyme; mefloquine; netilmicin; phenobarbital; phenytoin; phytanic acid/norepinephrine Phytanic acid; progesterone; prolactin; prolinase; purine nucleoside phosphorylase; quinine; reverse triiodothyronine (rT3); selenium; serum pancreatic lipase; sisomicin; somatomedin C; specific antibodies (adenovirus, antinuclear antibody, anti-ζ antibody, arbovirus, Aujeskey's disease virus, dengue virus, Guinea worm, Echinococcus granulosus, Entamoeba histolytica, enterovirus, Giardia lamblia, Helicobacter pylori, hepatitis B Viruses, herpes virus, HIV-1, IgE (atopic disease), influenza virus, Leishmania donovani, Leptospira, measles/mumps/rubella, Mycobacterium leprae, Mycoplasma pneumoniae, myoglobin, Onchocerca volvulus, parainfluenza virus, Plasmodium falciparum, polio virus, Pseudomonas aeruginosa, respiratory syncytial virus, Rickettsia (tsutsugamushi disease), Schistosoma mansoni, Toxoplasma gondii, Treponema pallidum, Trypanosoma cruzi/ lamblia, vesicular stoma virus, Wuchereria bancrofti, yellow fever virus); specific antigens (hepatitis B virus, HIV-1); succinylacetone; sulfadoxine; theophylline; thyrotropin (TSH); thyroxine (T4); thyroxine binding globulin; trace elements; transferrin; UDP-galactose-4-epimerase; urea; uroporphyrinogen I synthase; vitamin A; white blood cells; and zinc protoporphyrin. In certain embodiments, salts, sugars, proteins, fats, vitamins, and hormones naturally present in blood or interstitial fluids may also constitute analytes. Analytes may be naturally present in biological fluids, such as metabolites, hormones, antigens, antibodies, and the like. Alternatively, the analyte may be introduced into the body, such as contrast agents for imaging, radioisotopes, chemical agents, fluorocarbon-based synthetic blood, or drugs or drug compositions, including but not limited to: insulin; ethanol; cannabis (marijuana, tetrahydrocannabinol, hashish); inhalants (nitrous oxide, amyl nitrite, butyl nitrite, chlorinated hydrocarbons, hydrocarbons); cocaine (crack cocaine); stimulants (amphetamine, methamphetamine, Ritalin, Cylert, Preludin, Didrex, PreState, Voranil, Sandrex, Plegitimate); ne); sedatives (barbiturates, methaqualone, tranquilizers such as diazepam, chlordiazepoxide, meprobamate, sedatives, mebutamide, clorazepate); hallucinogens (phencyclidine, lysergic acid, mescaline, pyodate, psilocybin); narcotics (heroin, codeine, morphine, opium, pethidine, Percocet, Percodan, Tussionex, fentanyl, Darvon, Talwin, Lomotil); designer drugs (fentanyl, pethidine, amphetamine, methamphetamine, and analogs of phencyclidine, e.g., ecstasy); anabolic steroids; and nicotine. Metabolites of drugs and drug compositions are also expected analytes. Analytes produced in the body such as neurochemicals and other chemicals may also be analyzed, such as, for example, ascorbic acid, uric acid, dopamine, norepinephrine, 3-methoxytyramine (3MT), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA), 5-hydroxytryptamine (5HT), and 5-hydroxyindoleacetic acid (FHIAA).
如本文所用,术语“基线”是广义术语,并且将向本领域普通技术人员给出其普通和惯用的含义(并且不限于特殊的或自定义的含义),并且是指(但不限于此)分析物传感器信号的与估计分析物值不相关的分量。在葡萄糖传感器的一个示例中,基线基本上由除葡萄糖以外的因素(例如,干扰物质、非反应相关的过氧化氢或具有与过氧化氢重叠的氧化电位的其他电活性物质)引起的信号贡献组成。在一些实施方案中,可通过求解方程y=mx+b来定义校准,b的值表示信号的基线。在某些实施方案中,b的值(即,基线)可为零或约零。例如,这可以是减去基线的电极或低偏差电位设置的结果。因此,对于这些实施方案,可通过求解方程y=mx来定义校准。As used herein, the term "baseline" is a broad term and will be given its ordinary and customary meaning (and not limited to a special or custom meaning) to those of ordinary skill in the art, and refers to (but is not limited to) a component of the analyte sensor signal that is not related to the estimated analyte value. In one example of a glucose sensor, the baseline is essentially composed of signal contributions caused by factors other than glucose (e.g., interfering substances, non-reaction-related hydrogen peroxide, or other electroactive substances with an oxidation potential overlapping with hydrogen peroxide). In some embodiments, calibration can be defined by solving the equation y=mx+b, and the value of b represents the baseline of the signal. In certain embodiments, the value of b (i.e., the baseline) may be zero or approximately zero. For example, this may be the result of an electrode or low deviation potential setting that subtracts the baseline. Therefore, for these embodiments, calibration can be defined by solving the equation y=mx.
如本文所用,术语“生物样本”是广义术语,并且将向本领域普通技术人员给出其普通和惯用的含义(并且不限于特殊的或自定义的含义),并且是指(但不限于此)从受者的身体或组织得到的样本,诸如例如血液、间质液、脊髓液、唾液、尿液、泪液、汗液等流体。As used herein, the term "biological sample" is a broad term and will be given its ordinary and customary meaning to a person of ordinary skill in the art (and not limited to a special or customized meaning), and refers to (but is not limited to) a sample obtained from the body or tissue of a recipient, such as, for example, blood, interstitial fluid, cerebrospinal fluid, saliva, urine, tears, sweat, or the like.
如本文所用,术语“校准”是广义术语,并且将向本领域普通技术人员给出其普通和惯用的含义(并且不限于特殊的或自定义的含义),并且是指(但不限于此)确定执行定量测量(例如,估计分析物值)的传感器的分度的过程。又如,校准可随时间推移更新或重新校准以考虑与传感器相关联的变化,诸如传感器灵敏度和传感器背景的变化。另外,传感器的校准可涉及自动自校准,即,在使用时之后不使用参考分析物值的校准。As used herein, the term "calibration" is a broad term and will be given its ordinary and customary meaning to one of ordinary skill in the art (and not limited to a special or custom meaning), and refers to (but is not limited to) the process of determining the graduation of a sensor that performs a quantitative measurement (e.g., estimating an analyte value). As another example, the calibration may be updated or recalibrated over time to account for changes associated with the sensor, such as changes in sensor sensitivity and sensor background. In addition, the calibration of the sensor may involve automatic self-calibration, that is, calibration without the use of a reference analyte value after use.
如本文所用,术语“共分析物”是广义术语,并且将向本领域普通技术人员给出其普通和惯用的含义(并且不限于特殊的或自定义的含义),并且是指(但不限于此)酶促反应中要求的与分析物和酶进行反应以形成被测量的特定产物的分子。在葡萄糖传感器的一个实施方案中,提供酶(葡萄糖氧化酶(GOX))以与葡萄糖和氧(共分析物)反应,从而形成过氧化氢。As used herein, the term "co-analyte" is a broad term and will be given its ordinary and customary meaning to those of ordinary skill in the art (and is not limited to a special or customary meaning), and refers to (but is not limited to) a molecule required in an enzymatic reaction to react with the analyte and the enzyme to form a specific product being measured. In one embodiment of a glucose sensor, an enzyme (glucose oxidase (GOX)) is provided to react with glucose and oxygen (co-analyte) to form hydrogen peroxide.
如本文所用,术语“包含”与“包括”、“含有”或“特征在于”同义,并且是包容性的或开放式的,并且不排除另外的、未列举的要素或方法步骤。As used herein, the term "comprising" is synonymous with "including," "containing," or "characterized by," and is inclusive or open-ended and does not exclude additional, unrecited elements or method steps.
如本文所用,术语“计算机”是广义术语,并且将向本领域普通技术人员给出其普通和惯用的含义(并且不限于特殊的或自定义的含义),并且是指(但不限于此)可被编程为操纵数据的机器。As used herein, the term "computer" is a broad term and will be given its ordinary and customary meaning to persons of ordinary skill in the art (and not limited to a special or customized meaning), and refers to (but is not limited to) a machine that can be programmed to manipulate data.
如本文所用,术语“连续分析物传感器”和“连续葡萄糖传感器”是广义术语,并且将向本领域普通技术人员给出其普通和惯用的含义(并且不限于特殊的或自定义的含义),并且是指(但不限于此)连续地或持续地(例如,以在几分之一秒至例如1、2或5分钟或更长时间的范围内的时间间隔)测量分析物/葡萄糖的浓度和/或校准设备(诸如例如通过连续地或持续地调节或确定传感器的灵敏度和背景)的设备。As used herein, the terms "continuous analyte sensor" and "continuous glucose sensor" are broad terms and will be given their ordinary and customary meanings to one of ordinary skill in the art (and not limited to special or customized meanings), and refer to (but are not limited to) devices that continuously or continually (e.g., at time intervals ranging from a fraction of a second to, e.g., 1, 2 or 5 minutes or longer) measure the concentration of an analyte/glucose and/or calibrate the device (such as, for example, by continuously or continually adjusting or determining the sensitivity and background of the sensor).
如本文所用,短语“连续葡萄糖感测”是广义术语,并且将向本领域普通技术人员给出其普通和惯用的含义(并且不限于特殊的或自定义的含义),并且是指(但不限于此)连续地或持续地(例如,以在几分之一秒至例如1、2或5分钟或更长时间的范围内的时间间隔)执行血浆葡萄糖浓度的监测的时段。As used herein, the phrase "continuous glucose sensing" is a broad term and will be given its ordinary and customary meaning to one of ordinary skill in the art (and not limited to a special or customized meaning), and refers to (but is not limited to) a period of time during which monitoring of plasma glucose concentration is performed continuously or continually (e.g., at time intervals ranging from a fraction of a second to, e.g., 1, 2 or 5 minutes or longer).
如本文所用,术语“计数”是广义术语,并且将向本领域普通技术人员给出其普通和惯用的含义(并且不限于特殊的或自定义的含义),并且是指(但不限于此)数字信号的计量单位。在一个示例中,以计数测量的原始数据流与电压正相关(例如,由模数转换器转换),而电压与来自工作电极的电流正相关。As used herein, the term "count" is a broad term and will be given its ordinary and customary meaning to those of ordinary skill in the art (and is not limited to a special or custom meaning), and refers to (but is not limited to) a unit of measurement of a digital signal. In one example, the raw data stream measured in counts is positively correlated to voltage (e.g., converted by an analog-to-digital converter), and the voltage is positively correlated to the current from the working electrode.
如本文所用,术语“远”是广义术语,并且将向本领域普通技术人员给出其普通和惯用的含义(并且不限于特殊的或自定义的含义),并且是指(但不限于此)与参考点(诸如原点或附接点)间隔相对较远的空间。As used herein, the term "remote" is a broad term and will be given its ordinary and customary meaning to one of ordinary skill in the art (and not limited to a special or customized meaning), and refers to (but is not limited to) a space that is relatively far from a reference point (such as an origin or attachment point).
如本文所用,术语“域”是广义术语,并且将向本领域普通技术人员给出其普通和惯用的含义(并且不限于特殊的或自定义的含义),并且是指(但不限于此)膜的区域,其可以是层、均匀或非均匀梯度(例如,各向异性)、材料的功能方面、或被提供作为膜的部分。As used herein, the term "domain" is a broad term and will be given its ordinary and customary meaning to one of ordinary skill in the art (and is not limited to a special or customized meaning), and refers to (but is not limited to) a region of a film, which may be a layer, a uniform or non-uniform gradient (e.g., anisotropy), a functional aspect of a material, or provided as part of a film.
如本文所用,术语“电导体”是广义术语,并且将向本领域普通技术人员给出其普通和惯用的含义(并且不限于特殊的或自定义的含义),并且是指(但不限于此)包含可移动电荷的材料。当在导体上的分离点施加电位差时,导体内的移动电荷被迫移动,并且根据欧姆定律在那些点之间出现电流。As used herein, the term "electrical conductor" is a broad term and is to be given its ordinary and customary meaning to one of ordinary skill in the art (and is not limited to a special or customary meaning), and refers to (but is not limited to) a material containing movable charges. When a potential difference is applied across separate points on the conductor, the mobile charges within the conductor are forced to move, and an electric current appears between those points according to Ohm's law.
如本文所用,术语“电导率”是广义术语,并且将向本领域普通技术人员给出其普通和惯用的含义(并且不限于特殊的或自定义的含义),并且是指(但不限于此)材料表现为电导体的倾向。在一些实施方案中,该术语是指提供必要功能(电传导)的足够量的电导率(例如,材料性质)。As used herein, the term "electrical conductivity" is a broad term and will be given its ordinary and customary meaning to one of ordinary skill in the art (and is not limited to a special or customized meaning), and refers to (but is not limited to) the tendency of a material to behave as an electrical conductor. In some embodiments, the term refers to a sufficient amount of electrical conductivity (e.g., a material property) to provide the necessary function (electrical conduction).
如本文所用,术语“电化学反应表面”和“电活性表面”是广义术语,并且将向本领域普通技术人员给出其普通和惯用的含义(并且不限于特殊的或自定义的含义),并且是指(但不限于此)电极的发生电化学反应的表面。在一个实施方案中,工作电极测量形成可测量电流的过氧化氢(H2O2)。As used herein, the terms "electrochemical reaction surface" and "electroactive surface" are broad terms and will be given their ordinary and customary meanings to those of ordinary skill in the art (and are not limited to special or customary meanings), and refer to (but are not limited to) the surface of an electrode where electrochemical reactions occur. In one embodiment, the working electrode measures hydrogen peroxide (H2O2) that forms a measurable current.
如本文所用,术语“电极”是广义术语,并且将向本领域普通技术人员给出其普通和惯用的含义(并且不限于特殊的或自定义的含义),并且是指(但不限于此)电力通过其进入或离开某物(诸如电池或电气设备)的导体。在一个实施方案中,电极是传感器的暴露于细胞外环境的用于检测分析物的金属部分(例如,电化学反应表面)。在一些实施方案中,术语电极包括将电化学反应性表面电连接到连接器(用于将传感器连接到电子器件)或连接到电子器件的导线或迹线。As used herein, the term "electrode" is a broad term and will be given its ordinary and customary meaning to one of ordinary skill in the art (and is not limited to a special or customary meaning), and refers to (but is not limited to) a conductor through which electricity enters or leaves something (such as a battery or an electrical device). In one embodiment, an electrode is a metallic portion of a sensor that is exposed to the extracellular environment for detecting an analyte (e.g., an electrochemically reactive surface). In some embodiments, the term electrode includes a wire or trace that electrically connects an electrochemically reactive surface to a connector (for connecting a sensor to an electronic device) or to an electronic device.
如本文所用,术语“细长导电体”是广义术语,并且将向本领域普通技术人员给出其普通和惯用的含义(并且不限于特殊的或自定义的含义),并且是指(但不限于此)至少在部分导电材料中形成并包括可在其上形成的任何数量涂层的细长体。例如,“细长导电体”可指裸露的细长导电芯(例如,金属线)或涂覆有一层、两层、三层、四层、五层或更多层材料的细长导电芯,其中每一层可为导电的或可为不导电的。As used herein, the term "elongated conductive body" is a broad term and will be given its ordinary and customary meaning to those of ordinary skill in the art (and is not limited to a special or customary meaning), and refers to (but is not limited to) an elongated body formed at least in part in a conductive material and including any number of coatings that may be formed thereon. For example, an "elongated conductive body" may refer to a bare elongated conductive core (e.g., a metal wire) or an elongated conductive core coated with one, two, three, four, five or more layers of material, each of which may be conductive or non-conductive.
如本文所用,术语“酶”是广义术语,并且将向本领域普通技术人员给出其普通和惯用的含义(并且不限于特殊的或自定义的含义),并且是指(但不限于此)加速在活体中发生的化学反应的蛋白质或基于蛋白质的分子。酶可作为单一反应的催化剂,将反应物(在本文中也被称为分析物)转化成特定产物。在基于葡萄糖氧化酶的葡萄糖传感器的一个实施方案中,提供酶(葡萄糖氧化酶(GOX))以与葡萄糖(共分析物)和氧反应,从而形成过氧化氢。As used herein, the term "enzyme" is a broad term and will be given its ordinary and customary meaning to those of ordinary skill in the art (and is not limited to a special or custom meaning), and refers to (but is not limited to) a protein or protein-based molecule that accelerates a chemical reaction that occurs in a living body. An enzyme can act as a catalyst for a single reaction, converting a reactant (also referred to herein as an analyte) into a specific product. In one embodiment of a glucose oxidase-based glucose sensor, an enzyme (glucose oxidase (GOX)) is provided to react with glucose (co-analyte) and oxygen to form hydrogen peroxide.
如本文所用,术语“滤波”是广义术语,并且将向本领域普通技术人员给出其普通和惯用的含义(并且不限于特殊的或自定义的含义),并且是指(但不限于此)一组数据的修改以使其更平滑和更连续并且例如通过执行原始数据流的移动平均来移除或减少边远点。As used herein, the term "filtering" is a broad term and will be given its ordinary and customary meaning to one of ordinary skill in the art (and not limited to a special or customized meaning), and refers to (but is not limited to) the modification of a set of data to make it smoother and more continuous and to remove or reduce outlying points, for example by performing a moving average of the original data stream.
如本文所用,术语“功能”是广义术语,并且将向本领域普通技术人员给出其普通和惯用的含义(并且不限于特殊的或自定义的含义),并且是指(但不限于此)某物适合或被设计用于的动作或用途。As used herein, the term "function" is a broad term and will be given its ordinary and customary meaning to one of ordinary skill in the art (and not limited to a special or customized meaning), and refers to (but is not limited to) an action or purpose for which something is suitable or designed.
如本文所用,术语“GOx”是广义术语,并且将向本领域普通技术人员给出其普通和惯用的含义(并且不限于特殊的或自定义的含义),并且是指(但不限于此)为葡萄糖氧化酶的酶(例如,GOx是缩写)。As used herein, the term "GOx" is a broad term and will be given its ordinary and customary meaning to one of ordinary skill in the art (and is not limited to a special or customized meaning), and refers to (but is not limited to) an enzyme that is glucose oxidase (e.g., GOx is an abbreviation).
如本文所用,术语“受者”是广义术语,并且将向本领域普通技术人员给出其普通和惯用的含义(并且不限于特殊的或自定义的含义),并且是指(但不限于此)动物,包括人类。As used herein, the term "recipient" is a broad term and will be given its ordinary and customary meaning to one of ordinary skill in the art (and not limited to a special or customized meaning), and refers to (but is not limited to) animals, including humans.
如本文所用,术语“失活酶”是广义术语,并且将向本领域普通技术人员给出其普通和惯用的含义(并且不限于特殊的或自定义的含义),并且是指(但不限于此)已变为失活(例如,通过使酶变性)并且基本上没有酶活性的酶(诸如例如葡萄糖氧化酶GOx)。可使用本领域已知的多种技术使酶失活,诸如但不限于加热、冻融、在有机溶剂、酸或碱中变性、交联、遗传改变酶关键氨基酸等。在一些实施方案中,可将含有活性酶的溶液施加到传感器,随后通过加热或用灭活溶剂处理使所施加的酶失活。As used herein, the term "inactivated enzyme" is a broad term and will be given its ordinary and customary meaning to those of ordinary skill in the art (and not limited to a special or custom meaning), and refers to (but not limited to) an enzyme that has become inactivated (e.g., by denaturing the enzyme) and is substantially free of enzymatic activity (such as, for example, glucose oxidase GOx). The enzyme can be inactivated using a variety of techniques known in the art, such as, but not limited to, heating, freeze-thawing, denaturation in an organic solvent, acid or base, cross-linking, genetically altering enzyme key amino acids, etc. In some embodiments, a solution containing an active enzyme can be applied to the sensor, followed by inactivation of the applied enzyme by heating or treatment with an inactivating solvent.
如本文所用,术语“绝缘特性”、“电绝缘体”和“绝缘体”是广义术语,并且将向本领域普通技术人员给出其普通和惯用的含义(并且不限于特殊的或自定义的含义),并且是指(但不限于此)材料缺乏可移动电荷以阻止电荷在两点之间移动的倾向。在一个实施方案中,可将电绝缘材料放置在两个导电材料之间,以阻止电在两个导电材料之间移动。在一些实施方案中,该术语是指提供必要功能(电绝缘)的足够量的绝缘性质(例如,材料的绝缘性质)。术语“绝缘体”和“非导电材料”在本文中可互换使用。As used herein, the terms "insulating properties", "electrical insulator" and "insulator" are broad terms and will be given their ordinary and customary meanings to those of ordinary skill in the art (and are not limited to special or customized meanings), and refer to (but are not limited to) the tendency of a material to lack movable charge to prevent charge from moving between two points. In one embodiment, an electrically insulating material can be placed between two conductive materials to prevent electricity from moving between the two conductive materials. In some embodiments, the term refers to a sufficient amount of insulating properties (e.g., insulating properties of a material) that provides the necessary function (electrical insulation). The terms "insulator" and "non-conductive material" are used interchangeably herein.
如本文所用,术语“体内部分”是广义术语,并且将向本领域普通技术人员给出其普通和惯用的含义(并且不限于特殊的或自定义的含义),并且是指(但不限于此)设备的被植入或插入受者的部分。在一个实施方案中,经皮传感器的体内部分是传感器的穿过受者皮肤插入并驻留在受者内的一部分。As used herein, the term "in vivo portion" is a broad term and will be given its ordinary and customary meaning to one of ordinary skill in the art (and not limited to a special or customary meaning), and refers to (but is not limited to) the portion of a device that is implanted or inserted into a recipient. In one embodiment, the in vivo portion of a transcutaneous sensor is the portion of the sensor that is inserted through the skin of a recipient and resides within the recipient.
如本文所用,术语“膜系统”是广义术语,并且将向本领域普通技术人员给出其普通和惯用的含义(并且不限于特殊的或自定义的含义),并且是指(但不限于此)可包括两个或更多个域并且通常由几微米或更大厚度的材料构成的可渗透膜或半透性膜,其可渗透氧并且任选地可渗透葡萄糖。在一个示例中,膜系统可包括使得能够发生电化学反应以测量葡萄糖浓度的固定葡萄糖氧化酶。As used herein, the term "membrane system" is a broad term and will be given its ordinary and customary meaning to those of ordinary skill in the art (and not limited to a special or customary meaning), and refers to (but is not limited to) a permeable or semipermeable membrane that may include two or more domains and is typically composed of a material of a few microns or greater thickness, which is permeable to oxygen and optionally permeable to glucose. In one example, the membrane system may include an immobilized glucose oxidase that enables an electrochemical reaction to occur to measure glucose concentration.
如本文所用,术语“可操作地连接”是广义术语,并且将向本领域普通技术人员给出其普通和惯用的含义(并且不限于特殊的或自定义的含义),并且是指(但不限于此)一个或多个部件以允许部件之间的信号传输的方式链接到另外的部件。例如,一个或多个电极可用于检测样本中的葡萄糖的量并且将该信息转换成信号;然后可以将该信号传输到电路。在这种情况下,电极“可操作地链接”到电子电路。这些术语足够广义以包括有线和无线连通性。As used herein, the term "operably connected" is a broad term and will be given its ordinary and customary meaning to one of ordinary skill in the art (and is not limited to a special or customized meaning), and refers to (but is not limited to) one or more components being linked to another component in a manner that allows signal transmission between the components. For example, one or more electrodes can be used to detect the amount of glucose in a sample and convert that information into a signal; the signal can then be transmitted to a circuit. In this case, the electrode is "operably linked" to the electronic circuit. These terms are broad enough to include both wired and wireless connectivity.
如本文所用,术语“恒电位仪”是广义术语,并且将向本领域普通技术人员给出其普通和惯用的含义(并且不限于特殊的或自定义的含义),并且是指(但不限于此)以预设值在二电极电池或三电极电池的工作电极和参考电极之间施加电位并测量流过工作电极的电流的电系统。恒电位仪迫使任何电流在工作电极与反电极之间流动以保持期望的电位,前提是所需的电池电压和电流不超过恒电位仪的合规限制。As used herein, the term "potentiostat" is a broad term and will be given its ordinary and customary meaning to those of ordinary skill in the art (and not limited to a special or custom meaning), and refers to (but is not limited to) an electrical system that applies a potential between a working electrode and a reference electrode of a two-electrode cell or a three-electrode cell at a preset value and measures the current flowing through the working electrode. The potentiostat forces any current to flow between the working electrode and the counter electrode to maintain the desired potential, provided that the required cell voltage and current do not exceed the compliance limits of the potentiostat.
如本文所用,术语“处理器模块”和“微处理器”是广义术语,并且将向本领域普通技术人员给出其普通和惯用的含义(并且不限于特殊的或自定义的含义),并且是指(但不限于此)被设计为使用逻辑电路执行算术和逻辑运算的计算机系统、状态机、处理器等,该逻辑电路响应于并处理驱动计算机的基本指令。As used herein, the terms "processor module" and "microprocessor" are broad terms and will be given their ordinary and customary meanings to those of ordinary skill in the art (and are not limited to special or customized meanings), and refer to (but are not limited to) computer systems, state machines, processors, etc. designed to perform arithmetic and logical operations using logic circuits that respond to and process the basic instructions that drive the computer.
如本文所用,术语“近”是广义术语,并且将向本领域普通技术人员给出其普通和惯用的含义(并且不限于特殊的或自定义的含义),并且是指(但不限于此)靠近参考点(诸如原点或附接点)。As used herein, the term "near" is a broad term and will be given its ordinary and customary meaning to one of ordinary skill in the art (and is not limited to a special or customized meaning), and refers to (but is not limited to) proximity to a reference point (such as an origin or attachment point).
如本文所用,术语“原始数据流”和“数据流”是广义术语,并且将向本领域普通技术人员给出其普通和惯用的含义(并且不限于特殊的或自定义的含义),并且是指(但不限于此)与由分析物传感器测量的估计分析物值正相关的模拟或数字信号。在一个示例中,原始数据流是由A/D转换器从表示估计分析物值的模拟信号(例如,电压或电流)转换的以计数为单位的数字数据。该术语广义地涵盖来自基本上连续的分析物传感器的多个时间间隔数据点,其可包括以在几分之一秒至例如1、2或5分钟或更长时间的范围内的时间间隔进行的单独测量。As used herein, the terms "raw data stream" and "data stream" are broad terms and will be given their ordinary and customary meanings to those of ordinary skill in the art (and are not limited to special or customized meanings), and refer to (but are not limited to) analog or digital signals that are positively correlated with estimated analyte values measured by an analyte sensor. In one example, a raw data stream is digital data in counts converted by an A/D converter from an analog signal (e.g., voltage or current) representing an estimated analyte value. The term broadly encompasses multiple time-interval data points from a substantially continuous analyte sensor, which may include individual measurements made at time intervals ranging from a fraction of a second to, for example, 1, 2, or 5 minutes or more.
如本文所用,术语“RAM”是广义术语,并且将向本领域普通技术人员给出其普通和惯用的含义(并且不限于特殊的或自定义的含义),并且是指(但不限于此)访问不同位置的顺序不会影响访问速度的数据存储装置。RAM足够广义以包括SRAM,例如,其是只要供电就将数据位保持在其存储器中的静态随机存取存储器。As used herein, the term "RAM" is a broad term and will be given its ordinary and customary meaning to one of ordinary skill in the art (and not limited to a special or custom meaning), and refers to (but is not limited to) a data storage device in which the order in which different locations are accessed does not affect the access speed. RAM is broad enough to include SRAM, for example, which is a static random access memory that retains data bits in its memory as long as power is supplied.
如本文所用,术语“ROM”是广义术语,并且将向本领域普通技术人员给出其普通和惯用的含义(并且不限于特殊的或自定义的含义),并且是指(但不限于此)只读存储器,其是一类在制造时具有固定内容的数据存储装置。ROM足够广义以包括EEPROM,例如,其是电可擦除可编程只读存储器(ROM)。As used herein, the term "ROM" is a broad term and will be given its ordinary and customary meaning to those of ordinary skill in the art (and not limited to a special or customary meaning), and refers to (but is not limited to) a read-only memory, which is a type of data storage device with fixed contents at the time of manufacture. ROM is broad enough to include EEPROM, for example, which is an electrically erasable programmable read-only memory (ROM).
如本文所用,术语“参考分析物值”和“参考数据”是广义术语,并且将向本领域普通技术人员给出其普通和惯用的含义(并且不限于特殊的或自定义的含义),并且是指(但不限于此)来自参考分析物监测仪(诸如血糖仪等)的参考数据,包括一个或多个参考数据点。在一些实施方案中,参考葡萄糖值从例如自我监测血糖(SMBG)测试(例如,从手指或前臂血液测试)或YSI(Yellow Springs Instruments)测试获得。As used herein, the terms "reference analyte value" and "reference data" are broad terms and will be given their ordinary and customary meanings to those of ordinary skill in the art (and are not limited to special or customary meanings), and refer to (but are not limited to) reference data from a reference analyte monitor (such as a blood glucose meter, etc.), including one or more reference data points. In some embodiments, the reference glucose value is obtained from, for example, a self-monitoring blood glucose (SMBG) test (e.g., from a finger or forearm blood test) or a YSI (Yellow Springs Instruments) test.
如本文所用,术语“回归”是广义术语,并且将向本领域普通技术人员给出其普通和惯用的含义(并且不限于特殊的或自定义的含义),并且是指(但不限于此)找到一条线,从该线开始一组数据具有最小测量结果(例如,偏差)。回归可以是线性的、非线性的、一阶的、二阶的等。回归的一个示例是最小二乘回归。As used herein, the term "regression" is a broad term and will be given its ordinary and customary meaning to those of ordinary skill in the art (and is not limited to a special or custom meaning), and refers to (but is not limited to) finding a line from which a set of data has a minimum measurement result (e.g., deviation). Regression can be linear, nonlinear, first order, second order, etc. An example of regression is least squares regression.
如本文所用,术语“感测区域”是广义术语,并且将向本领域普通技术人员给出其普通和惯用的含义(并且不限于特殊的或自定义的含义),并且是指(但不限于此)监测设备的负责特定分析物的检测的区域。在一个实施方案中,感测区域可包括:非导电主体,至少一个电极、参考电极和任选的反电极穿过并固定在该主体内,从而在主体上的一个位置处形成电活性表面并在主体上的另一位置处形成电子连接;以及膜系统,该膜系统附接到主体并覆盖电活性表面。As used herein, the term "sensing region" is a broad term and will be given its ordinary and customary meaning to one of ordinary skill in the art (and is not limited to a special or customary meaning), and refers to (but is not limited to) the area of a monitoring device responsible for the detection of a specific analyte. In one embodiment, the sensing region may include: a non-conductive body through which at least one electrode, a reference electrode, and an optional counter electrode pass and are fixed, thereby forming an electroactive surface at one location on the body and forming an electronic connection at another location on the body; and a membrane system attached to the body and covering the electroactive surface.
如本文所用,术语“灵敏度”或“传感器灵敏度”是广义术语,并且将向本领域普通技术人员给出其普通和惯用的含义(并且不限于特殊的或自定义的含义),并且是指(但不限于此)由某一浓度的测量分析物或与测量分析物(诸如例如葡萄糖)相关联的测量物质(例如,H2O2)产生的信号量。例如,在一个实施方案中,对于每1mg/dL葡萄糖分析物,传感器具有约1皮安培至约300皮安培电流的灵敏度。As used herein, the term "sensitivity" or "sensor sensitivity" is a broad term and will be given its ordinary and customary meaning to those of ordinary skill in the art (and is not limited to a special or custom meaning), and refers to (but is not limited to) the amount of signal generated by a certain concentration of a measured analyte or a measured substance (e.g., H2O2) associated with a measured analyte (such as, for example, glucose). For example, in one embodiment, the sensor has a sensitivity of about 1 picoampere to about 300 picoamperes of current per 1 mg/dL of glucose analyte.
如本文所用,术语“灵敏度分布”或“灵敏度曲线”是广义术语,并且将向本领域普通技术人员给出其普通和惯用的含义(并且不限于特殊的或自定义的含义),并且是指(但不限于此)灵敏度随时间推移的变化的表示。As used herein, the term "sensitivity distribution" or "sensitivity curve" is a broad term and will be given its ordinary and customary meaning to a person skilled in the art (and is not limited to a special or customized meaning), and refers to (but is not limited to) a representation of changes in sensitivity over time.
如本文所用,术语“传感器分析物值”和“传感器数据”是广义术语,并且将向本领域普通技术人员给出其普通和惯用的含义(并且不限于特殊的或自定义的含义),并且是指(但不限于此)从连续分析物传感器接收到的数据,包括一个或多个时间间隔传感器数据点。As used herein, the terms "sensor analyte value" and "sensor data" are broad terms and will be given their ordinary and customary meanings to one of ordinary skill in the art (and are not limited to special or customized meanings), and refer to (but are not limited to) data received from a continuous analyte sensor, including one or more time-interval sensor data points.
如本文所用,术语“传感器电子器件”和“传感器电路”是广义术语,并且将向本领域普通技术人员给出其普通和惯用的含义(并且不限于特殊的或自定义的含义),并且是指(但不限于此)设备的被配置为处理数据的部件(例如,硬件和/或软件)。在分析物传感器的情况下,数据包括由传感器获得的关于生物流体中的分析物的浓度的生物信息。美国专利号4,757,022、5,497,772和4,787,398描述了可与某些实施方案的设备一起使用的合适电子电路。As used herein, the terms "sensor electronics" and "sensor circuitry" are broad terms and will be given their ordinary and customary meanings to persons of ordinary skill in the art (and are not limited to special or customary meanings), and refer to (but are not limited to) components (e.g., hardware and/or software) of a device that are configured to process data. In the case of an analyte sensor, the data includes biological information obtained by the sensor regarding the concentration of an analyte in a biological fluid. U.S. Patent Nos. 4,757,022, 5,497,772, and 4,787,398 describe suitable electronic circuits that may be used with the devices of certain embodiments.
如本文所用,术语“传感器环境”或“传感器操作环境”是广义术语,并且将向本领域普通技术人员给出其普通和惯用的含义(并且不限于特殊的或自定义的含义),并且是指(但不限于此)操作传感器时所处的生物环境。As used herein, the term "sensor environment" or "sensor operating environment" is a broad term and will be given its ordinary and customary meaning to a person of ordinary skill in the art (and is not limited to a special or customized meaning), and refers to (but is not limited to) the biological environment in which the sensor is operated.
如本文所用,术语“基本的”和“基本上”是广义术语,并且将向本领域普通技术人员给出其普通和惯用的含义(并且不限于特殊的或自定义的含义),并且是指(但不限于此)大部分是但不一定全部是所指示的内容。As used herein, the terms "substantially" and "substantially" are broad terms and will be given their ordinary and customary meaning to one of ordinary skill in the art (and not limited to a special or customized meaning), and mean (but not limited to) most but not necessarily all of what is indicated.
如本文所用,术语“热导率”是广义术语,并且将向本领域普通技术人员给出其普通和惯用的含义(并且不限于特殊的或自定义的含义),并且是指(但不限于此)在稳定条件下在单位面积表面的法线方向上在单位时间内由于单位温度梯度而传递的热量大小。As used herein, the term "thermal conductivity" is a broad term and will be given its ordinary and customary meaning to those of ordinary skill in the art (and is not limited to a special or customized meaning), and refers to (but is not limited to) the amount of heat transferred per unit time due to a unit temperature gradient in the normal direction of a surface per unit area under stable conditions.
如本文所用,术语“热系数”是广义术语,并且将向本领域普通技术人员给出其普通和惯用的含义(并且不限于特殊的或自定义的含义),并且是指(但不限于此)材料的电阻在各种温度下的变化。As used herein, the term "thermal coefficient" is a broad term and will be given its ordinary and customary meaning to one of ordinary skill in the art (and is not limited to a special or customized meaning), and refers to (but is not limited to) the change in the electrical resistance of a material at various temperatures.
如本文所用,术语“导热材料”是广义术语,并且将向本领域普通技术人员给出其普通和惯用的含义(并且不限于特殊的或自定义的含义),并且是指(但不限于此)显示较高程度的热导率的材料。As used herein, the term "thermally conductive material" is a broad term and will be given its ordinary and customary meaning to those of ordinary skill in the art (and is not limited to a special or customized meaning), and refers to (but is not limited to) materials that exhibit a relatively high degree of thermal conductivity.
如本文所用,术语“热电偶”是广义术语,并且将向本领域普通技术人员给出其普通和惯用的含义(并且不限于特殊的或自定义的含义),并且是指(但不限于此)包括两个不同导体(诸如例如金属合金)的设备,该两个导体在两个导体的任一端之间产生与温度差成比例的电压。As used herein, the term "thermocouple" is a broad term and will be given its ordinary and customary meaning to one of ordinary skill in the art (and not limited to a special or customized meaning), and refers to (but is not limited to) a device comprising two dissimilar conductors (such as, for example, metal alloys) that produce a voltage between either end of the two conductors that is proportional to the temperature difference.
概述Overview
一些分析物传感器测量体内物质(例如,葡萄糖)的浓度(例如,测量皮下位置处的血液或间质液中的葡萄糖浓度)。分析物传感器的输出可受到温度的影响。传感器可能所位于的身体皮下区域的温度可因人而异并且可在个人中随时间推移而变化。例如,皮下温度可受到体温变化(诸如发热或周期性变化)以及环境温度变化的影响。例如,暴露于热水或冷水、温暖的衣服、暴露于寒冷天气和阳光可改变受者的皮下温度。当存在诸如这些的状况或状态时,温度变化可导致葡萄糖浓度水平的估计的不准确。当传感器由受者穿戴时,通过补偿感测部位处或传感器中的温度波动,可提高估计葡萄糖值的准确度和精度。Some analyte sensors measure the concentration of a substance (e.g., glucose) in the body (e.g., measuring the glucose concentration in the blood or interstitial fluid at a subcutaneous location). The output of the analyte sensor may be affected by temperature. The temperature of the subcutaneous area of the body where the sensor may be located may vary from person to person and may change over time in an individual. For example, subcutaneous temperature may be affected by changes in body temperature (such as fever or periodic changes) and changes in ambient temperature. For example, exposure to hot or cold water, warm clothing, exposure to cold weather and sunlight may change the subcutaneous temperature of the recipient. When conditions or states such as these exist, temperature changes may lead to inaccuracies in the estimate of the glucose concentration level. When the sensor is worn by the recipient, the accuracy and precision of the estimated glucose value may be improved by compensating for temperature fluctuations at the sensing site or in the sensor.
可通过补偿这些温度影响来改善分析物传感器系统的性能。例如,温度补偿可提高传感准确度,或降低MARD。然而,温度补偿提出了具体实施挑战,因为可能难以知道感测部位处的实际温度,或要补偿多少,并且受者身体和各种系统部件的温度可能彼此不同并随时间推移而变化。The performance of the analyte sensor system can be improved by compensating for these temperature effects. For example, temperature compensation can improve sensing accuracy, or reduce MARD. However, temperature compensation presents specific implementation challenges because it may be difficult to know the actual temperature at the sensing site, or how much to compensate, and the temperatures of the recipient's body and various system components may differ from each other and change over time.
在一些示例中,温度补偿可应用于用来将来自传感器的信号转换成估计分析物值的灵敏度值(例如,对于与参考温度(例如,35℃)每1℃偏差,灵敏度变化3%)。在一些示例中,温度补偿可直接应用于估计葡萄糖值。在一些情况下,补偿葡萄糖值而不是传感器灵敏度可生成更准确的值。例如,除了酶灵敏度的变化之外,其他效应也可影响葡萄糖浓度水平或传感器响应。另外的温度影响可包括局部葡萄糖浓度变化(与全身葡萄糖水平相反)、隔室偏差(间质液对血液中葡萄糖浓度的差异)和非酶传感器偏差(例如,不是由葡萄糖/酶相互作用产生的电化学基线信号)。可开发一种模型来考虑这些另外因素中的一些或全部,该模型可提供葡萄糖浓度水平的更准确估计。In some examples, temperature compensation may be applied to a sensitivity value used to convert a signal from a sensor into an estimated analyte value (e.g., a 3% change in sensitivity for every 1°C deviation from a reference temperature (e.g., 35°C)). In some examples, temperature compensation may be applied directly to the estimated glucose value. In some cases, compensating for the glucose value rather than the sensor sensitivity may generate a more accurate value. For example, in addition to changes in enzyme sensitivity, other effects may also affect the glucose concentration level or sensor response. Additional temperature effects may include local glucose concentration changes (as opposed to systemic glucose levels), compartment bias (differences in interstitial fluid to glucose concentration in blood), and non-enzymatic sensor bias (e.g., an electrochemical baseline signal that is not generated by a glucose/enzyme interaction). A model may be developed to account for some or all of these additional factors that may provide a more accurate estimate of the glucose concentration level.
图1描绘了示例系统100,其中可实现示例温度补偿系统、设备和方法。系统100可包括包含传感器电子器件12和连续分析物传感器10的连续分析物传感器系统8。系统100可包括其他设备和/或传感器,诸如药物输送泵2(其可与连续分析物传感器系统通信地耦合,例如以实现闭环治疗)和葡萄糖计4(诸如血糖仪,其可与连续分析物传感器系统8通信地耦合)。连续分析物传感器10可物理地耦合到传感器电子器件12并且可以可释放地附接到传感器电子器件12或集成到传感器电子器件12(例如,不可释放地附接到传感器电子器件)。传感器电子器件12、药物输送泵2和/或葡萄糖计4也可与一个或多个设备(诸如显示设备14、16、18和/或20)耦合。FIG. 1 depicts an example system 100 in which example temperature compensation systems, devices, and methods may be implemented. System 100 may include a continuous analyte sensor system 8 including a sensor electronics 12 and a continuous analyte sensor 10. System 100 may include other devices and/or sensors, such as a drug delivery pump 2 (which may be communicatively coupled to the continuous analyte sensor system, for example to implement closed-loop therapy) and a glucose meter 4 (such as a blood glucose meter, which may be communicatively coupled to the continuous analyte sensor system 8). The continuous analyte sensor 10 may be physically coupled to the sensor electronics 12 and may be releasably attached to the sensor electronics 12 or integrated into the sensor electronics 12 (e.g., non-releasably attached to the sensor electronics). The sensor electronics 12, the drug delivery pump 2, and/or the glucose meter 4 may also be coupled to one or more devices (such as display devices 14, 16, 18, and/or 20).
在一些示例具体实施中,系统100可包括基于云的分析物处理器490,其被配置为分析经由网络406(例如,经由有线、无线或它们的组合)从传感器系统8和与受者(也被称为个体或患者)相关联的其他设备(诸如显示设备14至20等)提供的分析物数据(和/或其他患者相关数据)并生成提供关于在某一时间范围内测量的分析物的高级信息(诸如统计数据)的报告。使用基于云的分析物处理系统的完整讨论可见于2013年3月7日提交的名称为“Cloud-Based Processing of Analyte Data”的美国专利公开号US-2013-0325352-A1,该专利公开全文以引用方式并入本文。在一些具体实施中,可在云中执行温度补偿算法的一个或多个步骤。In some example implementations, the system 100 may include a cloud-based analyte processor 490 configured to analyze analyte data (and/or other patient-related data) provided from the sensor system 8 and other devices associated with a recipient (also referred to as an individual or patient) (such as display devices 14 to 20, etc.) via a network 406 (e.g., via wired, wireless, or a combination thereof) and generate a report that provides high-level information (such as statistics) about the analytes measured over a certain time range. A complete discussion of using a cloud-based analyte processing system can be found in U.S. Patent Publication No. US-2013-0325352-A1, entitled "Cloud-Based Processing of Analyte Data," filed on March 7, 2013, which is incorporated herein by reference in its entirety. In some implementations, one or more steps of the temperature compensation algorithm may be performed in the cloud.
在一些示例具体实施中,传感器电子器件12可包括与测量和处理由连续分析物传感器10生成的数据相关联的电子电路。这种生成的连续分析物传感器数据还可以包括可以用于处理和校准连续分析物传感器数据的算法,但是这些算法也可以以其他方式提供。传感器电子器件12可包括硬件、固件、软件或它们的组合,以经由连续分析物传感器(诸如连续葡萄糖传感器)提供分析物水平的测量。下文关于图2B进一步描述了传感器电子器件12的示例具体实施。在一个具体实施中,温度补偿方法可由传感器电子器件12执行。In some example implementations, the sensor electronics 12 may include electronic circuits associated with measuring and processing data generated by the continuous analyte sensor 10. Such generated continuous analyte sensor data may also include algorithms that can be used to process and calibrate the continuous analyte sensor data, but these algorithms may also be provided in other ways. The sensor electronics 12 may include hardware, firmware, software, or a combination thereof to provide a measurement of analyte levels via a continuous analyte sensor (such as a continuous glucose sensor). An example implementation of the sensor electronics 12 is further described below with respect to FIG. 2B. In one implementation, a temperature compensation method may be performed by the sensor electronics 12.
如所指出的,传感器电子器件12可以与一个或多个设备(诸如显示设备14、16、18和/或20)耦合(例如,无线地等)。显示设备14、16、18和/或20可被配置用于呈现信息(和/或警告),诸如由传感器电子器件12传输的用于在显示设备14、16、18和/或20处显示的传感器信息。As noted, the sensor electronics 12 may be coupled (e.g., wirelessly, etc.) to one or more devices, such as display devices 14, 16, 18, and/or 20. The display devices 14, 16, 18, and/or 20 may be configured to present information (and/or alerts), such as sensor information transmitted by the sensor electronics 12 for display at the display devices 14, 16, 18, and/or 20.
显示设备可包括相对小的显示设备14。在一些示例具体实施中,相对较小的显示设备14可以是密钥卡、手表、腰带、项链、吊坠、首饰、粘性贴片、寻呼机、密钥卡、塑料卡(例如,信用卡)、身份证(ID)卡等或为其一部分。该小显示设备14可包括相对较小的显示器(例如,小于大显示设备16)并且可被配置为显示某些类型的可显示传感器信息,诸如数值和箭头或色码。设备14可被配置为数据接收或跟踪设备14(例如,血糖仪或CGM接收器)并且可包括用于将数据上传到另一设备的通信设备(例如,US-B端口或无线通信收发器)。The display device may include a relatively small display device 14. In some example implementations, the relatively small display device 14 may be or be part of a key fob, a watch, a belt, a necklace, a pendant, jewelry, an adhesive patch, a pager, a key card, a plastic card (e.g., a credit card), an identification card (ID) card, etc. The small display device 14 may include a relatively small display (e.g., smaller than the large display device 16) and may be configured to display certain types of displayable sensor information, such as numerical values and arrows or color codes. The device 14 may be configured as a data receiving or tracking device 14 (e.g., a blood glucose meter or CGM receiver) and may include a communication device (e.g., a US-B port or a wireless communication transceiver) for uploading data to another device.
在一些示例具体实施中,相对较大的手持式显示设备16可包括手持式接收器设备、掌上电脑等。该大显示设备可包括相对较大的显示器(例如,大于小显示设备14)并且可被配置为显示信息,诸如连续传感器数据的图形表示,包括由传感器系统8输出的当前和历史传感器数据。手持式显示设备16可例如是CGM控制器或泵控制器。In some example implementations, the relatively large handheld display device 16 may include a handheld receiver device, a palmtop computer, etc. The large display device may include a relatively large display (e.g., larger than the small display device 14) and may be configured to display information, such as a graphical representation of continuous sensor data, including current and historical sensor data output by the sensor system 8. The handheld display device 16 may be, for example, a CGM controller or a pump controller.
显示设备还可包括移动设备18(例如,智能电话、平板计算机或其他智能设备)。显示设备还可包括计算机20和/或被配置为至少呈现信息(例如,药物输送信息、离散自我监测葡萄糖读数、心率监测仪、热量摄入监测仪等)的任何其他用户装备。The display device may also include a mobile device 18 (e.g., a smartphone, tablet computer, or other smart device). The display device may also include a computer 20 and/or any other user equipment configured to at least present information (e.g., medication delivery information, discrete self-monitoring glucose readings, heart rate monitor, caloric intake monitor, etc.).
显示设备中的任一者可经由有线或无线(例如,蜂窝、蓝牙、Wi-Fi、MICS、ZigBee)连接耦合到网络406,并且可包括用于存储和处理信息的处理器和存储器电路。在一些示例中,温度补偿方法可至少部分地由显示设备中的一者或多者执行。Any of the display devices may be coupled to the network 406 via a wired or wireless (e.g., cellular, Bluetooth, Wi-Fi, MICS, ZigBee) connection and may include processors and memory circuits for storing and processing information. In some examples, the temperature compensation method may be performed at least in part by one or more of the display devices.
在一些示例具体实施中,连续分析物传感器10可包括用于检测和/或测量分析物的传感器,并且连续分析物传感器10可被配置为作为无创式设备、皮下设备、透皮设备和/或血管内设备来连续地检测和/或测量分析物。在一些示例具体实施中,连续分析物传感器10可分析多个间歇性血液样本,但也可使用其他分析物。In some example implementations, the continuous analyte sensor 10 may include a sensor for detecting and/or measuring an analyte, and the continuous analyte sensor 10 may be configured to continuously detect and/or measure an analyte as a non-invasive device, a subcutaneous device, a transdermal device, and/or an intravascular device. In some example implementations, the continuous analyte sensor 10 may analyze multiple intermittent blood samples, although other analytes may also be used.
在一些示例具体实施中,连续分析物传感器10可包括被配置为使用一种或多种测量技术来测量血液中的葡萄糖的葡萄糖传感器,该一种或多种测量技术诸如酶法、化学、物理、电化学、分光光度法、偏振法、量热法、离子电渗法、辐射法、免疫化学法等。在其中连续分析物传感器10包括葡萄糖传感器的具体实施中,葡萄糖传感器可包括能够测量葡萄糖浓度的任何设备,并且可使用多种技术来测量葡萄糖,包括侵入式、微创式和无创式感测技术(例如,荧光监测),以提供指示受者中的葡萄糖浓度的数据,诸如数据流。数据流可以是传感器数据(原始和/或经滤波),其可被转换成用于向受者诸如用户、患者或看护人(例如,父母、亲属、监护人、老师、医生、护士或对受者的健康感兴趣的任何其他个体)提供葡萄糖值的经校准和/或经滤波的数据流。此外,连续分析物传感器10可以作为以下类型的传感器中的至少一种植入:植入式葡萄糖传感器、植入受者血管或体外的经皮葡萄糖传感器、皮下传感器、可再填充的皮下传感器、血管内传感器。In some example implementations, the continuous analyte sensor 10 may include a glucose sensor configured to measure glucose in the blood using one or more measurement techniques, such as enzymatic, chemical, physical, electrochemical, spectrophotometric, polarimetric, calorimetric, iontophoretic, radiometric, immunochemical, etc. In implementations in which the continuous analyte sensor 10 includes a glucose sensor, the glucose sensor may include any device capable of measuring glucose concentration, and may use a variety of techniques to measure glucose, including invasive, minimally invasive, and non-invasive sensing techniques (e.g., fluorescence monitoring) to provide data indicating the glucose concentration in the recipient, such as a data stream. The data stream may be sensor data (raw and/or filtered) that may be converted into a calibrated and/or filtered data stream for providing a glucose value to a recipient such as a user, patient, or caregiver (e.g., a parent, relative, guardian, teacher, doctor, nurse, or any other individual interested in the health of the recipient). Furthermore, the continuous analyte sensor 10 may be implanted as at least one of the following types of sensors: an implantable glucose sensor, a transcutaneous glucose sensor implanted in a recipient's blood vessel or outside the body, a subcutaneous sensor, a refillable subcutaneous sensor, an intravascular sensor.
尽管本文的公开内容涉及包括包含葡萄糖传感器的连续分析物传感器10的一些具体实施,但连续分析物传感器10也可包括其他类型的分析物传感器。此外,尽管一些具体实施将葡萄糖传感器称为植入式葡萄糖传感器,但也可使用能够检测葡萄糖浓度并提供表示葡萄糖浓度的输出信号的其他类型的设备。此外,虽然本文的描述是指作为被测量、处理等的分析物的葡萄糖,但也可使用其他分析物,包括例如酮体(例如,丙酮、乙酰乙酸和β至羟基丁酸、乳酸盐等)、胰高血糖素、乙酰辅酶A、甘油三酯、脂肪酸、柠檬酸循环中的中间体、胆碱、胰岛素、皮质醇、睾酮等。Although the disclosure herein relates to some specific implementations including a continuous analyte sensor 10 that includes a glucose sensor, the continuous analyte sensor 10 may also include other types of analyte sensors. In addition, although some specific implementations refer to the glucose sensor as an implantable glucose sensor, other types of devices that can detect glucose concentration and provide an output signal representing the glucose concentration may also be used. In addition, although the description herein refers to glucose as the analyte being measured, processed, etc., other analytes may also be used, including, for example, ketone bodies (e.g., acetone, acetoacetate and β-hydroxybutyrate, lactate, etc.), glucagon, acetyl-CoA, triglycerides, fatty acids, intermediates in the citric acid cycle, choline, insulin, cortisol, testosterone, etc.
图2A是示例分析物传感器系统250的示意图,其可以例如是图1所示的系统8。分析物传感器系统可包括分析物传感器诸如葡萄糖传感器252、一个或多个温度传感器254、处理器251和存储器256。处理器可从葡萄糖传感器252接收指示葡萄糖浓度水平的葡萄糖传感器信号并且从温度传感器254接收指示温度参数(例如,绝对或相对温度,或温度梯度)的温度传感器信号。传感器系统250还可包括一个或多个附加传感器258,这可包括例如心率传感器、活动传感器(例如,加速度计)或压力计(例如,以测量传感器对受者的压迫)。FIG2A is a schematic diagram of an example analyte sensor system 250, which may be, for example, the system 8 shown in FIG1. The analyte sensor system may include an analyte sensor such as a glucose sensor 252, one or more temperature sensors 254, a processor 251, and a memory 256. The processor may receive a glucose sensor signal indicating a glucose concentration level from the glucose sensor 252 and a temperature sensor signal indicating a temperature parameter (e.g., an absolute or relative temperature, or a temperature gradient) from the temperature sensor 254. The sensor system 250 may also include one or more additional sensors 258, which may include, for example, a heart rate sensor, an activity sensor (e.g., an accelerometer), or a pressure gauge (e.g., to measure the pressure of the sensor on the recipient).
处理器251可基于葡萄糖传感器信号、温度传感器信号以及任选地还基于来自附加传感器258的一个或多个信号来确定温度补偿葡萄糖浓度水平(或其他估计分析物值)。处理器251可确定特定温度补偿灵敏度值(例如,基于温度的分析物传感器灵敏度值),或可确定补偿估计葡萄糖值。来自温度传感器254的信号可用作分析物传感器处的温度的近似值,或者来自温度传感器254的信号可被处理(例如,使用下文详述的方法)以基于来自温度传感器254的信号确定估计分析物温度传感器。在一些示例中,处理器可从存储器256检索指令或信息以确定温度补偿葡萄糖浓度水平。例如,处理器可访问查找表,或基于葡萄糖传感器信号和温度传感器信号来应用算法,或将葡萄糖传感器信号和温度信号应用于模型(例如,使用状态模型或神经网络)。在一些示例中,处理器可从存储器256(或可操作地耦合到或集成到处理器的单独存储器)检索可执行指令。在一些示例中,处理器可包括可被配置为确定温度补偿葡萄糖浓度水平的专用集成电路(ASIC)或为其一部分。在各种示例中,本文所述或图6至图14所示的方法中的任一种或多种方法可由处理器251或温度补偿葡萄糖传感器单独地或与其他处理器或设备(诸如图5所示的设备)组合地执行。The processor 251 may determine the temperature compensated glucose concentration level (or other estimated analyte value) based on the glucose sensor signal, the temperature sensor signal, and optionally also based on one or more signals from the additional sensor 258. The processor 251 may determine a specific temperature compensated sensitivity value (e.g., an analyte sensor sensitivity value based on temperature), or may determine a compensated estimated glucose value. The signal from the temperature sensor 254 may be used as an approximation of the temperature at the analyte sensor, or the signal from the temperature sensor 254 may be processed (e.g., using the method described in detail below) to determine the estimated analyte temperature sensor based on the signal from the temperature sensor 254. In some examples, the processor may retrieve instructions or information from the memory 256 to determine the temperature compensated glucose concentration level. For example, the processor may access a lookup table, or apply an algorithm based on the glucose sensor signal and the temperature sensor signal, or apply the glucose sensor signal and the temperature signal to a model (e.g., using a state model or a neural network). In some examples, the processor may retrieve executable instructions from the memory 256 (or a separate memory operably coupled to or integrated into the processor). In some examples, the processor may include or be part of an application specific integrated circuit (ASIC) that may be configured to determine the temperature compensated glucose concentration level. In various examples, any one or more of the methods described herein or shown in Figures 6-14 may be performed by processor 251 or a temperature compensated glucose sensor alone or in combination with other processors or devices (such as the device shown in Figure 5).
图2B描绘了示例传感器电子器件12的更详细图示。传感器电子器件可以例如是如图1所示的设备的系统的一部分。传感器电子器件12可包括被配置为例如经由处理器模块214处理诸如传感器数据的传感器信息并生成变换传感器数据和可显示传感器信息的传感器电子器件。例如,处理器模块214可将传感器数据变换为以下中的一者或多者:温度补偿数据、滤波传感器数据(例如,一个或多个滤波分析物值)、原始传感器数据、校准传感器数据(例如,一个或多个校准分析物值)、变化率信息、趋势信息、加速/减速速率信息、传感器诊断信息、位置信息、警报/警告信息、诸如可通过传感器数据的校准算法、平滑和/或滤波算法确定的校准信息等。FIG2B depicts a more detailed illustration of an example sensor electronics 12. The sensor electronics may, for example, be part of a system of devices as shown in FIG1. The sensor electronics 12 may include sensor electronics configured to process sensor information such as sensor data, for example, via a processor module 214, and generate transformed sensor data and displayable sensor information. For example, the processor module 214 may transform the sensor data into one or more of: temperature compensated data, filtered sensor data (e.g., one or more filtered analyte values), raw sensor data, calibrated sensor data (e.g., one or more calibrated analyte values), rate of change information, trend information, acceleration/deceleration rate information, sensor diagnostic information, position information, alarm/warning information, calibration information such as may be determined by a calibration algorithm, smoothing and/or filtering algorithm for the sensor data, and the like.
传感器电子器件12可包括第一温度传感器240。在一些示例中,来自温度传感器240的信号可用于温度补偿,例如以补偿温度对分析物传感器的影响。在一些示例中,传感器电子器件12可包括任选的第二温度传感器242。来自第一温度传感器240和第二温度传感器242的信号可用于确定热通量或温度梯度。在一些示例中,温度传感器240、242充当彼此的备份。例如,如果温度传感器240发生故障,则传感器电子器件12可利用来自温度传感器242的温度信号继续操作。如果温度传感器242发生故障,则传感器电子器件12可利用来自温度传感器240的温度信号继续操作。The sensor electronics 12 may include a first temperature sensor 240. In some examples, the signal from the temperature sensor 240 may be used for temperature compensation, for example, to compensate for the effects of temperature on the analyte sensor. In some examples, the sensor electronics 12 may include an optional second temperature sensor 242. The signals from the first temperature sensor 240 and the second temperature sensor 242 may be used to determine a heat flux or a temperature gradient. In some examples, the temperature sensors 240, 242 act as backups for each other. For example, if the temperature sensor 240 fails, the sensor electronics 12 may continue to operate using the temperature signal from the temperature sensor 242. If the temperature sensor 242 fails, the sensor electronics 12 may continue to operate using the temperature signal from the temperature sensor 240.
在一些实施方案中,处理器模块214可被配置为实现数据处理的主要部分(如果不是全部的话),包括关于工厂校准或温度补偿的数据处理。工厂校准可以是能够实现高水平准确度的连续分析物传感器的校准,而不(或减少)依赖来自参考分析物监测仪(例如,血糖仪)的参考数据。处理器模块214可集成到传感器电子器件12和/或可远程地定位,诸如位于设备14、16、18和/或20和/或云490中的一者或多者中。在一些实施方案中,处理器模块214可包括多个更小的子部件或子模块。例如,处理器模块214可包括警告模块(未示出)或预测模块(未示出),或可用于高效处理数据的任何其他合适的模块。当处理器模块214由多个子模块组成时,这些子模块可位于处理器模块214内,包括位于传感器电子器件12或其他相关联的设备(例如,14、16、18、20和/或490)内。例如,在一些实施方案中,处理器模块214可至少部分地位于基于云的分析物处理器490内或网络406中的其他地方。In some embodiments, the processor module 214 may be configured to implement the main part (if not all) of data processing, including data processing about factory calibration or temperature compensation. Factory calibration can be the calibration of a continuous analyte sensor capable of achieving a high level of accuracy, without (or reducing) relying on reference data from a reference analyte monitor (e.g., a blood glucose meter). The processor module 214 may be integrated into the sensor electronics 12 and/or may be remotely located, such as being located in one or more of the devices 14, 16, 18 and/or 20 and/or cloud 490. In some embodiments, the processor module 214 may include a plurality of smaller subcomponents or submodules. For example, the processor module 214 may include a warning module (not shown) or a prediction module (not shown), or any other suitable module that may be used for efficient processing of data. When the processor module 214 is composed of a plurality of submodules, these submodules may be located in the processor module 214, including being located in the sensor electronics 12 or other associated devices (e.g., 14, 16, 18, 20 and/or 490). For example, in some embodiments, the processor module 214 may be located at least partially within the cloud-based analyte processor 490 or elsewhere in the network 406 .
在一些示例具体实施中,处理器模块214可被配置为校准传感器数据,并且数据存储器220可将校准传感器数据点存储为变换传感器数据。此外,在一些示例具体实施中,处理器模块214可被配置为从显示设备诸如设备14、16、18和/或20无线地接收校准信息,以实现对来自传感器12的传感器数据的校准。此外,处理器模块214可被配置为对传感器数据(例如,校准和/或滤波数据和/或其他传感器信息)执行另外算法处理,并且数据存储器220可被配置为存储变换传感器数据和/或与算法相关联的传感器诊断信息。处理器模块214可进一步被配置为存储和使用通过校准确定的校准信息。In some example implementations, the processor module 214 may be configured to calibrate the sensor data, and the data memory 220 may store the calibrated sensor data points as transformed sensor data. In addition, in some example implementations, the processor module 214 may be configured to wirelessly receive calibration information from a display device such as device 14, 16, 18 and/or 20 to implement calibration of sensor data from sensor 12. In addition, the processor module 214 may be configured to perform additional algorithmic processing on the sensor data (e.g., calibration and/or filtering data and/or other sensor information), and the data memory 220 may be configured to store the transformed sensor data and/or sensor diagnostic information associated with the algorithm. The processor module 214 may be further configured to store and use calibration information determined by calibration.
在一些示例具体实施中,传感器电子器件12中的一些或全部可并入可经由有线或无线连接耦合到用户接口222的ASIC 205。例如,ASIC 205可包括恒电位仪210、用于将数据从传感器电子器件12传输到一个或多个设备(例如,设备14、16、18和/或20)的遥测模块232和/或用于信号处理和数据存储的其他部件(例如,处理器模块214和数据存储器220)。虽然图2B描绘了ASIC 205,但也可使用其他类型的电路,包括现场可编程门阵列(FPGA)、被配置为提供由传感器电子器件12执行的处理的一些(如果不是全部)的一个或多个微处理器、模拟电路、数字电路或它们的组合。另外,ASIC 205可仅包括设备的子集(一个或多个),并且设备210、214、216、218、220、232、240、242中的任一者可包括在ASIC中或作为离散部件提供或作为单独的ASIC(例如,作为第二ASIC或第三ASIC)集成在一起。In some example implementations, some or all of the sensor electronics 12 may be incorporated into an ASIC 205 that may be coupled to the user interface 222 via a wired or wireless connection. For example, the ASIC 205 may include a potentiostat 210, a telemetry module 232 for transmitting data from the sensor electronics 12 to one or more devices (e.g., devices 14, 16, 18, and/or 20), and/or other components for signal processing and data storage (e.g., a processor module 214 and a data memory 220). Although FIG. 2B depicts an ASIC 205, other types of circuits may be used, including a field programmable gate array (FPGA), one or more microprocessors configured to provide some (if not all) of the processing performed by the sensor electronics 12, analog circuits, digital circuits, or combinations thereof. Additionally, ASIC 205 may include only a subset (one or more) of the devices, and any of devices 210, 214, 216, 218, 220, 232, 240, 242 may be included in the ASIC or provided as discrete components or integrated together as a separate ASIC (e.g., as a second ASIC or a third ASIC).
在图2B描绘的示例中,通过传感器数据的第一输入端口,恒电位仪210可耦合到连续分析物传感器10,诸如葡萄糖传感器,以从分析物生成传感器数据。恒电位仪210还可经由数据线212向分析物传感器诸如连续分析物传感器10(图5所示)或图2C、图3、图4、图5A或图5B所示的传感器提供电压,以使传感器偏置,用于测量指示受者中的分析物浓度的值(例如,电流等)(也被称为传感器的模拟部分)。恒电位仪210可具有一个或多个通道,具体取决于连续分析物传感器10处的工作电极的数量。In the example depicted in FIG. 2B , a potentiostat 210 may be coupled to a continuous analyte sensor 10, such as a glucose sensor, to generate sensor data from an analyte, through a first input port of sensor data. The potentiostat 210 may also provide a voltage to an analyte sensor, such as a continuous analyte sensor 10 (shown in FIG. 5 ) or a sensor shown in FIG. 2C , FIG. 3 , FIG. 4 , FIG. 5A , or FIG. 5B , via a data line 212 to bias the sensor for measuring a value (e.g., current, etc.) indicating the analyte concentration in a recipient (also referred to as an analog portion of the sensor). The potentiostat 210 may have one or more channels, depending on the number of working electrodes at the continuous analyte sensor 10 .
在一些示例具体实施中,恒电位仪210可包括将来自传感器10的电流值转换为电压值的电阻器,而在一些示例具体实施中,电流频率转换器(未示出)还可被配置为使用例如电荷计数设备对来自传感器10的测量电流值进行连续积分。在一些示例具体实施中,模数转换器(未示出)可将来自传感器10的模拟信号数字化为所谓的“计数”以允许由处理器模块214处理。所得计数可与由恒电位仪210测量的电流正相关,而电流可与受者中的分析物水平诸如葡萄糖水平正相关。In some example implementations, the potentiostat 210 may include a resistor that converts the current value from the sensor 10 into a voltage value, and in some example implementations, a current-to-frequency converter (not shown) may also be configured to continuously integrate the measured current value from the sensor 10 using, for example, a charge counting device. In some example implementations, an analog-to-digital converter (not shown) may digitize the analog signal from the sensor 10 into so-called "counts" to allow processing by the processor module 214. The resulting counts may be positively correlated with the current measured by the potentiostat 210, and the current may be positively correlated with the analyte level, such as glucose level, in the subject.
遥测模块232可以可操作地连接到处理器模块214并且可提供使得能够在传感器电子器件12与一个或多个其他设备(诸如显示设备、处理器、网络接入设备等)之间进行无线通信的硬件、固件和/或软件。可在遥测模块232中实施的多种无线无线电技术包括蓝牙、蓝牙低能量、ANT、ANT+、ZigBee、IEEE 802.11、IEEE 802.16、蜂窝无线电接入技术、射频(RF)、红外(IR)、寻呼网络通信、磁感应、卫星数据通信、扩频通信、跳频通信、近场通信等。在一些示例具体实施中,遥测模块232可包括蓝牙芯片,尽管也可在遥测模块232与处理器模块214的组合中实施蓝牙技术。The telemetry module 232 may be operably connected to the processor module 214 and may provide hardware, firmware, and/or software that enables wireless communication between the sensor electronics 12 and one or more other devices, such as a display device, a processor, a network access device, etc. A variety of wireless radio technologies that may be implemented in the telemetry module 232 include Bluetooth, Bluetooth Low Energy, ANT, ANT+, ZigBee, IEEE 802.11, IEEE 802.16, cellular radio access technology, radio frequency (RF), infrared (IR), paging network communication, magnetic induction, satellite data communication, spread spectrum communication, frequency hopping communication, near field communication, etc. In some example implementations, the telemetry module 232 may include a Bluetooth chip, although Bluetooth technology may also be implemented in a combination of the telemetry module 232 and the processor module 214.
处理器模块214可控制由传感器电子器件12执行的处理。例如,处理器模块214可被配置为处理来自传感器的数据(例如,计数)、对数据进行滤波、对数据进行校准、执行故障安全检查等。The processor module 214 may control the processing performed by the sensor electronics 12. For example, the processor module 214 may be configured to process data (eg, counts) from the sensor, filter the data, calibrate the data, perform fail-safe checks, and the like.
在一些示例具体实施中,处理器模块214可包括数字滤波器,诸如例如无限脉冲响应(IIR)或有限脉冲响应(FIR)滤波器。该数字滤波器可对从传感器10接收的原始数据流进行平滑处理。通常,数字滤波器被编程为对以预定时间间隔采样的数据(也被称为采样率)进行滤波。在一些示例具体实施中,诸如当恒电位仪210被配置为以离散的时间间隔测量分析物(例如,葡萄糖等)时,这些时间间隔确定数字滤波器的采样率。在一些示例具体实施中,恒电位仪210可被配置为例如使用电流频率转换器连续测量分析物。在这些电流频率转换器具体实施中,处理器模块214可被编程为以预定时间间隔(采集时间)从电流频率转换器的积分器请求数字值。由于电流测量的连续性,由处理器模块214从积分器获得的这些数字值可在采集时间内被平均。因此,可由数字滤波器的采样率来确定采集时间。In some example implementations, the processor module 214 may include a digital filter, such as, for example, an infinite impulse response (IIR) or finite impulse response (FIR) filter. The digital filter may smooth the raw data stream received from the sensor 10. Typically, the digital filter is programmed to filter data sampled at predetermined time intervals (also referred to as sampling rate). In some example implementations, such as when the potentiostat 210 is configured to measure analytes (e.g., glucose, etc.) at discrete time intervals, these time intervals determine the sampling rate of the digital filter. In some example implementations, the potentiostat 210 may be configured to continuously measure analytes, for example, using a current-frequency converter. In these current-frequency converter implementations, the processor module 214 may be programmed to request digital values from the integrator of the current-frequency converter at predetermined time intervals (acquisition time). Due to the continuity of the current measurement, these digital values obtained from the integrator by the processor module 214 may be averaged within the acquisition time. Therefore, the acquisition time may be determined by the sampling rate of the digital filter.
处理器模块214可还包括被配置为生成用于传输到诸如显示设备14、16、18和/或20等设备的数据包的数据生成器(未示出)。此外,处理器模块214可生成用于经由遥测模块232传输到这些外部源的数据包。在一些示例具体实施中,如所指出的,数据包可针对每个显示设备定制,并且/或者可包括任何可用数据,诸如温度信息或温度相关信息、温度补偿数据、加速度计数据、运动数据、位置数据、时间戳、可显示传感器信息、变换传感器数据、传感器和/或传感器电子器件12的识别符代码、原始数据、滤波数据、校准数据、变化率信息、趋势信息、错误检测或校正、温度信息或它们的任何组合。The processor module 214 may also include a data generator (not shown) configured to generate data packets for transmission to devices such as the display devices 14, 16, 18, and/or 20. In addition, the processor module 214 may generate data packets for transmission to these external sources via the telemetry module 232. In some example implementations, as noted, the data packets may be customized for each display device and/or may include any available data, such as temperature information or temperature-related information, temperature compensation data, accelerometer data, motion data, position data, timestamps, displayable sensor information, transformed sensor data, identifier codes for sensors and/or sensor electronics 12, raw data, filtered data, calibration data, rate of change information, trend information, error detection or correction, temperature information, or any combination thereof.
处理器模块214还可包括程序存储器216和其他存储器218。处理器模块214可耦合到通信接口(诸如通信端口238)和电源(诸如电池234)。此外,电池234可进一步耦合到电池充电器和/或稳压器236以向传感器电子器件12提供电力和/或对电池234充电。The processor module 214 may also include a program memory 216 and other memory 218. The processor module 214 may be coupled to a communication interface such as a communication port 238 and a power source such as a battery 234. In addition, the battery 234 may be further coupled to a battery charger and/or regulator 236 to provide power to the sensor electronics 12 and/or charge the battery 234.
程序存储器216可被实现为半静态存储器,用于存储数据,诸如所耦合传感器10的标识符(例如,传感器标识符(ID)),以及用于存储代码(也被称为程序代码)以将ASIC 205配置执行本文所述的操作/功能中的一者或多者。例如,程序代码可将处理器模块214配置为处理数据流或计数、进行滤波、执行校准方法、执行故障安全检查等。The program memory 216 may be implemented as a semi-static memory for storing data, such as an identifier of the coupled sensor 10 (e.g., a sensor identifier (ID)), and for storing code (also referred to as program code) to configure the ASIC 205 to perform one or more of the operations/functions described herein. For example, the program code may configure the processor module 214 to process data streams or counts, perform filtering, execute calibration methods, perform fail-safe checks, etc.
存储器218还可用于存储信息。例如,包括存储器218的处理器模块214可用作系统的高速缓冲存储器,其中可为从传感器接收到的最近传感器数据提供临时存储。在一些示例具体实施中,存储器可包括存储器存储部件,诸如只读存储器(ROM)、随机存取存储器(RAM)、动态RAM、静态RAM、非静态RAM、易擦除可编程只读存储器(EEPROM)、可重写ROM、闪存存储器等。The memory 218 may also be used to store information. For example, the processor module 214 including the memory 218 may be used as a cache memory for the system, where temporary storage may be provided for recent sensor data received from the sensors. In some example implementations, the memory may include memory storage components such as read-only memory (ROM), random access memory (RAM), dynamic RAM, static RAM, non-static RAM, easily erasable programmable read-only memory (EEPROM), rewritable ROM, flash memory, etc.
数据存储存储器220可耦合到处理器模块214并且可被配置为存储多种传感器信息。在一些示例具体实施中,数据存储存储器220存储一天或多天的连续分析物传感器数据。例如,数据存储存储器可存储从传感器10接收到的1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、20和/或30天(或更多天)的连续分析物传感器数据。所存储的传感器信息可包括以下中的一者或多者:温度信息或温度相关信息、温度补偿数据、时间戳、原始传感器数据(一个或多个原始分析物值)、校准数据、滤波数据、变换传感器数据和/或任何其他可显示传感器信息、校准信息(例如,参考BG值和/或诸如来自工厂校准的先前校准信息)、传感器诊断信息、温度信息等。The data storage memory 220 may be coupled to the processor module 214 and may be configured to store a variety of sensor information. In some example implementations, the data storage memory 220 stores one or more days of continuous analyte sensor data. For example, the data storage memory may store 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20, and/or 30 days (or more) of continuous analyte sensor data received from the sensor 10. The stored sensor information may include one or more of the following: temperature information or temperature-related information, temperature compensation data, timestamps, raw sensor data (one or more raw analyte values), calibration data, filtered data, transformed sensor data, and/or any other displayable sensor information, calibration information (e.g., reference BG values and/or previous calibration information such as from a factory calibration), sensor diagnostic information, temperature information, etc.
用户接口222可包括各种接口,诸如一个或多个按钮224、液晶显示器(LCD)或有机发光二极管(OLED)显示器226、振动器228、音频换能器(例如,扬声器)230、背光(未示出)等。包括用户接口222的部件可提供与用户(例如,受者)交互的控制。一个或多个按钮224可允许例如切换、菜单选择、选项选择、状态选择、对屏幕上问题的是/否响应、“关闭”功能(例如,针对警报)、“确认”功能(例如,针对警报)、重置等。显示器226可向用户提供例如视觉数据输出。音频换能器230(例如,扬声器)可响应于诸如当前的和/或预测的高血糖和/或低血糖病症的某些警报的触发而提供听觉信号。在一些示例具体实施中,听觉信号可通过音调、音量、占空比、模式、持续时间等来区分。在一些示例具体实施中,听觉信号可被配置为通过按压传感器电子器件12上的一个或多个按钮224和/或通过使用显示设备(例如,密钥卡、蜂窝电话等)上的按钮或选择来发信号通知传感器电子器件12而静音(例如,确认或关闭)。The user interface 222 may include various interfaces, such as one or more buttons 224, a liquid crystal display (LCD) or an organic light emitting diode (OLED) display 226, a vibrator 228, an audio transducer (e.g., a speaker) 230, a backlight (not shown), etc. The components comprising the user interface 222 may provide controls for interacting with a user (e.g., a recipient). One or more buttons 224 may allow, for example, switching, menu selection, option selection, state selection, yes/no responses to questions on the screen, a "close" function (e.g., for an alarm), a "confirmation" function (e.g., for an alarm), a reset, etc. The display 226 may provide, for example, visual data output to the user. The audio transducer 230 (e.g., a speaker) may provide an auditory signal in response to the triggering of certain alarms such as current and/or predicted hyperglycemia and/or hypoglycemia conditions. In some example implementations, the auditory signal may be distinguished by tone, volume, duty cycle, mode, duration, etc. In some example implementations, the auditory signal may be configured to be muted (e.g., confirmed or turned off) by pressing one or more buttons 224 on the sensor electronics 12 and/or by signaling the sensor electronics 12 using a button or selection on a display device (e.g., a key fob, a cellular phone, etc.).
虽然关于图2B描述了音频和振动警报,但也可使用其他警报机制。例如,在一些示例具体实施中,提供包括戳击机构的触觉警报,该戳击机构被配置为响应于一个或多个警报状况或状态而“戳击”或物理接触患者。Although audio and vibration alarms are described with respect to FIG. 2B , other alarm mechanisms may also be used. For example, in some example implementations, a tactile alarm is provided that includes a poking mechanism that is configured to “poke” or physically contact the patient in response to one or more alarm conditions or states.
电池234可以可操作地连接到处理器模块214(以及可能的传感器电子器件12的其他部件)并且为传感器电子器件12提供必要的电力。在一些示例具体实施中,电池可以是锂二氧化锰电池,然而,可使用任何适当尺寸和电力的电池(例如,AAA、镍镉、锌碳、碱性、锂、镍金属氢化物、锂离子、锌空气、氧化锌汞、银锌和/或气密)。在一些示例具体实施中,电池可以是可再充电的。在一些示例具体实施中,可使用多个电池为系统供电。在另一些具体实施中,可例如经由电感耦合对接收器经皮供电。The battery 234 can be operably connected to the processor module 214 (and possibly other components of the sensor electronics 12) and provide the necessary power for the sensor electronics 12. In some example implementations, the battery can be a lithium manganese dioxide battery, however, any battery of appropriate size and power can be used (e.g., AAA, nickel cadmium, zinc carbon, alkaline, lithium, nickel metal hydride, lithium ion, zinc air, zinc oxide mercury, silver zinc, and/or airtight). In some example implementations, the battery can be rechargeable. In some example implementations, multiple batteries can be used to power the system. In other implementations, the receiver can be powered transcutaneously, for example, via inductive coupling.
电池充电器和/或稳压器236可被配置为从内部和/或外部充电器接收能量。在一些示例具体实施中,电池稳压器(或平衡器)236通过放出过量充电电流来调节再充电过程,以允许传感器电子器件12中的所有电池单元或电池完全充电而不会使其他电池单元或电池过充电。在一些示例具体实施中,电池234(或多个电池)可被配置为经由电感式和/或无线充电垫充电,但也可使用任何其他充电和/或电力机制。The battery charger and/or regulator 236 may be configured to receive energy from an internal and/or external charger. In some example implementations, the battery regulator (or balancer) 236 regulates the recharging process by venting excess charging current to allow all cells or batteries in the sensor electronics 12 to be fully charged without overcharging other cells or batteries. In some example implementations, the battery 234 (or batteries) may be configured to be charged via an inductive and/or wireless charging pad, although any other charging and/or power mechanism may be used.
可提供一个或多个通信端口238(也被称为外部连接器)以允许与其他设备通信,例如可提供PC通信(com)端口以便能够和与传感器电子器件12分离或集成的系统通信。通信端口例如可包括串行(例如,通用串行总线或“USB”)通信端口,并且允许与另一计算机系统(例如,PC、个人数字助理或“PDA”、服务器等)通信。在一些示例具体实施中,传感器电子器件12可能够将历史数据传输到PC或其他计算设备,以供患者和/或HCP进行回顾性分析。作为数据传输的另一个示例,工厂信息也可从传感器或从云数据源发送到算法。One or more communication ports 238 (also referred to as external connectors) may be provided to allow communication with other devices, for example, a PC communication (com) port may be provided to enable communication with a system separate from or integrated with the sensor electronics 12. The communication port may include, for example, a serial (e.g., universal serial bus or "USB") communication port and allow communication with another computer system (e.g., a PC, a personal digital assistant or "PDA", a server, etc.). In some example implementations, the sensor electronics 12 may be able to transfer historical data to a PC or other computing device for retrospective analysis by the patient and/or HCP. As another example of data transfer, plant information may also be sent to the algorithm from the sensor or from a cloud data source.
一个或多个通信端口238还可包括其中可接收校准数据的第二输入端口和可用来将校准数据或待校准数据传输到接收器或移动设备的输出端口。应当理解,端口可在物理上分离,但在另选具体实施中,单个通信端口可提供第二输入端口和输出端口两者的功能。The one or more communication ports 238 may also include a second input port in which calibration data may be received and an output port that may be used to transmit calibration data or data to be calibrated to a receiver or mobile device. It should be understood that the ports may be physically separated, but in alternative implementations, a single communication port may provide the functionality of both a second input port and an output port.
在一些连续分析物传感器系统中,可简化传感器电子器件的皮肤上部分以最小化皮肤上电子器件的复杂性和/或尺寸,例如仅将原始数据、校准数据和/或滤波数据提供给被配置为运行校准和显示传感器数据所需的其他算法的显示设备。然而,传感器电子器件12(例如,经由处理器模块214)可被实施为执行用于生成变换传感器数据和/或可显示传感器信息的预期算法,包括例如用于以下的算法:评估参考数据和/或传感器数据的临床可接受性、基于入选标准评估用于最佳校准的校准数据、评估校准的质量、将估计分析物值与对应于测量分析物值的时间进行比较、分析估计分析物值的变化、评估传感器和/或传感器数据的稳定性、检测信号伪影(噪声)、替换信号伪影、确定传感器数据的变化率和/或趋势、执行动态及智能分析物值估计、对传感器和/或传感器数据执行诊断、设置操作模式、评估数据的异常等。In some continuous analyte sensor systems, the on-skin portion of the sensor electronics may be simplified to minimize the complexity and/or size of the on-skin electronics, such as providing only raw data, calibration data, and/or filtered data to a display device configured to run calibration and other algorithms required to display the sensor data. However, the sensor electronics 12 (e.g., via the processor module 214) may be implemented to execute desired algorithms for generating transformed sensor data and/or displayable sensor information, including, for example, algorithms for evaluating the clinical acceptability of reference data and/or sensor data, evaluating calibration data for optimal calibration based on inclusion criteria, evaluating the quality of calibration, comparing estimated analyte values to times corresponding to measured analyte values, analyzing changes in estimated analyte values, evaluating stability of sensors and/or sensor data, detecting signal artifacts (noise), replacing signal artifacts, determining rates of change and/or trends in sensor data, performing dynamic and intelligent analyte value estimation, performing diagnostics on sensors and/or sensor data, setting operating modes, evaluating data for anomalies, and the like.
尽管图2B示出了单独的数据存储装置和程序存储装置,但也可使用各种配置。例如,可使用一个或多个存储器提供存储空间以支持传感器电子器件12处的数据处理和存储要求。2B shows separate data storage devices and program storage devices, various configurations may be used. For example, one or more memories may be used to provide storage space to support data processing and storage requirements at the sensor electronics 12.
在一个优选实施方案中,分析物传感器可以是植入式葡萄糖传感器,诸如参考美国专利6,001,067和美国专利公布号US-2005-0027463-A1所描述的。在另一个优选实施方案中,分析物传感器可以是经皮葡萄糖传感器,诸如参考美国专利公布号US-2006-0020187-A1所描述的。在另一些实施方案中,传感器可被配置为植入受者血管中或体外植入,诸如在美国专利公布号US-2007-0027385-A1、美国专利公布号US-2008-0119703-A1(现已废弃)、美国专利公布号US-2008-0108942A1(现已废弃)和美国专利号US 7,828,728中所描述的。在一个另选实施方案中,连续葡萄糖传感器可包括经皮传感器,诸如例如在授予Say等人的美国专利6,565,509中所描述的。在另一个另选实施方案中,连续葡萄糖传感器可包括皮下传感器,诸如例如参考授予Bonnecaze等人的美国专利6,579,690或授予Say等人的美国专利6,484,046所描述的。在另一个另选实施方案中,连续葡萄糖传感器可包括可再填充皮下传感器,诸如例如参考授予Colvin等人的美国专利6,512,939所描述的。在另一个另选实施方案中,连续葡萄糖传感器可包括血管内传感器,诸如例如参考授予Schulman等人的美国专利6,477,395所描述的。在另一个另选实施方案中,连续葡萄糖传感器可包括血管内传感器,诸如参考授予Mastrototaro等人的美国专利6,424,847所描述的。In a preferred embodiment, the analyte sensor can be an implantable glucose sensor, such as described in reference to U.S. Patent No. 6,001,067 and U.S. Patent Publication No. US-2005-0027463-A1. In another preferred embodiment, the analyte sensor can be a transcutaneous glucose sensor, such as described in reference to U.S. Patent Publication No. US-2006-0020187-A1. In other embodiments, the sensor can be configured to be implanted in a recipient's blood vessel or implanted in vitro, such as described in U.S. Patent Publication No. US-2007-0027385-A1, U.S. Patent Publication No. US-2008-0119703-A1 (now abandoned), U.S. Patent Publication No. US-2008-0108942A1 (now abandoned) and U.S. Patent No. US 7,828,728. In an alternative embodiment, the continuous glucose sensor may include a transcutaneous sensor, such as described in U.S. Patent No. 6,565,509, granted to Say et al. In another alternative embodiment, the continuous glucose sensor may include a subcutaneous sensor, such as, for example, described with reference to U.S. Patent 6,579,690 to Bonnecaze et al. or U.S. Patent 6,484,046 to Say et al. In another alternative embodiment, the continuous glucose sensor may include a refillable subcutaneous sensor, such as, for example, described with reference to U.S. Patent 6,512,939 to Colvin et al. In another alternative embodiment, the continuous glucose sensor may include an intravascular sensor, such as, for example, described with reference to U.S. Patent 6,477,395 to Schulman et al. In another alternative embodiment, the continuous glucose sensor may include an intravascular sensor, such as, for example, described with reference to U.S. Patent 6,424,847 to Mastrototaro et al.
图2C是示例分析物传感器系统8的示意图,示出了穿过表皮260、真皮262插入并进入皮下层264的分析物传感器10,使得分析物传感器10的远侧端部280在皮下层中。在人类受者中,表皮层260可通常为约0.01cm厚,真皮层262可通常地为约0.2cm厚,并且皮下层可基本上更厚,例如1cm至1.5cm。分析物传感器10的工作部分282(例如,工作电极)可在约0.5cm的深度处位于分析物传感器的远侧端部280处或附近。工作部分282可例如包括导电部分286(例如,导电芯)上的涂层。工作部分282可被配置为例如生成与葡萄糖浓度成比例的电压(例如,工作部分可以是可从Dexcom公司获得的葡萄糖传感器的一部分)。在一些示例中,温度传感器284可设置在分析物传感器的远侧端部280处或附近。温度传感器284可用于使用下述各种技术中的一种或多种来补偿温度变化。另外,经验测量(下文讨论并在图21中示出)已经显示分析物传感器的电导率可能非常依赖于温度。在一些示例中,电导率与温度之间的这种关系可用于估计皮下温度,该皮下温度可在温度补偿模型或其他方法中使用。在其他示例中,电导率与温度之间的关系可直接应用(例如,不使用估计温度)以补偿温度变化。Fig. 2C is a schematic diagram of an example analyte sensor system 8, showing an analyte sensor 10 inserted through the epidermis 260, the dermis 262 and entering the subcutaneous layer 264, so that the distal end 280 of the analyte sensor 10 is in the subcutaneous layer. In human recipients, the epidermis 260 may be generally about 0.01cm thick, the dermis 262 may be generally about 0.2cm thick, and the subcutaneous layer may be substantially thicker, such as 1cm to 1.5cm. The working portion 282 (e.g., working electrode) of the analyte sensor 10 may be located at or near the distal end 280 of the analyte sensor at a depth of about 0.5cm. The working portion 282 may, for example, include a coating on a conductive portion 286 (e.g., a conductive core). The working portion 282 may be configured to, for example, generate a voltage proportional to the glucose concentration (e.g., the working portion may be a part of a glucose sensor available from Dexcom). In some examples, a temperature sensor 284 may be provided at or near the distal end 280 of the analyte sensor. The temperature sensor 284 can be used to compensate for temperature changes using one or more of the various techniques described below. In addition, empirical measurements (discussed below and shown in FIG. 21 ) have shown that the conductivity of the analyte sensor can be very dependent on temperature. In some examples, this relationship between conductivity and temperature can be used to estimate subcutaneous temperature, which can be used in a temperature compensation model or other method. In other examples, the relationship between conductivity and temperature can be directly applied (e.g., without using an estimated temperature) to compensate for temperature changes.
分析物传感器可联接到基部274,基部可联接到壳体266。壳体可容纳图2A所示的部件或图2B所示的传感器电子器件12中的一些或全部。The analyte sensor may be coupled to the base 274, which may be coupled to the housing 266. The housing may house some or all of the components shown in Figure 2A or the sensor electronics 12 shown in Figure 2B.
在一些示例中,壳体可在顶表面上(并且任选地附加地在一个或多个侧表面上)包括热屏蔽件272以反射来自壳体的热量,这可例如减小阳光对传感器10的影响。In some examples, the housing may include a heat shield 272 on a top surface (and optionally additionally on one or more side surfaces) to reflect heat from the housing, which may, for example, reduce the effects of sunlight on sensor 10 .
在一些示例中,传感器电子器件12可包括位于壳体266的底部部分附近的第一温度传感器268和位于壳体的顶部部分附近的第二温度传感器270。诸如处理器251或处理器模块214的电路可被配置为至少部分地基于葡萄糖信号、第一温度信号和第二温度信号来确定补偿葡萄糖浓度水平。In some examples, the sensor electronics 12 may include a first temperature sensor 268 located near a bottom portion of the housing 266 and a second temperature sensor 270 located near a top portion of the housing. Circuitry such as the processor 251 or the processor module 214 may be configured to determine a compensated glucose concentration level based at least in part on the glucose signal, the first temperature signal, and the second temperature signal.
在一些示例中,可根据从第一温度传感器268和第二温度传感器270接收到的信号(例如,由处理器251或处理器模块214)来确定温度梯度或热通量。例如,如果壳体暴露于阳光,则来自第二温度传感器270的信号可指示比第一温度传感器268的信号更高的温度。该信息可例如用于估计分析物传感器10处的温度或可在温度补偿算法或模型中使用。在另一个示例中,传感器可能暴露于低温,在这种情况下,第二温度传感器270可显示比第一温度传感器更低的温度。在另一个示例中,系统可能浸入冷水中,在这种情况下,第一温度传感器268和第二温度传感器可初始显示梯度,但快速转变到大约相等的温度值。基于温度传感器268、270中的一者或多者与分析物传感器10处的温度之间的关系,该信息可直接用于温度补偿,或者温度信息可间接用作分析物传感器或受者的环境(例如,浸入热水或冷水中、暴露于冷空气、暴露于太阳)的指示,从该指示可推断出温度或温度补偿信息,或者该指示可应用于模型。In some examples, the temperature gradient or heat flux may be determined based on signals received from the first temperature sensor 268 and the second temperature sensor 270 (e.g., by the processor 251 or the processor module 214). For example, if the housing is exposed to sunlight, the signal from the second temperature sensor 270 may indicate a higher temperature than the signal from the first temperature sensor 268. This information may be used, for example, to estimate the temperature at the analyte sensor 10 or may be used in a temperature compensation algorithm or model. In another example, the sensor may be exposed to low temperatures, in which case the second temperature sensor 270 may display a lower temperature than the first temperature sensor. In another example, the system may be immersed in cold water, in which case the first temperature sensor 268 and the second temperature sensor may initially display a gradient, but quickly transition to approximately equal temperature values. Based on the relationship between one or more of the temperature sensors 268, 270 and the temperature at the analyte sensor 10, this information can be used directly for temperature compensation, or the temperature information can be used indirectly as an indication of the environment of the analyte sensor or recipient (e.g., immersion in hot or cold water, exposure to cold air, exposure to the sun) from which temperature or temperature compensation information can be inferred, or the indication can be applied to a model.
图2D是与受者组织接合的示例分析物传感器系统8的另一个示例构型的示意图。在图2D的示例中,温度传感器281定位在基部274上,与受者皮肤的表皮260接触。例如,温度传感器281可结合到用于将基部274固定到受者皮肤的粘合垫中。FIG2D is a schematic diagram of another example configuration of an example analyte sensor system 8 engaged with recipient tissue. In the example of FIG2D , a temperature sensor 281 is positioned on the base 274 in contact with the epidermis 260 of the recipient's skin. For example, the temperature sensor 281 may be incorporated into an adhesive pad used to secure the base 274 to the recipient's skin.
图3是分析物传感器10的示例远侧部分11的示意图,其可包括被配置为生成指示受者的物质(例如,细胞间液)的葡萄糖浓度水平的传感器信号的分析物传感器区域302。信号可沿一个或多个细长构件304、306向上传导,细长构件可为导线(例如,铂或钽或其合金)。传感器信号可被传送到传感器电子器件进行处理。分析物传感器10还可包括可位于分析物传感器区域302处或附近的温度传感器308。在一个示例中,温度传感器308可以例如是热电偶,该热电偶可产生与导体304、306的结310与第二结(未示出)之间的温度差成比例的电压,第二结可位于导体的近侧端部处(例如,在受者外部)。为了形成工作热电偶,导体304、306可由不同材料形成。例如,导体304、306中的一者可以是铂,而导体304、306中的另一者可以是钽。由热电偶生成的信号可被传送到传感器电子器件以进行处理(即,用于补偿葡萄糖传感器的温度值)。FIG. 3 is a schematic diagram of an example distal portion 11 of an analyte sensor 10, which may include an analyte sensor region 302 configured to generate a sensor signal indicating a glucose concentration level of a substance (e.g., interstitial fluid) of a recipient. The signal may be conducted upward along one or more elongated members 304, 306, which may be a wire (e.g., platinum or tantalum or an alloy thereof). The sensor signal may be transmitted to the sensor electronics for processing. The analyte sensor 10 may also include a temperature sensor 308 that may be located at or near the analyte sensor region 302. In one example, the temperature sensor 308 may be, for example, a thermocouple that may generate a voltage proportional to the temperature difference between a junction 310 of the conductors 304, 306 and a second junction (not shown), the second junction may be located at the proximal end of the conductor (e.g., outside the recipient). In order to form a working thermocouple, the conductors 304, 306 may be formed of different materials. For example, one of the conductors 304, 306 may be platinum, and the other of the conductors 304, 306 may be tantalum. The signal generated by the thermocouple may be transmitted to the sensor electronics for processing (ie, used to compensate the temperature value of the glucose sensor).
在另一个示例中,温度传感器308可以是热敏电阻器。热敏电阻器的电阻值可使用导体304、306进行测量并且被传送到传感器电子器件以供处理。In another example, the temperature sensor 308 may be a thermistor. The resistance value of the thermistor may be measured using the conductors 304, 306 and transmitted to the sensor electronics for processing.
在一个示例中,可使用顺序方法来使用一对导体(例如,如上所述的铂导体和钽导体,可以是图3中的304、306)测量葡萄糖浓度水平和温度。例如,可通过在导体上施加电压(例如,0.6伏)来测量估计分析物值,然后可通过测量导体上的开路电位,或通过在导体上施加低电压输入并测量电流(例如,以确定热敏电阻器的电阻并由此确定温度参数)来获得温度测量结果。In one example, a sequential approach can be used to measure glucose concentration levels and temperature using a pair of conductors (e.g., a platinum conductor and a tantalum conductor as described above, which can be 304, 306 in Figure 3). For example, an estimated analyte value can be measured by applying a voltage (e.g., 0.6 volts) across the conductors, and then a temperature measurement can be obtained by measuring the open circuit potential across the conductors, or by applying a low voltage input across the conductors and measuring the current (e.g., to determine the resistance of a thermistor and thereby determine a temperature parameter).
在另一个示例中,温度传感器可定位在传感器导线的近侧端部处,传感器导线可具有高热导率,使得近侧端部处的温度测量结果接近分析物传感器附近(即,远侧端部处)的温度。在各种示例中,此类近似温度测量可用于温度补偿。In another example, the temperature sensor may be positioned at the proximal end of the sensor wire, which may have a high thermal conductivity so that the temperature measurement at the proximal end is close to the temperature near the analyte sensor (i.e., at the distal end). In various examples, such approximate temperature measurements can be used for temperature compensation.
图4是分析物传感器10的示例近侧部分401和电接触部分402的示意图,电接触部分可以例如是传感器电子器件或发射器(诸如由Dexcom生产并被配置为与包括皮下葡萄糖传感器的基部部分耦合的发射器)的一部分。分析物传感器的近侧部分402可包括第一导体404和第二导体406,这些导体可具有耦合到分析物传感器(例如,葡萄糖传感器)的远侧端部(未示出)。电接触部分404可包括被配置为与第一导体404接触的第一触点412和被配置为与第二导体406接触的第二触点。近侧部分还可包括热敏电阻器408和第三导体411,该第三导体耦合到热敏电阻器并被配置为与电接触部分上的第三触点414耦合。热敏电阻器的温度敏感电阻可用于补偿温度对葡萄糖传感器的影响。4 is a schematic diagram of an example proximal portion 401 and an electrical contact portion 402 of an analyte sensor 10, which may be, for example, a portion of a sensor electronics or a transmitter (such as a transmitter produced by Dexcom and configured to couple with a base portion including a subcutaneous glucose sensor). The proximal portion 402 of the analyte sensor may include a first conductor 404 and a second conductor 406, which may have a distal end (not shown) coupled to the analyte sensor (e.g., a glucose sensor). The electrical contact portion 404 may include a first contact 412 configured to contact the first conductor 404 and a second contact configured to contact the second conductor 406. The proximal portion may also include a thermistor 408 and a third conductor 411, which is coupled to the thermistor and configured to couple with a third contact 414 on the electrical contact portion. The temperature sensitive resistance of the thermistor may be used to compensate for the effects of temperature on the glucose sensor.
图5A是与图4的构造类似的构造的图示,但图4的热敏电阻被热敏涂层508代替。图5B是可位于导体406上的热敏涂层508的放大图。导电元件510可被配置为与涂层耦合,或连接到涂层,并且被配置为与第三触点414耦合,使得可通过在触点412、414上施加电压或驱动电流来测量涂层的电阻。5A is an illustration of a configuration similar to that of FIG. 4 , but the thermistor of FIG. 4 is replaced by a thermally sensitive coating 508. FIG. 5B is an enlarged view of the thermally sensitive coating 508 that may be located on the conductor 406. The conductive element 510 may be configured to couple with, or be connected to, the coating and to couple with the third contact 414 so that the resistance of the coating may be measured by applying a voltage or driving a current across the contacts 412, 414.
系统可补偿温度对分析物传感器(例如,葡萄糖传感器)的影响,使用输入(例如,温度传感器信号,或一个或多个其他传感器信号)与分析物水平之间的所学习或所定义关系来提供受温度变化影响较小的估计值(例如,估计的葡萄糖值)。该关系可例如通过理论模型来定义,或通过基准数据、临床试验数据或它们的组合来确定。The system can compensate for the effects of temperature on an analyte sensor (e.g., a glucose sensor) using a learned or defined relationship between an input (e.g., a temperature sensor signal, or one or more other sensor signals) and an analyte level to provide an estimate (e.g., an estimated glucose value) that is less affected by temperature changes. The relationship can be defined, for example, by a theoretical model, or determined by benchmark data, clinical trial data, or a combination thereof.
可应用或组合各种方法和模型或算法以补偿由温度变化引起的温度信号变化。例如,系统可补偿长期趋势或平均值,或可补偿短期(例如,实时)变化,或为它们的组合。Various methods and models or algorithms may be applied or combined to compensate for temperature signal changes caused by temperature changes. For example, the system may compensate for long-term trends or averages, or may compensate for short-term (eg, real-time) changes, or a combination thereof.
在一些示例中,温度与葡萄糖传感器信号之间的线性关系可被确定并且用于近似温度与葡萄糖传感器信号之间的关系并补偿温度影响,例如如下面的方程[1]所示:In some examples, a linear relationship between temperature and the glucose sensor signal may be determined and used to approximate the relationship between temperature and the glucose sensor signal and compensate for temperature effects, such as shown in the following equation [1]:
补偿葡萄糖值=(感测葡萄糖值)×常数f(T测量、T参考、感测葡萄糖值) [1]Compensated glucose value = (sensed glucose value) × constant f (Tmeasured, Treference, sensed glucose value) [1]
在一些示例中,传感器对分析物(葡萄糖)浓度的灵敏度M(t)可通过基于编程的(例如,工厂校准的)灵敏度M(t)pro和每摄氏度的灵敏度变化百分比(Z)确定温度补偿灵敏度M(t)comp来补偿温度影响。可将温度差(ΔT)确定为在时间t处感测或确定的皮下温度T皮下(t)与参考温度T皮下,参考之间的差,例如如下面的方程[2]所示:In some examples, the sensitivity M(t) of the sensor to the analyte (glucose) concentration can be compensated for temperature effects by determining a temperature compensated sensitivity M(t)comp based on a programmed (e.g., factory calibrated) sensitivity M(t)pro and a sensitivity change percentage (Z) per degree Celsius. The temperature difference (ΔT) can be determined as the difference between the sensed or determined subcutaneous temperatureTsub (t) at time t and a reference temperature Tsub, ref, for example as shown in the following equation [2]:
ΔT=T皮下(t)-T皮下,参考 [2]ΔT=Tsubcutaneous (t)-Tsubcutaneous, refer to [2]
参考温度T皮下,参考可以是例如平均值或预定皮下温度值。补偿分析物灵敏度可通过求解方程诸如下面的方程[3]来确定:The reference temperatureTsubcutaneous, the reference can be, for example, an average or predetermined subcutaneous temperature value. The compensated analyte sensitivity can be determined by solving an equation such as the following equation [3]:
Z的值可根据特定传感器配置的基准测试来确定。在一些示例中,可将Z建模为时间的函数Z(t),其中t可从传感器会话开始时测量。求解方程[3]中的M(t)comp得到补偿分析物灵敏度,例如如方程[4]所示:The value of Z can be determined based on benchmark testing of a particular sensor configuration. In some examples, Z can be modeled as a function of time, Z(t), where t can be measured from the beginning of the sensor session. Solving equation [3] for M(t)comp yields the compensated analyte sensitivity, for example as shown in equation [4]:
M(t)comp=(Z×ΔT×M(t)pro)+M(t)pro [4]M(t)comp =(Z×ΔT×M(t)pro )+M(t)pro [4]
温度补偿分析物灵敏度M(t)comp可用于将原始分析物传感器转换成估计葡萄糖值,例如使用下面的方程[5]:The temperature compensated analyte sensitivity M(t)comp can be used to convert the raw analyte sensor into an estimated glucose value, for example using the following equation [5]:
估计葡萄糖值=(M(t)comp×传感器值)+偏移 [5]Estimated glucose value = (M(t)comp × sensor value) + offset [5]
在一些示例中,可针对特定分析物传感器设计配置确定偏移,如用现有商业传感器常规进行的那样。在其他示例中,可(例如,经由用户接口)获得多个血糖读数(或在其他分析物的情况下,生物样本)并将其用于确定特定传感器的偏移。In some examples, the offset may be determined for a particular analyte sensor design configuration, as is routinely done with existing commercial sensors. In other examples, multiple blood glucose readings (or in the case of other analytes, biological samples) may be obtained (e.g., via a user interface) and used to determine the offset for a particular sensor.
在一些示例中,与参考值比较的温度是长期平均温度。在一些示例中,这是为了考虑受者(患者)之间的体温差异。在其他示例中,对温度的实时补偿可校正基于温度的传感器变化,这种变化可由例如暴露于热水(例如,淋浴)、冷水(例如,游泳)、空调、阳光、睡眠期间的热变化(例如,由于保暖毯而含有的热)或其他热或冷环境引起。一些示例可组合长期补偿方法和实时补偿方法。In some examples, the temperature compared to the reference value is a long-term average temperature. In some examples, this is to account for differences in body temperature between recipients (patients). In other examples, real-time compensation for temperature can correct for temperature-based sensor changes, which can be caused by, for example, exposure to hot water (e.g., showering), cold water (e.g., swimming), air conditioning, sunlight, thermal changes during sleep (e.g., heat contained due to thermal blankets), or other hot or cold environments. Some examples can combine long-term compensation methods and real-time compensation methods.
在一些示例中,在温度传感器不是皮下的情况下,也可使用延迟参数(与线性模型或如下所述的更复杂模型组合),以补偿温度传感器处的温度变化的检测与分析物传感器处的实际温度变化之间的延迟。下面提供用于基于来自非皮下传感器的信号确定皮下温度的各种示例方法。In some examples, where the temperature sensor is not subcutaneous, a delay parameter may also be used (in combination with a linear model or a more complex model as described below) to compensate for the delay between the detection of a temperature change at the temperature sensor and the actual temperature change at the analyte sensor. Various example methods for determining subcutaneous temperature based on a signal from a non-subcutaneous sensor are provided below.
在一些系统、设备和方法中,可使用来自非皮下温度传感器的温度信号来确定(例如,估计)皮下或其他体内温度,非皮下温度传感器诸如为可耦合到皮下分析物(例如,葡萄糖)传感器的外部设备(例如,发射器)的传感器电子器件中的温度传感器。可使用多种方法中的一种或多种方法根据从非皮下温度传感器接收到的温度信号确定皮下温度。In some systems, devices, and methods, a subcutaneous or other internal body temperature may be determined (e.g., estimated) using a temperature signal from a non-subcutaneous temperature sensor, such as a temperature sensor in sensor electronics of an external device (e.g., a transmitter) that may be coupled to a subcutaneous analyte (e.g., glucose) sensor. The subcutaneous temperature may be determined based on the temperature signal received from the non-subcutaneous temperature sensor using one or more of a variety of methods.
在一些示例中,非皮下温度值与皮下温度值之间的线性关系可用于近似皮下温度。在一些示例中,也可使用延迟参数(与线性模型或如下所述的更复杂模型组合),以补偿温度传感器处的温度变化的检测与分析物传感器处的实际温度变化之间的延迟。在一些示例中,非线性关系(例如,二次方程或更高级多项式或其他关系)可被确定并用于补偿温度,并且可任选地包括延迟参数。在一些示例中,可通过求解微分方程(例如,热传递关系)来确定关系以确定温度补偿。例如,传感器系统可在每次需要分析物值时(例如,每5分钟或每15分钟)求解微分方程以提供温度补偿分析物值。在另一个示例中,可应用基于微分方程的滤波器或预定关系来补偿温度。In some examples, a linear relationship between a non-subcutaneous temperature value and a subcutaneous temperature value can be used to approximate the subcutaneous temperature. In some examples, a delay parameter (combined with a linear model or a more complex model as described below) can also be used to compensate for the delay between the detection of a temperature change at a temperature sensor and the actual temperature change at an analyte sensor. In some examples, a nonlinear relationship (e.g., a quadratic equation or a higher order polynomial or other relationship) can be determined and used to compensate for temperature, and a delay parameter can be optionally included. In some examples, a relationship can be determined by solving a differential equation (e.g., a heat transfer relationship) to determine temperature compensation. For example, a sensor system can solve a differential equation to provide a temperature compensated analyte value each time an analyte value is needed (e.g., every 5 minutes or every 15 minutes). In another example, a filter or a predetermined relationship based on a differential equation can be applied to compensate for temperature.
在一些示例中,可使用线性模型通过非皮下温度确定皮下或其他体内温度。线性模型可例如从生物热模型(例如,Penne生物热方程)、已知的受者组织参数(例如,用于人类皮肤和皮下组织的典型热传递参数)以及传感器电子器件(例如,发射器)参数(可例如用基准测试来确定)来开发。组织参数可例如包括组织上的热导率或热通量。In some examples, a linear model can be used to determine subcutaneous or other internal body temperature from non-subcutaneous temperature. The linear model can be developed, for example, from a biothermal model (e.g., Penne bioheat equation), known recipient tissue parameters (e.g., typical heat transfer parameters for human skin and subcutaneous tissue), and sensor electronics (e.g., transmitter) parameters (which can be determined, for example, using benchmark testing). Tissue parameters can include, for example, thermal conductivity or heat flux across the tissue.
皮下温度(T皮下)可使用线性方程诸如下面的方程[6]从测量非皮下温度(T外部)确定:The subcutaneous temperature (TSc) can be determined from the measured non-subcutaneous temperature (Text) using a linear equation such as the following equation [6]:
T皮下(t)=aT外部+b [6]Tsubcutaneous (t) =aTexternal + b [6]
在方程[6]的示例中,可例如使用经验数据、理论或模型数据或它们的组合来确定增益/斜率(a)和偏移(b)。In the example of equation [6], the gain/slope (a) and offset (b) may be determined, for example, using empirical data, theoretical or model data, or a combination thereof.
在一些示例中,当分析物温度灵敏度是熟知的时,可基于分析物校准值(例如,血糖值)来确定或更新用于以上方程的增益和偏移。换句话说,如果葡萄糖灵敏度的置信度高,则可基于手指针刺得到的血糖值和从葡萄糖传感器接收到的信号来估计温度。系统可通过使用输入的葡萄糖值来计算实际分析物灵敏度,然后根据实际分析物灵敏度来确定皮下温度,并且然后确定皮下温度与来自非皮下温度传感器的信号之间的关系(例如,增益和偏移的值)。系统可在校准时确定或接收温度传感器值(例如,从外部传感器电子器件中的温度传感器接收),以确保更新的温度传感器信号用于确定灵敏度、增益和偏移。在一些示例中,不是使用新的增益和偏移,而是可使用加权平均或概率模型,使得增益和偏移不被可能改变灵敏度的独立因素过度影响,诸如传感器的初始放置之后的不准确时段(例如,“下降并恢复”现象,其中传感器信号在初始“预热”时段期间生成低传感器信号(下降),接着是预热之后的更准确(恢复)读数)。In some examples, when the analyte temperature sensitivity is well known, the gain and offset used for the above equation can be determined or updated based on the analyte calibration value (e.g., blood glucose value). In other words, if the confidence in glucose sensitivity is high, the temperature can be estimated based on the blood glucose value obtained by finger stick and the signal received from the glucose sensor. The system can calculate the actual analyte sensitivity by using the input glucose value, then determine the subcutaneous temperature based on the actual analyte sensitivity, and then determine the relationship between the subcutaneous temperature and the signal from the non-subcutaneous temperature sensor (e.g., the value of gain and offset). The system can determine or receive the temperature sensor value (e.g., received from the temperature sensor in the external sensor electronics) at calibration to ensure that the updated temperature sensor signal is used to determine the sensitivity, gain and offset. In some examples, instead of using a new gain and offset, a weighted average or probabilistic model can be used so that the gain and offset are not overly affected by independent factors that may change the sensitivity, such as the inaccurate period after the initial placement of the sensor (e.g., the "drop and recovery" phenomenon, where the sensor signal generates a low sensor signal (drop) during the initial "warm-up" period, followed by a more accurate (recovery) reading after warm-up).
在一些示例中,系统可考虑在非皮下温度传感器处记录温度变化的时间与在皮下分析物(葡萄糖)传感器处实际发生温度变化的时间之间的延迟:如果分析物感测系统包括皮下温度传感器,则直接皮下温度测量可用于温度补偿,但如果系统依赖于非皮下(例如,外部)温度传感器,则可通过考虑皮下葡萄糖传感器处的延迟温度变化来改善温度补偿方法的准确性。In some examples, the system may take into account the delay between the time a temperature change is recorded at a non-subcutaneous temperature sensor and the time the temperature change actually occurs at a subcutaneous analyte (glucose) sensor: if the analyte sensing system includes a subcutaneous temperature sensor, direct subcutaneous temperature measurement can be used for temperature compensation, but if the system relies on a non-subcutaneous (e.g., external) temperature sensor, the accuracy of the temperature compensation method can be improved by taking into account delayed temperature changes at the subcutaneous glucose sensor.
例如,上述线性模型假设皮下温度匹配外部温度(例如,传感器电子器件或发射器温度),但皮肤组织的变热和冷却比发射器慢得多,因此在外部传感器记录温度变化的时间与皮下位置处发生变化的时间之间存在延迟。例如,如果人从冷的空调房间走到较温暖的位置,外部传感器将快速地记录温度变化,但皮下温度将花费长得多的时间来变热。在另一个示例中,当受者和传感器浸入冷水中(例如,在温度低于环境温度的水池、海洋或湖泊中)时,温度的下降将首先在外部传感器电子器件中的传感器(例如,在CGM发射器中)中被检测到,并且稍后由于通过传感器或通过受者组织的热损失,皮下传感器处的温度将下降。皮下温度估计的准确性可通过确定延迟以反映这一现实来改善。For example, the linear model described above assumes that the subcutaneous temperature matches the external temperature (e.g., the sensor electronics or transmitter temperature), but the skin tissue heats and cools much more slowly than the transmitter, so there is a delay between the time the external sensor records a temperature change and the time the change occurs at the subcutaneous location. For example, if a person walks from a cold, air-conditioned room to a warmer location, the external sensor will quickly record the temperature change, but the subcutaneous temperature will take much longer to warm up. In another example, when the recipient and sensor are immersed in cold water (e.g., in a pool, ocean, or lake that is cooler than the ambient temperature), the drop in temperature will first be detected in the sensor in the external sensor electronics (e.g., in the CGM transmitter), and the temperature at the subcutaneous sensor will drop later due to heat loss through the sensor or through the recipient tissue. The accuracy of the subcutaneous temperature estimate can be improved by determining the delay to reflect this reality.
在一些示例中,延迟可基于其他温度信息或非皮下传感器记录温度变化的时间延迟的模型或估计来考虑非皮下温度传感器中温度变化的记录的延迟。例如,当环境温度变化发生时,非皮下温度传感器可能花费相对短时段(例如,1分钟)来记录变化,尤其是如果传感器被嵌入传感器电子壳体中,热量必须通过该传感器电子壳体传导以记录温度变化。一段时间后(例如,6分钟),可观测到皮下温度变化,并且净延迟是两个读数之差(例如,5分钟)。In some examples, the delay may account for the delay in recording of a temperature change in a non-subcutaneous temperature sensor based on other temperature information or a model or estimate of the time delay for the non-subcutaneous sensor to record a temperature change. For example, when an ambient temperature change occurs, a non-subcutaneous temperature sensor may take a relatively short period of time (e.g., 1 minute) to record the change, especially if the sensor is embedded in a sensor electronics housing through which heat must be conducted to record the temperature change. After a period of time (e.g., 6 minutes), a subcutaneous temperature change may be observed, and the net delay is the difference between the two readings (e.g., 5 minutes).
在一些示例中,可使用恒定延迟。例如,温度补偿方法可假设延迟时段d并且基于所假设延迟使用来自先前时段的温度来补偿温度影响(例如,使用时间t-d的温度)。在其他示例中,可基于所假设延迟使用当前时间(t)处的温度和来自先前时段的温度两者(例如,使用时间t-d处的温度)来进行补偿。在又一些示例中,可使用来自与所假设延迟相关联的不同时段的多个温度测量值(例如,使用t–d1处的温度和t–d2处的温度两者)来进行补偿。在一些示例中,延迟可例如为30秒至4分钟(例如,1分钟)、1分钟至10分钟(例如,5分钟)、5分钟至15分钟(例如,10分钟)或20分钟至1小时(例如,30分钟)。在一些示例中,可基于关于受者的已知信息(诸如平均体温或体重指数)来确定延迟。In some examples, a constant delay may be used. For example, a temperature compensation method may assume a delay period d and use the temperature from the previous period to compensate for the temperature effect based on the assumed delay (e.g., using the temperature at time td). In other examples, compensation may be performed based on the assumed delay using both the temperature at the current time (t) and the temperature from the previous period (e.g., using the temperature at time td). In yet other examples, compensation may be performed using multiple temperature measurements from different time periods associated with the assumed delay (e.g., using both the temperature at t-d1 and the temperature at t-d2 ). In some examples, the delay may be, for example, 30 seconds to 4 minutes (e.g., 1 minute), 1 minute to 10 minutes (e.g., 5 minutes), 5 minutes to 15 minutes (e.g., 10 minutes), or 20 minutes to 1 hour (e.g., 30 minutes). In some examples, the delay may be determined based on known information about the recipient (such as average body temperature or body mass index).
在一些示例中,可使用可变延迟时段。在一些示例中,可变延迟时段可例如至少部分地基于检测到的温度与基线之间的变化。在另一个示例中,延迟可至少部分地基于检测到的温度与先前检测到的温度的差或变化率(例如,当观测到较大温度变化时可使用较长延迟,因为热传递过程将花费较长时间来完成将皮下温度上升到稳定状态)。在一些示例中,仅当温度变化满足某个条件时,例如当发生超过阈值的突然温度变化(例如,大于5℃或10℃的变化)时,才可实现延迟。In some examples, a variable delay period may be used. In some examples, the variable delay period may be based, for example, at least in part on the change between the detected temperature and a baseline. In another example, the delay may be based at least in part on the difference or rate of change between the detected temperature and a previously detected temperature (e.g., a longer delay may be used when a larger temperature change is observed because the heat transfer process will take a longer time to complete the rise of the subcutaneous temperature to a steady state). In some examples, the delay may be implemented only when the temperature change satisfies a certain condition, such as when a sudden temperature change that exceeds a threshold value (e.g., a change greater than 5°C or 10°C) occurs.
在一些示例中,可变延迟可基于温度梯度,例如所感测温度与所确定皮下温度之间的差异。在一些示例中,可变延迟可基于热传递方程或模型,该方程或模型可考虑例如温度梯度(例如,环境温度与皮下温度之间的温度梯度)和热传递的一个或多个速率,并且还可任选地考虑生物过程(例如,经由血流的热传递)。In some examples, the variable delay can be based on a temperature gradient, such as a difference between a sensed temperature and a determined subcutaneous temperature. In some examples, the variable delay can be based on a heat transfer equation or model that can take into account, for example, a temperature gradient (e.g., a temperature gradient between ambient temperature and subcutaneous temperature) and one or more rates of heat transfer, and can also optionally take into account biological processes (e.g., heat transfer via blood flow).
可在各种其他示例方法(例如,偏微分方程模型、多项式模型、状态模型、时间序列模型、具有子组或条件的模型)中计算或使用延迟。The delays may be calculated or used in various other example methods (eg, partial differential equation models, polynomial models, state models, time series models, models with subgroups or conditions).
图6是使用延迟参数确定温度补偿葡萄糖浓度水平的示例方法600的流程图。方法600可包括在操作602处接收指示外部部件的温度参数的温度信号。温度参数可以例如是温度、温度变化或温度偏移。检测温度信号可包括例如测量可穿戴葡萄糖传感器的部件的温度参数。方法600可包括在操作604处接收指示体内葡萄糖浓度水平的葡萄糖信号。接收葡萄糖信号可包括例如从可穿戴葡萄糖传感器接收葡萄糖信号。6 is a flow chart of an example method 600 for determining a temperature compensated glucose concentration level using a delay parameter. The method 600 may include receiving a temperature signal indicating a temperature parameter of an external component at operation 602. The temperature parameter may be, for example, a temperature, a temperature change, or a temperature offset. Detecting the temperature signal may include, for example, measuring a temperature parameter of a component of a wearable glucose sensor. The method 600 may include receiving a glucose signal indicating a glucose concentration level in the body at operation 604. Receiving the glucose signal may include, for example, receiving the glucose signal from a wearable glucose sensor.
方法600可包括在操作606处基于葡萄糖信号、温度信号和延迟参数来确定补偿葡萄糖浓度水平。在一些示例中,可基于温度信号和延迟参数来确定温度补偿传感器灵敏度值,并且可使用传感器灵敏度值和葡萄糖信号来确定估计葡萄糖值。在一些示例中,可使用模型或神经网络,(至少部分地)基于葡萄糖信号、温度和延迟参数来确定估计葡萄糖值。Method 600 may include determining a compensated glucose concentration level based on the glucose signal, the temperature signal, and the delay parameter at operation 606. In some examples, a temperature compensated sensor sensitivity value may be determined based on the temperature signal and the delay parameter, and an estimated glucose value may be determined using the sensor sensitivity value and the glucose signal. In some examples, a model or neural network may be used to determine the estimated glucose value based (at least in part) on the glucose signal, the temperature, and the delay parameter.
在各种示例中,延迟参数可为恒定的,或可基于关于受者的温度或信息或其他因素而变化,如上所述。在一些示例中,可在第一时间检测温度参数,并且可在第一时间之后的第二时间检测葡萄糖浓度水平。延迟参数可包括第一时间与第二时间之间的延迟时段,该延迟时段考虑了外部部件处的第一温度变化与靠近葡萄糖传感器的第二温度变化之间的延迟。在一些示例中,确定补偿葡萄糖浓度水平可包括在处理器上执行指令以接收葡萄糖信号和温度信号并且使用葡萄糖信号、温度信号和延迟参数来确定补偿葡萄糖浓度水平。该方法还可包括将对应于温度参数的值存储在存储器电路中并且从存储器电路检索所存储的值以用于确定补偿葡萄糖浓度水平。在一些示例中,温度补偿葡萄糖浓度水平、估计皮下温度或延迟参数(或它们的任何组合)可使用线性模型(例如,线性方程)、非线性模型、偏微分方程模型、时间序列模型、具有子组的线性或非线性模型或本文所述的任何其他技术来确定。In various examples, the delay parameter may be constant, or may vary based on the temperature or information about the recipient or other factors, as described above. In some examples, the temperature parameter may be detected at a first time, and the glucose concentration level may be detected at a second time after the first time. The delay parameter may include a delay period between the first time and the second time, which takes into account the delay between the first temperature change at the external component and the second temperature change near the glucose sensor. In some examples, determining the compensated glucose concentration level may include executing instructions on a processor to receive a glucose signal and a temperature signal and using the glucose signal, the temperature signal and the delay parameter to determine the compensated glucose concentration level. The method may also include storing a value corresponding to the temperature parameter in a memory circuit and retrieving the stored value from the memory circuit for determining the compensated glucose concentration level. In some examples, the temperature compensated glucose concentration level, the estimated subcutaneous temperature or the delay parameter (or any combination thereof) may be determined using a linear model (e.g., a linear equation), a nonlinear model, a partial differential equation model, a time series model, a linear or nonlinear model with a subgroup, or any other technology described herein.
该方法还可包括在操作608处基于温度变化率或温度梯度(或如上所述的其他因素或技术)或基于检测到的状况或状态来调整延迟时段。在一些示例中,检测到的状况或状态可包括温度、位置或锻炼状况或状态或会话的突然变化(例如,使用加速度计)。The method may also include adjusting the delay period based on the rate of temperature change or temperature gradient (or other factors or techniques as described above) or based on a detected condition or state at operation 608. In some examples, the detected condition or state may include a sudden change in temperature, position, or exercise condition or state or session (e.g., using an accelerometer).
任选地,该方法还可包括在操作610处至少部分地基于补偿葡萄糖浓度水平来递送治疗。Optionally, the method may further include, at operation 610 , delivering therapy based at least in part on the compensation glucose concentration level.
在一些示例中,可使用偏微分方程(PDE)模型根据非皮下温度传感器信号来确定皮下温度。温度补偿的PDE方法可使系统更准确,例如通过考虑外部电子器件(例如,CGM发射器)中的温度变化率高于皮下组织或流体的温度变化率的事实。皮下组织和流体的温度可能变化得更慢,部分原因是身体充当散热器。使用PDE模型在温度快速变化的情况下可能特别有利。In some examples, a partial differential equation (PDE) model may be used to determine subcutaneous temperature based on a non-subcutaneous temperature sensor signal. A temperature-compensated PDE approach may make the system more accurate, for example by accounting for the fact that the rate of temperature change in external electronics (e.g., a CGM transmitter) is higher than the rate of temperature change of subcutaneous tissue or fluid. The temperature of subcutaneous tissue and fluid may change more slowly, in part because the body acts as a heat sink. Using a PDE model may be particularly advantageous in situations where temperature changes rapidly.
在一个示例中,传感器电子器件、皮下传感器和皮肤层可被视为多层模型。传感器和皮肤层(表皮260、真皮262和皮下组织264)示于图2C中。在一个示例中,多层结构可被认为是一维(1D)系统,其中1D空间是相对于皮肤表面的深度。温度在空间和时间上的分布可通过热方程描述,诸如由下面的方程[7]描述的Penne生物热方程:In one example, the sensor electronics, subcutaneous sensor, and skin layers can be considered a multilayer model. The sensor and skin layers (epidermis 260, dermis 262, and subcutaneous tissue 264) are shown in FIG2C. In one example, the multilayer structure can be considered a one-dimensional (1D) system, where the 1D space is the depth relative to the skin surface. The distribution of temperature in space and time can be described by a heat equation, such as the Penne bioheat equation described by the following equation [7]:
方程[7]中的变量和参数由下面给出的表1描述:The variables and parameters in equation [7] are described in Table 1 given below:
表1:Table 1 :
可确定或估计1D模型中每层的热导率。例如,可通过经验或理论方法来确定每个皮肤层的热导率。还可确定传感器电子器件(包括电池和环氧粘合剂)的热导率。下表2给出了传感器电子器件、皮下传感器和皮肤层的模型的不同层的热导率的示例值:The thermal conductivity of each layer in the 1D model can be determined or estimated. For example, the thermal conductivity of each skin layer can be determined by empirical or theoretical methods. The thermal conductivity of the sensor electronics (including the battery and epoxy adhesive) can also be determined. Table 2 below gives example values of the thermal conductivity of different layers of the model of the sensor electronics, subcutaneous sensors, and skin layers:
表2:Table 2 :
方程[7]的示例PDE的外部边界条件(BC)可被设置为如由非皮下温度传感器测量的随时间变化的温度,并且内部BC可被设置为恒定核心体温。The external boundary condition (BC) of the example PDE of equation [7] may be set to the time-varying temperature as measured by a non-subcutaneous temperature sensor, and the internal BC may be set to the constant core body temperature.
基于这些假设,可求解方程[7]或类似的PDE,从而可估计传感器处(例如,传感器的工作电极处)的温度。在一些示例中,每当需要温度值时可求解方程[7]或类似的PDE。在一些值中,可通过在可信值范围内求解方程[7]或类似的PDE来开发查找表。可查阅查找表以确定近似的皮下温度。Based on these assumptions, equation [7] or a similar PDE can be solved so that the temperature at the sensor (e.g., at the working electrode of the sensor) can be estimated. In some examples, equation [7] or a similar PDE can be solved each time a temperature value is needed. In some values, a lookup table can be developed by solving equation [7] or a similar PDE within a range of plausible values. The lookup table can be consulted to determine the approximate subcutaneous temperature.
在一些示例中,可根据PDE模型确定皮下传感器处的温度与外部传感器的温度之间的线性相关。在一些示例中,PDE模型可用于执行时间空间滤波以捕获温度变化和时间滞后的瞬态过程。In some examples, a linear correlation between the temperature at the subcutaneous sensor and the temperature of the external sensor can be determined according to the PDE model. In some examples, the PDE model can be used to perform time-space filtering to capture transient processes of temperature changes and time lags.
皮下传感器处的估计温度可用于校正皮下传感器中的灵敏度变化。在一个示例中,分析物传感器(例如,葡萄糖传感器)的电化学反应表面处的温度可被估计并用于确定电化学传感器在估计温度下的估计灵敏度。The estimated temperature at the subcutaneous sensor can be used to correct for sensitivity variations in the subcutaneous sensor. In one example, the temperature at the electrochemical reaction surface of an analyte sensor (eg, a glucose sensor) can be estimated and used to determine an estimated sensitivity of the electrochemical sensor at the estimated temperature.
在一些示例中,时间序列模型可用于使用来自非皮下温度传感器的信号来估计皮下温度,或补偿温度对分析物传感器灵敏度的影响。在一些示例中,可直接确定温度补偿灵敏度,即不估计皮下温度。In some examples, the time series model can be used to estimate subcutaneous temperature using signals from non-subcutaneous temperature sensors, or to compensate for the effects of temperature on analyte sensor sensitivity. In some examples, the temperature compensated sensitivity can be determined directly, ie, without estimating subcutaneous temperature.
在一个示例中,可使用4阶多项式作为模型。例如,可使用由下面的方程[8]给出的模型:In one example, a 4th order polynomial may be used as a model. For example, the model given by the following equation [8] may be used:
方程[8]中的变量和参数由下表3描述:The variables and parameters in equation [8] are described in Table 3 below:
表3:table 3 :
模型参数可根据经验数据集确定,例如使用曲线拟合或优化技术。在已经确定模型参数之后,可使用该模型来补偿温度变化。例如,可使用下面的方程[9]来确定补偿灵敏度:The model parameters can be determined based on an empirical data set, for example using curve fitting or optimization techniques. After the model parameters have been determined, the model can be used to compensate for temperature changes. For example, the compensation sensitivity can be determined using the following equation [9]:
在一些示例中,当校准条目(例如,基于血糖仪数据)可用时,可更新模型参数。例如,时间序列模型可转换为模型的递归版本,因此当手指针刺测量可用时,可实时更新模型。常数的值可基于群体数据、患者特异性数据来确定。值可以例如如下:p1:-0.0004334,p2:0.04955,p3:-2.035,p4:36.7,p5:-259.7In some examples, model parameters may be updated as calibration entries (e.g., based on blood glucose meter data) become available. For example, a time series model may be converted to a recursive version of the model so that the model may be updated in real time as finger stick measurements become available. The values of the constants may be determined based on population data, patient-specific data. The values may be, for example, as follows:p1 : -0.0004334,p2 : 0.04955,p3 : -2.035,p4 : 36.7,p5 : -259.7
虽然提供了4阶多项式作为示例,但也可使用3阶或5阶或更高阶多项式。更高阶多项式可在补偿中提供更高准确度,但可能需要更多时间、输入数据或处理能力来确定和更新模型参数。Although a 4th order polynomial is provided as an example, a 3rd or 5th order or higher polynomial may also be used. Higher order polynomials may provide greater accuracy in compensation, but may require more time, input data, or processing power to determine and update model parameters.
可使用算法或模型来确定温度补偿分析物传感器值(例如,葡萄糖浓度水平)。在一些示例中,可使用神经网络、状态模型(例如,隐马尔可夫)、概率模型或其他模型来开发温度补偿模型。可例如基于来自特定个体(例如,患者)的数据针对该个体学习模型,并且该模型可用于确定补偿估计葡萄糖值。在一些示例中,可从来自患者群体的数据(例如,临床试验数据)学习模型,并且该模型可用于患者群体。在一些示例中,相同的模型可用于大多数或所有患者(依据排除标准)。在一些示例中,可将患者匹配到从类似患者的群体开发的模型(例如,基于平均温度、年龄、性别、BMI或其他因素)。针对模型的输入可包括温度测量结果、时间、传感器灵敏度、估计葡萄糖值、胰岛素敏感性、加速度计数据(例如,以检测活动或姿势)、心率、呼吸速率、进餐状态、量或类型、活性胰岛素或胰岛素递送量或模式、体重指数(BMI)或其他因素。来自模型的输出可包括传感器灵敏度、局部葡萄糖水平、隔室偏差值、非酶偏差水平(其中任一者可被组合以确定葡萄糖浓度水平),或者模型可输出补偿葡萄糖/分析物浓度值。基于模型的方法可能特别有效,因为各种温度影响(例如,传感器灵敏度、局部葡萄糖水平、隔室偏差值、非酶偏差水平)可以是线性的、非线性的或动态的(例如,取决于时间和温度两者的组合)。An algorithm or model can be used to determine the temperature compensation analyte sensor value (e.g., glucose concentration level). In some examples, a neural network, a state model (e.g., hidden Markov), a probability model, or other models can be used to develop a temperature compensation model. A model can be learned for an individual based on data from a specific individual (e.g., a patient), and the model can be used to determine the compensation estimated glucose value. In some examples, a model can be learned from data from a patient population (e.g., clinical trial data), and the model can be used for a patient population. In some examples, the same model can be used for most or all patients (based on exclusion criteria). In some examples, a patient can be matched to a model developed from a population of similar patients (e.g., based on average temperature, age, sex, BMI, or other factors). Inputs for the model may include temperature measurements, time, sensor sensitivity, estimated glucose values, insulin sensitivity, accelerometer data (e.g., to detect activity or posture), heart rate, respiratory rate, meal status, amount or type, active insulin or insulin delivery amount or mode, body mass index (BMI), or other factors. Outputs from the model may include sensor sensitivity, local glucose levels, compartment bias values, non-enzymatic bias levels (any of which may be combined to determine a glucose concentration level), or the model may output a compensated glucose/analyte concentration value. Model-based approaches may be particularly effective because various temperature effects (e.g., sensor sensitivity, local glucose levels, compartment bias values, non-enzymatic bias levels) may be linear, non-linear, or dynamic (e.g., dependent on a combination of both time and temperature).
温度补偿系统可考虑长期平均温度平均值或趋势。例如,可使用长期平均来补偿温度变化。长期平均可例如考虑受者与参考值之间的身体或皮肤温度变化。在一些示例中,长期平均方法可与下文描述的短期(例如,实时)温度补偿方法中的一者或多者组合使用。The temperature compensation system may take into account long term average temperature averages or trends. For example, long term averaging may be used to compensate for temperature changes. Long term averaging may, for example, take into account changes in body or skin temperature between a subject and a reference value. In some examples, the long term averaging method may be used in combination with one or more of the short term (e.g., real time) temperature compensation methods described below.
可以多种不同方式来确定和更新个体的平均皮下温度。例如,皮下温度可被确定为整个传感器会话内的平均值(例如,均值或中值),或滚动窗口(例如,持续12小时或24小时)的平均值。在一些示例中,皮下温度可以一定间隔更新,例如重新测量,或每6小时、9小时、12小时、18小时或24小时更新一次。在一些示例中,皮下温度可被确定为加权平均值,其中更近的值(例如,先前的6小时、12小时或24小时)权重更大并且过去的间隔权重更小。The average subcutaneous temperature of an individual can be determined and updated in a variety of different ways. For example, the subcutaneous temperature can be determined as the average value (e.g., mean or median) within the entire sensor session, or the average value of a rolling window (e.g., for 12 hours or 24 hours). In some examples, the subcutaneous temperature can be updated at certain intervals, such as remeasurement, or updated every 6 hours, 9 hours, 12 hours, 18 hours, or 24 hours. In some examples, the subcutaneous temperature can be determined as a weighted average, where more recent values (e.g., the previous 6 hours, 12 hours, or 24 hours) are weighted more and past intervals are weighted less.
在一个示例中,温度传感器初始可针对初始参考值(例如,35℃)进行校准,初始参考值可表示群体的平均温度。在学习期间,温度传感器可确定受者的实际温度。学习时段可被选择为足够长(例如,6至12小时)以筛选出温度漂移(例如,使得在诸如淋浴的热/冷事件期间不确定平均值)。学习的平均值可用于补偿不同于群体平均值的受者的温度。例如,如果假设群体具有35.0℃的操作温度,但来自特定受者的检测到的温度显示平均35.5℃的温度,则可使用半度变化来补偿分析物值。在一些示例中,可确定初始平均值(例如,在第一天),并且可用后续温度测量来更新工作平均值(例如,使用在第二天或两天时段内的平均温度)。如上所述,也可使用其他时间窗口。In one example, the temperature sensor may initially be calibrated to an initial reference value (e.g., 35°C), which may represent the average temperature of the population. During the learning period, the temperature sensor may determine the actual temperature of the recipient. The learning period may be selected to be long enough (e.g., 6 to 12 hours) to screen out temperature drift (e.g., so that the average is uncertain during hot/cold events such as showers). The learned average can be used to compensate for the temperature of recipients that differ from the population average. For example, if the population is assumed to have an operating temperature of 35.0°C, but the detected temperature from a particular recipient shows an average temperature of 35.5°C, a half-degree change can be used to compensate for the analyte value. In some examples, an initial average can be determined (e.g., on the first day), and subsequent temperature measurements can be used to update the operating average (e.g., using the average temperature on the second day or over a two-day period). As described above, other time windows may also be used.
如果系统具有皮下温度传感器,则可从皮下温度传感器获得一系列温度测量结果并将其用于确定长期平均值。在其他示例中,皮下温度可使用下文描述的多种方法中的一种方法(例如,基于线性或更高水平关系)基于所感测非皮下温度来确定。在确定了个体的皮下温度(T皮下,ind)之后,可基于与参考温度(T皮下,参考)的偏差来确定温度校正的分析物灵敏度,例如使用上文提供的方程。If the system has a subcutaneous temperature sensor, a series of temperature measurements can be obtained from the subcutaneous temperature sensor and used to determine a long-term average. In other examples, the subcutaneous temperature can be determined based on the sensed non-subcutaneous temperature using one of the various methods described below (e.g., based on a linear or higher level relationship). After determining the individual's subcutaneous temperature (Tsubcutaneous,ind), the temperature-corrected analyte sensitivity can be determined based on the deviation from a reference temperature (Tsubcutaneous,ref), for example using the equation provided above.
在一些示例中,估计葡萄糖值的变化率或来自葡萄糖传感器的信号的变化率可用作确定温度补偿的输入。例如,当变化率满足某个条件(例如,超过指定值)时,可暂停温度补偿,或者可将温度补偿转移到不同模型。在一些示例中,当估计葡萄糖值的变化率满足某个条件时,可触发异常,可例如如本文关于图34所述来处理该异常。In some examples, the rate of change of the estimated glucose value or the rate of change of the signal from the glucose sensor can be used as an input to determine temperature compensation. For example, when the rate of change meets a certain condition (e.g., exceeds a specified value), temperature compensation can be suspended, or temperature compensation can be transferred to a different model. In some examples, when the rate of change of the estimated glucose value meets a certain condition, an exception can be triggered, which can be handled, for example, as described herein with respect to FIG. 34.
对于一些皮下葡萄糖传感器,根据皮下传感器确定的葡萄糖浓度水平反映出相对于血糖水平的时间滞后,这是因为间质液中的血糖水平的变化与血液中的变化相比具有生理延迟(例如,对于要在由皮下葡萄糖传感器测量的间质液中反映的血糖值的变化,可能花费长达几分钟)。延迟还可由传感器读数的周期性引入(例如,如果每5分钟获取传感器读数一次,则在循环中的某些点处的估计葡萄糖水平可能是4+分钟之前的)。当在快速葡萄糖变化期间系统中存在时间滞后误差时,可对葡萄糖的不准确(过时)估计执行温度补偿:在一些情况下,对过时的葡萄糖水平的温度补偿可能使得估计更差,因此在高变化率时段期间暂停或改变温度补偿可能是有用的。例如,当葡萄糖浓度水平快速下降(例如,由于剧烈锻炼)时,来自皮下温度传感器的估计可能“落后于”血糖浓度水平(例如,如通过血糖仪所确定的),因此皮下传感器将显示比血糖水平更高的估计葡萄糖值。如果温度补偿提高了皮下传感器的估计血糖浓度水平,则可能加剧这种差异。可通过暂停温度补偿或转移到不同模型来避免这种情况。在一些示例中,当满足高变化率条件时,可仅在温度补偿增大变化率时应用温度补偿(例如,以避免由生理延迟引起的差异的恶化)。For some subcutaneous glucose sensors, the glucose concentration level determined from the subcutaneous sensor reflects a time lag relative to the blood glucose level because changes in the blood glucose level in the interstitial fluid have a physiological delay compared to changes in the blood (e.g., it may take up to several minutes for a change in the blood glucose value to be reflected in the interstitial fluid measured by the subcutaneous glucose sensor). Delays may also be introduced by the periodicity of the sensor readings (e.g., if sensor readings are taken every 5 minutes, the estimated glucose level at certain points in the cycle may be 4+ minutes old). When there is a time lag error in the system during rapid glucose changes, temperature compensation may be performed for inaccurate (outdated) estimates of glucose: in some cases, temperature compensation for outdated glucose levels may make the estimates worse, so it may be useful to suspend or change temperature compensation during periods of high rate of change. For example, when the glucose concentration level drops rapidly (e.g., due to intense exercise), the estimate from the subcutaneous temperature sensor may "lag behind" the blood glucose concentration level (e.g., as determined by a blood glucose meter), so the subcutaneous sensor will show an estimated glucose value that is higher than the blood glucose level. This discrepancy may be exacerbated if temperature compensation increases the estimated blood glucose concentration level of the subcutaneous sensor. This can be avoided by suspending temperature compensation or shifting to a different model. In some examples, when a high rate of change condition is met, temperature compensation can be applied only when the temperature compensation increases the rate of change (e.g., to avoid exacerbation of differences caused by physiological delays).
在一些示例中,分析物传感器的输出相对于温度传感器的输出的偏差可用于评估来自温度传感器的信号。这些相关性或偏差可用于确定温度信号、分析物传感器信号或两者的置信度。在葡萄糖水平满足稳定性条件的时间期间,可预期温度和葡萄糖浓度水平表现出相关性。例如,可基于葡萄糖浓度水平的变化率来确定稳定性条件。在一些示例中,稳定性条件可包括多个子条件,诸如短期条件和长期条件。例如,当变化率和/或指定时段内的平均变化率满足某个条件(例如,每分钟不增大或减小超过1mg/dL,和/或在15分钟内不增大或减小超过15mg/dL)时,可认为葡萄糖水平是稳定的。当变化率和/或指定时段内的平均变化率满足某个条件(例如,葡萄糖水平每分钟上升(或下降)1mg/dL至2mg/dL和/或在15分钟内上升(或下降)15mg/dL至30mg/dL)时,可认为葡萄糖水平适度稳定(例如,以所指示的适度速率增大或减小)。In some examples, the deviation of the output of the analyte sensor relative to the output of the temperature sensor can be used to evaluate the signal from the temperature sensor. These correlations or deviations can be used to determine the confidence of the temperature signal, the analyte sensor signal or both. During the time when the glucose level meets the stability condition, it is expected that the temperature and the glucose concentration level show a correlation. For example, the stability condition can be determined based on the rate of change of the glucose concentration level. In some examples, the stability condition may include multiple sub-conditions, such as short-term conditions and long-term conditions. For example, when the rate of change and/or the average rate of change in the specified period meet a certain condition (for example, not increasing or decreasing by more than 1mg/dL per minute, and/or not increasing or decreasing by more than 15mg/dL in 15 minutes), the glucose level can be considered to be stable. When the rate of change and/or the average rate of change in the specified period meet a certain condition (for example, the glucose level rises (or decreases) 1mg/dL to 2mg/dL per minute and/or rises (or decreases) 15mg/dL to 30mg/dL in 15 minutes), the glucose level can be considered to be moderately stable (for example, increasing or decreasing at the indicated moderate rate).
如图15A至图15C所示,当葡萄糖水平稳定(或者在一些示例中适度稳定)时,温度曲线和葡萄糖曲线的斜率应相关,因为葡萄糖曲线的变化反映了分析物传感器输出中的温度生成的变化。图15A示出了相对于时间绘制的葡萄糖传感器的输出。以mg/dL为单位的增益相对较高,显示在相对葡萄糖稳定性的时段内斜率的变化。图15B示出了相对于时间绘制的温度传感器的输出。图15C示出了叠加在葡萄糖传感器输出上的温度(即,图15B与图15A组合)。分析物传感器输出与温度传感器输出相关:当温度传感器上升时,分析物传感器具有上升值(正斜率),当温度传感器输出下降时,分析物传感器具有下降值(负斜率),并且当温度传感器输出平坦时,分析物传感器值平坦。可从该相关性推断温度信号的置信度。相反,图15D示出了在葡萄糖值相对稳定的时间期间温度传感器输出(虚线)与葡萄糖传感器输出没有很好地相关的示例,表明温度传感器输出可能不可靠。As shown in Figures 15A to 15C, when the glucose level is stable (or moderately stable in some examples), the slope of the temperature curve and the glucose curve should be related, because the change of the glucose curve reflects the change of the temperature generated in the analyte sensor output. Figure 15A shows the output of the glucose sensor drawn relative to time. The gain in mg/dL is relatively high, showing the change of the slope in the period of relative glucose stability. Figure 15B shows the output of the temperature sensor drawn relative to time. Figure 15C shows the temperature superimposed on the glucose sensor output (that is, Figure 15B is combined with Figure 15A). The analyte sensor output is related to the temperature sensor output: when the temperature sensor rises, the analyte sensor has an increasing value (positive slope), when the temperature sensor output decreases, the analyte sensor has a decreasing value (negative slope), and when the temperature sensor output is flat, the analyte sensor value is flat. The confidence of the temperature signal can be inferred from this correlation. On the contrary, Figure 15D shows an example in which the temperature sensor output (dashed line) is not well correlated with the glucose sensor output during the time period when the glucose value is relatively stable, indicating that the temperature sensor output may be unreliable.
在各种示例中,当温度传感器输出的置信度较低时,可暂停、降低或修改温度补偿,或者可使用或请求其他信息(例如,如下文所述的锻炼的检测)来增加温度补偿的准确性。例如,当温度信号的置信度小于阈值时,分析物传感器可设置异常标记,可如本文关于图34所述来处理该标记。In various examples, when the confidence of the temperature sensor output is low, temperature compensation may be suspended, reduced, or modified, or other information (e.g., detection of exercise as described below) may be used or requested to increase the accuracy of temperature compensation. For example, when the confidence of the temperature signal is less than a threshold, the analyte sensor may set an abnormal flag, which may be processed as described herein with respect to FIG. 34.
图7是基于评估(例如,确证)温度值来确定温度补偿葡萄糖浓度水平的示例方法700的流程图。方法700可包括在操作702处接收葡萄糖传感器信号。例如,可从连续葡萄糖监测仪(CGM)接收葡萄糖传感器信号。7 is a flow chart of an example method 700 for determining a temperature compensated glucose concentration level based on evaluating (eg, validating) a temperature value. The method 700 may include receiving a glucose sensor signal at operation 702. For example, the glucose sensor signal may be received from a continuous glucose monitor (CGM).
方法700可包括在操作704处接收温度参数信号。接收温度参数信号可例如包括接收指示温度、温度变化或温度偏移的信号。The method 700 may include receiving a temperature parameter signal at operation 704. Receiving a temperature parameter signal may, for example, include receiving a signal indicative of a temperature, a temperature change, or a temperature excursion.
方法700可包括在操作706处接收第三传感器信号。接收第三传感器信号可包括例如接收心率信号、接收压力信号、接收活动信号或加速度计信号(例如,以检测锻炼)或接收位置信号(例如,以推断与热环境或冷环境诸如水池、海滩或空调设施的接近度)。在一些示例中,接收第三传感器信号可包括从环境温度传感器接收温度信息。在一些示例中,接收第三传感器信号可包括从可穿戴设备诸如手表接收信息。在一些示例中,接收第三传感器信号可包括从可例如集成到手表或其他可穿戴设备中的生理温度传感器接收温度信息。在一些示例中,第三信号可包括心率信号、呼吸信号、压力信号或活动信号,并且可根据心率信号、呼吸信号、压力信号或活动信号的上升来检测锻炼状况或状态。Method 700 may include receiving a third sensor signal at operation 706. Receiving the third sensor signal may include, for example, receiving a heart rate signal, receiving a pressure signal, receiving an activity signal, or an accelerometer signal (e.g., to detect exercise), or receiving a location signal (e.g., to infer proximity to a hot or cold environment such as a pool, a beach, or an air-conditioned facility). In some examples, receiving the third sensor signal may include receiving temperature information from an ambient temperature sensor. In some examples, receiving the third sensor signal may include receiving information from a wearable device such as a watch. In some examples, receiving the third sensor signal may include receiving temperature information from a physiological temperature sensor that may be integrated into a watch or other wearable device, for example. In some examples, the third signal may include a heart rate signal, a breathing signal, a pressure signal, or an activity signal, and an exercise condition or state may be detected based on a rise in the heart rate signal, the breathing signal, the pressure signal, or the activity signal.
方法700可包括在操作708处使用第三传感器信号来评估温度参数信号以生成估计温度参数信号。在一些示例中,评估温度参数信号可包括确定在具有已知温度特性的位置处的存在。例如,低温或高温信号可由指示在具有已知环境温度特性(例如,热或冷环境)的位置(诸如,可例如通过参考网络资源(例如,网站)或所存储查找表来确定的具有已知天气特性的水池、海滩、空调设施或区域)处的存在的位置信号来确证。在一些示例中,该方法可包括确定在具有浸入式水环境的位置诸如水池或海滩处的存在。在一些示例中,评估温度参数信号可包括确定温度参数信号的变化与锻炼会话一致。例如,评估温度参数信号可包括确定温度参数信号与由于锻炼而发生的体温升高一致。Method 700 may include evaluating a temperature parameter signal using a third sensor signal at operation 708 to generate an estimated temperature parameter signal. In some examples, evaluating the temperature parameter signal may include determining presence at a location having known temperature characteristics. For example, a low or high temperature signal may be confirmed by a location signal indicating presence at a location having known ambient temperature characteristics (e.g., a hot or cold environment) (such as a pool, beach, air conditioning facility, or area with known weather characteristics that may be determined, for example, by reference to a network resource (e.g., a website) or a stored lookup table). In some examples, the method may include determining presence at a location having an immersive water environment such as a pool or beach. In some examples, evaluating the temperature parameter signal may include determining that a change in the temperature parameter signal is consistent with an exercise session. For example, evaluating the temperature parameter signal may include determining that the temperature parameter signal is consistent with an increase in body temperature that occurs due to exercise.
方法700可包括在操作710处基于估计温度参数信号和葡萄糖传感器信号来确定温度补偿葡萄糖浓度水平。在一些示例中,确定温度补偿葡萄糖浓度水平可包括将温度参数信号应用于锻炼模型。在一些示例中,该方法可包括当检测到锻炼并且温度参数信号的变化指示温度降低时使用锻炼模型(例如,户外或对流冷却的锻炼模型)。例如,当检测到的温度下降但检测到锻炼时(例如,当HR或活动上升时),基于(例如,传感器电子器件中的)非皮下温度传感器的温度补偿可被暂停,因为在锻炼会话期间,当患者在冷却环境中在外部进行剧烈锻炼(例如,跑步)时(例如,当通过风扇对流冷却时,或当在寒冷天气环境中在户外锻炼时),皮下温度可能是稳定的,或甚至上升。Method 700 may include determining a temperature compensated glucose concentration level based on the estimated temperature parameter signal and the glucose sensor signal at operation 710. In some examples, determining the temperature compensated glucose concentration level may include applying the temperature parameter signal to an exercise model. In some examples, the method may include using an exercise model (e.g., an outdoor or convection-cooled exercise model) when exercise is detected and a change in the temperature parameter signal indicates a decrease in temperature. For example, temperature compensation based on a non-subcutaneous temperature sensor (e.g., in the sensor electronics) may be suspended when the detected temperature decreases but exercise is detected (e.g., when HR or activity increases) because during an exercise session, when the patient is performing strenuous exercise (e.g., running) outdoors in a cooled environment (e.g., when convection-cooled by a fan, or when exercising outdoors in a cold weather environment), the subcutaneous temperature may be stable, or even increase.
图8是用于对连续葡萄糖传感器进行温度补偿的示例方法800的示意图,该方法包括根据温度信息确定模式。方法800可包括在操作802处根据温度数据确定模式。在一些示例中,确定模式可包括确定温度变化的模式,并且该方法可包括根据模式补偿葡萄糖浓度水平。8 is a schematic diagram of an example method 800 for temperature compensating a continuous glucose sensor, the method including determining a mode based on temperature information. The method 800 may include determining a mode based on temperature data at operation 802. In some examples, determining the mode may include determining a mode of temperature change, and the method may include compensating for glucose concentration levels based on the mode.
方法800可包括在操作804处从连续葡萄糖传感器接收葡萄糖信号,该葡萄糖信号指示葡萄糖浓度水平。The method 800 may include receiving a glucose signal from a continuous glucose sensor at operation 804 , the glucose signal indicating a glucose concentration level.
方法800可包括在操作806处至少部分地基于葡萄糖信号和模式来确定温度补偿葡萄糖浓度水平。例如,该方法可包括接收温度参数,将温度参数与模式进行比较,以及至少部分地基于该比较来确定温度补偿葡萄糖浓度水平。在一些示例中,模式可包括与生理周期诸如昼夜节律相关的温度模式。在一些示例中,方法800可包括基于与模式的比较来确定温度参数是否可靠以及在温度参数被确定为可靠时使用温度参数对葡萄糖浓度水平进行温度补偿。The method 800 may include determining a temperature compensated glucose concentration level based at least in part on the glucose signal and the pattern at operation 806. For example, the method may include receiving a temperature parameter, comparing the temperature parameter to the pattern, and determining the temperature compensated glucose concentration level based at least in part on the comparison. In some examples, the pattern may include a temperature pattern associated with a physiological cycle such as a circadian rhythm. In some examples, the method 800 may include determining whether the temperature parameter is reliable based on the comparison with the pattern and using the temperature parameter to temperature compensate the glucose concentration level when the temperature parameter is determined to be reliable.
在一些示例中,可至少部分地基于温度参数与模式的比较来确定补偿程度。例如,补偿程度可基于所定义的范围或置信区间。In some examples, the degree of compensation can be determined based at least in part on a comparison of the temperature parameter to the pattern.For example, the degree of compensation can be based on a defined range or confidence interval.
在一些示例中,可通过确定状况或状态来确定模式,并且确定温度补偿葡萄糖浓度水平可至少部分地基于所确定的状况或状态。例如,方法800还可包括接收温度参数,并且确定状况或状态可包括将温度参数应用于状态模型。在一些示例中,确定状况或状态可包括将葡萄糖浓度水平、碳水化合物敏感性、时间、活动、心率、呼吸速率、姿势、胰岛素递送、进餐时间或进餐量中的一者或多者应用于状态模型。在一些示例中,确定状况或状态可包括确定锻炼状况或状态,该方法可包括基于锻炼状况或状态来调整基于温度补偿的模型。In some examples, the mode may be determined by determining a condition or state, and determining the temperature compensated glucose concentration level may be based at least in part on the determined condition or state. For example, method 800 may also include receiving a temperature parameter, and determining the condition or state may include applying the temperature parameter to a state model. In some examples, determining the condition or state may include applying one or more of a glucose concentration level, carbohydrate sensitivity, time, activity, heart rate, breathing rate, posture, insulin delivery, meal time, or meal size to a state model. In some examples, determining the condition or state may include determining an exercise condition or state, and the method may include adjusting a temperature-compensated model based on the exercise condition or state.
在一些示例中,可基于检测到的状况或状态来选择或修改模型。例如,可开发一组不同的线性模型,并且可基于分析物传感器、受者等的检测到的状况或状态从该组中选择一个模型。在一些示例中,可使用状态模型来确定状况或状态。In some examples, a model may be selected or modified based on a detected condition or state. For example, a set of different linear models may be developed, and a model may be selected from the set based on a detected condition or state of an analyte sensor, a receptor, etc. In some examples, a state model may be used to determine a condition or state.
在一些示例中,状况或状态可包括位置或地理特性。位置可例如包括地理位置参数(例如,经度、纬度或海拔),或城市或地点或兴趣点(例如,海滩或山)。在各种示例中,可从受者的智能设备(诸如蜂窝电话、手表或其他可穿戴传感器)收集位置信息、地理信息或生理传感器信息(例如,如下文所述的活动或心率)。In some examples, the condition or state may include a location or geographic characteristic. The location may, for example, include a geographic location parameter (e.g., longitude, latitude, or altitude), or a city or place or point of interest (e.g., a beach or mountain). In various examples, location information, geographic information, or physiological sensor information (e.g., activity or heart rate as described below) may be collected from a recipient's smart device (such as a cell phone, watch, or other wearable sensor).
在一些示例中,状况或状态可包括温度读数与平均值的偏差。例如,滚动均值温度值和滚动标准偏差可从温度值序列确定,并且可取决于温度是否偏离均值+1σ、-1σ、+2σ、-2σ、+3σ、-3σ来使用模型(例如,线性模型)。在一些示例中,可从预定数量的先前温度值来确定滚动均值。在各种示例中,当前读数可包括在滚动均值中或从滚动均值中排除。在一些示例中,滚动均值可被指数加权。In some examples, the condition or state may include a deviation of the temperature reading from a mean. For example, a rolling mean temperature value and a rolling standard deviation may be determined from a sequence of temperature values, and a model (e.g., a linear model) may be used depending on whether the temperature deviates from the mean +1σ, -1σ, +2σ, -2σ, +3σ, -3σ. In some examples, the rolling mean may be determined from a predetermined number of previous temperature values. In various examples, the current reading may be included in the rolling mean or excluded from the rolling mean. In some examples, the rolling mean may be exponentially weighted.
在一些示例中,状况或状态可包括患者人口统计。例如,人口统计可包括性别(例如,对男性与女性受者/患者使用不同模型)、诊断(例如,1型糖尿病或2型糖尿病或非糖尿病)、年龄(例如,年龄以年计,或青年、青少年、成人、老年)、生物周期(例如,昼夜节律或月经周期)、医学状况(例如,妊娠或健康/生病或慢性疾病)。In some examples, the condition or state may include patient demographics. For example, demographics may include gender (e.g., using different models for male and female recipients/patients), diagnosis (e.g., type 1 diabetes or type 2 diabetes or non-diabetes), age (e.g., age in years, or youth, adolescent, adult, elderly), biological cycle (e.g., circadian rhythm or menstrual cycle), medical condition (e.g., pregnancy or healthy/sick or chronic disease).
在一些示例中,状况或状态可从可穿戴传感器或生理传感器确定,诸如心率传感器、加速度计、压力计或温度传感器。状况或状态可基于一个或多个传感器输入来确定。在一些示例中,状况或状态可包括活动状况或状态,这可例如从心率或加速度计确定。在一些示例中,状况或状态可包括唤醒睡眠状态,这可从一个或多个生理传感器(例如,基于生物节律)或从姿势传感器(例如,3轴加速度计)确定。在一些示例中,状况或状态可包括压迫状态,这可例如从压力传感器或温度传感器或它们的组合确定。例如,当患者躺在可穿戴葡萄糖传感器上时,这可能例如在睡眠期间发生,传感器可能生成不准确的葡萄糖传感器读数(例如,表示较低葡萄糖值的“压迫低”)。在一些示例中,这些输入或状态中的每一者可触发不同温度关系(例如,特定温度补偿模型的应用)。In some examples, a condition or state may be determined from a wearable sensor or physiological sensor, such as a heart rate sensor, an accelerometer, a pressure gauge, or a temperature sensor. A condition or state may be determined based on one or more sensor inputs. In some examples, a condition or state may include an activity condition or state, which may be determined, for example, from a heart rate or accelerometer. In some examples, a condition or state may include a wake-up sleep state, which may be determined from one or more physiological sensors (e.g., based on a biorhythm) or from a posture sensor (e.g., a 3-axis accelerometer). In some examples, a condition or state may include a compression state, which may be determined, for example, from a pressure sensor or a temperature sensor or a combination thereof. For example, when a patient lies on a wearable glucose sensor, which may occur, for example, during sleep, the sensor may generate an inaccurate glucose sensor reading (e.g., "compression low" indicating a lower glucose value). In some examples, each of these inputs or states may trigger a different temperature relationship (e.g., the application of a specific temperature compensation model).
在一些示例中,温度补偿或其应用(或暂停)可至少部分地基于温度的变化率(例如,状况或状态可以是温度的变化率)。因为外部(例如,传感器电子器件)检测到的温度可能比皮下温度变化快得多,所以可能难以在快速温度变化时间期间正确预测皮下温度。在一些示例中,当检测到的温度变化率满足(例如,符合)某个条件(例如,变化率超过指定值、变化率落在范围之外等)时,可暂停或减少温度补偿。在另一个示例中,当满足第一条件(例如,温度变化率低于指定值)时可使用第一模型(例如,线性模型),并且当满足第二条件(例如,变化率高于指定值)时可使用第二模型(例如,线性延迟模型)。In some examples, temperature compensation or its application (or suspension) may be based at least in part on the rate of change of temperature (e.g., a condition or state may be the rate of change of temperature). Because the temperature detected externally (e.g., sensor electronics) may change much faster than the subcutaneous temperature, it may be difficult to correctly predict the subcutaneous temperature during times of rapid temperature change. In some examples, temperature compensation may be suspended or reduced when the detected rate of change of temperature satisfies (e.g., meets) a certain condition (e.g., the rate of change exceeds a specified value, the rate of change falls outside a range, etc.). In another example, a first model (e.g., a linear model) may be used when a first condition is met (e.g., the rate of change of temperature is below a specified value), and a second model (e.g., a linear delay model) may be used when a second condition is met (e.g., the rate of change is above a specified value).
在一些示例中,温度补偿或其应用(或暂停)可基于温度梯度的量值,温度梯度在本文中也被称为热通量。温度梯度可根据所确定的皮下或其他体内温度(例如,先前温度确定)和检测到的非皮下或体外检测到的温度(例如,在传感器电子器件中感测到的温度)来确定(例如,近似)。在一个示例中,当满足温度梯度条件(例如,超过阈值的温度梯度)时,可调整模型,例如以反映外部温度比皮下温度变化更快。在一个示例中,可降低线性模型(如本文所述)中的增益,这可具有降低所确定的皮下温度的变化率的效果,以更准确地跟踪温度变化的实际速率。在另一个示例中,当满足温度梯度或热通量条件时,可暂停温度补偿。在一些示例中,温度补偿或其应用可基于温度梯度方向,例如,当外部温度高于皮下温度时的温度补偿可不同于当外部温度低于所确定的皮下温度时的温度补偿。In some examples, temperature compensation or its application (or suspension) may be based on the magnitude of a temperature gradient, which is also referred to herein as a heat flux. The temperature gradient may be determined (e.g., approximated) based on a determined subcutaneous or other internal body temperature (e.g., a previous temperature determination) and a detected non-subcutaneous or externally detected temperature (e.g., a temperature sensed in a sensor electronics device). In one example, when a temperature gradient condition is met (e.g., a temperature gradient exceeding a threshold), the model may be adjusted, for example, to reflect that the external temperature changes faster than the subcutaneous temperature. In one example, the gain in a linear model (as described herein) may be reduced, which may have the effect of reducing the rate of change of the determined subcutaneous temperature to more accurately track the actual rate of temperature change. In another example, temperature compensation may be suspended when a temperature gradient or heat flux condition is met. In some examples, temperature compensation or its application may be based on the direction of the temperature gradient, for example, the temperature compensation when the external temperature is higher than the subcutaneous temperature may be different from the temperature compensation when the external temperature is lower than the determined subcutaneous temperature.
在一些示例中,状况或状态可以是锻炼。例如,可使用一个或多个可穿戴传感器(例如,加速度计、心率传感器、呼吸传感器)来确定个体是否正在执行某种类型的心脏锻炼(例如,跑步、骑行或代谢调节)。在一个示例中,可假设个体的核心体温(和皮下温度)升高,例如从37℃升高到38℃。在诸如跑步或骑行的移动锻炼期间,还可假设对流系数由于个体的运动而增大(例如,增大10倍)。可应用考虑到这些参数变化的适当的锻炼模型。例如,可增大线性模型的“增益”(斜率)并且可改变偏移(常数),以反映锻炼的影响(例如,基本线性模型T皮下=0.395*T外部+22.346可转移到心脏锻炼线性模型,诸如T皮下=0.416*T外部+22.178。In some examples, the condition or state may be exercise. For example, one or more wearable sensors (e.g., accelerometers, heart rate sensors, breathing sensors) may be used to determine whether an individual is performing a certain type of cardiac exercise (e.g., running, cycling, or metabolic conditioning). In one example, it may be assumed that the individual's core body temperature (and subcutaneous temperature) increases, for example, from 37°C to 38°C. During mobile exercise such as running or cycling, it may also be assumed that the convection coefficient increases (e.g., by a factor of 10) due to the individual's movement. An appropriate exercise model that takes into account these parameter changes may be applied. For example, the "gain" (slope) of the linear model may be increased and the offset (constant) may be changed to reflect the effects of exercise (e.g., the basic linear model Tsubcutaneous = 0.395*Texternal + 22.346 may be transferred to a cardiac exercise linear model, such as Tsubcutaneous = 0.416*Texternal + 22.178).
在一些示例中,当检测到寒冷温度和锻炼时,可限制所应用的温度补偿的量。例如,在锻炼期间,发射器温度可能比当个体休息时更冷,例如因为个体在外面,传感器电子器件暴露于由于运动而增大的对流,或者因为个体的皮肤由于出汗而更冷。然而,皮下温度可能由于增加的热产生而升高,因此标准温度补偿模型(其不考虑锻炼/冷组合)可能导致不准确。例如,通过温度传感器输入和加速度计、心率、呼吸速率或位置输入的组合,可检测这种“冷锻炼”状况或状态。当检测到个体的锻炼时,可在冷温度下修改温度补偿,例如,可暂停、限高或逐渐减小温度补偿,或者可应用另选的补偿模型。在一个示例中,在锻炼期间,出于温度补偿目的,比阈值更冷的任何温度可被视为阈值(例如,出于温度补偿目的,传感器温度<29℃被29℃代替),或者可由算法限制温度补偿。在另一个示例中,逐渐减小补偿可通过减小温度灵敏度因子(Z)来实现,使得对于给定的检测到的传感器温度,对皮下温度做出较小改变(例如,Mt,comp=Mt,pro*(Z)*(T皮下–T皮下,参考);或Mt,comp=Mt,pro*(Z)*(T皮下–T皮下,参考)+Mt,pro)。例如,如果典型的温度灵敏度因子是3.3%,则在锻炼期间,可基于检测到的状况或状态将温度灵敏度因子更改为1.5%。In some examples, when cold temperatures and exercise are detected, the amount of temperature compensation applied may be limited. For example, during exercise, the transmitter temperature may be colder than when the individual is resting, for example because the individual is outside, the sensor electronics are exposed to increased convection due to movement, or because the individual's skin is colder due to sweating. However, subcutaneous temperature may rise due to increased heat generation, so the standard temperature compensation model (which does not take into account the exercise/cold combination) may lead to inaccuracy. For example, this "cold exercise" condition or state can be detected by a combination of temperature sensor input and accelerometer, heart rate, breathing rate, or position input. When individual exercise is detected, temperature compensation can be modified at cold temperatures, for example, temperature compensation can be paused, capped, or gradually reduced, or an alternative compensation model can be applied. In one example, during exercise, for temperature compensation purposes, any temperature colder than a threshold can be considered a threshold (for example, for temperature compensation purposes, sensor temperature <29°C is replaced by 29°C), or temperature compensation can be limited by an algorithm. In another example, gradually reducing compensation can be achieved by reducing the temperature sensitivity factor (Z) so that for a given detected sensor temperature, a smaller change is made to the subcutaneous temperature (e.g., Mt,comp = Mt,pro*(Z)*(TSc - Tsc,ref); or Mt,comp = Mt,pro*(Z)*(TSc - Tsc,ref)+Mt,pro). For example, if a typical temperature sensitivity factor is 3.3%, the temperature sensitivity factor can be changed to 1.5% during exercise based on the detected condition or state.
在一些示例中,可至少部分地基于个体的平均皮下温度来选择或确定补偿模型。在一个示例中,可在一个会话的前几个小时(例如,在一个加热时段期间或在一个加热时段之后)、或在一个会话的第一天确定平均皮下温度。上述长期平均方法可用于确定补偿。在一些示例中,平均皮下温度可周期性地或反复地更新,例如每6小时或12小时或24小时更新一次。In some examples, the compensation model may be selected or determined based at least in part on the average subcutaneous temperature of the individual. In one example, the average subcutaneous temperature may be determined in the first few hours of a session (e.g., during a heating period or after a heating period), or on the first day of a session. The long-term averaging method described above may be used to determine the compensation. In some examples, the average subcutaneous temperature may be updated periodically or repeatedly, such as every 6 hours, 12 hours, or 24 hours.
在一些示例中,可做出关于温度补偿是否可能增加估计葡萄糖值的准确性的确定(例如,使用算法、模型或查找表)。对于一些患者或一些条件,温度补偿可能实际上降低准确度:这些患者或识别因素的识别以及温度补偿的暂停或停止可提高传感器性能或降低MARD。识别因素可例如包括受者的表面或身体温度、BMI、性别、年龄或以上识别的其他状况或状态的任何组合。In some examples, a determination may be made as to whether temperature compensation may increase the accuracy of the estimated glucose value (e.g., using an algorithm, model, or lookup table). For some patients or some conditions, temperature compensation may actually reduce accuracy: identification of these patients or identification factors and suspension or cessation of temperature compensation may improve sensor performance or reduce MARD. Identification factors may, for example, include the recipient's surface or body temperature, BMI, gender, age, or any combination of other conditions or states identified above.
图9是用于至少部分地基于检测到的状况或状态对连续血糖监测系统进行温度补偿的示例方法900的流程图。方法900可包括在操作902处接收指示葡萄糖浓度水平的葡萄糖信号。9 is a flow chart of an example method 900 for temperature compensating a continuous glucose monitoring system based at least in part on a detected condition or state. The method 900 may include, at operation 902, receiving a glucose signal indicative of a glucose concentration level.
方法900可包括在操作904处接收指示温度参数的温度信号。方法900可包括在操作906处检测状况或状态。在一些示例中,状况或状态可包括葡萄糖信号的高变化率,其中在葡萄糖信号经历高变化率的时段期间可减少或暂停温度补偿。在一些示例中,状况或状态可包括体重指数(BMI)值。例如,可假设具有高BMI的受者比具有低BMI的受者自然更热或更缓慢地改变温度。在一些示例中,状况或状态可包括检测到的发热,并且温度补偿可响应于检测发热而被减小、暂停、限高或逐渐减小。在一些示例中,检测到的状况或状态可包括连续血糖监测系统上存在辐射热。在一些示例中,状况或状态可包括检测到的锻炼。该方法可例如包括当检测到状况或状态(例如,锻炼)时减小、逐渐减小、限高或暂停温度补偿。Method 900 may include receiving a temperature signal indicating a temperature parameter at operation 904. Method 900 may include detecting a condition or state at operation 906. In some examples, the condition or state may include a high rate of change of the glucose signal, wherein the temperature compensation may be reduced or suspended during the period when the glucose signal experiences a high rate of change. In some examples, the condition or state may include a body mass index (BMI) value. For example, it may be assumed that a recipient with a high BMI naturally changes temperature hotter or more slowly than a recipient with a low BMI. In some examples, the condition or state may include detected fever, and the temperature compensation may be reduced, suspended, capped, or gradually reduced in response to detecting fever. In some examples, the detected condition or state may include the presence of radiant heat on the continuous glucose monitoring system. In some examples, the condition or state may include detected exercise. The method may, for example, include reducing, gradually reducing, capping, or suspending temperature compensation when a condition or state (e.g., exercise) is detected.
在一些示例中,可从连续葡萄糖传感器接收葡萄糖信号,并且状况或状态可包括连续葡萄糖传感器上的压迫。例如,可至少部分地基于葡萄糖信号的快速下降来检测传感器上的压迫。在一些示例中,状况或状态可包括睡眠。在一些示例中,状况或状态可包括睡眠期间的压迫。可例如使用温度、姿势、活动和心率中的一者或多者来检测睡眠,并且该方法可包括基于检测到的睡眠来应用指定的葡萄糖警报触发。In some examples, a glucose signal may be received from a continuous glucose sensor, and the condition or state may include stress on the continuous glucose sensor. For example, stress on the sensor may be detected based at least in part on a rapid drop in the glucose signal. In some examples, the condition or state may include sleep. In some examples, the condition or state may include stress during sleep. Sleep may be detected, for example, using one or more of temperature, posture, activity, and heart rate, and the method may include applying a specified glucose alarm trigger based on the detected sleep.
方法900可包括在操作908处至少部分地基于葡萄糖信号、温度信号和检测到的状况或状态来确定温度补偿葡萄糖浓度水平。The method 900 may include determining a temperature compensated glucose concentration level based at least in part on the glucose signal, the temperature signal, and the detected condition or state at operation 908 .
在一些示例中,状况或状态可包括温度信号的突然变化。可例如响应于检测到温度的突然变化而减少或暂停温度补偿。在皮下位置中的分析物传感器部位处可能没有发生温度的突然变化,其中随着热穿过皮肤传导到传感器部位或从传感器部位传导离开,温度变化倾向于更缓慢地发生,因此当在外部传感器处发生温度的突然变化时,可能是适当的是执行响应动作,诸如例如暂停温度补偿一段时间或在一段时间内“逐步引入”温度补偿以反映传感器部位处的逐渐温度变化。In some examples, the condition or state may include a sudden change in the temperature signal. Temperature compensation may be reduced or suspended, for example, in response to detecting a sudden change in temperature. A sudden change in temperature may not occur at the analyte sensor site in a subcutaneous location, where temperature changes tend to occur more slowly as heat is conducted through the skin to or away from the sensor site, so when a sudden change in temperature occurs at the external sensor, it may be appropriate to perform a response action, such as, for example, suspending temperature compensation for a period of time or "gradually introducing" temperature compensation over a period of time to reflect a gradual temperature change at the sensor site.
可使用多种技术中的一种或多种技术在检测到温度的突然变化或其他快速变化或信号不连续之后确定温度补偿葡萄糖水平。在一些示例中,可使用先前温度信号值代替与温度的突然变化相关联的温度信号值来确定温度补偿葡萄糖浓度水平。在一些示例中,温度补偿葡萄糖浓度水平可使用基于先前温度信号值的外推温度信号值以及使用外推温度信号值代替与温度的突然变化相关联的温度信号值来确定。在一些示例中,可响应于检测到温度的突然变化而调用延迟模型。例如,延迟模型可指定用于确定温度补偿葡萄糖水平的延迟时段。The temperature compensated glucose level may be determined after a sudden change in temperature or other rapid change or signal discontinuity is detected using one or more of a variety of techniques. In some examples, the temperature compensated glucose concentration level may be determined using a previous temperature signal value instead of a temperature signal value associated with a sudden change in temperature. In some examples, the temperature compensated glucose concentration level may be determined using an extrapolated temperature signal value based on a previous temperature signal value and using the extrapolated temperature signal value instead of a temperature signal value associated with a sudden change in temperature. In some examples, a delay model may be called in response to detecting a sudden change in temperature. For example, a delay model may specify a delay period for determining the temperature compensated glucose level.
可使用多种技术中的一种或多种技术基于葡萄糖信号、温度信号和检测到的状况或状态来确定温度补偿葡萄糖浓度水平。例如,可使用线性模型来确定温度补偿葡萄糖浓度水平。在另一个示例中,可使用时间序列模型来确定温度补偿葡萄糖浓度水平。在一些示例中,可使用偏微分方程来确定温度补偿葡萄糖浓度水平。在一些示例中,可使用概率模型来确定温度补偿葡萄糖浓度水平。例如,可使用状态模型来确定温度补偿葡萄糖浓度水平。The temperature compensated glucose concentration level can be determined based on the glucose signal, the temperature signal, and the detected condition or state using one or more of a variety of techniques. For example, a linear model can be used to determine the temperature compensated glucose concentration level. In another example, a time series model can be used to determine the temperature compensated glucose concentration level. In some examples, a partial differential equation can be used to determine the temperature compensated glucose concentration level. In some examples, a probability model can be used to determine the temperature compensated glucose concentration level. For example, a state model can be used to determine the temperature compensated glucose concentration level.
在一些示例中,该方法可包括使用温度信号来确定长期平均值,并且可使用长期平均值来确定温度补偿葡萄糖浓度水平。In some examples, the method may include using the temperature signal to determine a long term average, and the long term average may be used to determine the temperature compensated glucose concentration level.
在一些示例中,该方法还可包括接收血糖校准值以及在接收到血糖校准值时更新温度补偿增益和偏移。In some examples, the method may further include receiving a blood glucose calibration value and updating a temperature compensation gain and offset upon receiving the blood glucose calibration value.
该方法还可包括递送胰岛素治疗。胰岛素治疗(例如,经由泵或智能笔)可至少部分地基于温度补偿葡萄糖水平来确定。The method may also include delivering insulin therapy.The insulin therapy (eg, via a pump or smart pen) may be determined based at least in part on the temperature compensated glucose level.
在一些示例中,温度补偿可至少部分地基于体重指数(BMI)。在一个示例中,可例如经由智能电话应用程序的接口从个体接收身高和体重。可至少部分地基于BMI来确定或调整温度补偿参数。在一些示例中,温度补偿可基于可与指定BMI窗口相关联的预加载模型。例如,标准温度补偿模型可假设与皮下层(工作电极被设计成在使用期间位于皮下层)和处于核心体温的组织相距一定距离。在具有高BMI的人中,较厚的脂肪组织层(体脂)可增大从皮下层到处于核心体温的组织的距离,这可导致较低的皮下或皮肤表面温度。在一些示例中,一组模型可以是可用的,并且将至少部分地基于人的BMI从该组中选择一个模型(例如,其中到核心体温的距离是变化的PDE模型)。在一些示例中,除了BMI之外的另外信息可用于选择模型,因为BMI不能完美地预测脂肪组织厚度,尤其是不能在分析物传感器(例如,CGM)的位置处。In some examples, temperature compensation may be based at least in part on body mass index (BMI). In one example, height and weight may be received from an individual, for example, via an interface of a smart phone application. Temperature compensation parameters may be determined or adjusted based at least in part on BMI. In some examples, temperature compensation may be based on a preloaded model that may be associated with a specified BMI window. For example, a standard temperature compensation model may assume a certain distance from the subcutaneous layer (the working electrode is designed to be located in the subcutaneous layer during use) and the tissue at core body temperature. In people with a high BMI, a thicker layer of adipose tissue (body fat) may increase the distance from the subcutaneous layer to the tissue at core body temperature, which may result in a lower subcutaneous or skin surface temperature. In some examples, a set of models may be available, and a model (e.g., a PDE model in which the distance to core body temperature is a variable) may be selected from the set based at least in part on the person's BMI. In some examples, additional information other than BMI may be used to select a model because BMI cannot perfectly predict adipose tissue thickness, especially at the location of an analyte sensor (e.g., CGM).
在一些示例中,温度补偿模型至少部分地基于个体的核心体温。例如,体温倾向于与BMI相关,因此可基于BMI来估计平均体温。In some examples, the temperature compensation model is based at least in part on the core body temperature of the individual. For example, body temperature tends to be correlated with BMI, so average body temperature can be estimated based on BMI.
也可在确定补偿分析物值时考虑其他生理因素或影响,诸如局部葡萄糖浓度变化(与全身葡萄糖水平相反)、隔室偏差(间质液对血液中葡萄糖浓度的差异)和非酶传感器偏差。Other physiological factors or influences may also be considered in determining the compensated analyte value, such as local glucose concentration variations (as opposed to systemic glucose levels), compartment bias (differences in glucose concentration in interstitial fluid versus blood), and non-enzymatic sensor bias.
在一些示例中,来自具有光源和光传感器的光学传感器的传感器信号可作为温度补偿方法的输入。例如,可使用光学传感器来检测个体皮肤中的血流或灌注。在个体皮肤附近具有光源和光检测器的光学传感器可检测紧邻传感器下方的区域中的血液流速和红细胞数目。皮肤附近的血流随温度、活动和压力水平而变化。在一些示例中,可通过使用从光学传感器获得的血液灌注信息来确定努力的量(例如,锻炼用力)。例如,当跑步上坡或下坡时,步伐将大致相同,但上坡需要更多努力并且血液灌注将更高。在下坡部分期间,血液灌注将较低。特定用力检测可用于将在锻炼期间使用的更精细的温度补偿算法。在一些示例中,光学传感器可检测从加速度计角度来看不太明显的锻炼(例如,体重训练),因为该锻炼涉及较少或更慢的移动。在一些示例中,光学传感器可与加速度计组合使用以检测锻炼期间的锻炼状况或状态以及用力量。In some examples, a sensor signal from an optical sensor having a light source and a light sensor can be used as an input to a temperature compensation method. For example, an optical sensor can be used to detect blood flow or perfusion in an individual's skin. An optical sensor having a light source and a light detector near the individual's skin can detect blood flow rate and red blood cell count in the area immediately below the sensor. Blood flow near the skin varies with temperature, activity, and pressure level. In some examples, the amount of effort (e.g., exercise effort) can be determined by using blood perfusion information obtained from the optical sensor. For example, when running uphill or downhill, the pace will be roughly the same, but uphill requires more effort and blood perfusion will be higher. During the downhill portion, blood perfusion will be lower. Specific effort detection can be used for more sophisticated temperature compensation algorithms that will be used during exercise. In some examples, an optical sensor can detect exercise (e.g., weight training) that is less obvious from an accelerometer perspective because the exercise involves less or slower movement. In some examples, an optical sensor can be used in combination with an accelerometer to detect exercise conditions or states and effort during exercise.
在一些示例中,位置信息(例如,全球定位传感器数据或网络连通性)可用作用于确定温度补偿或确定温度测量中的置信度的输入。例如,位置可用于通过将温度测量结果与位置的温度特性进行比较来确定温度测量结果的置信度。例如,与位置相关联的活动(例如,游泳、日光浴、跑步、滑雪)可能在较低、较高或快速变化的温度测量中确定置信度。在另一个示例中,位置处的天气特性(例如,环境温度)可确定温度测量的置信度。在另一个示例中,可使用与昼夜节律相关的位置信息(例如,通常在家中位置睡眠)来确认温度测量结果,或者可通过与位置信息中的模式的偏差来确认与昼夜节律的偏差(例如,如果个体远离家,例如,在夜间、露营、在可能具有不同温度特性的位置处的户外,则可确定对夜间寒冷温度的置信度)。In some examples, location information (e.g., global positioning sensor data or network connectivity) can be used as an input for determining temperature compensation or determining confidence in temperature measurements. For example, location can be used to determine the confidence of temperature measurements by comparing the temperature measurements to the temperature characteristics of the location. For example, activities associated with the location (e.g., swimming, sunbathing, running, skiing) may determine confidence in lower, higher, or rapidly changing temperature measurements. In another example, weather characteristics at the location (e.g., ambient temperature) can determine the confidence of the temperature measurement. In another example, location information related to circadian rhythm (e.g., typically sleeping at a home location) can be used to confirm the temperature measurement, or deviations from the circadian rhythm can be confirmed by deviations from patterns in the location information (e.g., if the individual is away from home, for example, at night, camping, outdoors at a location that may have different temperature characteristics, confidence in cold temperatures at night can be determined).
在一些示例中,发热的检测(例如,使用传感器)或发热的报告(例如,通过智能设备上的应用程序)可用作用于确定温度补偿的输入。例如,在发热期间可暂停温度补偿,因为正常模式可能不适用。在另一个示例中,可修改模型或可应用不同的模型来补偿由发热引起的温度变化。在一些示例中,可用其他信息来确证发热。例如,图15A至图15C所示的传感器输出的变化率的相关性可用于确证检测到的发热。在另一个示例中,可例如通过智能设备询问患者关于发热(“你有发热吗?”)或可能导致温度变化的其他事件(“你最近有沐浴吗?”)的疑问。In some examples, the detection of fever (e.g., using a sensor) or the reporting of fever (e.g., through an application on a smart device) can be used as an input for determining temperature compensation. For example, temperature compensation can be suspended during fever because the normal mode may not be applicable. In another example, the model can be modified or different models can be applied to compensate for the temperature changes caused by fever. In some examples, other information can be used to confirm the fever. For example, the correlation of the rate of change of the sensor output shown in Figures 15A to 15C can be used to confirm the detected fever. In another example, the patient can be asked questions about fever ("Do you have a fever?") or other events that may cause temperature changes ("Have you bathed recently?"), for example, through a smart device.
图19是可用于根据两个或更多个输入来确定输出的示例模型的示意图。例如,模型可从先前数据学习模式或关系并在确定输出时应用所学习的模式或关系。这可包括例如从来自特定受者、或来自群体、或来自一个或多个临床试验的先前数据学习。FIG. 19 is a schematic diagram of an example model that can be used to determine an output based on two or more inputs. For example, the model can learn patterns or relationships from previous data and apply the learned patterns or relationships when determining the output. This can include, for example, learning from previous data from a specific recipient, or from a population, or from one or more clinical trials.
在各种示例中,可同时或在不同时间点接收或感测输入。在一些示例中,可将两个输入(例如,温度和分析物传感器输出)应用于模型。模型还可接收另外输入,诸如时间(例如,来自时钟电路)或灵敏度(例如,工厂校准灵敏度)。在一个示例中,模型可包括子模型1902、1904、1906。子模型可考虑温度依赖因素,诸如局部葡萄糖水平、隔室偏差值、非酶传感器偏差水平和传感器灵敏度。在一个示例中,每个模型可定义输入与温度依赖因素之间的不同关系(例如,线性、非线性)。例如,模型1902可基于第一非线性关系,模型1904可基于第二非线性关系,并且输出模型可基于线性关系。在各种示例中,处理器可从存储器中的查找表检索模型信息或输入数据,或可从存储器存储和检索过去值或状态,或可从存储器检索模型的函数或其他方面。检索到的信息可与最近或实时信息组合并应用于模型以生成输出,该输出可以是补偿葡萄糖浓度水平,或该输出可用于确定补偿葡萄糖浓度水平。In various examples, inputs may be received or sensed simultaneously or at different time points. In some examples, two inputs (e.g., temperature and analyte sensor output) may be applied to the model. The model may also receive additional inputs, such as time (e.g., from a clock circuit) or sensitivity (e.g., factory calibration sensitivity). In one example, the model may include submodels 1902, 1904, 1906. The submodel may take into account temperature-dependent factors, such as local glucose levels, compartment deviation values, non-enzymatic sensor deviation levels, and sensor sensitivity. In one example, each model may define different relationships (e.g., linear, nonlinear) between input and temperature-dependent factors. For example, model 1902 may be based on a first nonlinear relationship, model 1904 may be based on a second nonlinear relationship, and the output model may be based on a linear relationship. In various examples, the processor may retrieve model information or input data from a lookup table in a memory, or may store and retrieve past values or states from a memory, or may retrieve functions or other aspects of a model from a memory. The retrieved information may be combined with recent or real-time information and applied to the model to generate an output, which may be a compensated glucose concentration level, or the output may be used to determine a compensated glucose concentration level.
图20A是使用模型来确定补偿葡萄糖浓度值的示例方法2000的流程图。方法2000可包括在操作2002处接收温度传感器信号。例如,可从靠近分析物传感器的皮下温度传感器接收温度传感器信号,或可从非皮下传感器(例如在外部传感器电子器件上,例如CGM发射器)接收温度传感器信号。在操作2004处,方法2000可包括接收分析物传感器信号,诸如来自葡萄糖传感器的信号。在操作2006处,可将温度传感器信号和葡萄糖传感器信号应用于模型。例如,可将温度传感器信号和葡萄糖传感器信号应用于状态模型(例如,隐马尔可夫模型)或神经网络。在一些示例中,可将多个温度传感器信号应用于模型。可对信号进行处理或分析以确定模式(例如,一个或多个线性或非线性趋势)。温度和葡萄糖传感器值与补偿葡萄糖浓度值之间的定义或学习关系可用于使用模型来返回补偿葡萄糖浓度值。在操作2008处,补偿葡萄糖浓度值可任选地显示在用户设备上。在操作2010处,可至少部分地基于补偿葡萄糖浓度值来递送治疗。例如,可至少部分地基于补偿葡萄糖浓度值来控制经由泵的胰岛素输送。在一些示例中,处理器可至少部分地基于葡萄糖浓度值来确定胰岛素剂量、输送时间或输送速率(或它们的任何组合)。在一些示例中,泵可自动地输送胰岛素,或泵可向用户建议胰岛素时间、速率和剂量。在其他示例中,智能笔可接收补偿葡萄糖浓度值并确定剂量或输送时间,该剂量或输送时间可显示给用户或自动加载以用于递送,或两种情况均有。FIG. 20A is a flow chart of an example method 2000 for determining a compensated glucose concentration value using a model. Method 2000 may include receiving a temperature sensor signal at operation 2002. For example, a temperature sensor signal may be received from a subcutaneous temperature sensor near an analyte sensor, or a temperature sensor signal may be received from a non-subcutaneous sensor (e.g., on an external sensor electronics, such as a CGM transmitter). At operation 2004, method 2000 may include receiving an analyte sensor signal, such as a signal from a glucose sensor. At operation 2006, the temperature sensor signal and the glucose sensor signal may be applied to a model. For example, the temperature sensor signal and the glucose sensor signal may be applied to a state model (e.g., a hidden Markov model) or a neural network. In some examples, multiple temperature sensor signals may be applied to a model. The signal may be processed or analyzed to determine a pattern (e.g., one or more linear or nonlinear trends). The definition or learning relationship between the temperature and glucose sensor value and the compensated glucose concentration value may be used to return the compensated glucose concentration value using a model. At operation 2008, the compensated glucose concentration value may be optionally displayed on a user device. At operation 2010, treatment may be delivered based at least in part on the compensated glucose concentration value. For example, insulin delivery via a pump may be controlled based at least in part on the compensated glucose concentration value. In some examples, the processor may determine an insulin dose, delivery time, or delivery rate (or any combination thereof) based at least in part on the glucose concentration value. In some examples, the pump may automatically deliver insulin, or the pump may suggest insulin time, rate, and dose to the user. In other examples, the smart pen may receive the compensated glucose concentration value and determine a dose or delivery time, which may be displayed to the user or automatically loaded for delivery, or both.
在图20A的示例中,训练模型以提供补偿葡萄糖浓度作为其输出。在其他示例中,如本文所述,训练模型以生成包括葡萄糖传感器的一个或多个补偿属性的输出。例如,如本文所述,可将温度补偿应用于传感器属性以生成一个或多个补偿传感器属性。可随后将一个或多个补偿传感器属性应用于原始传感器数据以生成补偿葡萄糖浓度。可使用经训练的模型来补偿的示例传感器属性包括例如灵敏度、传感器基线等。In the example of FIG. 20A , the model is trained to provide a compensated glucose concentration as its output. In other examples, the model is trained to generate an output including one or more compensated properties of a glucose sensor, as described herein. For example, temperature compensation may be applied to sensor properties to generate one or more compensated sensor properties, as described herein. The one or more compensated sensor properties may then be applied to raw sensor data to generate a compensated glucose concentration. Example sensor properties that may be compensated using a trained model include, for example, sensitivity, sensor baseline, and the like.
图20B是使用模型来确定补偿葡萄糖浓度值的另一个示例方法2001的流程图。方法2001可包括在操作2012处接收温度传感器信号。例如,可从靠近葡萄糖传感器的皮下温度传感器接收温度传感器信号,或可从非皮下传感器(例如,在外部传感器电子器件上,例如CGM发射器)接收温度传感器信号。在操作2014处,方法2001可包括接收葡萄糖传感器信号,诸如来自葡萄糖传感器的信号。在一些示例中,在操作2014处接收到的葡萄糖传感器信号包括与工作电极处的电流相关的原始传感器信号,诸如与葡萄糖传感器的工作电极处的电流相关的一个或多个计数。在一些示例中,这包括估计分析物值,诸如例如从原始传感器信号导出的葡萄糖浓度。在一些示例中,葡萄糖传感器信号包括原始传感器信号和分析物值。Figure 20B is a flow chart of another example method 2001 for determining a compensated glucose concentration value using a model. Method 2001 may include receiving a temperature sensor signal at operation 2012. For example, a temperature sensor signal may be received from a subcutaneous temperature sensor near a glucose sensor, or a temperature sensor signal may be received from a non-subcutaneous sensor (e.g., on an external sensor electronics, such as a CGM transmitter). At operation 2014, method 2001 may include receiving a glucose sensor signal, such as a signal from a glucose sensor. In some examples, the glucose sensor signal received at operation 2014 includes a raw sensor signal associated with a current at a working electrode, such as one or more counts associated with a current at a working electrode of the glucose sensor. In some examples, this includes estimating an analyte value, such as, for example, a glucose concentration derived from a raw sensor signal. In some examples, the glucose sensor signal includes a raw sensor signal and an analyte value.
在操作2016处,可将温度传感器信号和葡萄糖传感器信号应用于模型。例如,可将温度传感器信号和葡萄糖传感器信号应用于状态模型(例如,隐马尔可夫模型)、神经网络模型或其他合适的模型。在一些示例中,可将多个温度传感器信号应用于模型。可对信号进行处理或分析以确定模式(例如,一个或多个线性或非线性趋势)。温度和葡萄糖传感器值与一个或多个葡萄糖传感器属性(诸如灵敏度、基线等)之间的定义或学习关系可用于返回一个或多个补偿葡萄糖传感器属性的值。At operation 2016, the temperature sensor signal and the glucose sensor signal may be applied to a model. For example, the temperature sensor signal and the glucose sensor signal may be applied to a state model (e.g., a hidden Markov model), a neural network model, or other suitable model. In some examples, multiple temperature sensor signals may be applied to the model. The signal may be processed or analyzed to determine a pattern (e.g., one or more linear or nonlinear trends). A defined or learned relationship between temperature and glucose sensor values and one or more glucose sensor attributes (such as sensitivity, baseline, etc.) may be used to return a value for one or more compensated glucose sensor attributes.
在操作2018处,使用补偿葡萄糖传感器属性来生成补偿葡萄糖浓度。在操作2020处,补偿葡萄糖浓度值可任选地显示在用户设备上。在操作2022处,可至少部分地基于补偿葡萄糖浓度值来递送治疗。例如,可至少部分地基于补偿葡萄糖浓度值来控制经由泵的胰岛素输送。在一些示例中,处理器可至少部分地基于葡萄糖浓度值来确定胰岛素剂量、输送时间或输送速率(或它们的任何组合)。在一些示例中,泵可自动地输送胰岛素,或泵可向用户建议胰岛素时间、速率和剂量。在其他示例中,智能笔可接收补偿葡萄糖浓度值并确定剂量或输送时间,该剂量或输送时间可显示给用户或自动加载以用于递送,或两种情况均有。At operation 2018, the compensated glucose sensor attributes are used to generate a compensated glucose concentration. At operation 2020, the compensated glucose concentration value may be optionally displayed on the user device. At operation 2022, treatment may be delivered based at least in part on the compensated glucose concentration value. For example, insulin delivery via a pump may be controlled at least in part based on the compensated glucose concentration value. In some examples, the processor may determine insulin dosage, delivery time, or delivery rate (or any combination thereof) based at least in part on the glucose concentration value. In some examples, the pump may automatically deliver insulin, or the pump may suggest insulin time, rate, and dosage to the user. In other examples, the smart pen may receive the compensated glucose concentration value and determine the dosage or delivery time, which may be displayed to the user or automatically loaded for delivery, or both.
在一些示例中,温度补偿或估计皮下温度可至少部分地基于分析物传感器或其部分的电导率(或电阻,即电导率的倒数)。例如,图2C所示的分析物传感器10或分析物传感器的导电部分286的测量电导率可用于温度补偿或皮下温度估计。In some examples, temperature compensation or estimation of subcutaneous temperature may be based at least in part on the conductivity (or resistance, i.e., the inverse of conductivity) of the analyte sensor or portion thereof. For example, the measured conductivity of the analyte sensor 10 or the conductive portion 286 of the analyte sensor shown in FIG. 2C may be used for temperature compensation or subcutaneous temperature estimation.
经验测量(下文讨论并在图21中示出)已经显示分析物传感器的电导率可能非常依赖于温度。在一些示例中,电导率与温度之间的这种关系可用于估计皮下温度,该皮下温度可在温度补偿模型或其他方法中使用。在其他示例中,电导率与温度之间的关系可直接应用(例如,不使用估计温度)以补偿皮下温度变化。Empirical measurements (discussed below and shown in FIG. 21 ) have shown that the conductivity of an analyte sensor can be highly temperature dependent. In some examples, this relationship between conductivity and temperature can be used to estimate subcutaneous temperature, which can be used in a temperature compensation model or other method. In other examples, the relationship between conductivity and temperature can be applied directly (e.g., without using an estimated temperature) to compensate for subcutaneous temperature changes.
图21是传感器电导率2103和发射器温度2105相对于时间的图。在温度与导率之间可观测到强相关性:当发射器温度升高时,传感器电导率增大(大约每摄氏度增大6%),反之亦然。虽然示出的数据是针对发射器温度,但皮下温度与电导率之间存在相同的相关性。21 is a graph of sensor conductivity 2103 and transmitter temperature 2105 versus time. A strong correlation can be observed between temperature and conductivity: as transmitter temperature increases, sensor conductivity increases (approximately 6% per degree Celsius), and vice versa. Although the data shown is for transmitter temperature, the same correlation exists between subcutaneous temperature and conductivity.
温度与传感器电导率之间的相关性可用于确定工作电极温度下的温度估计值(例如,用以确定分析物传感器处的皮下温度)。在各种示例中,系统或方法可使用非皮下温度(例如,发射器温度),或系统或方法可在不使用非皮下温度的情况下进行补偿(例如,如上文所述,系统可使用假设的参考温度或工厂校准温度)。The correlation between temperature and sensor conductivity can be used to determine a temperature estimate at the working electrode temperature (e.g., to determine the subcutaneous temperature at the analyte sensor). In various examples, the system or method can use a non-subcutaneous temperature (e.g., the transmitter temperature), or the system or method can compensate without using a non-subcutaneous temperature (e.g., as described above, the system can use an assumed reference temperature or factory calibration temperature).
可使用多种模型(例如,线性模型、延迟模型、偏微分方程模型、时间序列模型)中的一者(或多者)来进行工作电极温度的初始估计。初始估计还可基于预定参考值或如本文所述的其他方法。该初始估计可随后用于使用一个或多个传感器电导率测量来确定调整后温度。例如,随着电导率变化,可计算对应的温度变化,并且可将该温度变化应用于初始温度估计或参考温度(例如,添加到该温度其或从该温度减去),以确定传感器电导率测量时的温度。An initial estimate of the working electrode temperature may be made using one (or more) of a variety of models (e.g., linear models, delay models, partial differential equation models, time series models). The initial estimate may also be based on a predetermined reference value or other methods as described herein. The initial estimate may then be used to determine an adjusted temperature using one or more sensor conductivity measurements. For example, as conductivity changes, a corresponding temperature change may be calculated, and the temperature change may be applied to the initial temperature estimate or a reference temperature (e.g., added to or subtracted from the temperature) to determine the temperature at the time of the sensor conductivity measurement.
在各种示例中,基于电导率的温度补偿技术可与本文所述的示例中的任一者组合以确定估计皮下温度,或皮下温度对来自分析物传感器的信号的估计影响。例如,可从第一时间的测量非皮下温度(例如,发射器温度)确定估计皮下温度(例如,分析物传感器的工作电极处的温度),并且分析物传感器或其一部分的电导率可与非皮下温度测量同时地测量。在稍后时间,可基于稍后时间的电导率值(单点或平均值)与来自第一时间的电导率值(单点或平均值)之间的差来估计第二皮下温度。In various examples, conductivity-based temperature compensation techniques may be combined with any of the examples described herein to determine an estimated subcutaneous temperature, or an estimated effect of the subcutaneous temperature on a signal from an analyte sensor. For example, an estimated subcutaneous temperature (e.g., the temperature at a working electrode of an analyte sensor) may be determined from a measured non-subcutaneous temperature (e.g., transmitter temperature) at a first time, and the conductivity of the analyte sensor or a portion thereof may be measured simultaneously with the non-subcutaneous temperature measurement. At a later time, a second subcutaneous temperature may be estimated based on the difference between the conductivity value (single point or average) at the later time and the conductivity value (single point or average) from the first time.
图21中描绘的电导率值2013示出了随时间推移的向上漂移。该漂移分量可与传感器灵敏度漂移有关,如美国专利公布US20150351672号中所述,该专利公布引用方式并入本文。The conductivity values 2013 depicted in Figure 21 show an upward drift over time. This drift component may be related to sensor sensitivity drift, as described in US Patent Publication No. US20150351672, which is incorporated herein by reference.
在一些示例中,系统可实施一种或多种技术来考虑漂移并避免或减少电导率漂移对皮下温度估计或补偿数据的影响。此类解决漂移的技术可例如重置温度估计(例如,重新计算估计温度和电导率基线,未来值将针对电导率基线进行补偿)、基于平均值的补偿(例如,基于长期平均值、加权平均值或滚动窗口针对移动基线电导率进行补偿)。In some examples, the system may implement one or more techniques to account for drift and avoid or reduce the impact of conductivity drift on subcutaneous temperature estimates or compensation data. Such techniques to address drift may include, for example, resetting the temperature estimate (e.g., recalculating the estimated temperature and conductivity baseline, and future values will be compensated for the conductivity baseline), average-based compensation (e.g., compensating for a moving baseline conductivity based on a long-term average, a weighted average, or a rolling window).
在各种示例中,可周期性地刷新皮下温度估计或电导率基线。例如,可通过重新计算估计(例如,使用上述技术)来反复地(例如,周期性地)刷新(例如,重置)新的皮下温度估计(例如,工作电极温度)。可针对与新的皮下温度估计时间相关(例如,同时)的电导率值(或平均值)来补偿未来的分析物值。基于电导率的温度估计的这种刷新(重置)可消除或减少漂移分量的影响,从而得到更准确的温度估计。In various examples, the subcutaneous temperature estimate or conductivity baseline may be periodically refreshed. For example, a new subcutaneous temperature estimate (e.g., working electrode temperature) may be repeatedly (e.g., periodically) refreshed (e.g., reset) by recalculating the estimate (e.g., using the techniques described above). Future analyte values may be compensated for conductivity values (or averages) that are temporally correlated (e.g., contemporaneous) with the new subcutaneous temperature estimate. Such refreshing (resetting) of the conductivity-based temperature estimate may eliminate or reduce the effects of a drift component, resulting in a more accurate temperature estimate.
在一些示例中,可基于满足某个条件来触发重置、刷新或错误状态。例如,该条件的满足可触发异常和响应,如本文关于图34所述。条件可例如基于电导率补偿的温度估计与以不同方式(例如,不基于电导率)确定的皮下温度估计(诸如基于发射器温度和线性模型、延迟模型或本文所述论的其他模型的新计算的皮下温度估计)的比较。例如,当两个值相差大于设定阈值时,可满足该条件。在一些示例中,当比较满足错误条件时,可改变错误状态(例如,可宣告错误状况或状态)。在一些示例中,电导率基线可被重置(例如,基线可被更新为新值或平均值),或者新的温度估计可与特定电导率值相关。在一些示例中,可应用分层方法,使得可在差超过重置阈值时应用重置程序,并且可在差高于大于重置阈值的错误阈值时应用错误条件(在此情况下,重置可仍发生或可不发生)。基于电导率的温度估计的这种重置可消除或减少在图21中的电导率信号中可见的漂移分量(例如,电导率值随时间推移向上漂移)。In some examples, a reset, refresh, or error state may be triggered based on satisfying a condition. For example, the satisfaction of the condition may trigger an exception and response, as described herein with respect to FIG. 34. The condition may be, for example, based on a comparison of a conductivity-compensated temperature estimate with a subcutaneous temperature estimate determined in a different manner (e.g., not based on conductivity) (such as a newly calculated subcutaneous temperature estimate based on transmitter temperature and a linear model, a delay model, or other model discussed herein). For example, the condition may be satisfied when the two values differ by more than a set threshold. In some examples, when the comparison satisfies the error condition, the error state may be changed (e.g., an error condition or state may be declared). In some examples, the conductivity baseline may be reset (e.g., the baseline may be updated to a new value or average), or the new temperature estimate may be associated with a particular conductivity value. In some examples, a tiered approach may be applied, such that a reset procedure may be applied when the difference exceeds a reset threshold, and an error condition may be applied when the difference is above an error threshold greater than the reset threshold (in which case a reset may or may not still occur). Such a reset of the conductivity-based temperature estimate may eliminate or reduce the drift component visible in the conductivity signal in FIG. 21 (eg, conductivity values drifting upward over time).
在一些示例中,可应用数字高通滤波器来阻挡来自电导率信号的低频漂移分量,并且仅使与温度相关的变化通过。诸如截止频率的滤波器特性可基于实际测量的温度数据,优选地基于皮下温度测量数据(例如,通过诸如傅里叶分解的频率分析)。In some examples, a digital high-pass filter may be applied to block low-frequency drift components from the conductivity signal and pass only temperature-related changes. The filter characteristics, such as the cutoff frequency, may be based on actual measured temperature data, preferably subcutaneous temperature measurement data (e.g., by frequency analysis such as Fourier decomposition).
虽然以上讨论集中于电导率和电阻,但应当理解,温度补偿或温度估计可另选地基于其他导电特性(例如,阻抗或导纳),具体取决于分析物传感器系统的配置和所应用信号的类型。While the above discussion focuses on conductivity and resistance, it should be appreciated that temperature compensation or temperature estimation may alternatively be based on other conductive properties (eg, impedance or admittance), depending on the configuration of the analyte sensor system and the type of signal applied.
图22是使用电导率或阻抗进行温度补偿的示例方法2200的流程图。在操作2202处,确定指示传感器部件在第一时间的电导率的第一值。在操作2204处,确定指示传感器部件在稍后时间的电导率的第二值。在操作2206处,接收表示受者的分析物浓度的信号。在操作2208处,至少部分地基于第二值与第一值的比较来确定补偿分析物值。在一些示例中,确定第一值可包括确定接近或包括第一时间的时段内的平均电导率。在一些示例中,该方法还可包括确定与第一值时间相关的第一估计皮下温度以及确定与第二值时间相关的第二估计皮下温度,其中至少部分地基于第二值与第一值的比较来确定第二估计皮下温度。22 is a flow chart of an example method 2200 for temperature compensation using conductivity or impedance. At operation 2202, a first value indicating the conductivity of a sensor component at a first time is determined. At operation 2204, a second value indicating the conductivity of a sensor component at a later time is determined. At operation 2206, a signal representing an analyte concentration of a recipient is received. At operation 2208, a compensated analyte value is determined based at least in part on a comparison of the second value with the first value. In some examples, determining the first value may include determining an average conductivity over a period of time close to or including the first time. In some examples, the method may also include determining a first estimated subcutaneous temperature associated with the first value time and determining a second estimated subcutaneous temperature associated with the second value time, wherein the second estimated subcutaneous temperature is determined based at least in part on a comparison of the second value with the first value.
在一些示例中,该方法可包括确定与第二值时间相关的第三估计皮下温度,基于第三估计皮下温度与第二估计皮下温度的比较来确定是否满足某个条件,以及响应于满足该条件来宣告错误或触发重置。在一些示例中,设置异常包括设置可以本文关于图34所述的方式作为异常来处理的标记或其他指示符。例如,异常可导致响应动作,诸如例如触发分析物传感器系统的重置。触发分析物传感器系统的重置可包括基于第三估计温度和第二值或基于指示后续时间的电导率的第三值和与第三值时间相关的第四估计皮下温度来确定后续估计皮下温度。In some examples, the method may include determining a third estimated subcutaneous temperature associated with a second value time, determining whether a condition is satisfied based on a comparison of the third estimated subcutaneous temperature with the second estimated subcutaneous temperature, and declaring an error or triggering a reset in response to satisfying the condition. In some examples, setting an exception includes setting a flag or other indicator that can be treated as an exception in the manner described herein with respect to FIG. 34. For example, an exception may result in a response action, such as, for example, triggering a reset of the analyte sensor system. Triggering a reset of the analyte sensor system may include determining a subsequent estimated subcutaneous temperature based on a third estimated temperature and a second value or based on a third value of conductivity indicating a subsequent time and a fourth estimated subcutaneous temperature associated with the third value time.
在一些示例中,方法2200可包括例如通过应用上述方法或通过应用滤波器来补偿电导率值的漂移。In some examples, method 2200 may include compensating for drift in conductivity values, for example, by applying the methods described above or by applying a filter.
图23是使用电导率或阻抗来确定估计皮下温度的示例方法2300的流程图。在操作2302处,可例如通过测量传感器部件的电导率或阻抗来确定指示传感器部件在第一时间的电导率的第一值。在操作2304处,可例如通过进行确定电导率或阻抗的第二测量来确定指示传感器部件在稍后时间的电导率的第二值。在操作2306处,可至少部分地基于第二值与第一值的比较来确定估计皮下温度。如上所述,第一时间的估计温度可使用非皮下温度测量来确定,并且后续估计皮下温度可基于指示电导率的值的变化来确定。当变化超过阈值时,可设置错误条件或触发重置,或者比较以其他方式满足错误条件或重置条件。在一些示例中,当检测到错误条件或重置条件时,可以本文关于图34所述的方式将错误条件或重置条件作为异常来处理。应当理解,本文所述的任何估计温度可用作本文所述的任何温度补偿模型的输入。FIG. 23 is a flow chart of an example method 2300 for determining an estimated subcutaneous temperature using conductivity or impedance. At operation 2302, a first value indicating the conductivity of a sensor component at a first time may be determined, for example, by measuring the conductivity or impedance of the sensor component. At operation 2304, a second value indicating the conductivity of the sensor component at a later time may be determined, for example, by making a second measurement to determine the conductivity or impedance. At operation 2306, an estimated subcutaneous temperature may be determined based at least in part on a comparison of the second value with the first value. As described above, the estimated temperature at the first time may be determined using a non-subcutaneous temperature measurement, and subsequent estimated subcutaneous temperatures may be determined based on changes in the value indicating conductivity. When the change exceeds a threshold, an error condition may be set or a reset may be triggered, or the comparison may otherwise satisfy an error condition or a reset condition. In some examples, when an error condition or a reset condition is detected, the error condition or the reset condition may be handled as an exception in the manner described herein with respect to FIG. 34. It should be understood that any estimated temperature described herein may be used as an input to any temperature compensation model described herein.
在一些示例中,温度传感器可在工艺温度已知或受控的制造步骤期间进行校准。例如,一些传感器电子器件使用可在已知或受控温度下固化的粘合剂或结构剂诸如环氧树脂来封装。温度传感器可在固化步骤期间进行校准。在另一个示例中,温度传感器可在分析物传感器被校准时进行校准。在另一个示例中,温度传感器可在磨损的初始时段期间进行校准。例如,可将初始时段(例如,分析物传感器启动至后的前一个或两个小时)期间的温度传感器输出校准至预定平均值(例如,37℃)。In some examples, the temperature sensor may be calibrated during a manufacturing step where the process temperature is known or controlled. For example, some sensor electronics are encapsulated using an adhesive or structural agent such as an epoxy that can be cured at a known or controlled temperature. The temperature sensor may be calibrated during the curing step. In another example, the temperature sensor may be calibrated when the analyte sensor is calibrated. In another example, the temperature sensor may be calibrated during an initial period of wear. For example, the temperature sensor output during the initial period (e.g., the first one or two hours after the analyte sensor is activated) may be calibrated to a predetermined average value (e.g., 37°C).
图10是使用参考温度值对连续葡萄糖传感器系统进行温度补偿的方法1000的示意图。该方法可包括在操作1002处根据指示连续葡萄糖传感器系统的部件的温度参数的第一信号来确定第一值。该方法可包括在操作1004处接收指示葡萄糖浓度水平的葡萄糖传感器信号。该方法可包括在操作1006将第一值与参考值进行比较。10 is a schematic diagram of a method 1000 for temperature compensating a continuous glucose sensor system using a reference temperature value. The method may include determining a first value based on a first signal indicating a temperature parameter of a component of a continuous glucose sensor system at operation 1002. The method may include receiving a glucose sensor signal indicating a glucose concentration level at operation 1004. The method may include comparing the first value to a reference value at operation 1006.
该方法可包括在操作1008处基于葡萄糖传感器信号以及第一信号与参考值的比较来确定温度补偿葡萄糖水平。The method may include determining a temperature compensated glucose level based on the glucose sensor signal and a comparison of the first signal to a reference value at operation 1008 .
在一些示例中,该方法还可包括确定参考值。例如,可从第一信号确定参考值。例如,连续葡萄糖传感器系统可包括可插入受者中的葡萄糖传感器,并且可在将葡萄糖传感器插入受者中之后的指定时段期间或在激活葡萄糖传感器之后的指定时段期间确定参考值。在其他示例中,可在制造过程期间确定参考值。In some examples, the method may further include determining a reference value. For example, the reference value may be determined from the first signal. For example, a continuous glucose sensor system may include a glucose sensor insertable into a recipient, and the reference value may be determined during a specified period of time after the glucose sensor is inserted into the recipient or during a specified period of time after the glucose sensor is activated. In other examples, the reference value may be determined during a manufacturing process.
在一些示例中,可在第一时段期间确定参考值,并且可在第一时段之后的第二时段期间确定第一值(例如,参考值可在传感器的插入之后被确定并且后续传感器读数可相对于参考值进行补偿)。在一些示例中,参考值可以是长期平均值,而第一值可以是短期平均值。在一些示例中,可基于后续接收到的温度值来更新参考值。例如,可基于在第二时段之后的第三时段获得的一个或多个温度信号值来更新参考值。In some examples, the reference value may be determined during a first period of time, and the first value may be determined during a second period of time after the first period of time (e.g., the reference value may be determined after insertion of the sensor and subsequent sensor readings may be compensated relative to the reference value). In some examples, the reference value may be a long-term average, and the first value may be a short-term average. In some examples, the reference value may be updated based on subsequently received temperature values. For example, the reference value may be updated based on one or more temperature signal values obtained in a third period of time after the second period of time.
在一些示例中,可基于从第一信号获得的多个样本值的平均值来确定参考值。In some examples, the reference value may be determined based on an average of a plurality of sample values obtained from the first signal.
图11是示例连续葡萄糖传感器温度补偿方法1100的流程图。该方法可包括在操作1102处接收温度信号的校准值。在一些示例中,校准值可在具有已知温度的制造步骤期间获得。在一些示例中,温度信号的校准值可在将连续葡萄糖传感器插入受者后的指定时段期间获得。例如,可在预热时段之后确定校准值,预热时段可以例如是在插入或激活传感器之后的两小时时段。例如,可在预热时段之后的后续时段(例如,插入之后2至4小时)期间确定校准值。该方法可包括在操作1104处从温度传感器接收指示温度参数的温度信号。该方法可包括在操作1106从连续葡萄糖传感器接收指示葡萄糖浓度水平的葡萄糖信号。该方法可包括在操作1108处至少部分地基于葡萄糖信号、温度信号和校准值来确定温度补偿葡萄糖浓度水平。FIG. 11 is a flow chart of an example continuous glucose sensor temperature compensation method 1100. The method may include receiving a calibration value of a temperature signal at operation 1102. In some examples, the calibration value may be obtained during a manufacturing step with a known temperature. In some examples, the calibration value of the temperature signal may be obtained during a specified period after the continuous glucose sensor is inserted into the recipient. For example, the calibration value may be determined after a warm-up period, which may be, for example, a two-hour period after the sensor is inserted or activated. For example, the calibration value may be determined during a subsequent period after the warm-up period (e.g., 2 to 4 hours after insertion). The method may include receiving a temperature signal indicating a temperature parameter from a temperature sensor at operation 1104. The method may include receiving a glucose signal indicating a glucose concentration level from a continuous glucose sensor at operation 1106. The method may include determining a temperature-compensated glucose concentration level at least partially based on a glucose signal, a temperature signal, and a calibration value at operation 1108.
在一些示例中,相对温度变化可用于温度补偿。例如,与知道绝对温度相反,未经校准的温度传感器或具有低绝对精度的温度可用于温度补偿,方法是使温度补偿基于与参考值的偏差,而不是知道绝对温度。这可包括例如使用个体化动态参考温度(例如,针对特定传感器或会话确定的参考温度,可周期性地更新或重新计算),并且使用与该参考温度的偏差来应用补偿。In some examples, relative temperature changes can be used for temperature compensation. For example, as opposed to knowing the absolute temperature, an uncalibrated temperature sensor or a temperature with low absolute accuracy can be used for temperature compensation by basing the temperature compensation on a deviation from a reference value rather than knowing the absolute temperature. This can include, for example, using an individualized dynamic reference temperature (e.g., a reference temperature determined for a particular sensor or session that can be periodically updated or recalculated) and using the deviation from that reference temperature to apply compensation.
在一些示例中,可基于第一值与参考值的变化而从参考状况或状态确定温度差,而不针对参考值校准温度。这可使得例如即使没有确定绝对温度也能够补偿与参考值的温度差,这在温度传感器没有进行工厂校准时可能是有用的,以确保准确的绝对温度,或者在使用具有良好的相对准确度或精度但较不可靠的绝对准确度或精度的传感器时是有用的。在一些示例中,温度补偿葡萄糖水平可至少部分地基于温度依赖灵敏度值来确定,温度依赖灵敏度值基于第一值与参考值的偏差而变化。In some examples, a temperature difference may be determined from a reference condition or state based on a change in the first value from the reference value without calibrating the temperature against the reference value. This may enable, for example, compensation for a temperature difference from a reference value even if an absolute temperature is not determined, which may be useful when a temperature sensor is not factory calibrated to ensure accurate absolute temperature, or when using a sensor with good relative accuracy or precision but less reliable absolute accuracy or precision. In some examples, the temperature compensated glucose level may be determined based at least in part on a temperature dependent sensitivity value that varies based on a deviation of the first value from the reference value.
在一些示例中,可使用具有低绝对准确度的温度传感器来执行温度补偿。例如,即使传感器在绝对意义上不准确(例如,绝对温度的+-3℃或5℃变化),传感器也可能在相对意义上足够准确(例如,准确地检测到传感器比在先前(参考)时间点热1℃)。这些类型的传感器的使用可能是有利的,因为传感器可能由于其他原因(例如,为了检测过热)而内置到传感器电子器件中,并且可能需要更简单或更便宜的校准步骤。In some examples, temperature compensation may be performed using a temperature sensor with low absolute accuracy. For example, even if the sensor is not accurate in an absolute sense (e.g., +-3°C or 5°C variation in absolute temperature), the sensor may be sufficiently accurate in a relative sense (e.g., accurately detecting that the sensor is 1°C hotter than at a previous (reference) time point). The use of these types of sensors may be advantageous because the sensor may be built into the sensor electronics for other reasons (e.g., to detect overheating) and may require a simpler or less expensive calibration procedure.
在一个示例中,当接收到血糖值(例如,使用手指针刺的血糖仪)时,可获得参考温度。例如,当接收到血糖值时,可基于来自分析物传感器(葡萄糖传感器)的信号来确定(例如,计算)葡萄糖灵敏度,并且可取(例如,宣告)来自温度的信号作为参考温度。稍后,可使用来自温度传感器的信号来确定与参考温度的温度差,并且温度补偿可基于该差。例如,稍后温度可被确定为比参考温度高1.5℃,并且可基于该1.5℃差来应用温度补偿。在一些示例中,温度补偿可基于来自温度传感器的原始或经处理的信号,而不是所计算的温度差。In one example, a reference temperature may be obtained when a blood glucose value is received (e.g., using a finger-stick blood glucose meter). For example, when a blood glucose value is received, a glucose sensitivity may be determined (e.g., calculated) based on a signal from an analyte sensor (glucose sensor), and a signal from a temperature may be taken (e.g., declared) as a reference temperature. Later, a signal from a temperature sensor may be used to determine a temperature difference from a reference temperature, and temperature compensation may be based on the difference. For example, later the temperature may be determined to be 1.5°C higher than the reference temperature, and temperature compensation may be applied based on the 1.5°C difference. In some examples, temperature compensation may be based on a raw or processed signal from a temperature sensor, rather than a calculated temperature difference.
在各种示例中,参考温度可在指定时段期间被确定,例如在发起传感器会话之后的前2小时或前24小时。在一个示例中,参考温度可以是指定时段期间的平均(例如,均值或中值)温度。在一些示例中,参考温度可用于会话的剩余部分。在其他示例中,参考温度可被反复地或周期性地更新。例如,可每24小时更新参考,并且参考温度可用于后续24小时。在一些示例中,出于温度补偿目的,可假设参考温度为特定值(例如,35℃,可假设这是为一般个体群体的平均皮下温度)。在一些示例中,可取校准时(在制造期间或在插入之后)的温度传感器值作为参考值。In various examples, the reference temperature may be determined during a specified period of time, such as the first 2 hours or the first 24 hours after initiating a sensor session. In one example, the reference temperature may be the average (e.g., mean or median) temperature during the specified period of time. In some examples, the reference temperature may be used for the remainder of the session. In other examples, the reference temperature may be updated repeatedly or periodically. For example, the reference may be updated every 24 hours, and the reference temperature may be used for the subsequent 24 hours. In some examples, for temperature compensation purposes, the reference temperature may be assumed to be a specific value (e.g., 35°C, which may be assumed to be the average subcutaneous temperature for a general population of individuals). In some examples, the temperature sensor value at calibration (during manufacturing or after insertion) may be taken as a reference value.
实时温度补偿可使用实时(或最近)温度信号和参考温度值、使用本文所述的任何补偿方法(线性、具有延迟的线性、多项式等)来确定。在一些示例中,使用相对温度的温度补偿可获得使用校准温度传感器实现的MARD改进的75%(或更多)。Real-time temperature compensation can be determined using the real-time (or most recent) temperature signal and the reference temperature value, using any of the compensation methods described herein (linear, linear with delay, polynomial, etc.). In some examples, temperature compensation using relative temperature can achieve 75% (or more) of the MARD improvement achieved using a calibrated temperature sensor.
锻炼或状况指示可被检测并用于确定温度补偿。例如,可基于温度数据、加速度计数据(例如,以检测步行或跑步)、位置数据(例如,基于在与锻炼相关联的位置处的存在,或基于与步行、跑步或骑行相关联的位置移动)、生理数据(例如,呼吸、心率或皮肤表面状况)来检测锻炼。Exercise or condition indications may be detected and used to determine temperature compensation. For example, exercise may be detected based on temperature data, accelerometer data (e.g., to detect walking or running), location data (e.g., based on presence at a location associated with exercise, or based on location movement associated with walking, running, or cycling), physiological data (e.g., respiration, heart rate, or skin surface condition).
在一些示例中,一种方法可包括检测第一温度信号的上升和第二温度信号的下降以及基于检测到的上升和下降来调整温度补偿模型。在一些示例中,可至少部分地基于检测到的第一信号的上升和第二信号的下降来检测锻炼会话(例如,户外锻炼或对流冷却锻炼)。例如,第二信号的下降可指示在寒冷环境中的锻炼会话的开始(例如,在寒冷日子的户外,或在主动冷却环境(例如,在风扇附近)中的锻炼会话)。来自外部(例如,在传感器电子器件中)的第二传感器的温度信号的下降可指示响应于户外环境温度低于室内环境温度或响应于对流冷却(例如,来自跑步或骑行或来自风扇,例如邻近跑步机或其他健身空间)的温度下降。第一温度信号中的温度的升高(或稳定温度)(其可例如从定位成比第二传感器更靠近身体的外部传感器或从位于皮下(例如,在葡萄糖传感器上或集成到葡萄糖传感器中)的传感器接收)可指示由于锻炼引起的身体升温,或指示尽管环境温度改变但由于锻炼产生的热而不存在温度下降。In some examples, a method may include detecting a rise in a first temperature signal and a fall in a second temperature signal and adjusting a temperature compensation model based on the detected rise and fall. In some examples, an exercise session (e.g., outdoor exercise or convection cooling exercise) may be detected based at least in part on the detected rise in the first signal and the fall in the second signal. For example, a fall in the second signal may indicate the beginning of an exercise session in a cold environment (e.g., outdoors on a cold day, or an exercise session in an actively cooled environment (e.g., near a fan)). A fall in a temperature signal from a second sensor externally (e.g., in a sensor electronics device) may indicate a drop in temperature in response to an outdoor ambient temperature being lower than an indoor ambient temperature or in response to convection cooling (e.g., from running or cycling or from a fan, such as near a treadmill or other fitness space). An increase in temperature (or a stable temperature) in the first temperature signal (which may, for example, be received from an external sensor positioned closer to the body than the second sensor or from a sensor located subcutaneously (e.g., on a glucose sensor or integrated into a glucose sensor)) may indicate a warming of the body due to exercise, or an absence of a drop in temperature due to heat generated by exercise despite a change in ambient temperature.
图12是使用两个温度传感器进行温度补偿的示例方法1200的流程图。方法1200可例如在图2C所示的系统中实现。方法1200可包括在操作1202处从葡萄糖传感器接收表示受者的葡萄糖浓度水平的葡萄糖信号。12 is a flow chart of an example method 1200 for temperature compensation using two temperature sensors. The method 1200 may be implemented, for example, in the system shown in FIG2C. The method 1200 may include, at operation 1202, receiving a glucose signal from a glucose sensor that represents a glucose concentration level of a subject.
方法1200可包括在操作1204处接收指示接近受者或葡萄糖传感器的第一温度参数的第一温度信号。方法1200可包括在操作1206处接收指示第二温度参数的第二温度信号。在一些示例中,可从耦合到葡萄糖传感器的第一温度传感器接收第一温度信号,并且可从耦合到葡萄糖传感器的第二温度传感器接收第二温度信号。The method 1200 may include receiving a first temperature signal indicative of a first temperature parameter proximate to the recipient or the glucose sensor at operation 1204. The method 1200 may include receiving a second temperature signal indicative of a second temperature parameter at operation 1206. In some examples, the first temperature signal may be received from a first temperature sensor coupled to the glucose sensor, and the second temperature signal may be received from a second temperature sensor coupled to the glucose sensor.
方法1200可包括在操作1208处至少部分地基于葡萄糖信号、第一温度信号和第二温度信号来确定补偿葡萄糖浓度水平。在一些示例中,可至少部分地基于第一温度传感器与第二温度传感器之间的温度梯度或者至少部分地基于第一温度传感器与第二温度传感器之间的热通量来确定补偿葡萄糖浓度水平。在一些示例中,方法1200可包括如上所述(例如,基于检测到的温度的差异)基于两个温度信号来检测锻炼会话,并且相应地进行补偿(例如,应用锻炼模型)。Method 1200 may include determining a compensated glucose concentration level based at least in part on the glucose signal, the first temperature signal, and the second temperature signal at operation 1208. In some examples, the compensated glucose concentration level may be determined based at least in part on a temperature gradient between the first temperature sensor and the second temperature sensor or based at least in part on a heat flux between the first temperature sensor and the second temperature sensor. In some examples, method 1200 may include detecting an exercise session based on two temperature signals as described above (e.g., based on a difference in detected temperatures), and compensating accordingly (e.g., applying an exercise model).
在一些示例中,方法1200还可包括至少部分地基于第二温度信号来确定温度变化是由于辐射热或环境热量所致以及基于该确定来调整或应用温度补偿模型。例如,当第二温度信号来自可穿戴传感器的外表面附近的传感器并且第二温度信号显著高于第一温度信号时,可推断传感器正暴露于辐射热。在一些示例中,还可考虑变化率。例如,快速的变化率可指示浸入热水中,其中更渐进的变化率可指示暴露于辐射热。在一些示例中,状态模型可包括辐射热状态、浸水状态、锻炼状态、环境空气温度状态或环境水温状态中的一者或多者,并且状态模型可用于估计葡萄糖值的温度补偿。In some examples, method 1200 may also include determining, based at least in part on the second temperature signal, whether the temperature change is due to radiant heat or ambient heat and adjusting or applying a temperature compensation model based on the determination. For example, when the second temperature signal is from a sensor near an outer surface of the wearable sensor and the second temperature signal is significantly higher than the first temperature signal, it may be inferred that the sensor is being exposed to radiant heat. In some examples, the rate of change may also be considered. For example, a rapid rate of change may indicate immersion in hot water, where a more gradual rate of change may indicate exposure to radiant heat. In some examples, the state model may include one or more of a radiant heat state, an immersion state, an exercise state, an ambient air temperature state, or an ambient water temperature state, and the state model may be used to estimate temperature compensation of the glucose value.
温度传感器可用于多种其他目的。在一些示例中,可从温度估计BMI。例如,较低的温度趋于与较高的BMI相关。估计BMI值可与其他应用程序共享。例如,决策支持系统可使用BMI作为模型或算法的输入,以确定对个体的指导(例如,葡萄糖校正剂量、锻炼推荐或吃一定量或类型的碳水化合物或食物)。The temperature sensor can be used for a variety of other purposes. In some examples, BMI can be estimated from temperature. For example, lower temperatures tend to be associated with higher BMI. The estimated BMI value can be shared with other applications. For example, a decision support system can use BMI as an input to a model or algorithm to determine guidance for an individual (e.g., a glucose correction dose, an exercise recommendation, or eating a certain amount or type of carbohydrate or food).
在一些示例中,当温度传感器指示满足某个条件的温度时,可触发警报或警示。例如,当温度传感器指示温度满足统计条件(例如,温度偏离平均值或参考值多于一个标准偏差,或偏离平均值或参考值多于指定数量的标准偏差)时,可触发警报或警报。例如,可使用皮下温度传感器或使用传感器电子器件中的温度传感器来检测潜在危险或有害状况或状态(例如,高热、中暑、体温过低等),并且可经由警报或警告来传达该状况或状态(例如,经由个体的智能设备,或通过无线网络或互联网传达给看护者的智能设备)。在其他示例中,可检测潜在过热或过冷的传感器或传感器电子器件。在一些示例中,可基于满足某个条件的温度传感器信号(例如,当温度传感器指示温度在不太可能的范围内时)来识别潜在故障的温度传感器。In some examples, an alarm or warning may be triggered when a temperature sensor indicates a temperature that satisfies a certain condition. For example, an alarm or warning may be triggered when a temperature sensor indicates that a temperature satisfies a statistical condition (e.g., the temperature deviates from a mean or reference value by more than one standard deviation, or deviates from a mean or reference value by more than a specified number of standard deviations). For example, a subcutaneous temperature sensor or a temperature sensor in a sensor electronic device may be used to detect a potentially dangerous or harmful condition or state (e.g., hyperthermia, heat stroke, hypothermia, etc.), and the condition or state may be communicated via an alarm or warning (e.g., via an individual's smart device, or to a caregiver's smart device via a wireless network or the Internet). In other examples, a sensor or sensor electronic device that is potentially overheated or overcooled may be detected. In some examples, a potentially faulty temperature sensor may be identified based on a temperature sensor signal that satisfies a certain condition (e.g., when a temperature sensor indicates that the temperature is within an unlikely range).
在各种示例中,如本文所述的温度补偿可结合用于测量除葡萄糖以外的分析物的分析物传感器使用。温度补偿技术可与分析物传感器一起用于测量任何分析物,包括本文所述的示例分析物。In various examples, temperature compensation as described herein may be used in conjunction with an analyte sensor for measuring analytes other than glucose.Temperature compensation techniques may be used with analyte sensors to measure any analyte, including the example analytes described herein.
另外,在一些示例中,由皮下温度传感器或使用如本文所述的传感器电子器件中的温度传感器测量的温度可用于确定胰岛素剂量推荐。例如,受者的身体可根据温度不同地利用胰岛素。可基于测量温度对受者的胰岛素剂量进行温度相关调节。Additionally, in some examples, the temperature measured by a subcutaneous temperature sensor or a temperature sensor in a sensor electronics device as described herein can be used to determine an insulin dosage recommendation. For example, the recipient's body can utilize insulin differently depending on temperature. A temperature-dependent adjustment can be made to the recipient's insulin dosage based on the measured temperature.
可至少部分地基于温度变化或不存在温度变化来检测传感器的断开或一次性传感器的重复使用(“重启”)。一些基于分析物的传感器系统可配置有一次性(可更换)传感器部件和可机械地和电气地联接到一次性传感器部件的可重复使用的传感器电子器件封装(例如,CGM发射器)。一次性传感器部件可被设计成延伸到受者的皮下层中,并且工作几天(例如,7、10或14天)的时段,之后,一次性传感器部件将被移除并用新的一次性传感器部件来更换。如在图1的讨论中所详述,可重复使用的发射器可无线地耦合到控制设备(例如,智能设备),该控制设备可包括用于输入可被发送到发射器的命令的用户接口。控制设备上的用户接口可允许停止传感器会话并开始新的传感器会话。Disconnection of the sensor or reuse ("restart") of the disposable sensor may be detected based at least in part on a temperature change or the absence of a temperature change. Some analyte-based sensor systems may be configured with a disposable (replaceable) sensor component and a reusable sensor electronics package (e.g., a CGM transmitter) that can be mechanically and electrically coupled to the disposable sensor component. The disposable sensor component may be designed to extend into the subcutaneous layer of the recipient and operate for a period of several days (e.g., 7, 10, or 14 days), after which the disposable sensor component will be removed and replaced with a new disposable sensor component. As detailed in the discussion of FIG. 1 , the reusable transmitter may be wirelessly coupled to a control device (e.g., a smart device), which may include a user interface for inputting commands that may be sent to the transmitter. The user interface on the control device may allow a sensor session to be stopped and a new sensor session to be started.
传感器会话可被编程持续定义时段(例如,7天),之后,该会话到期(如果没有经由用户接口手动停止)。在传感器会话到期或停止之后,可经由用户接口开始新的会话。A sensor session may be programmed to last for a defined period (eg, 7 days), after which the session expires (if not manually stopped via the user interface). After a sensor session expires or stops, a new session may be started via the user interface.
在一些情况下,个体(例如,患者)可在不更换一次性传感器部件的情况下开始新的传感器会话,即,个体可利用在停止会话之前使用的相同的一次性部件“重启”会话。出于各种原因,检测此类重启事件可能是有用的。In some cases, an individual (e.g., a patient) may start a new sensor session without replacing the disposable sensor component, i.e., the individual may "restart" the session using the same disposable component used before stopping the session. Detecting such a restart event may be useful for a variety of reasons.
可基于来自传感器电子器件封装(例如,CGM发射器)中的温度传感器的信号来检测传感器“重启”。例如,如果个体想要重复使用一次性传感器部件,则个体通常将停止传感器会话并开始新的会话,而无需从一次性部件移除发射器。可根据与发射器从传感器移除相关联的温度特征的缺失来检测这种“重启”场景。A sensor "restart" may be detected based on a signal from a temperature sensor in a sensor electronics package (e.g., a CGM transmitter). For example, if an individual wants to reuse a disposable sensor component, the individual will typically stop a sensor session and start a new session without removing the transmitter from the disposable component. This "restart" scenario may be detected based on the absence of a temperature signature associated with the removal of the transmitter from the sensor.
当发射器从受者移除并重新连接到新传感器时,如果传感器电子器件离开受者达足够时段(例如,一分钟),则可观测到包括温度下降的温度特征。图18A是温度对时间的图,其中在1:27PM从传感器(Dexcom葡萄糖传感器)中取出传感器电子器件封装(Dexcom CGM发射器)一分钟的时段。温度下降1802在温度图中可见。图18B是类似的图,其中传感器电子器件封装在3:34PM被移除五分钟。更大的温度下降1804在温度图中可见,并且传感器花费超过半小时的时间来趋于回到在变化之前检测到的稳态温度1806(约33℃)。When the transmitter is removed from the recipient and reconnected to a new sensor, a temperature signature including a temperature drop may be observed if the sensor electronics are away from the recipient for a sufficient period of time (e.g., one minute). FIG. 18A is a graph of temperature versus time, where the sensor electronics package (Dexcom CGM transmitter) was removed from the sensor (Dexcom glucose sensor) at 1:27 PM for a period of one minute. A temperature drop 1802 is visible in the temperature graph. FIG. 18B is a similar graph where the sensor electronics package was removed for five minutes at 3:34 PM. A larger temperature drop 1804 is visible in the temperature graph, and it takes the sensor more than half an hour to tend to return to the steady-state temperature 1806 (approximately 33° C.) detected before the change.
在各种示例中,断开事件(例如,从传感器移除CGM发射器)可基于温度下降的量(例如,短时段内的3℃或5℃)、下降的斜率或下降期间信号的一致性(平滑或缺乏可变性)或它们的组合来识别。In various examples, a disconnect event (e.g., removal of a CGM transmitter from a sensor) can be identified based on the amount of the temperature drop (e.g., 3°C or 5°C over a short period of time), the slope of the drop, or the consistency of the signal during the drop (smoothness or lack of variability), or a combination thereof.
可从在会话停止或开始的时间附近不存在断开连接事件来识别传感器重启。在一些示例中,可从温度特征(例如,温度下降)并结合其他信息(诸如传感器会话的停止)来确定断开事件。例如,当在会话结束之后不久(或之前不久)发生与断开相关联的温度特征时,可推断从一次性传感器移除了传感器电子器件。并且当传感器会话停止和开始,但不存在如上所述和图18A和图18B所示的温度下降时,可推断一次性传感器被重复使用,因为变为新传感器需要从传感器移除传感器电子器件(CGM发射器)。在一些示例中,可从温度特征并结合加速度计数据(例如,可在发射器断开期间发生的快速或显著移动,随后温度下降)或其他传感器数据来确定传感器移除。A sensor restart may be identified from the absence of a disconnection event near the time a session is stopped or started. In some examples, a disconnection event may be determined from a temperature signature (e.g., a temperature drop) in conjunction with other information such as the stop of a sensor session. For example, when a temperature signature associated with a disconnect occurs shortly after (or shortly before) the end of a session, it may be inferred that the sensor electronics have been removed from the disposable sensor. And when a sensor session is stopped and started, but there is no temperature drop as described above and shown in FIGS. 18A and 18B , it may be inferred that the disposable sensor is reused because the change to a new sensor requires the removal of the sensor electronics (CGM transmitter) from the sensor. In some examples, sensor removal may be determined from a temperature signature in conjunction with accelerometer data (e.g., rapid or significant movement that may occur during a transmitter disconnect, followed by a temperature drop) or other sensor data.
图13是确定连续葡萄糖(或其他分析物)监测仪被重启的示例方法1300的流程图。方法1300可包括在操作1302处从连续葡萄糖监测仪上的温度传感器接收指示温度参数的温度信号。方法1300还可包括在操作1304处从温度信号确定连续葡萄糖监测仪被重启。例如,如上所述,可从温度特征中缺少断开事件并任选地结合其他传感器信息来识别重启。在检测到连续葡萄糖监测仪被重启时,可执行响应动作,例如,如本文关于图34所述。例如,传感器系统可设置指示连续葡萄糖监测仪被重启的标记。在一些示例中,检测到会话重启可使得传感器系统结束重启的会话。FIG. 13 is a flow chart of an example method 1300 for determining that a continuous glucose (or other analyte) monitor is restarted. The method 1300 may include receiving a temperature signal indicating a temperature parameter from a temperature sensor on the continuous glucose monitor at operation 1302. The method 1300 may also include determining that the continuous glucose monitor is restarted from the temperature signal at operation 1304. For example, as described above, a restart may be identified from a lack of disconnection events in a temperature signature and optionally in combination with other sensor information. When the continuous glucose monitor is detected to be restarted, a response action may be performed, for example, as described herein with respect to FIG. 34. For example, the sensor system may set a mark indicating that the continuous glucose monitor is restarted. In some examples, detecting a session restart may cause the sensor system to end the restarted session.
也可使用皮下温度传感器来检测重启。当温度传感器在皮下分析物传感器上时,来自传感器的温度读数在传感器首次插入时通常将低于体温(例如,更接近环境空气温度),并且随着传感器从身体吸收热量,可预期检测到的温度逐渐升高到体温。在一个示例中,从温度信号确定连续葡萄糖监测仪被重启可包括将传感器启动之前的第一温度信号值与传感器启动之后的第二温度信号值进行比较,并且在比较满足相似性条件时宣告连续葡萄糖监测仪被重启。相似性条件可包括温度范围。例如,当传感器被重启(而不是被更换)时,皮下传感器处的温度通常将不改变,或者任何改变将是逐渐的。当传感器被更换时,可能发生更显著的温度变化(例如,新传感器可能显示出与旧传感器不同的温度)。Subcutaneous temperature sensors can also be used to detect restarts. When the temperature sensor is on the subcutaneous analyte sensor, the temperature reading from the sensor will generally be lower than body temperature (e.g., closer to ambient air temperature) when the sensor is first inserted, and as the sensor absorbs heat from the body, the detected temperature can be expected to gradually rise to body temperature. In one example, determining from the temperature signal that the continuous glucose monitor is restarted may include comparing the first temperature signal value before the sensor is started with the second temperature signal value after the sensor is started, and declaring the continuous glucose monitor to be restarted when the comparison satisfies a similarity condition. Similarity conditions may include a temperature range. For example, when the sensor is restarted (rather than replaced), the temperature at the subcutaneous sensor will generally not change, or any change will be gradual. When the sensor is replaced, more significant temperature changes may occur (e.g., the new sensor may show a different temperature than the old sensor).
在一些示例中,可使用温度信息来确定穿戴传感器的解剖位置或解剖位置的类型。例如,传感器可穿戴在手臂上或腹部上。当穿戴在手臂上时,与穿戴在腹部相比,传感器(或传感器电子器件)可能经历更冷的温度。这可例如由上臂更远离核心身体的事实或臂更可能暴露于空气的事实(例如,当穿着短袖衣服时)驱动。穿戴在手臂上的传感器也可能经历更大温度变化,尤其是在睡眠期间(例如,当手臂比腹部更有可能至少在夜间的部分时间在床单或毯子外时)。在一些示例中,可基于指定时段期间(例如,在穿戴的前24小时期间)的平均(例如,均值或中值)温度来确定解剖位置。例如,当平均温度满足某个条件时,诸如当平均温度超过指定温度阈值(例如,32℃)时,可宣告传感器设备位置在腹部上。在另一个示例中,例如,可基于可变性状态来检测腹部传感器位置,例如,在指定时段(例如,夜晚或睡眠时段)期间温度变化的第一标准偏差小于指定量(例如,小于1℃)。在一些示例中,可基于温度条件与可变性条件的组合来检测腹部位置,例如,可在平均温度超过指定温度阈值(例如,32℃)时或指定时段期间的温度变化的第一标准偏差小于指定量(例如,小于1℃)时宣布腹部位置。In some examples, temperature information may be used to determine the anatomical location or type of anatomical location of a worn sensor. For example, the sensor may be worn on the arm or on the abdomen. When worn on the arm, the sensor (or sensor electronics) may experience colder temperatures than when worn on the abdomen. This may be driven, for example, by the fact that the upper arm is farther from the core body or the fact that the arm is more likely to be exposed to the air (e.g., when wearing short-sleeved clothing). Sensors worn on the arm may also experience greater temperature changes, especially during sleep (e.g., when the arm is more likely than the abdomen to be outside the sheets or blankets at least part of the night). In some examples, the anatomical location may be determined based on the average (e.g., mean or median) temperature during a specified period of time (e.g., during the first 24 hours of wear). For example, when the average temperature meets a certain condition, such as when the average temperature exceeds a specified temperature threshold (e.g., 32°C), the sensor device position may be declared to be on the abdomen. In another example, for example, the abdominal sensor position may be detected based on a variability state, for example, the first standard deviation of the temperature change during a specified period of time (e.g., night or sleep period) is less than a specified amount (e.g., less than 1°C). In some examples, abdominal position may be detected based on a combination of temperature conditions and variability conditions, for example, abdominal position may be declared when the average temperature exceeds a specified temperature threshold (e.g., 32°C) or when the first standard deviation of the temperature variation during a specified period is less than a specified amount (e.g., less than 1°C).
图16是示出两个传感器的温度(y轴)对时间(x轴)的图形的图示。第一图形1602(虚线)示出了来自放置在腹部上的传感器的数据。第二图形1604(实线)示出来自放置在手臂上的传感器的数据。对于前四个小时,传感器未被受者穿戴(例如,尚未插入),并且来自传感器的数据粗略地关联。4小时之后,传感器被插入受者中,因此温度迅速升高。在该转变之后,第一图形1602与第二图形1604之间的变化明显,因为第二图形1604(其对应于安装在臂上的传感器)显示出较低的温度和较高的可变性。FIG. 16 is an illustration of a graph showing temperature (y-axis) versus time (x-axis) for two sensors. A first graph 1602 (dashed line) shows data from a sensor placed on the abdomen. A second graph 1604 (solid line) shows data from a sensor placed on the arm. For the first four hours, the sensor was not worn by the recipient (e.g., not yet inserted), and the data from the sensors roughly correlated. After 4 hours, the sensor was inserted into the recipient, so the temperature rose rapidly. After this transition, the change between the first graph 1602 and the second graph 1604 is obvious, as the second graph 1604 (which corresponds to the sensor mounted on the arm) shows a lower temperature and a higher variability.
图17是几十个传感器设备在前24小时内的标准偏差对平均温度的图。使用上述方法(SD>1.0且平均温度<32℃)识别出位于手臂上的传感器设备具有高灵敏度(除了五个安装在手臂上的传感器之外的所有传感器都被识别为如此)和良好特异性(根据该方法仅六个安装在腹部上的传感器被识别为手臂上)。在一些示例中,示例温度方法可与来自其他传感器的信息(例如,加速度计数据)组合以进一步增加灵敏度和特异性。在一些示例中,可使用学习模型(例如,使用神经网络)来识别模式或关系,并且可应用该模型来确定位置。此类方法可实现更高灵敏度或特异性。虽然示出了特定的“手臂”和“腹部”位置,但也可使用其他位置或类别(例如,可确定下背部位置,或“躯干”位置可包括腹部和下背部两者)。Figure 17 is a graph of the standard deviation of dozens of sensor devices over the previous 24 hours versus the average temperature. Sensor devices located on the arms were identified using the above method (SD>1.0 and average temperature<32°C) with high sensitivity (all sensors except five sensors mounted on the arms were identified as such) and good specificity (only six sensors mounted on the abdomen were identified as being on the arms according to this method). In some examples, the example temperature method can be combined with information from other sensors (e.g., accelerometer data) to further increase sensitivity and specificity. In some examples, a learning model (e.g., using a neural network) can be used to identify patterns or relationships, and the model can be applied to determine the location. Such methods can achieve higher sensitivity or specificity. Although specific "arm" and "abdomen" locations are shown, other locations or categories can also be used (e.g., a lower back location can be determined, or a "torso" location can include both the abdomen and the lower back).
图14是确定传感器的解剖位置的示例方法1400的流程图。该方法可包括在操作1402处接收指示受者身上的连续葡萄糖传感器的部件的温度的温度信号。该方法可包括在操作1404处至少部分地基于接收到的温度信号来确定受者身上的连续葡萄糖传感器的解剖位置。在一些示例中,可至少部分地基于感测到的温度来确定解剖位置。在一些示例中,可至少部分地基于温度信号的可变性来确定解剖位置。例如,与插入在腹部或下背部上的传感器相比,在插入外周位置(例如,在手臂上)处或插入在不太可能覆盖在衣服上的位置处的传感器中可看到更大的温度变化。FIG. 14 is a flow chart of an example method 1400 for determining the anatomical location of a sensor. The method may include receiving a temperature signal indicating the temperature of a component of a continuous glucose sensor on a recipient at operation 1402. The method may include determining the anatomical location of the continuous glucose sensor on a recipient based at least in part on the received temperature signal at operation 1404. In some examples, the anatomical location may be determined based at least in part on the sensed temperature. In some examples, the anatomical location may be determined based at least in part on the variability of the temperature signal. For example, greater temperature variations may be seen in sensors inserted at peripheral locations (e.g., on an arm) or at locations that are less likely to be covered by clothing than sensors inserted on the abdomen or lower back.
在一些示例中,该方法还可包括接收加速度计信号,以及并且确定解剖位置可包括基于加速度计信号来确定解剖位置。例如,更高的活动水平或更频繁的姿势变化(其中任一者可从加速度计信号确定)可指示外周位置(例如,在手臂的背面上),并且更低的活动水平或更不频繁的姿势变化或更周期性的姿势变化(例如,与睡眠或坐相关)可指示腹部或下背部位置。在一些示例中,位置的变化率的分布可用于识别解剖位置。例如,偏向较高变化率的分布可表明外周位置(例如,在手臂上),而偏向较低变化率的分布可表明躯干上的位置(例如,腹部)。在另一个示例中,可使用神经网络或其他学习模型来学习可用于确定或预测解剖位置的模式或关系(例如,使用传感器数据并任选地基于指示指定解剖位置的用户输入数据)。In some examples, the method may also include receiving an accelerometer signal, and determining the anatomical location may include determining the anatomical location based on the accelerometer signal. For example, a higher activity level or more frequent posture changes (either of which may be determined from the accelerometer signal) may indicate a peripheral location (e.g., on the back of an arm), and a lower activity level or less frequent posture changes or more periodic posture changes (e.g., associated with sleeping or sitting) may indicate an abdominal or lower back location. In some examples, a distribution of rates of change of location may be used to identify the anatomical location. For example, a distribution that is biased toward higher rates of change may indicate a peripheral location (e.g., on an arm), while a distribution that is biased toward lower rates of change may indicate a location on the torso (e.g., the abdomen). In another example, a neural network or other learning model may be used to learn patterns or relationships that can be used to determine or predict anatomical locations (e.g., using sensor data and optionally based on user input data indicating a specified anatomical location).
在操作1406处,在一些示例中,温度补偿可至少部分地基于解剖位置。例如,温度补偿算法可考虑腹部或下背部中的皮下温度可能比手臂中的皮下温度变化更慢这一事实,手臂中的皮下温度可能具有充当散热器或热源的较低质量。At operation 1406, in some examples, temperature compensation may be based at least in part on anatomical location. For example, a temperature compensation algorithm may take into account the fact that subcutaneous temperature in the abdomen or lower back may change more slowly than subcutaneous temperature in an arm, which may have a lower mass to act as a heat sink or heat source.
在一些示例中,可至少部分地基于来自温度传感器的信号来检测压迫。例如,当人躺在或倚靠在传感器上时,例如这可能在睡眠期间发生,可能发生传感器的压迫。葡萄糖传感器的压迫可生成低于实际的估计葡萄糖值。当个体躺在葡萄糖传感器上时,传感器的温度可能升高。可至少部分地基于传感器的温度升高来检测传感器的压迫。在一个示例中,与温度升高同时或随后的葡萄糖水平的快速下降可指示传感器正受到压迫。在一些示例中,诸如活动信息的另外信息可与温度组合使用。例如,估计葡萄糖值的快速下降与低活动(表明个体不在锻炼)和传感器温度升高(表明个体正躺在传感器上)的组合可指示压迫较低。在一些示例中,可响应于可能的低压迫而触发警告。例如,可经由智能设备递送通知,或可从智能设备或从传感器发出声音,这可提示个体离开传感器以允许获得准确的估计葡萄糖值。In some examples, compression may be detected based at least in part on a signal from a temperature sensor. For example, when a person lies or leans on a sensor, such as this may occur during sleep, compression of the sensor may occur. Compression of the glucose sensor may generate an estimated glucose value that is lower than the actual value. When an individual lies on a glucose sensor, the temperature of the sensor may rise. Compression of the sensor may be detected based at least in part on an increase in the temperature of the sensor. In one example, a rapid drop in glucose levels simultaneously with or subsequent to an increase in temperature may indicate that the sensor is being compressed. In some examples, additional information such as activity information may be used in combination with temperature. For example, a combination of a rapid drop in estimated glucose values with low activity (indicating that the individual is not exercising) and an increase in sensor temperature (indicating that the individual is lying on the sensor) may indicate that compression is low. In some examples, a warning may be triggered in response to possible low compression. For example, a notification may be delivered via a smart device, or a sound may be emitted from a smart device or from a sensor, which may prompt the individual to leave the sensor to allow an accurate estimated glucose value to be obtained.
在一些示例中,可至少部分地基于温度传感器信息来检测睡眠。例如,在睡眠期间可观测到较高温度。在睡眠中可观测到更一致的温度或温度模式。通过应用模型或算法来检测较高温度、一致温度或温度模式(例如,对应于被覆盖或未被覆盖的手臂传感器的二进制模式)的时段,任选地结合其他传感器信息,可检测睡眠。在一些示例中,温度信息可与来自3D加速度计的姿势信息、活动信息、呼吸或心率或它们的任何组合结合使用以检测睡眠。在一些示例中,警报行为可响应于睡眠检测而改变。例如,可调整警报阈值以减少睡眠期间警报的数量,或可调整警报触发以提供治疗低血糖事件的时间,或在检测到睡眠时仅某些类型的警报(例如,更紧急的警报)可生成声音。In some examples, sleep may be detected based at least in part on temperature sensor information. For example, higher temperatures may be observed during sleep. More consistent temperatures or temperature patterns may be observed during sleep. Sleep may be detected by applying a model or algorithm to detect periods of higher temperatures, consistent temperatures, or temperature patterns (e.g., corresponding to binary patterns of covered or uncovered arm sensors), optionally in combination with other sensor information. In some examples, temperature information may be used in conjunction with posture information, activity information, breathing or heart rate, or any combination thereof from a 3D accelerometer to detect sleep. In some examples, alarm behavior may change in response to sleep detection. For example, an alarm threshold may be adjusted to reduce the number of alarms during sleep, or an alarm trigger may be adjusted to provide time to treat a hypoglycemic event, or only certain types of alarms (e.g., more urgent alarms) may generate sounds when sleep is detected.
在一些示例中,可提供或修改睡眠期间的压迫检测、补偿或警报。例如,当人在睡眠并且估计葡萄糖值突然快速下降时,基于睡眠状况或状态以及估计葡萄糖值的突然下降,任选地结合其他信息,诸如葡萄糖曲线中的不连续性、温度的上升或其他信息,可推断压迫。In some examples, stress detection, compensation, or alarms during sleep may be provided or modified. For example, when a person is sleeping and an estimated glucose value suddenly drops rapidly, stress may be inferred based on the sleep condition or state and the sudden drop in the estimated glucose value, optionally in combination with other information, such as a discontinuity in the glucose curve, a rise in temperature, or other information.
在一些示例中,希望降低包括在分析物传感器系统诸如图1的分析物传感器系统8中的硬件的成本。例如,分析物传感器系统8的部件(诸如传感器电子器件12和/或连续分析物传感器10的全部或部分)可以是用于持续几天的传感器会话并且然后被丢弃的一次性产品。因此,希望从便宜的温度传感器获得高度精确的温度值。In some examples, it is desirable to reduce the cost of the hardware included in an analyte sensor system, such as analyte sensor system 8 of FIG1. For example, components of analyte sensor system 8, such as sensor electronics 12 and/or all or part of continuous analyte sensor 10, may be disposable products that are used for sensor sessions that last a few days and are then discarded. Therefore, it is desirable to obtain highly accurate temperature values from an inexpensive temperature sensor.
本文所述的各种示例涉及利用经训练的温度补偿模型来从系统温度传感器生成补偿温度值的系统和方法。在一些示例中,经训练的温度补偿模型可补偿导致原始温度数据中的误差的因素,诸如例如噪声或其他非线性。如本文所述的利用经训练的模型来补偿来自系统温度传感器的温度值可使用较便宜或更容易获得的系统温度传感器来生成可接受准确度的温度值。例如,在一些示例中,如本文所述的使用经训练的模型可允许使用较便宜或更容易获得的温度传感器,诸如与专用集成电路(ASIC)或分析物传感器系统8的其他部件处的合适二极管一起包括或由其生成的传感器。Various examples described herein relate to systems and methods for generating compensated temperature values from a system temperature sensor using a trained temperature compensation model. In some examples, the trained temperature compensation model can compensate for factors that cause errors in the raw temperature data, such as, for example, noise or other nonlinearities. Using a trained model as described herein to compensate temperature values from a system temperature sensor can generate temperature values of acceptable accuracy using a less expensive or more readily available system temperature sensor. For example, in some examples, using a trained model as described herein can allow the use of a less expensive or more readily available temperature sensor, such as a sensor included with or generated by a suitable diode at an application specific integrated circuit (ASIC) or other component of the analyte sensor system 8.
温度补偿模型可以是任何合适类型的模型,包括例如神经网络、状态模型或任何其他合适的训练模型。温度补偿模型的输入可包括例如原始温度数据和未补偿温度数据。原始温度数据包括由系统温度传感器生成以指示温度的数据,诸如例如电流、电压、计数等。未补偿温度数据可包括指示未补偿温度的数据。例如,在一些示例中,温度传感器提供指示从原始温度数据导出的温度的数据。在一些示例中,温度补偿模型的输入可包括原始温度数据和未补偿温度数据两者。在一些示例中,温度补偿模型的输出可包括补偿温度值。The temperature compensation model can be any suitable type of model, including, for example, a neural network, a state model, or any other suitable training model. The input of the temperature compensation model may include, for example, raw temperature data and uncompensated temperature data. The raw temperature data includes data generated by a system temperature sensor to indicate temperature, such as, for example, current, voltage, count, etc. The uncompensated temperature data may include data indicating uncompensated temperature. For example, in some examples, the temperature sensor provides data indicating a temperature derived from the raw temperature data. In some examples, the input of the temperature compensation model may include both the raw temperature data and the uncompensated temperature data. In some examples, the output of the temperature compensation model may include a compensated temperature value.
在一些示例中,除了补偿温度值之外或代替补偿温度值,温度补偿模型的输出可包括描述由系统温度传感器生成的原始温度数据与对应温度值之间的关系的传感器属性。例如,温度补偿模型的输出可包括斜率和偏移。可将斜率和偏移应用于由系统温度传感器生成的原始温度数据以生成补偿温度值。In some examples, in addition to or in lieu of the compensated temperature value, the output of the temperature compensation model may include sensor properties describing the relationship between the raw temperature data generated by the system temperature sensor and the corresponding temperature value. For example, the output of the temperature compensation model may include a slope and an offset. The slope and the offset may be applied to the raw temperature data generated by the system temperature sensor to generate the compensated temperature value.
例如,可利用比系统温度传感器更准确的参考温度传感器来训练温度补偿模型。图24是用于训练温度补偿模型的示例方法2400的流程图。可将系统温度传感器和参考温度传感器定位成测量物体诸如例如表面的温度、容器中的液体量等。在操作2402处,将物体加热和/或冷却至第一温度。当物体处于各种温度时,可在2404处向温度补偿模型提供输入。响应于这些输入,温度补偿模型生成一个或多个模型输出。在操作2406处,将一个或多个模型输出与由参考温度传感器测量的参考温度进行比较。For example, a temperature compensation model may be trained using a reference temperature sensor that is more accurate than the system temperature sensor. FIG. 24 is a flow chart of an example method 2400 for training a temperature compensation model. The system temperature sensor and the reference temperature sensor may be positioned to measure the temperature of an object such as, for example, a surface, the amount of liquid in a container, etc. At operation 2402, the object is heated and/or cooled to a first temperature. When the object is at various temperatures, inputs may be provided to the temperature compensation model at 2404. In response to these inputs, the temperature compensation model generates one or more model outputs. At operation 2406, one or more model outputs are compared with a reference temperature measured by the reference temperature sensor.
在操作2408处,基于参考温度与温度补偿模型的输出之间的误差来修改模型参数。误差指示作为模型输出和/或使用模型输出生成的补偿温度值与参考温度之间的差。误差用于修改模型的参数。可执行并重复方法2400,例如直到模型收敛。当温度补偿模型的误差始终在可接受范围内时,模型可收敛。在一些示例中,针对每个分析物传感器系统8训练温度补偿模型。在其他示例中,分析物传感器系统8和相关联的系统温度传感器可具有类似的属性,从而允许在一个分析物传感器系统8上训练的温度补偿模型被用在其他分析物传感器系统8上,诸如例如具有与分析物传感器系统8类似的部件的其他分析物传感器系统8被用于训练模型、与分析物传感器系统8在同一批次中制造的其他分析物传感器系统8被用于训练模型,等等。At operation 2408, the model parameters are modified based on the error between the reference temperature and the output of the temperature compensation model. The error indicates the difference between the compensated temperature value generated as the model output and/or using the model output and the reference temperature. The error is used to modify the parameters of the model. The method 2400 can be executed and repeated, for example, until the model converges. When the error of the temperature compensation model is always within an acceptable range, the model can converge. In some examples, the temperature compensation model is trained for each analyte sensor system 8. In other examples, the analyte sensor system 8 and the associated system temperature sensor may have similar properties, thereby allowing the temperature compensation model trained on one analyte sensor system 8 to be used on other analyte sensor systems 8, such as, for example, other analyte sensor systems 8 having components similar to the analyte sensor system 8 are used to train the model, other analyte sensor systems 8 manufactured in the same batch as the analyte sensor system 8 are used to train the model, and so on.
图25是用于利用经训练的温度补偿模型的示例方法2500的流程图。在操作2502处,从系统温度传感器接收数据。数据可包括例如原始温度数据和/或未补偿温度数据。在操作2504处,将从系统温度传感器接收到的数据应用于模型以生成一个或多个模型输出。模型输出可包括补偿温度值和/或系统温度传感器参数,诸如斜率和偏移,它们可用于生成补偿温度值。FIG. 25 is a flow chart of an example method 2500 for utilizing a trained temperature compensation model. At operation 2502, data is received from a system temperature sensor. The data may include, for example, raw temperature data and/or uncompensated temperature data. At operation 2504, the data received from the system temperature sensor is applied to the model to generate one or more model outputs. The model outputs may include compensated temperature values and/or system temperature sensor parameters, such as slope and offset, which may be used to generate compensated temperature values.
任选地,在2506处,模型输出被用于生成补偿温度值。例如,如果模型输出包括补偿温度值和/或如果模型输出不包括系统温度传感器参数,则可省略在操作2506生成补偿温度值。在2508处,应用补偿温度值。例如,补偿温度值可以本文所述的用于结合分析物传感器来利用温度的任何方式应用。Optionally, at 2506, the model output is used to generate a compensated temperature value. For example, if the model output includes a compensated temperature value and/or if the model output does not include a system temperature sensor parameter, generating a compensated temperature value at operation 2506 may be omitted. At 2508, the compensated temperature value is applied. For example, the compensated temperature value may be applied in any manner described herein for utilizing temperature in conjunction with an analyte sensor.
在一些示例中,操作2502和2504例如在传感器会话开始时使用从传感器接收到的原始传感器数据的一部分来执行。将原始温度值应用于模型可得到系统温度参数,诸如斜率和偏移。将系统温度参数应用于后续接收到的原始传感器数据以生成后续的补偿温度值。In some examples, operations 2502 and 2504 are performed, for example, at the beginning of a sensor session using a portion of raw sensor data received from the sensor. Applying the raw temperature value to the model may yield system temperature parameters, such as slope and offset. The system temperature parameters are applied to subsequently received raw sensor data to generate subsequent compensated temperature values.
如本文所述,受者的锻炼状况或状态可影响待应用的用以生成温度补偿葡萄糖浓度的温度补偿模型。可以各种不同方式确定受者的锻炼状况或状态,包括例如利用如本文关于图7所述的第三传感器信号。在一些示例中,作为对使用第三传感器的补充或替代,可使用其他技术来检测锻炼状况或状态。As described herein, the subject's exercise condition or state can affect the temperature compensation model to be applied to generate the temperature compensated glucose concentration. The subject's exercise condition or state can be determined in a variety of different ways, including, for example, using a third sensor signal as described herein with respect to FIG. 7. In some examples, in addition to or in lieu of using a third sensor, other techniques can be used to detect the exercise condition or state.
图26是用于检测锻炼状况或状态的示例方法2600的流程图。示例方法2600通过检查葡萄糖传感器信号的本底噪声、温度参数信号的本底噪声或两者来检测受者的锻炼状况或状态。本底噪声是与信号相关联的噪声水平。例如,本底噪声可以是信号中除了感兴趣值之外的噪声源之和。例如,葡萄糖传感器信号的本底噪声是信号中除了葡萄糖之外的噪声源之和。温度参数信号的本底噪声是温度参数中除了温度指示之外的噪声源之和。在一些示例中,当受者处于锻炼状况或状态时,与锻炼相关联的生理行为表现为影响葡萄糖传感器信号和/或温度参数信号的另外噪声源。因此,方法2600通过测量相应的本底噪声来检测锻炼状况或状态。方法2600可在分析物传感器系统8处执行,诸如例如在传感器电子器件12和/或在显示设备14、16、20处执行。FIG. 26 is a flow chart of an example method 2600 for detecting an exercise condition or state. The example method 2600 detects an exercise condition or state of a subject by checking the background noise of a glucose sensor signal, the background noise of a temperature parameter signal, or both. Background noise is a noise level associated with a signal. For example, background noise may be the sum of noise sources in the signal other than the value of interest. For example, the background noise of a glucose sensor signal is the sum of noise sources in the signal other than glucose. The background noise of a temperature parameter signal is the sum of noise sources in the temperature parameter other than the temperature indication. In some examples, when the subject is in an exercise condition or state, physiological behaviors associated with exercise are manifested as additional noise sources that affect the glucose sensor signal and/or the temperature parameter signal. Therefore, the method 2600 detects an exercise condition or state by measuring the corresponding background noise. The method 2600 may be performed at an analyte sensor system 8, such as, for example, at a sensor electronics 12 and/or at a display device 14, 16, 20.
方法2600可包括在操作2602处获取葡萄糖传感器信号。例如,可从连续葡萄糖监测仪(CGM)接收葡萄糖传感器信号。方法2600可包括在操作2604处获取温度参数信号。获取温度参数信号可包括例如接收指示温度、温度变化和/或温度偏移的信号。The method 2600 may include acquiring a glucose sensor signal at operation 2602. For example, the glucose sensor signal may be received from a continuous glucose monitor (CGM). The method 2600 may include acquiring a temperature parameter signal at operation 2604. Acquiring a temperature parameter signal may include, for example, receiving a signal indicating a temperature, a temperature change, and/or a temperature excursion.
方法2600可包括在操作2606处确定葡萄糖传感器信号、温度参数信号或两者的本底噪声。可以任何合适的方式确定一个或多个本底噪声。在一些示例中,可通过找到信号的最低值来近似信号的本底噪声。在另一个示例中,可使用频谱分析来找到信号的本底噪声。Method 2600 may include determining a noise floor of the glucose sensor signal, the temperature parameter signal, or both at operation 2606. One or more noise floors may be determined in any suitable manner. In some examples, the noise floor of a signal may be approximated by finding the lowest value of the signal. In another example, a spectrum analysis may be used to find the noise floor of a signal.
方法2600可包括在操作2608处确定是否满足本底噪声阈值。在一些示例中,如果葡萄糖传感器信号的本底噪声大于第一阈值或如果温度参数信号的本底噪声大于第二阈值,则在操作2608处满足阈值。在一些示例中,如果葡萄糖传感器信号的本底噪声大于第一阈值并且温度参数信号的本底噪声大于第二阈值,则在操作2608处满足阈值。The method 2600 may include determining whether a noise floor threshold is met at operation 2608. In some examples, if the noise floor of the glucose sensor signal is greater than a first threshold or if the noise floor of the temperature parameter signal is greater than a second threshold, the threshold is met at operation 2608. In some examples, if the noise floor of the glucose sensor signal is greater than a first threshold and the noise floor of the temperature parameter signal is greater than a second threshold, the threshold is met at operation 2608.
如果满足本底噪声阈值,则受者处于锻炼状况或状态。因此,方法2600包括在操作2610处基于温度参数信号来修订温度补偿以考虑锻炼状况或状态。本文关于方法700(例如,708和710)以及方法800(806)描述了可如何执行此操作的示例。例如,如本文所述,温度参数信号可在用于生成温度补偿葡萄糖浓度之前应用于锻炼模型。如果不满足本底噪声阈值,则受者可能不处于锻炼状况或状态,并且在操作2612处可返回没有锻炼状况或状态的指示。另选地,代替发送无锻炼状况或状态的指示,方法2600在操作2612处可改为抑制修订温度补偿。If the noise floor threshold is met, the subject is in an exercise condition or state. Therefore, method 2600 includes revising temperature compensation based on the temperature parameter signal to account for the exercise condition or state at operation 2610. Examples of how this may be performed are described herein with respect to method 700 (e.g., 708 and 710) and method 800 (806). For example, as described herein, the temperature parameter signal may be applied to an exercise model before being used to generate a temperature compensated glucose concentration. If the noise floor threshold is not met, the subject may not be in an exercise condition or state, and an indication of no exercise condition or state may be returned at operation 2612. Alternatively, instead of sending an indication of no exercise condition or state, method 2600 may instead suppress revising temperature compensation at operation 2612.
如本文所述,基于温度参数的变化率来检测受者处于锻炼状况或状态。在一些示例中,这可使用变化分布函数来执行。变化分布函数指示信号的连续样本上的变化率的分布。图27是示出第一变化分布函数2702和第二变化分布函数2704的图2700,第一变化分布函数显示受者处于休息(例如,非锻炼)状况或状态,第二变化分布函数显示受者处于锻炼状况或状态。在图2700中,水平轴线表示指示葡萄糖传感器处的皮下温度的温度信号的变化率。垂直轴线表示变化率的累积分布。如图所示,第一变化分布函数2702大约以零变化率为中心,这意味着连续样本之间的变化率的大约一半大于零并且大约一半小于零。累积分布函数2704偏斜较低,这意味着当受者处于锻炼状况或状态时,小于零的变化率比大于零的变化率多。如本文所述,这可通过检查温度参数信号样本之间的变化率(诸如示例直方图2706)加以利用。As described herein, the recipient is detected to be in an exercise condition or state based on the rate of change of the temperature parameter. In some examples, this can be performed using a change distribution function. The change distribution function indicates the distribution of the rate of change on the continuous samples of the signal. Figure 27 is a diagram 2700 showing a first change distribution function 2702 and a second change distribution function 2704, the first change distribution function showing that the recipient is in a rest (e.g., non-exercise) condition or state, and the second change distribution function showing that the recipient is in an exercise condition or state. In Figure 2700, the horizontal axis represents the rate of change of the temperature signal indicating the subcutaneous temperature at the glucose sensor. The vertical axis represents the cumulative distribution of the rate of change. As shown, the first change distribution function 2702 is centered approximately at zero rate of change, which means that approximately half of the rate of change between continuous samples is greater than zero and approximately half is less than zero. The cumulative distribution function 2704 is skewed lower, which means that when the recipient is in an exercise condition or state, the rate of change less than zero is more than the rate of change greater than zero. As described herein, this can be utilized by examining the rate of change between the temperature parameter signal samples (such as the example histogram 2706).
图28是用于使用温度参数信号样本中的变化率分布来检测锻炼状况或状态的示例方法2800的流程图。方法2800可在分析物传感器系统8处执行,诸如例如在传感器电子器件12和/或在显示设备14、16、20处执行。28 is a flow chart of an example method 2800 for detecting an exercise condition or state using a rate of change distribution in temperature parameter signal samples. The method 2800 may be performed at the analyte sensor system 8, such as, for example, at the sensor electronics 12 and/or at the display device 14, 16, 20.
方法2800可包括在操作2802处获取当前温度参数信号样本。方法2800可包括在操作2804处确定当前温度参数信号样本与先前温度参数信号样本之间的变化率。变化率可以是差。如本文所述,变化率可以是负的(例如,如果当前样本小于先前样本)或正的(例如,如果当前样本大于先前样本)。方法2800可包括在操作2806处存储当前变化率。The method 2800 may include obtaining a current temperature parameter signal sample at operation 2802. The method 2800 may include determining a rate of change between the current temperature parameter signal sample and a previous temperature parameter signal sample at operation 2804. The rate of change may be a difference. As described herein, the rate of change may be negative (e.g., if the current sample is less than the previous sample) or positive (e.g., if the current sample is greater than the previous sample). The method 2800 may include storing the current rate of change at operation 2806.
在操作2808处,将分类器应用于包括新存储的变化率的历史变化率。分类器例如可表示预定数量样本(例如,30个样本)上的变化率的分布。将在预定数量样本上测量的变化率分布与分类器进行比较。在操作2810处,确定测量变化率分布是否满足分类器。例如,分类器可描述落入多个范围内的样本之间的测量变化率的数量或数量范围。下表4提供了分类器的示例:At operation 2808, a classifier is applied to the historical rates of change including the newly stored rate of change. The classifier may, for example, represent a distribution of rates of change over a predetermined number of samples (e.g., 30 samples). The distribution of rates of change measured over the predetermined number of samples is compared to the classifier. At operation 2810, it is determined whether the distribution of measured rates of change satisfies the classifier. For example, the classifier may describe the number or range of measured rates of change between samples that fall within a plurality of ranges. Table 4 below provides an example of a classifier:
表4:Table 4 :
在表4的示例中,如果小于-0.4℃/min的测量变化率的数量大于2,介于-0.4℃/min和-0.2℃/min之间的测量变化率的数量大于10,等等,则变化率的测量分布满足分类器。In the example of Table 4, if the number of measured change rates less than -0.4°C/min is greater than 2, the number of measured change rates between -0.4°C/min and -0.2°C/min is greater than 10, and so on, the measured distribution of change rates satisfies the classifier.
如果满足分类器,则受者处于锻炼状况或状态。因此,方法2800包括在操作2812处基于温度参数信号来修订温度补偿以考虑锻炼状况或状态。本文关于方法700(例如,708和710)以及方法800(806)描述了可如何执行此操作的示例。例如,如本文所述,温度参数信号可在用于生成温度补偿葡萄糖浓度之前应用于锻炼模型。如果不满足分类器,则受者可能不处于锻炼状况或状态,并且在操作2814处可返回没有锻炼状况或状态的指示。另选地,代替发送无锻炼状况或状态的指示,方法2800在操作2814处可改为抑制修订温度补偿。If the classifier is satisfied, then the subject is in an exercise condition or state. Therefore, method 2800 includes revising temperature compensation based on the temperature parameter signal to account for the exercise condition or state at operation 2812. Examples of how this may be performed are described herein with respect to method 700 (e.g., 708 and 710) and method 800 (806). For example, as described herein, the temperature parameter signal may be applied to an exercise model before being used to generate a temperature compensated glucose concentration. If the classifier is not satisfied, then the subject may not be in an exercise condition or state, and an indication of no exercise condition or state may be returned at operation 2814. Alternatively, instead of sending an indication of no exercise condition or state, method 2800 may instead refrain from revising temperature compensation at operation 2814.
在一些示例中,本文所述的各种温度传感器布置中的任一种可用于在储存和/或运输期间测量分析物传感器的温度。例如,在传感器会话之前分析物传感器暴露于的峰值温度可能影响传感器的性能。例如,在传感器会话之前分析物传感器暴露于的峰值温度可能影响分析物传感器在插入受者皮肤后的初始灵敏度和/或基线。另外,在一些示例中,如果分析物传感器暴露于的峰值传感器过高,则传感器可能不再适合使用。In some examples, any of the various temperature sensor arrangements described herein can be used to measure the temperature of an analyte sensor during storage and/or transport. For example, the peak temperature to which the analyte sensor is exposed prior to a sensor session may affect the performance of the sensor. For example, the peak temperature to which the analyte sensor is exposed prior to a sensor session may affect the initial sensitivity and/or baseline of the analyte sensor after insertion into the recipient's skin. Additionally, in some examples, if the peak temperature to which the analyte sensor is exposed is too high, the sensor may no longer be suitable for use.
在各种示例中,分析物传感器系统(诸如图1的分析物传感器系统8)被配置为使用本文所述的各种传感器布置中的一种或多种来在储存和/或运输期间周期性地记录分析物传感器系统处的温度。图29是用于记录在运输期间分析物传感器系统处的温度的示例方法2900的流程图。分析物传感器系统(例如,其传感器电子器件12)可被编程为例如在分析物传感器系统被包装用于储存和/或运输时执行方法2900。In various examples, an analyte sensor system (such as the analyte sensor system 8 of FIG. 1 ) is configured to periodically record the temperature at the analyte sensor system during storage and/or transportation using one or more of the various sensor arrangements described herein. FIG. 29 is a flow chart of an example method 2900 for recording the temperature at the analyte sensor system during transportation. The analyte sensor system (e.g., its sensor electronics 12) can be programmed to perform the method 2900, for example, when the analyte sensor system is packaged for storage and/or transportation.
方法2900可包括在操作2902处分析物传感器系统唤醒。例如,分析物传感器系统的处理器可被编程为周期性地唤醒,如本文所述。在唤醒后,分析物传感器系统可在操作2904处测量当前温度。分析物传感器系统可包括本文所述的温度传感器布置中的任一种并且可使用一个或多个温度传感器布置在操作2904处来测量温度。在操作2906处,分析物传感器系统可记录测量温度。测量温度可记录在例如数据存储存储器(例如,图2中的220)或分析物传感器系统处的另一合适数据存储位置处。在操作2908处,分析物传感器系统等待一个周期。一个周期可以是例如10分钟、一小时、一天等。在等待一个周期后,分析物传感器系统返回到操作2902并再次如所述那样唤醒。Method 2900 may include waking up the analyte sensor system at operation 2902. For example, the processor of the analyte sensor system may be programmed to wake up periodically, as described herein. After waking up, the analyte sensor system may measure the current temperature at operation 2904. The analyte sensor system may include any of the temperature sensor arrangements described herein and may use one or more temperature sensors to be arranged at operation 2904 to measure the temperature. At operation 2906, the analyte sensor system may record the measured temperature. The measured temperature may be recorded in, for example, a data storage memory (e.g., 220 in FIG. 2) or another suitable data storage location at the analyte sensor system. At operation 2908, the analyte sensor system waits for a cycle. A cycle may be, for example, 10 minutes, one hour, one day, etc. After waiting for a cycle, the analyte sensor system returns to operation 2902 and wakes up again as described.
分析物传感器系统可在其被存储和/或运输到受者以供使用时执行方法2900。以这种方式,分析物传感器系统可到达受者以开始传感器会话,其中周期性温度测量的记录存储在数据存储存储器处。The analyte sensor system may perform method 2900 while it is stored and/or shipped to a recipient for use. In this manner, the analyte sensor system may arrive at a recipient to begin a sensor session with a record of periodic temperature measurements stored at the data storage memory.
图30是用于以包括来自分析物传感器系统的运输和/或储存的周期性温度测量的记录的分析物传感器会话开始传感器会话的示例方法3000的流程图。在操作3002处,分析物传感器系统开始传感器会话。例如当将分析物传感器系统的分析物传感器定位在受者处时,例如当将分析物传感器插入受者皮肤中时,可能发生这种情况。在操作3004处,分析物传感器系统确定在传感器会话之前分析物传感器系统暴露于的峰值温度。这可包括例如读取周期性温度测量的记录并从该记录确定最高温度测量结果。最高温度测量结果可以是峰值温度测量结果。FIG30 is a flow chart of an example method 3000 for starting a sensor session with an analyte sensor session that includes a record of periodic temperature measurements from the transport and/or storage of the analyte sensor system. At operation 3002, the analyte sensor system starts a sensor session. This may occur, for example, when the analyte sensor of the analyte sensor system is positioned at a recipient, such as when the analyte sensor is inserted into the recipient's skin. At operation 3004, the analyte sensor system determines the peak temperature to which the analyte sensor system was exposed before the sensor session. This may include, for example, reading a record of periodic temperature measurements and determining a maximum temperature measurement from the record. The maximum temperature measurement may be a peak temperature measurement.
在操作3006处,分析物传感器系统确定峰值温度测量结果是否大于阈值。阈值可以是例如在传感器会话之前分析物传感器可暴露于的最高温度,而不损害会话期间的传感器性能。如果峰值温度大于阈值,则在操作3010处,分析物传感器系统可中止传感器会话。在一些示例中,分析物传感器系统通过执行本文关于图34所述的异常过程3400来处理峰值温度测量结果大于阈值的确定。这可包括例如向一个或多个显示设备(诸如显示设备14、16、18和/或20)发送消息,指示分析物传感器或传感器系统不适合使用并且应使用不同的传感器或分析物传感器系统。At operation 3006, the analyte sensor system determines whether the peak temperature measurement result is greater than a threshold value. The threshold value can be, for example, the highest temperature to which the analyte sensor can be exposed before the sensor session without compromising the sensor performance during the session. If the peak temperature is greater than the threshold value, then at operation 3010, the analyte sensor system can terminate the sensor session. In some examples, the analyte sensor system processes the determination that the peak temperature measurement result is greater than the threshold value by executing the exception process 3400 described herein with respect to FIG. 34. This may include, for example, sending a message to one or more display devices (such as display devices 14, 16, 18 and/or 20) indicating that the analyte sensor or sensor system is not suitable for use and a different sensor or analyte sensor system should be used.
如果在操作3006处峰值温度不大于阈值,则在操作3008处,分析物传感器系统可基于峰值温度来选择初始传感器会话参数。初始传感器会话参数可以是或包括例如初始灵敏度、初始基线等。初始传感器会话参数可由分析物传感器系统用来例如使用原始传感器数据生成估计分析物值。在一些示例中,在传感器插入周期之后使用初始传感器会话参数。在一些示例中,分析物传感器将经训练的模型应用于峰值温度以确定一个或多个初始传感器会话参数。在另一个示例中,峰值温度与初始传感器会话参数之间的关系被存储在分析物传感器系统处,例如存储在查找表处。在一些示例中,作为对峰值温度的补充或替代,分析物传感器系统可确定平均温度、中值温度等,或包装期间温度的其他合适指示。If the peak temperature is not greater than the threshold at operation 3006, then at operation 3008, the analyte sensor system may select initial sensor session parameters based on the peak temperature. The initial sensor session parameters may be or include, for example, initial sensitivity, initial baseline, etc. The initial sensor session parameters may be used by the analyte sensor system to generate estimated analyte values, for example, using raw sensor data. In some examples, the initial sensor session parameters are used after the sensor insertion cycle. In some examples, the analyte sensor applies the trained model to the peak temperature to determine one or more initial sensor session parameters. In another example, the relationship between the peak temperature and the initial sensor session parameters is stored at the analyte sensor system, for example, in a lookup table. In some examples, in addition to or in lieu of the peak temperature, the analyte sensor system may determine an average temperature, a median temperature, etc., or other suitable indications of temperature during packaging.
在一些示例中,方法2900和/或3000包括考虑湿度作为对考虑温度的补充或替代。例如,参考方法2900,分析物传感器系统可在唤醒时测量湿度。可以任何合适的方式测量湿度。例如,用于基于传感器的膜阻抗来测量分析物传感器处的湿度的系统和方法在2018年12月28日提交的名称为“ANALYTE SENSOR WITH IMPEDANCE DETERMINATION”的美国专利申请序列号62/786,166(代理人档案号638PRV)中有所描述,该专利申请以引用方式全文并入本文。参考方法3000,如果分析物传感器暴露于确定范围之外的湿度,则可中止传感器会话。此外,分析物传感器暴露于的峰值湿度可用于确定初始传感器会话参数。In some examples, methods 2900 and/or 3000 include considering humidity as a supplement or alternative to considering temperature. For example, with reference to method 2900, the analyte sensor system may measure humidity when awake. Humidity may be measured in any suitable manner. For example, a system and method for measuring humidity at an analyte sensor based on the membrane impedance of the sensor is described in U.S. patent application serial number 62/786,166 (agent file number 638PRV) entitled "ANALYTE SENSOR WITH IMPEDANCE DETERMINATION" filed on December 28, 2018, which is incorporated herein by reference in its entirety. With reference to method 3000, if the analyte sensor is exposed to humidity outside a determined range, the sensor session may be terminated. In addition, the peak humidity to which the analyte sensor is exposed may be used to determine initial sensor session parameters.
在一些示例中,二极管可用作温度传感器。例如,通过利用二极管上的电压降的温度依赖性,可将二极管用作温度传感器。考虑由下面的方程[10]给出的肖克利二极管方程:In some examples, a diode can be used as a temperature sensor. For example, a diode can be used as a temperature sensor by taking advantage of the temperature dependence of the voltage drop across the diode. Consider the Shockley diode equation given by the following equation [10]:
在方程[10]中,VT由下面的方程[11]给出:In equation [10], VT is given by the following equation [11]:
在方程[10]和方程[11]中,I是通过二极管的正向电流。Is是反向偏置饱和电流。VD是二极管上的电压。VT是热电压,由方程[11]给出。n是二极管的理想因子。k是玻耳兹曼常数。q是基本电荷。T是二极管的绝对温度(以开尔文为单位)。针对电压重新整理方程[10]和[11]得到下面的方程[12]:In equation [10] and equation [11], I is the forward current through the diode.Is is the reverse bias saturation current. VD is the voltage across the diode.VT is the thermal voltage, given by equation [11]. n is the ideality factor of the diode. k is the Boltzmann constant. q is the elementary charge. T is the absolute temperature of the diode in Kelvin. Rearranging equations [10] and [11] for voltage yields the following equation [12]:
为了去除未知的反向偏置饱和电流,可向二极管提供两个已知的二极管电流,这两个不同的已知电流处的电压差表示为ΔVD并且由方程[13]给出:To remove the unknown reverse bias saturation current, two known diode currents can be provided to the diode. The voltage difference at these two different known currents is denoted as ΔVD and is given by equation [13]:
求解温度得到:Solving for temperature yields:
在一些示例中,温度T对二极管的理想因子n的依赖性可通过使用基极连接到集电极(例如,“二极管连接式”)的二极管连接式NPN晶体管作为二极管来减小。在此布置中,理想因子n接近一并且可从方程[14]中去除。In some examples, the dependence of temperature T on the ideality factor n of the diode can be reduced by using a diode-connected NPN transistor with the base connected to the collector (e.g., "diode-connected") as the diode. In this arrangement, the ideality factor n approaches unity and can be removed from equation [14].
各种示例利用方程[14]的关系使用二极管来测量分析物传感器系统处的温度。例如,本文所述的NPN晶体管及相关联电路可能较便宜,并且在一些示例中,比适当准确的温度传感器便宜得多。Various examples utilize the relationship of Equation [14] to use a diode to measure temperature at an analyte sensor system. For example, the NPN transistor and associated circuitry described herein may be less expensive, and in some examples, much less expensive than a suitably accurate temperature sensor.
图31是可在分析物传感器系统处实施以使用二极管来测量温度的示例电路布置3100的图示。电路布置3100包括第一电流源3102和第二电流源3104以及二极管连接的NPN晶体管3106。尽管图31中示出了二极管连接式晶体管3106,但在其他示例中,可使用不同类型的二极管。31 is a diagram of an example circuit arrangement 3100 that may be implemented at an analyte sensor system to measure temperature using a diode. The circuit arrangement 3100 includes a first current source 3102 and a second current source 3104 and a diode-connected NPN transistor 3106. Although a diode-connected transistor 3106 is shown in FIG. 31 , in other examples, different types of diodes may be used.
电流源3102是在该示例中提供约10μA的电流的恒定电流源。电流源3104是提供40uA脉冲的脉冲电流源。电流源3102、3104可以任何合适方式实施,例如利用一个或多个晶体管。来自电流源3102和电流源3104的电流被提供给二极管连接式晶体管3106,使得二极管连接式晶体管3106处的电流是来自电流源3102的电流与来自电流源3104的电流之和。这由图形3108示出。在此示例中,当脉冲电流源3104接通时,提供给二极管连接式晶体管3106的电流为50uA,这是来自电流源3102的恒定10uA与来自电流源3104的脉冲40uA之和。当脉冲电流源3104断开时,提供给二极管连接式晶体管3106的电流是由恒定电流源3102提供的10μA。在此示例中,电流源3102、3104经由电阻器3110、3112提供电流。Current source 3102 is a constant current source that provides a current of about 10 μA in this example. Current source 3104 is a pulse current source that provides a 40 uA pulse. Current sources 3102, 3104 can be implemented in any suitable manner, such as using one or more transistors. The current from current source 3102 and current source 3104 is provided to diode-connected transistor 3106, so that the current at diode-connected transistor 3106 is the sum of the current from current source 3102 and the current from current source 3104. This is shown by graph 3108. In this example, when pulse current source 3104 is turned on, the current provided to diode-connected transistor 3106 is 50 uA, which is the sum of the constant 10 uA from current source 3102 and the pulse 40 uA from current source 3104. When pulse current source 3104 is disconnected, the current provided to diode-connected transistor 3106 is 10 μA provided by constant current source 3102. In this example, current sources 3102 , 3104 provide current via resistors 3110 , 3112 .
在此布置中,如图形3108所示,二极管连接式晶体管3106接收两个已知电流。如本文所证明,在第一电流(V1)下二极管连接式晶体管3106上的电压降的值与在第二电流(V2)下二极管连接式晶体管3106上的电压降的值之间的差指示在二极管连接式晶体管3106处的pn结的温度。In this arrangement, diode-connected transistor 3106 receives two known currents as shown in graph 3108. As demonstrated herein, the difference between the value of the voltage drop across diode-connected transistor 3106 at a first current (V1) and the value of the voltage drop across diode-connected transistor 3106 at a second current (V2) indicates the temperature of the pn junction at diode-connected transistor 3106.
为了测量电压差,采样并保持(S/H)电路3116在输入处接收指示二极管连接式晶体管3106上的电压降的电压值。在时钟输入处,S/H电路3116接收脉冲电流源3104何时断开的指示。这可例如通过使用反相器3118将由脉冲电流源3104生成的信号反相来实现。因此,S/H电路3116的输出可以是电压值V1,其指示在由第一电流源3102提供的电流下二极管连接式晶体管3106上的电压降。To measure the voltage difference, a sample and hold (S/H) circuit 3116 receives at an input a voltage value indicating the voltage drop across the diode-connected transistor 3106. At a clock input, the S/H circuit 3116 receives an indication of when the pulsed current source 3104 is disconnected. This can be achieved, for example, by inverting the signal generated by the pulsed current source 3104 using an inverter 3118. Thus, the output of the S/H circuit 3116 can be a voltage value V1 indicating the voltage drop across the diode-connected transistor 3106 under the current provided by the first current source 3102.
可使用双斜率积分模数转换器(ADC)3114将电压值V1与电压值V2之间的差转换为可例如由分析物传感器系统的处理器消耗的数字信号。双斜率积分ADC 3114包括第一输入3120和第二输入3122。比较器3124具有连接到地的非反相输入端和耦合到开关3128的反相输入端。开关3128交替地将第一输入3120(经由电阻器RA)或第二输入3122(经由电阻器RB)连接到反相输入。电容器3126耦合在比较器3124的反相输入与ADC 3114的输出VOUT之间。A dual slope integrating analog-to-digital converter (ADC) 3114 can be used to convert the difference between the voltage value V1 and the voltage value V2 into a digital signal that can be consumed, for example, by a processor of the analyte sensor system. The dual slope integrating ADC 3114 includes a first input 3120 and a second input 3122. The comparator 3124 has a non-inverting input terminal connected to ground and an inverting input terminal coupled to a switch 3128. The switch 3128 alternately connects the first input 3120 (via a resistor RA) or the second input 3122 (via a resistor RB) to the inverting input. The capacitor 3126 is coupled between the inverting input of the comparator 3124 and the output VOUT of the ADC 3114.
在图31的示例中,将表示V1的S/H电路3116的输出提供给ADC 3114的输入3122。在输入3120处提供二极管连接式晶体管3106上的电压降。开关3128被计时以在脉冲电流源3104接通时将输入3120提供给比较器3124的反相输入并且在电流源3104断开时将输入3122提供给反相输入。31 , the output of the S/H circuit 3116, representing V1, is provided to an input 3122 of the ADC 3114. The voltage drop across the diode-connected transistor 3106 is provided at the input 3120. The switch 3128 is timed to provide the input 3120 to the inverting input of the comparator 3124 when the pulsed current source 3104 is on and to provide the input 3122 to the inverting input when the current source 3104 is off.
因此,当电流源3104断开时,电容器3126被充电到电压V1,该电压是来自电流源3102的二极管连接式晶体管3106上的电压降。当电流源3104接通时,开关3128将输入3120连接到反相输入,从而使得电容器3126被充电到电压V2,该电压是由于电流源3102、3104的组合电流而导致的二极管连接式晶体管3106上的电压降。当电流源3104再次断开时,开关3128连接电压V1并且电容器3126处的电压(以及VOUT)衰减到V1。这由图形3130指示,其在垂直轴线上示出VOUT并且在水平轴线上示出时间。当VOUT增长时,电流源3104接通并且开关3128在反相输入处连接V2。当VOUT衰减时,电流源3104断开并且开关3128在反相输入处连接V1。VOUT从V2衰减到V1所花费的时间指示V2与V1之间的差。这可用于例如根据上述方程6导出二极管连接式晶体管3106处的温度。Therefore, when the current source 3104 is disconnected, the capacitor 3126 is charged to a voltage V1, which is the voltage drop on the diode-connected transistor 3106 from the current source 3102. When the current source 3104 is turned on, the switch 3128 connects the input 3120 to the inverting input, so that the capacitor 3126 is charged to a voltage V2, which is the voltage drop on the diode-connected transistor 3106 due to the combined current of the current sources 3102 and 3104. When the current source 3104 is disconnected again, the switch 3128 connects the voltage V1 and the voltage at the capacitor 3126 (and VOUT) decays to V1. This is indicated by a graph 3130, which shows VOUT on the vertical axis and time on the horizontal axis. When VOUT grows, the current source 3104 is turned on and the switch 3128 connects V2 at the inverting input. When VOUT decays, the current source 3104 is disconnected and the switch 3128 connects V1 at the inverting input. The time it takes for VOUT to decay from V2 to V1 indicates the difference between V2 and V1. This can be used to derive the temperature at the diode connected transistor 3106, for example, according to Equation 6 above.
在一些示例中,电路布置3100包括将指示电压值V1的S/H电路3116的输出与ADC3114的VOUT输出进行比较的比较器3132。当VOUT等于或小于V1时,比较器输出(COMP OUT)可改变状态。因此,分析物传感器系统的传感器电子器件可通过在开关3128连接到输入3122时启动数字计数器并且在比较器输出COMP OUT改变状态时停止数字计数器来测量V1与V2之间的差。In some examples, the circuit arrangement 3100 includes a comparator 3132 that compares the output of the S/H circuit 3116 indicating a voltage value V1 with the VOUT output of the ADC 3114. When VOUT is equal to or less than V1, the comparator output (COMP OUT) can change state. Thus, the sensor electronics of the analyte sensor system can measure the difference between V1 and V2 by starting a digital counter when the switch 3128 is connected to the input 3122 and stopping the digital counter when the comparator output COMP OUT changes state.
在一些示例中,提供“与”门3134以生成比较器输出(COMP OUT)与时钟信号的逻辑“与”。“与”门3134的输出可用于停止数字计数器。这可确保仅当电容器3126上的电压衰减时比较器的状态才改变。In some examples, an AND gate 3134 is provided to generate a logical AND of the comparator output (COMP OUT) and the clock signal. The output of the AND gate 3134 can be used to stop the digital counter. This ensures that the state of the comparator changes only when the voltage on the capacitor 3126 decays.
图32是使用二极管(诸如图31的二极管连接式晶体管3106)测量分析物传感器系统处的温度的方法3200的流程图。方法3200可包括在操作3202处在二极管处施加第一电流。方法3200还可包括在操作3204处测量指示在第一电流下二极管上的电压降的电压V1。方法3200还可包括在操作3206处在二极管处施加第二电流,以及在操作3208处测量指示在第二电流下二极管上的电压降的第二电压V2。32 is a flow chart of a method 3200 for measuring temperature at an analyte sensor system using a diode, such as the diode-connected transistor 3106 of FIG. 31. The method 3200 may include applying a first current at the diode at operation 3202. The method 3200 may also include measuring a voltage V1 indicating a voltage drop across the diode at the first current at operation 3204. The method 3200 may also include applying a second current at the diode at operation 3206, and measuring a second voltage V2 indicating a voltage drop across the diode at the second current at operation 3208.
在操作3210处,第一电压V1和第二电压V2被提供给双斜率积分ADC。在操作3212处,例如使用数字定时器来测量ADC的输出从第二电压V2衰减到第一电压V1的时间。结果可以是指示二极管处的温度的数字值,如本文所述。At operation 3210, the first voltage V1 and the second voltage V2 are provided to a dual slope integrating ADC. At operation 3212, the time for the output of the ADC to decay from the second voltage V2 to the first voltage V1 is measured, for example using a digital timer. The result can be a digital value indicating the temperature at the diode, as described herein.
如本文所述,温度可影响分析物传感器系统诸如葡萄糖传感器系统的性能的一种方式涉及温度依赖性隔室偏差。葡萄糖传感器在插入部位被插入受者皮肤中。在受者皮肤下,葡萄糖传感器直接测量插入部位处的葡萄糖浓度,例如在存在于插入部位处的间质液处的葡萄糖浓度。然而,间质液中的葡萄糖浓度可能与患者血液中的葡萄糖浓度不同。隔室偏差指示葡萄糖传感器插入部位处的葡萄糖浓度与受者的血糖浓度之间的差。As described herein, one way in which temperature can affect the performance of an analyte sensor system, such as a glucose sensor system, involves temperature-dependent compartment bias. A glucose sensor is inserted into the skin of a recipient at an insertion site. Under the skin of the recipient, the glucose sensor directly measures the glucose concentration at the insertion site, such as the glucose concentration at the interstitial fluid present at the insertion site. However, the glucose concentration in the interstitial fluid may be different from the glucose concentration in the patient's blood. The compartment bias indicates the difference between the glucose concentration at the insertion site of the glucose sensor and the blood glucose concentration of the recipient.
由于受者细胞的葡萄糖消耗,可能发生隔室偏差。例如,将来自受者血流的葡萄糖提供给受者血管系统的毛细血管处的受者细胞。葡萄糖从毛细血管扩散到受者细胞中。最近的毛细血管或毛细血管系统与插入部位之间的细胞消耗葡萄糖。由于这种消耗,插入部位处的葡萄糖浓度(也被称为间质葡萄糖浓度)低于血糖浓度(也被称为血糖浓度或毛细血管葡萄糖浓度)。间质葡萄糖浓度低于血糖浓度的量是隔室偏差。Compartmental bias may occur due to glucose consumption by recipient cells. For example, glucose from the recipient bloodstream is provided to recipient cells at the capillaries of the recipient vascular system. Glucose diffuses from the capillaries into the recipient cells. The cells between the nearest capillaries or capillary system and the insertion site consume glucose. Due to this consumption, the glucose concentration at the insertion site (also referred to as the interstitial glucose concentration) is lower than the blood glucose concentration (also referred to as the blood glucose concentration or capillary glucose concentration). The amount by which the interstitial glucose concentration is lower than the blood glucose concentration is the compartmental bias.
在一些示例中,葡萄糖从受者毛细血管扩散到插入部位的速率和/或受者毛细血管与插入部位之间的细胞消耗葡萄糖的速率随温度而变化。例如,当受者皮肤更热时,葡萄糖可更快地扩散。因此,葡萄糖传感器系统可应用补偿葡萄糖传感器信号的腔室模型,因为隔室偏差可能取决于温度。示例隔室模型由方程[15]给出:In some examples, the rate at which glucose diffuses from the recipient capillaries to the insertion site and/or the rate at which glucose is consumed by cells between the recipient capillaries and the insertion site varies with temperature. For example, glucose may diffuse faster when the recipient skin is hotter. Therefore, the glucose sensor system may apply a compartment model that compensates for the glucose sensor signal because compartment bias may depend on temperature. An example compartment model is given by equation [15]:
在方程[15]中,IG(t)是间质葡萄糖浓度。是间质葡萄糖浓度IG(t)随时间推移的一阶导数。BG(t)是血糖。值τ1和τ2是模型时间参数。方程[15]是微分方程,其可被求解以导出间质葡萄糖浓度IG与血糖浓度BG之间的模型关系,如方程[16]所给出:In equation [15], IG(t) is the interstitial glucose concentration. is the first derivative of interstitial glucose concentration IG(t) over time. BG(t) is blood glucose. The values τ1 and τ2 are model time parameters. Equation [15] is a differential equation that can be solved to derive the model relationship between interstitial glucose concentration IG and blood glucose concentration BG, as given by equation [16]:
时间参数τ1和τ2可能取决于温度。例如,葡萄糖传感器系统可将时间参数τ1和τ2建模为温度的函数。当葡萄糖传感器系统接收葡萄糖传感器信号和温度传感器信号时,葡萄糖传感器系统可利用温度传感器信号来导出时间参数τ1和τ2,然后使用隔室模型中的时间参数(诸如方程[15]和[16]给出的时间参数)来找到补偿葡萄糖浓度。The time parameters τ1 and τ2 may depend on temperature. For example, the glucose sensor system may model the time parameters τ1 and τ2 as functions of temperature. When the glucose sensor system receives a glucose sensor signal and a temperature sensor signal, the glucose sensor system may use the temperature sensor signal to derive the time parameters τ1 and τ2 , and then use the time parameters in the compartment model (such as the time parameters given by equations [15] and [16]) to find the compensated glucose concentration.
在一些示例中,葡萄糖传感器系统利用包括应用于间质葡萄糖浓度项IG和血糖浓度项BG两者的单个时间参数τ的隔室模型。在一些示例中,方程[15]和[16]的隔室模型的时间参数τ1和τ2之间的差与受者毛细血管和插入部位之间细胞的葡萄糖消耗有关。因此,在一些示例中,可通过考虑葡萄糖消耗来使用单个时间参数τ。考虑葡萄糖消耗的示例隔室模型由方程[17]给出:In some examples, the glucose sensor system utilizes a compartmental model that includes a single time parameter τ applied to both the interstitial glucose concentration term IG and the blood glucose concentration term BG. In some examples, the difference between the time parameters τ1 and τ2 of the compartmental models of equations [15] and [16] is related to glucose consumption by cells between the recipient capillaries and the insertion site. Therefore, in some examples, a single time parameter τ can be used by taking into account glucose consumption. An example compartmental model that takes into account glucose consumption is given by equation [17]:
在方程[17]中,C(t)是消耗项。In equation [17], C(t) is the consumption term.
在一些示例中,消耗项C(t)可如方程[18]所给出的那样来建模:In some examples, the consumption term C(t) may be modeled as given by equation [18]:
在方程[18]中,Vmax是受者细胞的最大消耗速率。Km是消耗速率为Vmax的一半时的葡萄糖浓度。[si]是受者毛细血管与插入部位之间的第i个细胞层的细胞层葡萄糖浓度。如方程[18]所示,对每单位体积(例如,每dL)的细胞数目n求和得到消耗。In equation [18], Vmax is the maximum consumption rate of the recipient cells. Km is the glucose concentration at which the consumption rate is half of Vmax . [si ] is the cell layer glucose concentration of the i-th cell layer between the recipient capillary and the insertion site. As shown in equation [18], the consumption is obtained by summing the number of cells n per unit volume (e.g., per dL).
图33例示了示例传感器插入部位3300,显示了传感器插入部位3300与受者毛细血管部位之间的细胞层。在该示例中,示出了五个细胞层,i=0至4。层0处的细胞(诸如细胞3302)具有细胞层葡萄糖浓度S0。层1处的细胞(诸如细胞3304)具有细胞层葡萄糖浓度S1。层2处的细胞(诸如细胞3306)具有细胞层葡萄糖浓度S2。层3处的细胞(诸如细胞3308)具有细胞层葡萄糖浓度S3。层4处的细胞(诸如细胞3310)具有细胞层葡萄糖浓度S4。FIG33 illustrates an example sensor insertion site 3300 showing the cell layers between the sensor insertion site 3300 and the recipient capillary site. In this example, five cell layers are shown, i=0 to 4. Cells at layer 0 (such as cell 3302) have a cell layer glucose concentration S0. Cells at layer 1 (such as cell 3304) have a cell layer glucose concentration S1. Cells at layer 2 (such as cell 3306) have a cell layer glucose concentration S2. Cells at layer 3 (such as cell 3308) have a cell layer glucose concentration S3. Cells at layer 4 (such as cell 3310) have a cell layer glucose concentration S4.
在一些示例中,葡萄糖传感器系统可应用方程[17]和[18],假设细胞层葡萄糖浓度[si]是与距传感器插入部位的距离无关的常数。例如,在一些示例中,假设所有细胞的细胞层葡萄糖浓度[si]是间质葡萄糖浓度IG和血糖浓度的平均值。在此假设下,方程[17]和[18]可近似为如方程[19]所给出:In some examples, the glucose sensor system may apply equations [17] and [18], assuming that the cell layer glucose concentration [si] is a constant that is independent of the distance from the sensor insertion site. For example, in some examples, it is assumed that the cell layer glucose concentration [si] of all cells is the average of the interstitial glucose concentration IG and the blood glucose concentration. Under this assumption, equations [17] and [18] may be approximated as given by equation [19]:
对血糖浓度求解方程[19]得到可用于生成补偿葡萄糖浓度的模型。例如,葡萄糖传感器系统可利用温度传感器信号来确定τ的值,然后将τ应用于方程[19]的解以生成补偿葡萄糖浓度。Solving equation [19] for blood glucose concentration yields a model that can be used to generate a compensated glucose concentration. For example, a glucose sensor system can use a temperature sensor signal to determine the value of τ and then apply τ to the solution of equation [19] to generate a compensated glucose concentration.
在其他示例中,葡萄糖传感器系统可应用方程[17]和[18],假设来自方程[18]的和的消耗项是i的线性函数,例如如方程[20]所示:In other examples, the glucose sensor system may apply equations [17] and [18], assuming that the consumption term from the sum of equations [18] is a linear function of i, such as shown in equation [20]:
在方程[20]中,a是斜率并且b是偏移。给定该假设,由以上方程[18]给出的消耗减少至由方程[21]所示的形式:In equation [20], a is the slope and b is the offset. Given this assumption, the consumption given by equation [18] above is reduced to the form shown by equation [21]:
并且隔室偏差模型由方程[22]表示:And the compartment deviation model is expressed by equation [22]:
对血糖浓度求解方程[22]得到可用于生成补偿葡萄糖浓度的模型。例如,葡萄糖传感器系统可利用温度传感器信号来确定τ的值,然后将τ应用于方程[22]的解以生成补偿葡萄糖浓度。Solving equation [22] for blood glucose concentration yields a model that can be used to generate a compensated glucose concentration. For example, a glucose sensor system can use a temperature sensor signal to determine the value of τ and then apply τ to the solution of equation [22] to generate a compensated glucose concentration.
图34是示出可在使用温度补偿来响应异常的分析物传感器系统中执行的处理流程3400的一个示例的图。在操作3402处,分析物传感器系统确定是否已发生异常。例如,如果分析物传感器系统的状态和/或操作偏离预期或优选的状态或操作,则可能发生异常,如本文所述。在一些示例中,分析物传感器系统在遇到异常时设置标记、位、变量或其他值(例如,存储在存储器中)。标记、位、变量或其他值可以是处理器处的寄存器位置或其他存储器位置。分析物传感器系统可通过将特定值写入相关存储器位置来设置标记、位、变量或其他值。在操作3402处检测异常可包括确定是否设置一个或多个异常标记。例如,当分析物传感器系统遇到超过指定值的葡萄糖变化率时,其可设置指示葡萄糖变化率异常的标记。在另一个示例中,如果电导率补偿的温度估计与不使用电导率进行的皮下温度估计之间的比较指示差异大于设定阈值,则分析物传感器系统可设置标记。FIG. 34 is a diagram showing an example of a process flow 3400 that can be performed in an analyte sensor system that uses temperature compensation to respond to an abnormality. At operation 3402, the analyte sensor system determines whether an abnormality has occurred. For example, if the state and/or operation of the analyte sensor system deviates from the expected or preferred state or operation, an abnormality may occur, as described herein. In some examples, the analyte sensor system sets a flag, bit, variable, or other value (e.g., stored in a memory) when encountering an abnormality. The flag, bit, variable, or other value can be a register location or other memory location at a processor. The analyte sensor system can set a flag, bit, variable, or other value by writing a specific value to a relevant memory location. Detecting an abnormality at operation 3402 may include determining whether to set one or more abnormal flags. For example, when the analyte sensor system encounters a glucose change rate that exceeds a specified value, it may set a flag indicating that the glucose change rate is abnormal. In another example, if the comparison between the conductivity-compensated temperature estimate and the subcutaneous temperature estimate performed without conductivity indicates that the difference is greater than a set threshold, the analyte sensor system may set a flag.
如果在操作3402处检测到异常,则分析物传感器系统在操作3403处选择响应动作。分析物传感器系统可基于存在的异常来选择响应动作。例如,如本文所述,可通过在与分析物传感器系统相关联的处理器或存储器位置处设置不同的标记、位、变量或其他值来指示不同的异常。确定响应动作可包括在操作3402处确定设置了哪个异常标记、位、变量或其他值来触发异常以及选择对应的一个或多个响应动作3404、3406、3408、3410。If an abnormality is detected at operation 3402, the analyte sensor system selects a response action at operation 3403. The analyte sensor system may select a response action based on the abnormality that exists. For example, as described herein, different abnormalities may be indicated by setting different flags, bits, variables, or other values at a processor or memory location associated with the analyte sensor system. Determining a response action may include determining which abnormal flag, bit, variable, or other value is set to trigger the abnormality at operation 3402 and selecting corresponding one or more response actions 3404, 3406, 3408, 3410.
例如,如果异常指示分析物传感器系统会话不应继续,则在操作3404处,分析物传感器系统可执行包括结束当前传感器会话的响应动作。响应动作可包括例如如果由于连续葡萄糖传感器被重启而发生异常则结束当前传感器会话,例如如本文关于图13所述。在另一个示例中,响应动作可包括如果当前传感器会话期间的峰值温度超过阈值则结束当前传感器会话,例如如本文关于图30所述。For example, if the anomaly indicates that the analyte sensor system session should not continue, the analyte sensor system may perform a response action including ending the current sensor session at operation 3404. The response action may include, for example, ending the current sensor session if the anomaly occurs due to the continuous glucose sensor being restarted, such as described herein with respect to FIG. 13. In another example, the response action may include ending the current sensor session if the peak temperature during the current sensor session exceeds a threshold, such as described herein with respect to FIG. 30.
在一些示例中,响应动作是或包括在操作3406处暂停由分析物传感器系统生成的估计分析物值的温度补偿。例如,如果当连续葡萄糖传感器系统的葡萄糖变化率超过指定值时触发异常,则响应动作可包括在操作3406处暂停温度补偿。此外,例如,如果当温度补偿分析物值的置信度下降时发生异常,如本文关于图15A至图15D所述,则响应动作可包括在操作3406处暂停温度补偿。In some examples, the response action is or includes suspending temperature compensation of the estimated analyte value generated by the analyte sensor system at operation 3406. For example, if an anomaly is triggered when the glucose change rate of the continuous glucose sensor system exceeds a specified value, the response action may include suspending temperature compensation at operation 3406. Also, for example, if an anomaly occurs when the confidence level of the temperature compensated analyte value decreases, as described herein with respect to FIGS. 15A-15D , the response action may include suspending temperature compensation at operation 3406.
在一些示例中,响应动作包括在操作3408处修改用于从体外温度确定体内传感器温度的温度模型。修改温度模型可包括例如选择和/或修改一个或多个模型参数,诸如线性模型的斜率和/或偏移。对异常的响应动作可包括在操作3408处修改温度模型,例如如果由体内传感器温度的状况或状态而触发异常,诸如当传感器温度超过阈值时、当传感器温度变化率超过阈值变化率时和/或当残余温度超过阈值时。修改温度模型还可包括选择不同模型,例如如本文关于图40所详述。在一些示例中,修改温度模型包括使用体内传感器温度的恒定值。例如,体内传感器温度可被限高,使得当检测到的温度大于阈值时,阈值(或另一合适的值)被用作温度补偿的输入而不是测量值。In some examples, the response action includes modifying the temperature model used to determine the in vivo sensor temperature from the in vitro temperature at operation 3408. Modifying the temperature model may include, for example, selecting and/or modifying one or more model parameters, such as the slope and/or offset of a linear model. The response action to the anomaly may include modifying the temperature model at operation 3408, for example, if the anomaly is triggered by the condition or state of the in vivo sensor temperature, such as when the sensor temperature exceeds a threshold, when the sensor temperature change rate exceeds a threshold change rate, and/or when the residual temperature exceeds a threshold. Modifying the temperature model may also include selecting a different model, such as described in detail herein with respect to FIG. 40. In some examples, modifying the temperature model includes using a constant value of the in vivo sensor temperature. For example, the in vivo sensor temperature may be limited so that when the detected temperature is greater than a threshold, the threshold (or another suitable value) is used as an input for temperature compensation instead of a measured value.
在一些示例中,响应动作包括暂停或阻止显示在操作3410处由分析物传感器确定的估计分析物值。例如,如果异常指示由分析物传感器系统生成的估计分析物值的准确性可能暂时受到影响,则可选择响应动作3410。在一些示例中,当体内传感器温度和/或温度梯度高于阈值时,可选择响应动作3410。In some examples, the response action includes pausing or preventing display of the estimated analyte value determined by the analyte sensor at operation 3410. For example, if the anomaly indicates that the accuracy of the estimated analyte value generated by the analyte sensor system may be temporarily affected, the response action 3410 may be selected. In some examples, the response action 3410 may be selected when the in vivo sensor temperature and/or temperature gradient is above a threshold.
当响应动作是或包括在操作3404处结束当前传感器会话时,分析物传感器系统可能不再次开始测量、存储和/或显示估计分析物值,直到新的传感器会话开始,例如在皮下或以其他方式体内插入新的传感器时。当响应动作包括在操作3406处暂停温度补偿、在操作3408处修改温度补偿和/或在操作3410处暂停显示估计分析物值时,分析物传感器系统可例如通过在操作3402处确定是否仍存在异常来周期性地重新执行处理流程3400。When the response action is or includes ending the current sensor session at operation 3404, the analyte sensor system may not begin measuring, storing, and/or displaying the estimated analyte value again until a new sensor session begins, such as when a new sensor is inserted subcutaneously or otherwise in vivo. When the response action includes suspending temperature compensation at operation 3406, modifying temperature compensation at operation 3408, and/or suspending display of the estimated analyte value at operation 3410, the analyte sensor system may periodically re-execute process flow 3400, for example, by determining whether an anomaly still exists at operation 3402.
如果在操作3402处不存在异常,则分析物传感器系统可等待直到下一次执行处理流程3400并且重新执行操作3402。在一些示例中,周期性地执行处理流程3400(例如,每30秒、每5分钟、每10分钟等执行一次)。在一些示例中,每次从传感器信号生成估计分析物值时执行异常过程3400。此外,在一些示例中,每次估计分析物值被输出到显示器(诸如显示设备14、16、20中的一者)时执行异常过程3400。If there is no exception at operation 3402, the analyte sensor system can wait until the next execution of process flow 3400 and re-execute operation 3402. In some examples, process flow 3400 is performed periodically (e.g., once every 30 seconds, every 5 minutes, every 10 minutes, etc.). In some examples, the exception process 3400 is performed each time an estimated analyte value is generated from the sensor signal. In addition, in some examples, the exception process 3400 is performed each time the estimated analyte value is output to a display (such as one of display devices 14, 16, 20).
在任选的操作3412处,分析物传感器系统可修改先前执行的响应动作。例如,如果先前响应动作包括在操作3410处暂停估计分析物值的显示,则分析物传感器系统可确定在操作3410处提示响应动作的条件是否仍然得到满足。如果不再满足条件,则分析物传感器系统可开始再次显示估计分析物值结果。在另一个示例中,如果先前响应动作包括在操作3406处暂停温度补偿,则分析物传感器系统可确定在操作3406处提示响应动作的条件是否仍然得到满足。如果不再满足条件,则分析物传感器系统可再次开始执行温度补偿。类似地,在一些示例中,如果先前响应动作包括在操作3408处修改温度补偿模型,则分析物传感器系统可确定在操作3408处提示响应动作的条件是否不再得到满足或者系统是否已经以其他方式改变。如果传感器、受者等的状况或状态已经改变并且要求对温度补偿模型的另外修改,则可进行该修改。对温度补偿模型的修改可以是对温度补偿模型的先前形式的逆转和/或对温度补偿模型的不同修改。At optional operation 3412, the analyte sensor system may modify the previously executed response action. For example, if the previous response action includes pausing the display of the estimated analyte value at operation 3410, the analyte sensor system may determine whether the condition for prompting the response action at operation 3410 is still met. If the condition is no longer met, the analyte sensor system may start to display the estimated analyte value result again. In another example, if the previous response action includes pausing temperature compensation at operation 3406, the analyte sensor system may determine whether the condition for prompting the response action at operation 3406 is still met. If the condition is no longer met, the analyte sensor system may start to perform temperature compensation again. Similarly, in some examples, if the previous response action includes modifying the temperature compensation model at operation 3408, the analyte sensor system may determine whether the condition for prompting the response action at operation 3408 is no longer met or whether the system has changed in other ways. If the condition or state of the sensor, recipient, etc. has changed and requires additional modification of the temperature compensation model, the modification may be performed. The modification to the temperature compensation model may be a reversal of a previous form of the temperature compensation model and/or a different modification to the temperature compensation model.
如本文所述,皮下或其他体内传感器处的温度可使用体外位置温度传感器处(诸如CGM发射器或其他体外传感器硬件处)的温度来确定。图35是例示温度模型3500的框图。在该示例中,温度模型3500接收由定位在体外的温度传感器测量的体外温度作为输入。在本文的各种示例中,体外或其他非皮下温度表示为TTx。在一些示例中,体外温度TTx由发射器处的温度传感器(诸如温度传感器240、242、268、270等中的一者或多者)获取。然而,应当理解,本文所述的各种示例也可用在除了分析物传感器系统的发射器处之外的体外位置处测量的体外温度来执行。As described herein, the temperature at a subcutaneous or other in vivo sensor can be determined using the temperature at an in vitro location temperature sensor (such as a CGM transmitter or other in vitro sensor hardware). FIG. 35 is a block diagram illustrating a temperature model 3500. In this example, the temperature model 3500 receives as input an in vitro temperature measured by a temperature sensor positioned in vitro. In various examples herein, the in vitro or other non-subcutaneous temperature is represented as TTx . In some examples, the in vitro temperature TTx is obtained by a temperature sensor at a transmitter (such as one or more of temperature sensors 240, 242, 268, 270, etc.). However, it should be understood that the various examples described herein can also be performed using an in vitro temperature measured at an in vitro location other than the transmitter of the analyte sensor system.
模型3500作用于体外温度TTx以生成皮下或其他体内传感器温度。体内传感器温度在图35中表示为TWE或工作电极温度。然而,在各种示例中,体内传感器温度可在传感器的其他体内部分处获取,包括例如在参考电极、反电极或分析物传感器的其他体内部分处获取。Model 3500 acts on the external body temperature TTx to generate a subcutaneous or other internal body sensor temperature. The internal body sensor temperature is represented as TWE or working electrode temperature in FIG. 35. However, in various examples, the internal body sensor temperature can be obtained at other internal body parts of the sensor, including, for example, at a reference electrode, a counter electrode, or other internal body parts of the analyte sensor.
如本文所述,模型3500可采取各种不同形式。在一些示例中,模型3500可以是PDE模型,例如基于由以上方程[7]给出的Penne生物热方程。此外,在一些示例中,模型3500可以是体内传感器温度TWE与体外温度TTx之间的关系的线性近似,诸如本文关于方程[6]所述。As described herein, model 3500 can take a variety of different forms. In some examples, model 3500 can be a PDE model, such as based on the Penne bioheat equation given by equation [7] above. In addition, in some examples, model 3500 can be a linear approximation of the relationship between the in vivo sensor temperature TWE and the in vitro temperature TTx , such as described herein with respect to equation [6].
在一些示例中,模型3500包括Penne生物热方程的线性非时变(LTI)近似。例如,Penne生物热方程的LTI近似可比由方程[6]给出的线性近似更精确,同时比对每个所需体内分析物传感器温度求解Penne生物热方程需要更少的处理资源。Penne生物热方程的示例LTI近似由以下方程[23]给出:In some examples, model 3500 includes a linear time-invariant (LTI) approximation of the Penne bioheat equation. For example, the LTI approximation of the Penne bioheat equation can be more accurate than the linear approximation given by equation [6] while requiring fewer processing resources than solving the Penne bioheat equation for each required in vivo analyte sensor temperature. An example LTI approximation of the Penne bioheat equation is given by the following equation [23]:
在方程23中,Y是包括随时间推移导出的体内传感器温度的1×n矢量。TTxToeplitz是由体外温度的归一化值形成的托普利兹(Toeplitz)矩阵。矢量在与TTxToeplitz相乘时得到将由Penne PDE生物热方程返回的体内温度的近似值。为了应用LTI近似,矢量的值可利用体外温度TTx的值和使用Penne PDE确定的传感器温度TWE来确定。例如,体外温度TTx的值可如下面的方程[23]所示被归一化并且由下面的方程[24]所示被卷积:In Equation 23, Y is a 1xn vector that includes the in-vivo sensor temperature derived over time. TTxToeplitz is a Toeplitz matrix formed by the normalized values of the in-vivo temperature. The vector When multiplied by TTxToeplitz , it approximates the body temperature that would be returned by the Penne PDE bioheat equation. To apply the LTI approximation, the vector The value of may be determined using the value of the external body temperature TTx and the sensor temperature TWE determined using the Penne PDE. For example, the value of the external body temperature TTx may be normalized as shown in the following equation [23] and convolved as shown in the following equation [24]:
在方程[23]中,是TTx值在给定时段内的均值。L是TTx矩阵的长度(例如,所用的体外温度值的数目)。体内传感器温度TWE的值可使用Penne PDE来确定并且例如如方程[25]所示被归一化:In equation [23], is the mean of the TTx values over a given period. L is the length of the TTx matrix (e.g., the number of external body temperature values used). The value of the internal body sensor temperature TWE can be determined using a Penne PDE and normalized, for example, as shown in equation [25]:
在方程[25]中,是使用Penne方程确定的体内传感器温度在给定时段内的均值。矢量可例如如方程[26]所示来确定:In equation [25], is the mean value of the internal sensor temperature over a given period of time determined using the Penne equation. It can be determined, for example, as shown in equation [26]:
该结果可拟合到由方程[27]给出的参数方程:The result can be fitted to the parametric equation given by equation [27]:
方程[27]的参数c1、c2和c3可用作用于生成体内传感器温度的值的LTI近似的参数,而无需求解Penne生物热方程。例如,体内传感器温度TWE可使用测量体外温度TTx和矢量的由下面的方程[28]给出的参数近似来找到:The parameters c1 , c2 , and c3 of equation [27] can be used as parameters for the LTI approximation of the value of the in vivo sensor temperature without solving the Penne bioheat equation. For example, the in vivo sensor temperature TWE can be calculated using the measured in vitro temperature TTx and the vector The parameters of are approximated by the following equation [28]:
体外温度TTx与体内传感器温度TWE之间的关系的LTI或其他线性近似在LTI或其他线性近似的假设成立的范围内可能是准确的。例如,LTI或其他线性近似在体外温度TTx和体内传感器温度TWE具有线性关系的范围内可能是准确的。此外,LTI近似在体外温度TTx与体内传感器温度TWE之间的关系是线性且时间不变的范围内是准确的。The LTI or other linear approximation of the relationship between the external body temperature TTx and the internal body sensor temperature TWE may be accurate within the range where the assumptions of the LTI or other linear approximation hold. For example, the LTI or other linear approximation may be accurate within the range where the external body temperature TTx and the internal body sensor temperature TWE have a linear relationship. Furthermore, the LTI approximation is accurate within the range where the relationship between the external body temperature TTx and the internal body sensor temperature TWE is linear and time-invariant.
在模型假设不成立的体外温度TTx和体内传感器温度TWE的范围内,模型的准确性可能受到影响,并且在一些示例中显著受到影响。因此,示例分析物传感器系统可被配置为当体外温度TTx和/或体内传感器温度TWE落在模型假设的范围之外时确定异常。In the range of the external body temperature TTx and the internal body sensor temperature TWE where the model assumptions do not hold, the accuracy of the model may be affected, and in some examples significantly affected. Therefore, the example analyte sensor system can be configured to determine an abnormality when the external body temperature TTx and/or the internal body sensor temperature TWE fall outside the range assumed by the model.
在各种示例中,当体内传感器温度TWE在给定范围之外时,基于线性近似的模型3500的假设可能不成立。因此,当体内传感器温度TWE落在给定范围之外时,本文所述的分析物传感器系统的一些示例检测到异常。图36示出了例示体外温度TTx与体内传感器温度TWE之间的示例关系的图表3600,例示了触发异常的体内传感器温度TWE的范围。在图表3600中,水平轴线指示体内传感器温度TWE并且垂直轴线表示体外温度TTx.。线3602表示体外温度TTx与体内传感器温度TWE之间的示例线性关系。例如,体外温度3608可对应于体内传感器温度3610,如线3602所示。In various examples, when the in-vivo sensor temperature TWE is outside a given range, the assumption of the model 3500 based on the linear approximation may not hold. Therefore, when the in-vivo sensor temperature TWE falls outside a given range, some examples of the analyte sensor system described herein detect an abnormality. FIG. 36 shows a chart 3600 illustrating an example relationship between an in-vivo temperature TTx and an in-vivo sensor temperature TWE , illustrating a range of in-vivo sensor temperatures TWE that trigger an abnormality. In the chart 3600, the horizontal axis indicates the in-vivo sensor temperature TWE and the vertical axis indicates the in-vivo temperature TTx . Line 3602 represents an example linear relationship between the in-vivo temperature TTx and the in-vivo sensor temperature TWE . For example, the in-vivo temperature 3608 may correspond to the in-vivo sensor temperature 3610, as shown by line 3602.
在图36所示的示例中,当体内传感器温度TWE小于下限范围温度3612或大于上限范围温度3614时,由线3602指示的线性模型的假设可能不成立。例如,当体内传感器温度TWE小于下限范围温度3612时,区域3604中的体内传感器温度TWE与体外温度TTx.之间的关系,以及当体内传感器温度TWE大于上限范围温度3614时,区域3606中的体内传感器温度与体外温度之间的关系。上限范围温度3612和下限范围温度3614的值可例如基于各种因素而变化,诸如所用模型的类型、所用模型的参数、受者的特性、传感器的特性等。在一些示例中,上限范围温度3614可介于40℃和60℃之间。在一些示例中,上限范围温度3614为约45℃。在一些示例中,下限范围温度3612介于约10℃与30℃之间。在一些示例中,下限范围温度为约25℃。In the example shown in FIG. 36 , when the in-vivo sensor temperature TWE is less than the lower range temperature 3612 or greater than the upper range temperature 3614, the assumption of the linear model indicated by line 3602 may not hold. For example, when the in-vivo sensor temperature TWE is less than the lower range temperature 3612, the relationship between the in-vivo sensor temperature TWE and the external temperature TTx . in region 3604, and when the in-vivo sensor temperature TWE is greater than the upper range temperature 3614, the relationship between the in-vivo sensor temperature T WE and the external temperature in region 3606. The values of the upper range temperature 3612 and the lower range temperature 3614 may vary, for example, based on various factors, such as the type of model used, the parameters of the model used, the characteristics of the recipient, the characteristics of the sensor, etc. In some examples, the upper range temperature 3614 may be between 40° C. and 60° C. In some examples, the upper range temperature 3614 is about 45° C. In some examples, the lower range temperature 3612 is between about 10° C. and 30° C. In some examples, the lower range temperature is about 25°C.
在一些示例中,具有图表3600所示的特性的分析物传感器可对体内传感器温度TWE实施限制或约束。例如,如果模型的应用产生低于下限范围温度3612或高于上限范围温度3614的体内传感器温度TWE和体内传感器温度TWE,则分析物传感器系统可例如通过在分析物传感器系统的处理器或存储器处设置适当标记来检测异常并提示适当的响应动作。在一些实施方案中,作为体内传感器温度TWE的替代或补充,一个或多个限制或约束可应用于体外温度TTx,例如如图37所述。对范围之外的体内传感器温度TWE的响应动作可包括例如暂停温度补偿、修改用于将体外温度TTx转换为对应体内传感器温度TWE的温度模型、暂停所确定的估计分析物值的显示、结束当前传感器会话等。In some examples, an analyte sensor having the characteristics shown in the graph 3600 may impose limits or constraints on the in vivo sensor temperature TWE . For example, if the application of the model produces an in vivo sensor temperature TWE and an in vivo sensor temperature TWE that is below the lower range temperature 3612 or above the upper range temperature 3614, the analyte sensor system may detect the anomaly and prompt an appropriate response action, for example, by setting an appropriate flag at a processor or memory of the analyte sensor system. In some embodiments, as an alternative or in addition to the in vivo sensor temperature TWE , one or more limits or constraints may be applied to the in vitro temperature TTx , for example as described in FIG. 37 . The response action to the in vivo sensor temperature TWE outside the range may include, for example, suspending temperature compensation, modifying the temperature model used to convert the in vitro temperature TTx to the corresponding in vivo sensor temperature TWE , suspending the display of the determined estimated analyte value, ending the current sensor session, etc.
在一些示例中,分析物传感器系统可被布置成将体外温度TTx限制到体外温度范围。例如,用于将体外温度TTx转换为体内传感器温度TWE的模型的假设在体外温度TTx的范围之外可能不成立。图37示出了图36的图表3600'的一个版本,包括对应于当体外温度TTx高于上限温度3708和/或低于下限温度3706时的情况的区域3704、3702。在一些示例中,当体外温度TTx高于上限范围温度3708和/或低于下限范围温度3706时,可以不执行从体外温度TTx到对应体内传感器温度TWE的温度转换。在一些示例中,当测量体外温度TTx高于上限范围温度3708和/或低于下限范围温度3706时,分析物传感器系统设置异常。例如,可如关于图34所述那样处理异常。In some examples, the analyte sensor system may be arranged to limit the external temperature TTx to the external temperature range. For example, the assumptions of the model for converting the external temperature TTx to the internal sensor temperature TWE may not hold outside the range of the external temperature TTx . FIG. 37 shows a version of the chart 3600 'of FIG. 36, including regions 3704, 3702 corresponding to the situation when the external temperature TTx is higher than the upper limit temperature 3708 and/or lower than the lower limit temperature 3706. In some examples, when the external temperature TTx is higher than the upper range temperature 3708 and/or lower than the lower range temperature 3706, the temperature conversion from the external temperature TTx to the corresponding internal sensor temperature TWE may not be performed. In some examples, when the measured external temperature TTx is higher than the upper range temperature 3708 and/or lower than the lower range temperature 3706, the analyte sensor system sets an exception. For example, the exception can be handled as described with respect to FIG. 34.
在一些示例中,上限范围温度3708可介于约60℃和约70℃之间。在一些示例中,上限范围温度3708可为约65℃。在一些示例中,下限范围温度3706可介于约5℃和-5℃之间。在一些示例中,下限范围温度3706可为约0℃。根据基于线性近似的模型的假设,可对由上限范围温度3708和下限范围温度3706指示的体外温度范围进行选择,以不再考虑与体内传感器温度TWE不相关的体外温度TTx的值。此外,在一些示例中,可基于用于测量体外温度TTx的温度传感器240、242、268、270等的能力来选择上限范围温度3708和下限范围温度3706。例如,所选温度传感器的准确度在所指示的范围之外可能降低,从而使得所导出的体内传感器温度TWE类似地不够准确。In some examples, the upper range temperature 3708 may be between about 60° C. and about 70° C. In some examples, the upper range temperature 3708 may be about 65° C. In some examples, the lower range temperature 3706 may be between about 5° C. and −5° C. In some examples, the lower range temperature 3706 may be about 0° C. Based on the assumptions of the model based on the linear approximation, the external body temperature range indicated by the upper range temperature 3708 and the lower range temperature 3706 may be selected to no longer consider values of the external body temperature TTx that are not related to the internal body sensor temperature TWE . In addition, in some examples, the upper range temperature 3708 and the lower range temperature 3706 may be selected based on the capabilities of the temperature sensors 240, 242, 268, 270, etc. used to measure the external body temperature TTx . For example, the accuracy of the selected temperature sensor may be reduced outside the indicated range, thereby making the derived internal body sensor temperature TWE similarly inaccurate.
图38是示出可由分析物传感器系统执行以根据考虑了模型参数的体外温度测量结果确定体内传感器温度的处理流程3800的一个示例的流程图。处理流程3800示出了用于将温度转换限制到体外温度TTx的范围和体内传感器温度TWE的范围两者的示例技术。38 is a flow chart illustrating one example of a process flow 3800 that may be performed by an analyte sensor system to determine an in vivo sensor temperature from an in vitro temperature measurement that takes into account model parameters. The process flow 3800 illustrates an example technique for limiting temperature conversions to both a range of in vitro temperature TTx and a range of in vivo sensor temperature TWE .
在操作3802处,分析物传感器系统可获取体外温度传感器信号。体外温度传感器信号可能已被体外温度传感器(诸如本文所述的温度传感器240、242、268、270中的一者或多者)捕获。在操作3806处,分析物传感器系统确定体外温度信号是否指示体外温度范围之外的温度。例如,体外温度范围可对应于图37所示的下限范围温度3706与上限范围温度3708之间的范围。如果体外温度TTx在体外温度范围之外,则可在操作3806处丢弃所获取的体外温度传感器信号。在一些示例中,操作3802和3804可由体外温度传感器240、242、268、270等的固件来执行。例如,体外温度传感器240、242、268、270可包括能够执行以查询传感器自身信号的固件。如果传感器信号指示温度在体外温度范围之外,则传感器可例如通过不将其提供给分析物传感器系统的其他部件来丢弃该信号。At operation 3802, the analyte sensor system may acquire an in vitro temperature sensor signal. The in vitro temperature sensor signal may have been captured by an in vitro temperature sensor (such as one or more of the temperature sensors 240, 242, 268, 270 described herein). At operation 3806, the analyte sensor system determines whether the in vitro temperature signal indicates a temperature outside the in vitro temperature range. For example, the in vitro temperature range may correspond to the range between the lower range temperature 3706 and the upper range temperature 3708 shown in Figure 37. If the in vitro temperature TTx is outside the in vitro temperature range, the acquired in vitro temperature sensor signal may be discarded at operation 3806. In some examples, operations 3802 and 3804 may be performed by firmware of in vitro temperature sensors 240, 242, 268, 270, etc. For example, in vitro temperature sensors 240, 242, 268, 270 may include firmware that can be executed to query the sensor's own signal. If the sensor signal indicates that the temperature is outside the in vitro temperature range, the sensor may, for example, discard the signal by not providing it to other components of the analyte sensor system.
如果体外温度传感器信号指示不在体外温度范围之外的体外温度TTx,则在操作3808处,分析物传感器系统可将温度模型应用于体外温度以生成对应体内传感器温度TWE。在操作3810处,分析物传感器系统可确定所确定的体内传感器温度TWE是否指示异常。体内温度TWE可指示异常,例如,如果它在体内温度范围之外。此外,如本文所述,如果体内温度TWE的变化率大于阈值和/或如果残余温度在残余温度范围之外,则体内温度TWE可指示异常。本文关于图39提供用于确定所确定的体内传感器温度TWE是否指示异常的另外示例细节。如果在操作3810处检测到异常,则分析物传感器系统可在操作3812处例如通过设置适当的异常标记来指示异常。可通过采取响应动作来处理异常,例如如本文关于图34所述。如果体内传感器温度TWE不指示异常,则分析物传感器系统可在操作3814处生成温度补偿的分析物值,例如如本文所述。If the in-vitro temperature sensor signal indicates an in-vitro temperature TTx that is not outside the in-vitro temperature range, at operation 3808, the analyte sensor system may apply a temperature model to the in-vitro temperature to generate a corresponding in-vitro sensor temperature TWE . At operation 3810, the analyte sensor system may determine whether the determined in-vitro sensor temperature TWE indicates an abnormality. The in-vitro temperature TWE may indicate an abnormality, for example, if it is outside the in-vitro temperature range. In addition, as described herein, if the rate of change of the in-vitro temperature TWE is greater than a threshold and/or if the residual temperature is outside the residual temperature range, the in-vitro temperature TWE may indicate an abnormality. Additional example details for determining whether the determined in-vitro sensor temperature TWE indicates an abnormality are provided herein with respect to FIG. 39. If an abnormality is detected at operation 3810, the analyte sensor system may indicate the abnormality at operation 3812, for example, by setting an appropriate abnormality flag. The abnormality may be handled by taking a responsive action, for example, as described herein with respect to FIG. 34. If the in-vitro sensor temperature TWE does not indicate an abnormality, the analyte sensor system may generate a temperature-compensated analyte value at operation 3814, for example, as described herein.
图39是示出基于所确定的体内传感器温度TWE来检测异常的一个示例的流程图3900。处理流程3900具有针对可能导致异常的不同温度条件进行测试的三个分支3902、3904、3906。分支3902测试由于体内传感器温度TWE在体内温度范围之外引起的异常。分支3904针对体内传感器温度TWE的变化率超过变化率阈值进行测试。分支3906测试当残余温度(例如,体外温度TTx与体内传感器温度TWE之间的差)超过温度残余阈值时的温度残余异常。在一些示例中,可省略分支3902、3904、3906中的一者或多者。FIG39 is a flowchart 3900 showing one example of detecting an anomaly based on a determined in-vivo sensor temperature TWE . The process flow 3900 has three branches 3902, 3904, 3906 that test for different temperature conditions that may cause an anomaly. Branch 3902 tests for an anomaly caused by the in-vivo sensor temperature TWE being outside the in-vivo temperature range. Branch 3904 tests for a rate of change of the in-vivo sensor temperature TWE exceeding a rate of change threshold. Branch 3906 tests for a temperature residual anomaly when a residual temperature (e.g., the difference between the in-vivo temperature TTx and the in-vivo sensor temperature TWE ) exceeds a temperature residual threshold. In some examples, one or more of the branches 3902, 3904, 3906 may be omitted.
参考分支3902,初始,分析物传感器系统在操作3908处针对与体内传感器温度范围相关的一个或多个温度条件来检查所确定的体内传感器温度。例如,如果体内传感器温度在体内温度范围内,则体内传感器温度可满足温度条件。如果体内传感器温度不满足条件(例如,如果其在体内温度范围之外),则分析物传感器在操作3912处设置体内温度异常并且行进到异常检测操作3910。设置体内温度异常可包括例如在分析物传感器系统的处理器和/或存储器处设置标记,其中标记对应于超出范围的体内传感器温度异常。如果体内传感器温度满足条件(例如,如果其不在体内温度范围之外),则分析物传感器可行进到异常检测操作3910而无需设置体内温度异常。Referring to branch 3902, initially, the analyte sensor system checks the determined in vivo sensor temperature at operation 3908 for one or more temperature conditions associated with the in vivo sensor temperature range. For example, if the in vivo sensor temperature is within the in vivo temperature range, the in vivo sensor temperature may satisfy the temperature condition. If the in vivo sensor temperature does not satisfy the condition (e.g., if it is outside the in vivo temperature range), the analyte sensor sets the in vivo temperature anomaly at operation 3912 and proceeds to anomaly detection operation 3910. Setting the in vivo temperature anomaly may include, for example, setting a flag at a processor and/or memory of the analyte sensor system, wherein the flag corresponds to an in vivo sensor temperature anomaly that is out of range. If the in vivo sensor temperature satisfies the condition (e.g., if it is not outside the in vivo temperature range), the analyte sensor may proceed to anomaly detection operation 3910 without setting the in vivo temperature anomaly.
现在参考分支3904,在操作3914处,分析物传感器系统可找到体内传感器温度TWE的变化率。这可涉及例如检查当前体内传感器温度TWE以及一个或多个先前测量的体内传感器温度TWE。在操作3916处,分析物传感器系统确定体内传感器温度的变化率是否满足与变化率阈值相关的温度条件。所确定的变化率在其低于变化率阈值的情况下可满足条件,并且在其等于或高于阈值的情况下可不满足阈值。如果变化率不满足变化率温度条件,则分析物传感器系统可在操作3918处设置体内温度变化率异常并行进到异常检测操作3910。设置体内温度变化率异常可包括例如在分析物传感器系统的处理器和/或存储器处设置标记,其中标记对应于超出范围的体内传感器温度变化率异常。如果变化率满足变化率温度条件(例如,如果其不高于阈值),则分析物传感器系统可行进到异常检测操作3910操作而无需设置体内变化率异常。Referring now to branch 3904, at operation 3914, the analyte sensor system may find the rate of change of the in-vivo sensor temperature TWE . This may involve, for example, checking the current in-vivo sensor temperature TWE and one or more previously measured in-vivo sensor temperatures TWE . At operation 3916, the analyte sensor system determines whether the rate of change of the in-vivo sensor temperature satisfies a temperature condition associated with a rate of change threshold. The determined rate of change may satisfy the condition if it is below the rate of change threshold, and may not satisfy the threshold if it is equal to or above the threshold. If the rate of change does not satisfy the rate of change temperature condition, the analyte sensor system may set an in-vivo temperature rate of change exception at operation 3918 and proceed to anomaly detection operation 3910. Setting an in-vivo temperature rate of change exception may include, for example, setting a flag at a processor and/or memory of the analyte sensor system, wherein the flag corresponds to an in-vivo sensor temperature rate of change exception that is out of range. If the rate of change satisfies the rate of change temperature condition (e.g., if it is not above the threshold), the analyte sensor system may proceed to anomaly detection operation 3910 without setting an in-vivo rate of change exception.
现在参考分支3906,在操作3920处,分析物传感器系统确定残余温度。残余温度可以是体外温度TTx与体内传感器温度TWE之间的差。因此,该操作3920可利用体外温度TTx和体内传感器温度TWE两者。在操作3922处,分析物传感器系统确定在操作3920处确定的残余温度是否满足与残余温度阈值相关的温度条件。如果残余温度在所确定的残余温度范围内或低于残余温度阈值,则残余温度可满足条件。如果残余温度在所确定的范围之外或如果其大于阈值,则残余温度可能不满足条件。Referring now to branch 3906, at operation 3920, the analyte sensor system determines a residual temperature. The residual temperature may be the difference between the in vitro temperature TTx and the in vivo sensor temperature TWE . Thus, this operation 3920 may utilize both the in vitro temperature TTx and the in vivo sensor temperature TWE . At operation 3922, the analyte sensor system determines whether the residual temperature determined at operation 3920 satisfies a temperature condition associated with a residual temperature threshold. If the residual temperature is within the determined residual temperature range or is below the residual temperature threshold, the residual temperature may satisfy the condition. If the residual temperature is outside the determined range or if it is greater than the threshold, the residual temperature may not satisfy the condition.
如果残余温度不满足温度条件,则分析物传感器系统可在操作3924处设置残余温度异常并行进到异常检测操作3910。设置残余温度异常可包括例如在分析物传感器系统的处理器和/或存储器处设置标记,其中标记对应于超出范围的残余温度异常。如果残余温度满足温度条件,则分析物传感器系统可进行到异常检测操作3910而无需设置残余温度异常。If the residual temperature does not satisfy the temperature condition, the analyte sensor system may set a residual temperature anomaly at operation 3924 and proceed to anomaly detection operation 3910. Setting the residual temperature anomaly may include, for example, setting a flag at a processor and/or memory of the analyte sensor system, where the flag corresponds to an out-of-range residual temperature anomaly. If the residual temperature satisfies the temperature condition, the analyte sensor system may proceed to anomaly detection operation 3910 without setting a residual temperature anomaly.
在异常检测操作3910处,分析物传感器系统可确定是否已设置分支3902、3904、3906所测试的异常中的任一者。如果已设置任何异常,则分析物传感器系统可执行响应动作,例如如本文关于图34所述。At anomaly detection operation 3910, the analyte sensor system may determine whether any of the anomalies tested by branches 3902, 3904, 3906 have been set. If any anomaly has been set, the analyte sensor system may perform a responsive action, such as described herein with respect to FIG.
在各种示例中,用于将体外温度与体内传感器温度相关的温度模型的假设在体内传感器温度和/或体外温度的不同范围内是不同的。因此,在一些示例中,分析物传感器系统可在体外温度和/或体内温度的不同范围内使用不同模型。使用不同模型可意味着例如使用具有不同形式的不同模型和/或使用具有针对不同范围的体外温度和/或体内温度的不同参数的相同模型形式。In various examples, the assumptions of the temperature model used to relate the in vitro temperature to the in vivo sensor temperature are different for different ranges of the in vivo sensor temperature and/or the in vitro temperature. Thus, in some examples, the analyte sensor system can use different models for different ranges of the in vitro temperature and/or the in vivo temperature. Using different models can mean, for example, using different models with different forms and/or using the same model form with different parameters for different ranges of in vitro temperature and/or in vivo temperature.
图40是例示由线4002、4004、4006、4008表示的体外温度TTx与体内传感器温度TWE之间的示例关系的图表4000。每条线4002、4004、4006、4008表示可在体内传感器温度TWE的不同范围内使用的温度模型。40 is a graph 4000 illustrating an example relationship between an external body temperatureTTx and an internal body sensor temperatureTWE represented by lines 4002, 4004, 4006, 4008. Each line 4002, 4004, 4006, 4008 represents a temperature model that may be used within a different range of internal body sensor temperatureTWE .
在图表4000中,水平轴线指示体内传感器温度TWE并且垂直轴线表示体外温度TTx.。在图40的示例中,线4002表示体外温度TTx与体内传感器温度4012和4014之间的体内传感器温度TWE之间的关系的线性近似。线4004表示体外温度TTx与体内传感器温度4014和4016之间的体内传感器温度TWE之间的关系的线性近似。线4006表示体外温度TTx与体内传感器温度4016和4018之间的体内传感器温度TWE之间的关系的线性近似。线4008表示当体内传感器温度TWE原本将大于体内传感器温度4018时可应用的上限体内传感器温度4018。例如,体内传感器温度4108可以是在该温度和以上使用的默认温度。可以不使用表示体内传感器温度TWE小于体内传感器温度4012的区域4010。例如,异常。In the graph 4000, the horizontal axis indicates the in-vivo sensor temperature TWE and the vertical axis indicates the in-vivo temperature TTx . In the example of FIG. 40, line 4002 indicates a linearapproximation of the relationship between the in-vivo sensor temperature T WEbetween the in-vivo sensor temperatures 4012 and 4014. Line 4004 indicates a linear approximation of the relationship between the in-vivosensor temperature TWE between the in-vivo sensor temperatures 4014 and 4016. Line 4006 indicates a linear approximation of the relationship between the in-vivo sensor temperature TWE between the in-vivo sensor temperatures 4016 and 4018. Line 4008 indicates an upper limit in-vivo sensor temperature 4018 that may be applied when the in-vivo sensor temperature TWE would otherwise be greater than the in-vivo sensor temperature 4018. For example, the in-vivo sensor temperature 4108 may be a default temperature used at and above this temperature. Theregion 4010 indicating that the in-vivo sensor temperature TWE is less than the in-vivo sensor temperature 4012 may not be used. For example, abnormal.
线4002、4004、4006、4008可具有不同的参数,诸如例如不同的斜率、不同的偏移等。在各种示例中,由线4002、4004、4006、4008指示的近似值可由分析物传感系统在体内传感器温度TWE的指示范围内使用。例如,图41是示出可由分析物传感器系统执行以在例如如图40所示的体内传感器温度TWE的不同范围内使用多个温度模型的处理流程4100的一个示例的流程图。在操作4102处,分析物传感器系统可利用当前模型来确定体内传感器温度TWE。在操作4104处,分析物传感器系统可使用体内传感器温度来确定温度补偿灵敏度M(t)comp。本文关于方程[3]至[4]描述了使用体内传感器温度找到温度补偿灵敏度的一种示例方式。在操作4106处,分析物传感器系统使用在操作4104处确定的温度补偿灵敏度来确定估计分析物值。Lines 4002, 4004, 4006, 4008 may have different parameters, such as, for example, different slopes, different offsets, etc. In various examples, the approximate values indicated by lines 4002, 4004, 4006, 4008 may be used by the analyte sensing system within the indicated range of the in vivo sensor temperature TWE . For example, FIG. 41 is a flowchart showing an example of a process flow 4100 that may be performed by the analyte sensor system to use multiple temperature models within different ranges of the in vivo sensor temperature TWE , such as shown in FIG. 40. At operation 4102, the analyte sensor system may determine the in vivo sensor temperature TWE using the current model. At operation 4104, the analyte sensor system may determine the temperature compensation sensitivity M(t)comp using the in vivo sensor temperature. An example way of finding the temperature compensation sensitivity using the in vivo sensor temperature is described herein with respect to equations [3] to [4]. At operation 4106, the analyte sensor system uses the temperature compensation sensitivity determined at operation 4104 to determine an estimated analyte value.
在任选的操作4108处,分析物传感器系统确定从体内传感器温度导出的度量。这种度量的示例包括如本文所述的体内传感器温度变化率和/或温度残余。在操作4110处,分析物传感器系统确定体内传感器温度TWE和/或在操作4106处确定的度量中的一者是否指示应使用新模型来确定体内传感器温度。例如,如果最近的体内传感器温度在与当前所用模型的范围不同的范围内,则可指示新模型。使用图40作为示例,如果体内传感器温度TWE是使用对应于线4004的模型计算得出,但介于温度4012和4014之间,则可指示使用对应于线4002的模型。At optional operation 4108, the analyte sensor system determines a metric derived from the in vivo sensor temperature. Examples of such metrics include in vivo sensor temperature change rate and/or temperature residual as described herein. At operation 4110, the analyte sensor system determines whether the in vivo sensor temperature TWE and/or one of the metrics determined at operation 4106 indicates that a new model should be used to determine the in vivo sensor temperature. For example, if the most recent in vivo sensor temperature is within a range different from that of the currently used model, a new model may be indicated. Using FIG. 40 as an example, if the in vivo sensor temperature TWE is calculated using a model corresponding to line 4004, but is between temperatures 4012 and 4014, the use of a model corresponding to line 4002 may be indicated.
在一些示例中,如果在操作4204处确定的度量中的一者在预定范围之外,则可指示新模型。例如,如果分析物传感器系统在体内传感器温度变化率和/或温度残余的不同范围内利用不同的温度模型,则可能发生这种情况。In some examples, a new model may be indicated if one of the metrics determined at operation 4204 is outside of a predetermined range. This may occur, for example, if the analyte sensor system utilizes a different temperature model over different ranges of in vivo sensor temperature change rate and/or temperature residual.
如果在操作4110处指示温度模型改变,则在操作4112处,分析物传感器系统可设置新模型以用于来自体外温度传感器的下一个样本。如果没有指示模型修改,则在操作4114处,分析物传感器系统可对来自体外温度传感器的下一个样本维持先前使用的温度模型。If a temperature model change is indicated at operation 4110, the analyte sensor system may set the new model for the next sample from the in vitro temperature sensor at operation 4112. If no model modification is indicated, the analyte sensor system may maintain the previously used temperature model for the next sample from the in vitro temperature sensor at operation 4114.
图42是示出可由分析物传感器系统执行以在例如如图40所示的体内传感器温度TWE的不同范围内使用多个温度模型的处理流程4200的另一个示例的流程图。在操作4202处,分析物传感器系统可利用当前模型来确定体内传感器温度TWE。在任选的操作4204处,分析物传感器系统确定从体内传感器温度导出的度量。这种度量的示例包括如本文所述的体内传感器温度变化率和/或温度残余。在操作4206处,分析物传感器系统确定体内传感器温度TWE和/或在操作4206处确定的度量中的一者是否指示应使用新模型来确定体内传感器温度。例如,如果最近的体内传感器温度和/或在操作4204处导出的度量在与当前所用模型的范围不同的范围内,则可指示新模型,如本文所述。FIG. 42 is a flowchart showing another example of a process flow 4200 that can be performed by an analyte sensor system to use multiple temperature models in different ranges of an in vivo sensor temperature TWE , such as shown in FIG. 40. At operation 4202, the analyte sensor system can use the current model to determine the in vivo sensor temperature TWE . At optional operation 4204, the analyte sensor system determines a metric derived from the in vivo sensor temperature. Examples of such metrics include the in vivo sensor temperature change rate and/or temperature residual as described herein. At operation 4206, the analyte sensor system determines whether the in vivo sensor temperature TWE and/or one of the metrics determined at operation 4206 indicates that a new model should be used to determine the in vivo sensor temperature. For example, if the most recent in vivo sensor temperature and/or the metric derived at operation 4204 is within a range different from the range of the currently used model, a new model may be indicated, as described herein.
如果在操作4206处指示温度模型的改变,则分析物传感器系统可利用更新的模型来重新确定体内传感器温度TWE。如果没有指示模型改变,并且/或者在利用更新的模型来确定新的体内传感器温度TWE之后,分析物传感器系统If a change in the temperature model is indicated at operation 4206, the analyte sensor system may re-determine the in vivo sensor temperature TWE using the updated model. If no model change is indicated, and/or after determining a new in vivo sensor temperature T WE using the updated model, the analyte sensor system may re-determine the in vivo sensor temperature TWE using the updated model.
在操作4210处,分析物传感器系统可使用在操作4202处或在操作4204处确定的体内传感器温度来确定温度补偿灵敏度M(t)comp。在操作4212处,分析物传感器系统使用在操作4210处确定的温度补偿灵敏度来确定估计分析物值。At operation 4210, the analyte sensor system may determine a temperature compensated sensitivity M(t)comp using the in vivo sensor temperature determined at operation 4202 or at operation 4204. At operation 4212, the analyte sensor system uses the temperature compensated sensitivity determined at operation 4210 to determine an estimated analyte value.
如本文所述,体内传感器温度可用于生成温度补偿灵敏度M(t)comp,从而允许分析物传感器系统在确定估计分析物值时考虑温度影响。在一些示例中,诸如当分析物是葡萄糖时,除灵敏度以外的因素可能受到体内传感器温度的影响。上面的方程[5]示出了使用温度补偿灵敏度来确定估计葡萄糖值的一种方式。方程[29]示出了方程[5]中所示的关系的高阶近似,包括另外的温度依赖因素:As described herein, the in vivo sensor temperature can be used to generate a temperature compensated sensitivity M(t)comp , thereby allowing the analyte sensor system to account for temperature effects when determining an estimated analyte value. In some examples, such as when the analyte is glucose, factors other than sensitivity may be affected by the in vivo sensor temperature. Equation [5] above shows one way to use the temperature compensated sensitivity to determine an estimated glucose value. Equation [29] shows a higher order approximation of the relationship shown in equation [5], including an additional temperature dependent factor:
在方程[29]中,M(t)是灵敏度,可如本文所述对其进行温度补偿。在该示例中,B2(t)是预测受者的血糖与间质葡萄糖浓度之间的体内葡萄糖偏差或差异的参数模型。例如,B2(t)可对应于方程[5]中的偏移。B1(t)是预测非葡萄糖背景信号的参数模型。非葡萄糖背景信号可由例如穿过分析物传感器的干涉层扩散的非葡萄糖材料引起。然而,扩散速率可取决于温度。因此,在一些示例中,估计葡萄糖值的准确度可通过生成温度补偿非葡萄糖信号B1(t)来增加。In equation [29], M(t) is the sensitivity, which may be temperature compensated as described herein. In this example, B2 (t) is a parameter model that predicts the in vivo glucose deviation or difference between the recipient's blood glucose and interstitial glucose concentration. For example, B2 (t) may correspond to the offset in equation [5]. B1 (t) is a parameter model that predicts the non-glucose background signal. The non-glucose background signal may be caused by, for example, non-glucose material diffusing through an interference layer of the analyte sensor. However, the diffusion rate may depend on temperature. Therefore, in some examples, the accuracy of the estimated glucose value may be increased by generating a temperature compensated non-glucose signal B1 (t).
温度补偿非葡萄糖信号B1(t)可使用如本文所述确定的体内传感器温度TWE来生成。在一些示例中,温度补偿非葡萄糖信号B1(t)可由下面的表达式[30]给出:The temperature compensated non-glucose signal B1 (t) may be generated using the in vivo sensor temperature TWE determined as described herein. In some examples, the temperature compensated non-glucose signal B1 (t) may be given by the following expression [30]:
B1(t,TWE,d,T[30]B1 (t,TWE ,d,T[30]
在表达式[30]中,Tref是参考温度。值d是每摄氏度非葡萄糖信号的变化百分比。d的值可根据特定传感器配置的基准测试来确定。在一些示例中,可将d建模为时间的函数d(t),其中t可从传感器会话开始时测量。In expression [30], Tref is the reference temperature. The value d is the percentage change of the non-glucose signal per degree Celsius. The value of d can be determined based on benchmark testing of a specific sensor configuration. In some examples, d can be modeled as a function of time d(t), where t can be measured from the beginning of the sensor session.
图43是示出可由分析物传感器系统诸如葡萄糖传感器系统执行以确定温度补偿估计葡萄糖值的处理流程4300的一个示例的流程图。在处理流程4300的该示例中,对来自体外温度传感器的信号进行上采样,因为其用于基于来自分析物传感器的多于一个采样值生成多于一个温度补偿分析物值。在一些示例中,体外温度传感器的采样周期可以是分析物传感器的周期的两倍,使得每个体内传感器温度TWE与分析物传感器的两个样本结合使用。例如,体外温度传感器的采样周期可以是60秒,而分析物传感器的采样周期可以是30秒。也可使用其他值和比率。FIG. 43 is a flow chart showing an example of a process flow 4300 that may be performed by an analyte sensor system, such as a glucose sensor system, to determine a temperature compensated estimated glucose value. In this example of process flow 4300, the signal from the in vitro temperature sensor is upsampled because it is used to generate more than one temperature compensated analyte value based on more than one sampled value from the analyte sensor. In some examples, the sampling period of the in vitro temperature sensor may be twice that of the analyte sensor, so that each in vivo sensor temperature TWE is used in conjunction with two samples of the analyte sensor. For example, the sampling period of the in vitro temperature sensor may be 60 seconds, while the sampling period of the analyte sensor may be 30 seconds. Other values and ratios may also be used.
参考处理流程4300,在操作4302处,葡萄糖传感器系统例如使用所测量的体外温度TWE来确定当前体内传感器温度TWE。体内传感器温度TWE可例如使用本文所述的温度模型和相关技术中的任一种来确定。Referring to process flow 4300, at operation 4302, the glucose sensor system determines a current in-vivo sensor temperature TWE , for example, using the measured in-vivo temperature TWE . The in-vivo sensor temperature TWE may be determined, for example, using any of the temperature models and related techniques described herein.
在操作4304处,葡萄糖传感器系统使用在操作4302处确定的体内传感器温度TWE来确定温度补偿灵敏度。温度补偿灵敏度可以任何合适的方式确定,例如如本文关于方程[2]至[5]所述。在操作4306处,葡萄糖传感器系统使用体内传感器温度来确定温度补偿非葡萄糖信号。可确定温度补偿非葡萄糖信号,例如如本文关于方程[30]所述。在操作4308处,葡萄糖传感器系统利用温度补偿灵敏度和温度补偿非葡萄糖信号来确定估计葡萄糖值。例如,葡萄糖传感器系统可使用上面的方程[29]来确定估计葡萄糖值。At operation 4304, the glucose sensor system determines a temperature compensated sensitivity using the in vivo sensor temperature TWE determined at operation 4302. The temperature compensated sensitivity can be determined in any suitable manner, for example, as described herein with respect to equations [2] to [5]. At operation 4306, the glucose sensor system determines a temperature compensated non-glucose signal using the in vivo sensor temperature. The temperature compensated non-glucose signal can be determined, for example, as described herein with respect to equation [30]. At operation 4308, the glucose sensor system determines an estimated glucose value using the temperature compensated sensitivity and the temperature compensated non-glucose signal. For example, the glucose sensor system can determine the estimated glucose value using equation [29] above.
在一些示例中,可能希望以与体外温度传感器(诸如本文所述的温度传感器240、242、268、270中的一者)不同的采样速率对分析物传感器系统的分析物传感器进行采样。例如,在一些示例中,用于将体外温度转换为体内传感器温度的温度模型可被优化成在第一时段T1执行,而分析物模型可被优化成在不同时段T2执行。因此,在一些示例中,分析物传感器系统可被布置成对来自分析物传感器的传感器信号和/或来自体外温度传感器的体外信号进行上采样,以便匹配两个传感器的时段。In some examples, it may be desirable to sample the analyte sensor of the analyte sensor system at a different sampling rate than an in vitro temperature sensor (such as one of the temperature sensors 240, 242, 268, 270 described herein). For example, in some examples, a temperature model for converting an in vitro temperature to an in vivo sensor temperature may be optimized to execute at a first time period T1, while an analyte model may be optimized to execute at a different time period T2. Thus, in some examples, the analyte sensor system may be arranged to upsample a sensor signal from an analyte sensor and/or an in vitro signal from an in vitro temperature sensor to match the time periods of the two sensors.
图44是示出可由分析物传感器系统执行以对来自体外温度传感器的信号进行上采样的处理流程4400的一个示例的流程图。在操作4402处,分析物传感器系统从体外温度传感器获取第一样本。在操作4404处,分析物传感器系统使用来自体外温度传感器的样本来确定体内传感器温度TWE。体内传感器温度TWE可使用本文所述的示例技术中的任一种来确定。44 is a flow chart showing one example of a process flow 4400 that may be performed by an analyte sensor system to upsample a signal from an external temperature sensor. At operation 4402, the analyte sensor system acquires a first sample from the external temperature sensor. At operation 4404, the analyte sensor system uses the sample from the external temperature sensor to determine an internal sensor temperature TWE . The internal sensor temperature TWE may be determined using any of the example techniques described herein.
在操作4406处,分析物传感器系统获取第一分析物传感器值。在操作4408处,分析物传感器系统使用在操作4404处确定的体内传感器温度TWE和在操作4406处获取的第一分析物传感器值757来确定第一估计分析物值。例如,分析物传感器系统可使用如本文所述的温度补偿灵敏度和/或温度补偿非葡萄糖信号来生成第一估计分析物值。At operation 4406, the analyte sensor system acquires a first analyte sensor value. At operation 4408, the analyte sensor system determines a first estimated analyte value using the in vivo sensor temperature TWE determined at operation 4404 and the first analyte sensor value 757 acquired at operation 4406. For example, the analyte sensor system may generate the first estimated analyte value using temperature compensated sensitivity and/or temperature compensated non-glucose signals as described herein.
在操作4408处,分析物传感器系统获取在第一分析物传感器值之后捕获的第二分析物传感器值。在操作4412处,分析物传感器系统使用在操作4410获取的第一分析物传感器值和在操作4404处确定的体内传感器温度TWE来确定第二估计分析物值。例如,分析物传感器系统可使用如本文所述的温度补偿灵敏度和/或温度补偿非葡萄糖信号来生成第一估计分析物值。在一些示例中,针对操作4408生成的温度补偿灵敏度和/或温度补偿非葡萄糖信号可在操作4412处再次使用。在其他示例中,分析物传感器系统可在操作4412处生成不同的温度补偿灵敏度和/或非葡萄糖信号,尽管使用在操作4404处确定的体内传感器温度TWE。At operation 4408, the analyte sensor system acquires a second analyte sensor value captured after the first analyte sensor value. At operation 4412, the analyte sensor system determines a second estimated analyte value using the first analyte sensor value acquired at operation 4410 and the in vivo sensor temperature TWE determined at operation 4404. For example, the analyte sensor system may generate the first estimated analyte value using the temperature compensated sensitivity and/or the temperature compensated non-glucose signal as described herein. In some examples, the temperature compensated sensitivity and/or the temperature compensated non-glucose signal generated for operation 4408 may be used again at operation 4412. In other examples, the analyte sensor system may generate a different temperature compensated sensitivity and/or non-glucose signal at operation 4412 despite using the in vivo sensor temperature TWE determined at operation 4404.
图45是与受者组织接合的另一个示例分析物传感器系统4500的示意图。分析物传感器系统4500包括壳体4506和用于将壳体4506(例如,其基部)固定到受者皮肤4508的粘合垫4504。图46是图45的示例布置沿着线AA截取的横截面图。图46示出了壳体4506内的电路板4512。电路板4505包括可以是本文所述的传感器电子器件的一部分的电子部件。传感器4524电耦合到电路板4512并延伸到壳体4506外部并插入受者皮肤4508中。传感器4524还可机械地耦合到壳体4506、电路板4512和/或另一合适部件。图46还示出了用于向传感器电子器件提供电力的电池4514,传感器电子器件包括例如电路板4512上的部件和用于将电池4514固定在壳体4506内的电池盒部件4516、4518。FIG. 45 is a schematic diagram of another example analyte sensor system 4500 engaged with recipient tissue. Analyte sensor system 4500 includes a housing 4506 and an adhesive pad 4504 for fixing housing 4506 (e.g., its base) to recipient skin 4508. FIG. 46 is a cross-sectional view of the example arrangement of FIG. 45 taken along line AA. FIG. 46 shows a circuit board 4512 in housing 4506. Circuit board 4505 includes electronic components that may be a part of the sensor electronics described herein. Sensor 4524 is electrically coupled to circuit board 4512 and extends outside housing 4506 and is inserted into recipient skin 4508. Sensor 4524 may also be mechanically coupled to housing 4506, circuit board 4512, and/or another suitable component. FIG. 46 also shows a battery 4514 for providing power to sensor electronics, which includes, for example, components on circuit board 4512 and battery box components 4516, 4518 for fixing battery 4514 in housing 4506.
图46还示出了与电路板4512电连通的示例温度传感器4520。例如,温度传感器4520可被配置为向电路板4512处的传感器电子器件的部件提供温度指示。在一些示例中,温度传感器4520还机械地耦合到电路板4512。温度传感器4520可以类似于本文所述的其他温度传感器240、242、268、270的方式使用。46 also shows an example temperature sensor 4520 in electrical communication with the circuit board 4512. For example, the temperature sensor 4520 can be configured to provide a temperature indication to a component of the sensor electronics at the circuit board 4512. In some examples, the temperature sensor 4520 is also mechanically coupled to the circuit board 4512. The temperature sensor 4520 can be used in a manner similar to the other temperature sensors 240, 242, 268, 270 described herein.
在图46的示例中,导热材料4522设置在温度传感器4520与受者皮肤4508之间。导热材料4522被定位成将热从受者皮肤4508传导至温度传感器4520。以这种方式,由温度传感器4520生成的温度指示可更多指示受者皮肤4508的温度并且更少指示环境温度。导热材料4522可包括例如金属或其他合适的热导体。导热材料4522可以是圆柱形、立方形、矩形棱柱形,或可具有任何其他合适的形状。在一些示例中,导热材料4522延伸穿过粘合垫4504并与皮肤4508直接接触。在其他示例中,导热材料4522与导热材料4522与皮肤4508之间的一个或多个中间层(诸如例如粘合垫4504、壳体4506的层等)接触。In the example of FIG. 46 , thermally conductive material 4522 is disposed between temperature sensor 4520 and recipient skin 4508. Thermally conductive material 4522 is positioned to conduct heat from recipient skin 4508 to temperature sensor 4520. In this manner, the temperature indication generated by temperature sensor 4520 may be more indicative of the temperature of recipient skin 4508 and less indicative of ambient temperature. Thermally conductive material 4522 may include, for example, metal or other suitable thermal conductors. Thermally conductive material 4522 may be cylindrical, cubic, rectangular prism-shaped, or may have any other suitable shape. In some examples, thermally conductive material 4522 extends through adhesive pad 4504 and is in direct contact with skin 4508. In other examples, thermally conductive material 4522 is in contact with one or more intermediate layers between thermally conductive material 4522 and skin 4508 (such as, for example, adhesive pad 4504, layers of housing 4506, etc.).
本文描述或例示的方法中的任一种可包括至少部分地基于所确定的温度补偿葡萄糖浓度水平来递送治疗,诸如递送胰岛素(例如,使用可穿戴泵或智能笔)。例如,可将温度补偿葡萄糖水平提供给泵、智能笔或其他设备,它们可使用温度补偿葡萄糖水平来确定治疗。这些方法还可组合(例如,以串联或并联形式),或可混合在一起以形成组合两种或更多种方法的聚合方法。Any of the methods described or illustrated herein may include delivering therapy, such as delivering insulin (e.g., using a wearable pump or smart pen), based at least in part on the determined temperature-compensated glucose concentration level. For example, the temperature-compensated glucose level may be provided to a pump, smart pen, or other device, which may use the temperature-compensated glucose level to determine therapy. These methods may also be combined (e.g., in series or parallel form), or may be mixed together to form a polymeric method that combines two or more methods.
本文所述的系统、设备和方法可应用于任何类型的分析物传感器或任何类型的葡萄糖传感器。对“葡萄糖传感器”或“分析物传感器”或“葡萄糖监测仪”的任何特定引用应被理解为适用于任何葡萄糖传感器、分析物传感器、葡萄糖监测仪或受到温度影响的其他传感器。例如,在葡萄糖传感器的背景下描述的方法也适用于其他类型的分析物传感器。The systems, devices, and methods described herein may be applied to any type of analyte sensor or any type of glucose sensor. Any specific reference to a "glucose sensor" or "analyte sensor" or "glucose monitor" should be understood to be applicable to any glucose sensor, analyte sensor, glucose monitor, or other sensor affected by temperature. For example, methods described in the context of a glucose sensor are also applicable to other types of analyte sensors.
虽然在生理传感器和温度补偿的背景下描述了评估或校正温度测量结果的方法,但这些方法也可应用于温度信息和温度信息的准确性相关的其他背景中。例如,这些方法可应用于温度设备在智能设备(诸如手持式设备、智能电话、车辆、手表、智能眼镜或其他可穿戴设备)中的使用。Although the methods for evaluating or correcting temperature measurements are described in the context of physiological sensors and temperature compensation, the methods may also be applied in other contexts where temperature information and the accuracy of temperature information are relevant. For example, the methods may be applied to the use of temperature devices in smart devices such as handheld devices, smart phones, vehicles, watches, smart glasses, or other wearable devices.
这些非限制性示例中的每一者可独立存在或可与其他示例中的一者或多者以各种排列或组合方式组合。Each of these non-limiting examples may stand alone or may be combined with one or more of the other examples in various permutations or combinations.
以上具体实施方式包括对附图的参考,附图形成具体实施方式的一部分。附图以说明的方式示出了其中可以实践本发明的具体实施方案。这些实施方案在本文还称为“示例”。此类示例可包括除了所示出或描述的元件之外的元件。然而,本发明人还预期仅提供所示出或描述的那些元件的示例。此外,本发明人还预期相对于特定示例(或其一个或多个方面)或相对于本文示出或描述的其他示例(或其一个或多个方面)的使用所示出或描述的那些元件的任何组合或排列的示例(或其一个或多个方面)。The above detailed description includes reference to the accompanying drawings, which form a part of the detailed description. The accompanying drawings show by way of illustration specific embodiments in which the present invention can be put into practice. These embodiments are also referred to as "examples" herein. Such examples may include elements other than those shown or described. However, the inventors also contemplate providing only examples of those elements shown or described. In addition, the inventors also contemplate examples (or one or more aspects thereof) of any combination or arrangement of those elements shown or described with respect to a specific example (or one or more aspects thereof) or with respect to other examples (or one or more aspects thereof) shown or described herein.
在本文献和以引用的方式并入的任何文献之间的用法不一致的情况下,以本文献中的用法为准。In the event of inconsistent usages between this document and any document incorporated by reference, the usage in this document controls.
在本文献中,如在专利文献中常见的,使用术语“一””来包括一个或一个以上,独立于“至少一个”或“一个或多个”的任何其他实例或用法。在本文献中,术语“或”用于指非排他性的或,使得“A或B”包括“A而非B”、“B而非A”以及“A和B”,除非另有指示。在本文献中,术语“包括”和“其中”用作相应术语“包括”和“其中”的简明英语等效物。而且,在所附权利要求书中,术语“包含”和“包括”是开放式的,即,包括除了在权利要求中的此类术语之后列出的元件之外的元件的系统、装置、物品、组合物、配方或过程仍然被认为落入该权利要求的范围内。此外,在所附权利要求书中,术语“第一”、“第二”和“第三”等仅用作标记,而无意在对它们的对象强加数值要求。In this document, as is common in patent documents, the term "a" or "an" is used to include one or more than one, independent of any other instance or usage of "at least one" or "one or more." In this document, the term "or" is used to refer to a non-exclusive or, such that "A or B" includes "A but not B," "B but not A," and "A and B," unless otherwise indicated. In this document, the terms "including" and "wherein" are used as the plain-English equivalents of the respective terms "comprising" and "wherein." Moreover, in the appended claims, the terms "comprising" and "including" are open-ended, i.e., systems, devices, articles, compositions, formulations, or processes that include elements in addition to the elements listed after such terms in a claim are still considered to fall within the scope of the claim. Moreover, in the appended claims, the terms "first," "second," and "third," etc. are used merely as labels and are not intended to impose numerical requirements on their objects.
几何术语,诸如“平行”、“垂直”、“圆形”或“正方形”,无意要求绝对数学精度,除非上下文另有指示。而是,此类几何术语允许由于制造或等效功能而引起的变化。例如,如果元件被描述为“圆形”或“大体上圆形”,则不是精确圆形的部件(例如,略微椭圆形或多边的多边形的部件)仍然被此描述涵盖。Geometric terms, such as "parallel," "perpendicular," "circular," or "square," are not intended to require absolute mathematical precision unless the context indicates otherwise. Rather, such geometric terms allow for variations due to manufacturing or equivalent functions. For example, if an element is described as "circular" or "substantially circular," components that are not exactly circular (e.g., components that are slightly elliptical or multi-sided polygonal) are still encompassed by this description.
本文描述的方法示例可至少部分由机器或计算机实施。一些示例可包括编码有指令的计算机可读介质或机器可读介质,这些指令可操作以将电子设备配置为执行如在以上示例中所述的方法。此类方法的具体实施可包括代码,诸如微代码、汇编语言代码、高级语言代码等。此类代码可以包括用于执行各种方法的计算机可读指令。该代码可以形成计算机程序产品的部分。此外,在一个示例中,代码可诸如在执行期间或在其他时间有形地存储在一个或多个易失性、非暂态或非易失性有形计算机可读介质上。这些有形计算机可读介质的示例可以包括但不限于硬盘、可移除磁盘、可移除光盘(例如,压缩盘和数字视频盘)、磁带盒、存储器卡或记忆棒、随机存取存储器(RAM)、只读存储器(ROM)等。The method examples described herein may be implemented at least in part by a machine or computer. Some examples may include a computer-readable medium or machine-readable medium encoded with instructions, which may be operable to configure an electronic device to perform the method as described in the above examples. The specific implementation of such methods may include code, such as microcode, assembly language code, high-level language code, etc. Such code may include computer-readable instructions for performing various methods. The code may form part of a computer program product. In addition, in one example, the code may be tangibly stored on one or more volatile, non-transient or non-volatile tangible computer-readable media, such as during execution or at other times. Examples of these tangible computer-readable media may include, but are not limited to, hard disks, removable disks, removable optical disks (e.g., compact disks and digital video disks), cassettes, memory cards or memory sticks, random access memories (RAM), read-only memories (ROM), etc.
以上描述意在是说明性的,而非限制性的。例如,上述示例(或其一个或多个方面)可以彼此组合使用。诸如本领域技术人员在审阅以上描述时可使用其他实施方案。提供摘要以符合37C.F.R.§1.72(b)的要求,使读者能够快速确定技术公开的性质。所提交的摘要应理解为其将不用于解释或限制权利要求的范围或含义。而且,在以上具体实施方式中,可将各种特征分组在一起以简化本公开。这不应被解释为未要求保护的公开特征对于任何权利要求都是必要的。而是,发明主题可以在于少于特定公开的实施方案的所有特征。因此,所附权利要求由此作为示例或实施方案并入具体实施方式中,其中每个权利要求独立地作为单独的实施方案,并且预期这些实施方案可以以各种组合或排列彼此组合。本发明的范围应参考所附权利要求以及这些权利要求所授权的等效物的全部范围来确定。The above description is intended to be illustrative, not restrictive. For example, the above examples (or one or more aspects thereof) may be used in combination with each other. Other embodiments may be used by those skilled in the art when reviewing the above description. An abstract is provided to comply with the requirements of 37 C.F.R. §1.72 (b), enabling readers to quickly determine the nature of the technical disclosure. The submitted abstract should be understood as not being used to interpret or limit the scope or meaning of the claims. Moreover, in the above specific embodiments, various features may be grouped together to simplify the present disclosure. This should not be interpreted as unclaimed public features being necessary for any claim. Instead, the subject matter of the invention may be less than all the features of a particular disclosed embodiment. Therefore, the attached claims are thus incorporated into the specific embodiments as examples or embodiments, wherein each claim is independently a separate embodiment, and it is expected that these embodiments may be combined with each other in various combinations or arrangements. The scope of the present invention should be determined with reference to the attached claims and the full scope of equivalents authorized by these claims.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| PCT/US2021/062471WO2023107107A1 (en) | 2021-12-08 | 2021-12-08 | Systems, devices, and methods to compensate for temperature effects on sensors |
| US17/545,711US20220095968A1 (en) | 2018-01-23 | 2021-12-08 | Systems, devices, and methods to compensate for temperature effects on sensors |
| Publication Number | Publication Date |
|---|---|
| CN118369045Atrue CN118369045A (en) | 2024-07-19 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202180104866.5APendingCN118369045A (en) | 2021-12-08 | 2021-12-08 | Systems, devices, and methods for compensating for temperature effects on a sensor |
| Country | Link |
|---|---|
| EP (1) | EP4444173A1 (en) |
| JP (1) | JP2024545146A (en) |
| CN (1) | CN118369045A (en) |
| AU (1) | AU2021477590A1 (en) |
| CA (1) | CA3242205A1 (en) |
| WO (1) | WO2023107107A1 (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20250191743A1 (en)* | 2023-12-06 | 2025-06-12 | Dexcom, Inc. | Mitigation of compression event failure for continuous glucose monitors |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US4787398A (en) | 1985-04-08 | 1988-11-29 | Garid, Inc. | Glucose medical monitoring system |
| US4757022A (en) | 1986-04-15 | 1988-07-12 | Markwell Medical Institute, Inc. | Biological fluid measuring device |
| US5497772A (en) | 1993-11-19 | 1996-03-12 | Alfred E. Mann Foundation For Scientific Research | Glucose monitoring system |
| US6001067A (en) | 1997-03-04 | 1999-12-14 | Shults; Mark C. | Device and method for determining analyte levels |
| US6119028A (en) | 1997-10-20 | 2000-09-12 | Alfred E. Mann Foundation | Implantable enzyme-based monitoring systems having improved longevity due to improved exterior surfaces |
| US6081736A (en) | 1997-10-20 | 2000-06-27 | Alfred E. Mann Foundation | Implantable enzyme-based monitoring systems adapted for long term use |
| US6579690B1 (en) | 1997-12-05 | 2003-06-17 | Therasense, Inc. | Blood analyte monitoring through subcutaneous measurement |
| US6134461A (en) | 1998-03-04 | 2000-10-17 | E. Heller & Company | Electrochemical analyte |
| US6175752B1 (en) | 1998-04-30 | 2001-01-16 | Therasense, Inc. | Analyte monitoring device and methods of use |
| US6424847B1 (en) | 1999-02-25 | 2002-07-23 | Medtronic Minimed, Inc. | Glucose monitor calibration methods |
| US7460898B2 (en) | 2003-12-05 | 2008-12-02 | Dexcom, Inc. | Dual electrode system for a continuous analyte sensor |
| US8060173B2 (en) | 2003-08-01 | 2011-11-15 | Dexcom, Inc. | System and methods for processing analyte sensor data |
| US20080119703A1 (en) | 2006-10-04 | 2008-05-22 | Mark Brister | Analyte sensor |
| ATE480761T1 (en)* | 2003-12-05 | 2010-09-15 | Dexcom Inc | CALIBRATION METHODS FOR A CONTINUOUSLY WORKING ANALYTICAL SENSOR |
| US7654956B2 (en) | 2004-07-13 | 2010-02-02 | Dexcom, Inc. | Transcutaneous analyte sensor |
| WO2007120381A2 (en) | 2006-04-14 | 2007-10-25 | Dexcom, Inc. | Analyte sensor |
| US9974472B2 (en)* | 2011-06-16 | 2018-05-22 | Abbott Diabetes Care Inc. | Temperature-compensated analyte monitoring devices, systems, and methods thereof |
| US10453573B2 (en) | 2012-06-05 | 2019-10-22 | Dexcom, Inc. | Dynamic report building |
| JP2017516548A (en) | 2014-06-06 | 2017-06-22 | デックスコム・インコーポレーテッド | Fault identification and response processing based on data and context |
| CA3089212A1 (en)* | 2018-01-23 | 2019-08-01 | Dexcom, Inc. | Systems, devices, and methods to compensate for temperature effects on sensors |
| Publication number | Publication date |
|---|---|
| EP4444173A1 (en) | 2024-10-16 |
| JP2024545146A (en) | 2024-12-05 |
| AU2021477590A1 (en) | 2024-07-11 |
| CA3242205A1 (en) | 2023-06-15 |
| WO2023107107A1 (en) | 2023-06-15 |
| Publication | Publication Date | Title |
|---|---|---|
| US20230108235A1 (en) | Systems, devices, and methods to compensate for temperature effects on sensors | |
| US12303262B2 (en) | Advanced continuous analyte monitoring system | |
| JP7571101B2 (en) | TRANSDERMAL ANALYTE SENSORS AND MONITORS, CALIBRATION THEREOF, AND RELATED METHODS - Patent application | |
| JP7350812B2 (en) | System and method for factory or incomplete calibration of indwelling sensors based on sensitivity profiles | |
| US20220095968A1 (en) | Systems, devices, and methods to compensate for temperature effects on sensors | |
| CN118369045A (en) | Systems, devices, and methods for compensating for temperature effects on a sensor |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| CB03 | Change of inventor or designer information | ||
| CB03 | Change of inventor or designer information | Inventor after:Wang Liang Inventor after:G.R. Esmaili Inventor after:S. Etra Inventor after:H. Mohammed Modilani Inventor after:S. POM Inventor after:R.Ma Inventor after:Shi Minglian Inventor after:A. C. Harry - Chao Qimike Inventor before:L.Wang Inventor before:G.R. Esmaili Inventor before:S. Etra Inventor before:H. Mohammed Modilani Inventor before:S. POM Inventor before:R.Ma Inventor before:Shi Minglian Inventor before:A. C. Harry - Chao Qimike | |
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination |