技术领域Technical Field
本发明涉及发电设备技术领域,具体涉及一种发电设备运行状态参数可视化系统。The present invention relates to the technical field of power generation equipment, and in particular to a power generation equipment operating status parameter visualization system.
背景技术Background technique
发电设备是将其他形式的能源转换成电能的成套机械设备,其基本工作原理是利用动力系统将能源转换为机械能,再通过发电机将机械能转换为电能输出到用电设备上使用,常见的发电设备有光伏发电设备、风能发电设备、水力发电设备、燃料发电设备等。Power generation equipment is a complete set of mechanical equipment that converts other forms of energy into electrical energy. Its basic working principle is to use a power system to convert energy into mechanical energy, and then use a generator to convert mechanical energy into electrical energy and output it to electrical equipment for use. Common power generation equipment includes photovoltaic power generation equipment, wind power generation equipment, hydropower generation equipment, fuel power generation equipment, etc.
目前,这些发电设备在日常运行发电过程中,依靠人工巡检维护的需求仍较高,在发电设备数量较多时,人工巡检维护成本较高,且无法高效完整的查找存在运行安全风险的发电设备,以至于发电设备巡检维护效率难以优化,对发电设备的长久稳定运行带来安全隐患。At present, the demand for manual inspection and maintenance of these power generation equipment during daily power generation operation is still high. When the number of power generation equipment is large, the cost of manual inspection and maintenance is high, and it is impossible to efficiently and completely find power generation equipment with operational safety risks. As a result, the inspection and maintenance efficiency of power generation equipment is difficult to optimize, posing a safety hazard to the long-term stable operation of power generation equipment.
发明内容Summary of the invention
针对现有技术所存在的上述缺点,本发明提供了一种发电设备运行状态参数可视化系统,解决了上述背景技术中提出的技术问题。In view of the above-mentioned shortcomings of the prior art, the present invention provides a system for visualizing operating status parameters of power generation equipment, which solves the technical problems raised in the above-mentioned background technology.
为实现以上目的,本发明通过以下技术方案予以实现:To achieve the above objectives, the present invention is implemented through the following technical solutions:
一种发电设备运行状态参数可视化系统,包括:A power generation equipment operating status parameter visualization system, comprising:
单片机,用于控制系统运行,获取系统运行模块运行数据;采集模块,用于采集发电设备的运行状态参数;逻辑模块,用于设定发电设备运行状态参数的可视化图形的生成逻辑,基于发电设备运行状态参数可视化图形的生成逻辑,生成发电设备运行状态参数的可视化图形;可视化模块,用于接收逻辑模块中基于发电设备运行状态参数可视化图形生成逻辑,生成的发电设备运行状态参数可视化图形,对发电设备运行状态参数可视化图形进行显示;分析模块,用于获取可视化模块中生成的发电设备运行状态参数可视化图形,基于发电设备运行状态参数可视化图形分析发电设备运行风险;协调模块,用于协调可视化模块中显示的发电设备运行状态参数可视化图形的顺序。A single-chip microcomputer is used to control the operation of the system and obtain the operation data of the system operation module; an acquisition module is used to collect the operating status parameters of the power generation equipment; a logic module is used to set the generation logic of the visualization graph of the operating status parameters of the power generation equipment, and generate the visualization graph of the operating status parameters of the power generation equipment based on the generation logic of the visualization graph of the operating status parameters of the power generation equipment; a visualization module is used to receive the visualization graph of the operating status parameters of the power generation equipment generated by the logic module based on the visualization graph generation logic of the operating status parameters of the power generation equipment, and display the visualization graph of the operating status parameters of the power generation equipment; an analysis module is used to obtain the visualization graph of the operating status parameters of the power generation equipment generated in the visualization module, and analyze the operating risks of the power generation equipment based on the visualization graph of the operating status parameters of the power generation equipment; a coordination module is used to coordinate the order of the visualization graphs of the operating status parameters of the power generation equipment displayed in the visualization module.
更进一步地,所述单片机下级设置有子模块,包括:Furthermore, the single chip microcomputer is provided with submodules at the lower level, including:
储存单元,用于接收采集模块中采集的发电设备运行状态参数,对发电设备运行状态参数进行储存;A storage unit, used to receive the power generation equipment operating status parameters collected by the collection module, and store the power generation equipment operating status parameters;
管理单元,用于识别发电设备运行状态参数来源,基于发电设备运行状态参数来源,对储存单元中储存的发电设备运行状态参数进行区分管理;A management unit, used to identify the source of the power generation equipment operating status parameter, and based on the source of the power generation equipment operating status parameter, perform differentiated management on the power generation equipment operating status parameter stored in the storage unit;
其中,采集模块在采集到发电设备运行状态参数后,以单片机作为传输路径节点向储存单元发送,采集模块中采集的发电设备运行状态参数包括:发电设备运行启停状态、发电设备位置信息、发电设备发电功率、振动频率、温度及累计运行时间,管理单元对储存单元中储存的发电设备运行状态参数进行区分管理时,基于发电设备运行状态参数中发电设备位置信息,对发电设备运行状态参数进行区分管理。Among them, after the acquisition module collects the operating status parameters of the power generation equipment, it sends them to the storage unit with the single-chip microcomputer as the transmission path node. The operating status parameters of the power generation equipment collected in the acquisition module include: the start and stop status of the power generation equipment, the location information of the power generation equipment, the power generation power of the power generation equipment, the vibration frequency, the temperature and the accumulated operating time. When the management unit performs differentiated management on the operating status parameters of the power generation equipment stored in the storage unit, it performs differentiated management on the operating status parameters of the power generation equipment based on the location information of the power generation equipment in the operating status parameters of the power generation equipment.
更进一步地,所述单片机在作为传输路径节点传输采集模块采集到的发电设备运行状态参数时,同步遍历执行传输操作的发电设备运行状态参数,对发电设备运行状态参数的完整性进行判定,并在判定到不完整的发电设备运行状态参数,对不完整的发电设备运行状态参数进行标记,发电设备运行状态电参数的标记与发电设备运行状态参数一同向储存单元传输;Furthermore, when the single-chip microcomputer transmits the power generation equipment operating state parameters collected by the collection module as a transmission path node, it synchronously traverses the power generation equipment operating state parameters that perform the transmission operation, determines the integrity of the power generation equipment operating state parameters, and marks the incomplete power generation equipment operating state parameters when determining that the power generation equipment operating state parameters are incomplete, and the marks of the power generation equipment operating state parameters are transmitted to the storage unit together with the power generation equipment operating state parameters;
其中,单片机对发电设备运行状态参数完整性的判定逻辑,即判定发电设备运行状态参数中是否包含:发电设备运行启停状态、发电设备位置信息、发电设备发电功率、振动频率、温度及累计运行时间的操作,单片机对不完整发电设备运行状态参数进行标记的操作,即对不完整的发电设备运行状态参数中,每一组发电设备运行状态参数的文件名称添加相同的文字标记后缀。Among them, the single-chip microcomputer determines the logic of the integrity of the operating status parameters of the power generation equipment, that is, whether the operating status parameters of the power generation equipment include: the start and stop status of the power generation equipment, the location information of the power generation equipment, the power generation power of the power generation equipment, the vibration frequency, the temperature and the accumulated operating time. The single-chip microcomputer marks the incomplete operating status parameters of the power generation equipment, that is, in the incomplete operating status parameters of the power generation equipment, the same text mark suffix is added to the file name of each group of operating status parameters of the power generation equipment.
更进一步地,所述逻辑模块中设定的发电设备运行状态参数可视化图形的生成逻辑包括:Furthermore, the generation logic of the visualization graph of the operating status parameters of the power generation equipment set in the logic module includes:
逻辑1:访问储存单元,于储存单元中调取发电设备运行状态参数中发电设备发电功率参数,基于发电设备发电功率参数的采集时间戳对各组发电设备发电功率参数进行排序,进一步构建横纵数轴,以横轴表示时间、纵轴表示发电设备发电功率,对调取的发电设备运行状态参数中发电设备发电功率参数进行表示;Logic 1: access the storage unit, retrieve the power generation parameters of the power generation equipment in the power generation equipment operation status parameters in the storage unit, sort the power generation parameters of each group of power generation equipment based on the acquisition timestamp of the power generation parameters of the power generation equipment, further construct a horizontal and vertical axis, with the horizontal axis representing time and the vertical axis representing the power generation of the power generation equipment, and represent the power generation parameters of the power generation equipment in the retrieved power generation equipment operation status parameters;
逻辑2:访问储存单元,于储存单元中调取发电设备运行状态参数中振动频率参数,基于发电设备振动频率的采集时间戳对各组发电设备振动频率进行排序,进一步构建横纵数轴,以横轴表示时间、纵轴表示发电设备振动频率,对调取的发电设备运行状态参数中发电设备振动频率进行表示;Logic 2: access the storage unit, retrieve the vibration frequency parameter in the power generation equipment operating status parameter in the storage unit, sort the vibration frequencies of each group of power generation equipment based on the acquisition timestamp of the vibration frequencies of the power generation equipment, further construct a horizontal and vertical axis, with the horizontal axis representing time and the vertical axis representing the vibration frequency of the power generation equipment, and represent the vibration frequency of the power generation equipment in the retrieved operating status parameters of the power generation equipment;
逻辑3:访问储存单元,于储存单元中调取发电设备运行状态参数中温度参数,基于发电设备温度参数的采集时间戳对各组发电设备温度参数进行排序,进一步构建横纵数轴,以横轴表示时间、纵轴表示发电设备温度参数,对调取的发电设备运行状态参数中发电设备温度参数进行表示;Logic 3: access the storage unit, retrieve the temperature parameters in the power generation equipment operating status parameters in the storage unit, sort the temperature parameters of each group of power generation equipment based on the acquisition timestamp of the temperature parameters of the power generation equipment, further construct a horizontal and vertical axis, with the horizontal axis representing time and the vertical axis representing the temperature parameters of the power generation equipment, and represent the temperature parameters of the power generation equipment in the retrieved operating status parameters of the power generation equipment;
逻辑4:访问储存单元,于储存单元中调取发电设备运行状态参数中累计运行时间参数,基于发电设备累计运行时间参数的采集时间戳对各组发电设备累计运行时间参数进行排序,进一步构建横纵数轴,以横轴表示时间、纵轴表示发电设备累计运行时间参数,对调取的发电设备运行状态参数中发电设备累计运行时间参数进行表示;Logic 4: access the storage unit, retrieve the cumulative operating time parameter in the operating status parameter of the power generation equipment in the storage unit, sort the cumulative operating time parameters of each group of power generation equipment based on the acquisition timestamp of the cumulative operating time parameters of the power generation equipment, further construct a horizontal and vertical axis, with the horizontal axis representing time and the vertical axis representing the cumulative operating time parameter of the power generation equipment, and represent the cumulative operating time parameter of the power generation equipment in the retrieved operating status parameter of the power generation equipment;
其中,横纵数轴上表示的发电设备发电功率、振动频率、温度及累计运行时间均以折线形式表示数值变更趋势。Among them, the power generation equipment's power generation, vibration frequency, temperature and cumulative operating time shown on the horizontal and vertical axes are all expressed in the form of broken lines to show the trend of numerical changes.
更进一步地,所述逻辑模块中设定的发电设备运行状态参数可视化图形的生成逻辑分别应用于每一发电设备,所述逻辑模块下级设置有子模块,包括:Furthermore, the logic for generating the visualization graph of the operating status parameters of the power generation equipment set in the logic module is applied to each power generation equipment respectively, and the logic module is provided with submodules at the lower level, including:
选择单元,用于选择逻辑模块中设定的发电设备运行状态参数可视化图形的生成逻辑,基于选择的生成逻辑生成发电设备运行状态参数可视化图形;A selection unit, used to select a generation logic of a visualization graph of operating status parameters of a power generation device set in a logic module, and to generate a visualization graph of operating status parameters of the power generation device based on the selected generation logic;
其中,选择单元在选择生成逻辑时,由系统端用户手动控制选择指定生成逻辑生成发电设备运行状态参数可视化图形,所述选择单元初始默认选择逻辑为选择所有生成逻辑生成发电设备运行状态参数可视化图形。When selecting the generation logic, the selection unit is manually controlled by the system end user to select the specified generation logic to generate the visualization graph of the operating status parameters of the power generation equipment. The initial default selection logic of the selection unit is to select all generation logics to generate the visualization graph of the operating status parameters of the power generation equipment.
更进一步地,所述可视化模块由任意一种计算机显示屏所集成,可视化模块运行阶段,于各组表示相同发电设备运行状态参数的发电设备运行状态参数可视化图形中获取发电设备运行状态参数,对基于可视化图形中对应相同采集时间戳获取到的发电设备运行状态参数进行累积求和,进一步基于求和结果生成表示所有发电设备相同运行状态参数的可视化图形;Furthermore, the visualization module is integrated by any computer display screen. During the operation phase of the visualization module, the operating state parameters of the power generation equipment are obtained from each group of visualization graphs of operating state parameters of the power generation equipment representing the same operating state parameters of the power generation equipment, and the operating state parameters of the power generation equipment obtained based on the corresponding same acquisition timestamp in the visualization graph are accumulated and summed, and a visualization graph representing the same operating state parameters of all power generation equipment is further generated based on the summation result;
其中,发电设备运行状态参数可视化图形对应发电设备运行状态参数中存在标记时,可视化模块运行生成的表示所有发电设备相同运行状态参数的可视化图形中,不包括发电设备运行状态参数缺失的表示所有发电设备相同运行状态参数的可视化图形。Among them, when there is a mark in the operating status parameters of the power generation equipment corresponding to the visualization graphic of the operating status parameters of the power generation equipment, the visualization module runs to generate a visualization graphic representing the same operating status parameters of all power generation equipment, which does not include the visualization graphic representing the same operating status parameters of all power generation equipment where the operating status parameters of the power generation equipment are missing.
更进一步地,所述分析模块在基于发电设备运行状态参数可视化图形分析发电设备运行风险时,服从:Furthermore, when analyzing the operating risk of the power generation equipment based on the visual graphics of the operating status parameters of the power generation equipment, the analysis module complies with:
; ;
式中:为两组发电设备基于各自运行状态参数层面的相似性;为发电设备对应运行状态参数可视化图形的总量;为发电设备a与发电设备b中第i组运行状态参数可视化图形的相似性;为运行状态参数可视化图形中横轴上的点的集合;为两组发电设备对应运行状态参数可视化图形中基于横轴上第v点确定的各自纵轴上值的差值;Where: The similarity of two groups of power generation equipment based on their respective operating status parameters; The total amount of visualization graphs of the corresponding operating status parameters of the power generation equipment; The similarity of the visualization graphs of the i-th group of operating status parameters between the power generation equipment a and the power generation equipment b; A collection of points on the horizontal axis of the operation status parameter visualization graph; is the difference between the values on the respective vertical axes determined based on the vth point on the horizontal axis in the visualization graph of the operating status parameters of the two groups of power generation equipment;
其中,表示两组发电设备中同一运行状态参数可视化图形的相似性表示对的求均,基于上述逻辑,以一组发电设备为风险分析目标,剩余发电设备为风险分析参考目标,对风险分析目标与所有风险分析参考目标的相似性进行求取,进一步对各组求取结果进行求和再求均的操作。in, Represents the similarity of visualization graphs of the same operating status parameters in two groups of power generation equipment Express Based on the above logic, a group of power generation equipment is taken as the risk analysis target, and the remaining power generation equipment is taken as the risk analysis reference target. The similarity between the risk analysis target and all the risk analysis reference targets is obtained, and the results of each group are further summed and averaged.
更进一步地,所述每组发电设备均作为风险分析目标或风险分析参考目标,各组发电设备作为风险分析目标时,均执行对风险分析目标与所有风险分析参考目标的相似性进行求取,进一步对各组求取结果进行求和再求均的操作,最终求取结果记作风险判定值。Furthermore, each group of power generation equipment is used as a risk analysis target or a risk analysis reference target. When each group of power generation equipment is used as a risk analysis target, the similarity between the risk analysis target and all risk analysis reference targets is obtained, and the results of each group are further summed and averaged, and the final result is recorded as the risk judgment value.
更进一步地,所述分析模块内部设置有子模块包括:Furthermore, the analysis module is internally provided with submodules including:
队列单元,用于获取分析模块中分析到的各发电设备风险判定值,基于发电设备风险判定值对各发电设备对应运行状态参数可视化图形进行升序排列;A queue unit is used to obtain the risk judgment value of each power generation equipment analyzed in the analysis module, and to arrange the corresponding operation status parameter visualization graphics of each power generation equipment in ascending order based on the risk judgment value of the power generation equipment;
其中,队列单元中各发电设备对应运行状态参数可视化图形升序排列结果向协调模块发送,协调模块基于各发电设备对应运行状态参数可视化图形升序排列结果,对可视化模块中发电设备运行状态参数可视化图形显示顺序进行对应协调,使处于排列结果前置位的运行状态参数可视化图形优先显示供系统端用户读取。Among them, the ascending arrangement results of the visualization graphics of the operating status parameters corresponding to each power generation equipment in the queue unit are sent to the coordination module. The coordination module coordinates the display order of the visualization graphics of the operating status parameters of the power generation equipment in the visualization module based on the ascending arrangement results of the visualization graphics of the operating status parameters corresponding to each power generation equipment, so that the visualization graphics of the operating status parameters in the leading position of the arrangement results are displayed first for system-side users to read.
更进一步地,所述单片机通过介质电性连接有采集模块,所述单片机下级通过介质电性连接有储存单元及管理单元,所述单片机通过介质电性连接有逻辑模块,所述逻辑模块下级通过介质电性连接有选择单元,所述单片机通过介质电性连接有可视化模块,所述可视化模块通过无线网络交互连接有分析模块及协调模块,所述分析模块内部通过介质电性连接有队列单元,所述协调模块通过无线网络与可视化模块交互连接。Furthermore, the single-chip microcomputer is electrically connected to an acquisition module through a medium, the single-chip microcomputer is electrically connected to a storage unit and a management unit through a medium, the single-chip microcomputer is electrically connected to a logic module through a medium, the logic module is electrically connected to a selection unit through a medium, the single-chip microcomputer is electrically connected to a visualization module through a medium, the visualization module is interactively connected to an analysis module and a coordination module through a wireless network, the analysis module is electrically connected to a queue unit through a medium, and the coordination module is interactively connected to the visualization module through a wireless network.
采用本发明提供的技术方案,与已知的公有技术相比,具有如下有益效果:Compared with the known public technology, the technical solution provided by the present invention has the following beneficial effects:
本发明提供一种发电设备运行状态参数可视化系统,该系统在运行过程中,通过发电设备的运行状态参数采集,构建了发电设备各项运行状态参数的可视化图形,为发电设备管理端用户带来了发电设备运行状态参数的可视化读取条件,借此,一定程度的提升发电设备维护效率,降低发电设备维护成本,并进一步根据构建的发电设备运行状态参数可视化图形的分析,确定发电设备运行风险,再将分析到的发电设备运行风险应用到发电设备运行状态参数可视化图形的输出逻辑当中,使得发电设备运行状态参数可视化图形输出顺序,进一步显现图形对应发电设备的运行风险,使得发电设备的可视化图形在被发电设备管理端用户读取时,同时还能了解到各可视化图形对应发电设备的运行风险情况,进而对发电设备作出更加高效的运行安全维护管理,保证发电设备日常运行安全稳定。The present invention provides a power generation equipment operation status parameter visualization system. During operation, the system collects the operation status parameters of the power generation equipment and constructs visualization graphics of various operation status parameters of the power generation equipment, which provides visualization reading conditions of the operation status parameters of the power generation equipment for the power generation equipment management end user, thereby improving the power generation equipment maintenance efficiency to a certain extent and reducing the power generation equipment maintenance cost, and further determining the power generation equipment operation risk based on the analysis of the constructed power generation equipment operation status parameter visualization graphics, and then applying the analyzed power generation equipment operation risk to the output logic of the power generation equipment operation status parameter visualization graphics, so that the output sequence of the power generation equipment operation status parameter visualization graphics further shows the operation risk of the power generation equipment corresponding to the graphics, so that when the power generation equipment management end user reads the visualization graphics of the power generation equipment, the operation risk of the power generation equipment corresponding to each visualization graphics can also be understood, thereby making more efficient operation safety maintenance management of the power generation equipment, and ensuring the safe and stable daily operation of the power generation equipment.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the embodiments of the present invention or the technical solutions in the prior art, the drawings required for use in the embodiments or the prior art descriptions are briefly introduced below. Obviously, the drawings described below are only some embodiments of the present invention, and for ordinary technicians in this field, other drawings can be obtained based on these drawings without creative work.
图1为一种发电设备运行状态参数可视化系统的结构示意图;FIG1 is a schematic diagram of the structure of a power generation equipment operating status parameter visualization system;
图中的标号分别代表:1、单片机;11、储存单元;12、管理单元;2、采集模块;3、逻辑模块;31、选择单元;4、可视化模块;5、分析模块;51、队列单元;6、协调模块。The numbers in the figure represent: 1. single chip microcomputer; 11. storage unit; 12. management unit; 2. acquisition module; 3. logic module; 31. selection unit; 4. visualization module; 5. analysis module; 51. queue unit; 6. coordination module.
具体实施方式Detailed ways
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。In order to make the purpose, technical solution and advantages of the embodiments of the present invention clearer, the technical solution in the embodiments of the present invention will be clearly and completely described below in conjunction with the drawings in the embodiments of the present invention. Obviously, the described embodiments are part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by ordinary technicians in this field without creative work are within the scope of protection of the present invention.
下面结合实施例对本发明作进一步的描述。The present invention will be further described below in conjunction with embodiments.
实施例1:Embodiment 1:
本实施例的一种发电设备运行状态参数可视化系统,如图1所示,包括:A power generation equipment operating status parameter visualization system of this embodiment, as shown in FIG1 , includes:
单片机1,用于控制系统运行,获取系统运行模块运行数据;Single chip computer 1, used to control the operation of the system and obtain the operation data of the system operation module;
单片机1下级设置有子模块,包括:The microcontroller 1 is provided with submodules at the lower level, including:
储存单元11,用于接收采集模块2中采集的发电设备运行状态参数,对发电设备运行状态参数进行储存;The storage unit 11 is used to receive the power generation equipment operating status parameters collected by the collection module 2 and store the power generation equipment operating status parameters;
管理单元12,用于识别发电设备运行状态参数来源,基于发电设备运行状态参数来源,对储存单元11中储存的发电设备运行状态参数进行区分管理;The management unit 12 is used to identify the source of the power generation equipment operating status parameter, and distinguish and manage the power generation equipment operating status parameters stored in the storage unit 11 based on the source of the power generation equipment operating status parameter;
其中,采集模块2在采集到发电设备运行状态参数后,以单片机1作为传输路径节点向储存单元11发送,采集模块2中采集的发电设备运行状态参数包括:发电设备运行启停状态、发电设备位置信息、发电设备发电功率、振动频率、温度及累计运行时间,管理单元11对储存单元11中储存的发电设备运行状态参数进行区分管理时,基于发电设备运行状态参数中发电设备位置信息,对发电设备运行状态参数进行区分管理;Among them, after the acquisition module 2 acquires the operating status parameters of the power generation equipment, it sends them to the storage unit 11 using the single chip computer 1 as a transmission path node. The operating status parameters of the power generation equipment acquired in the acquisition module 2 include: the start and stop status of the power generation equipment, the location information of the power generation equipment, the power generation power of the power generation equipment, the vibration frequency, the temperature and the accumulated operating time. When the management unit 11 performs differentiated management on the operating status parameters of the power generation equipment stored in the storage unit 11, the management unit 11 performs differentiated management on the operating status parameters of the power generation equipment based on the location information of the power generation equipment in the operating status parameters of the power generation equipment;
采集模块2,用于采集发电设备的运行状态参数;Collection module 2, used to collect operating status parameters of power generation equipment;
逻辑模块3,用于设定发电设备运行状态参数的可视化图形的生成逻辑,基于发电设备运行状态参数可视化图形的生成逻辑,生成发电设备运行状态参数的可视化图形;The logic module 3 is used to set the generation logic of the visualization graph of the operating state parameters of the power generation equipment, and to generate the visualization graph of the operating state parameters of the power generation equipment based on the generation logic of the visualization graph of the operating state parameters of the power generation equipment;
逻辑模块3中设定的发电设备运行状态参数可视化图形的生成逻辑分别应用于每一发电设备,逻辑模块3下级设置有子模块,包括:The logic for generating the visualization graph of the operating status parameters of the power generation equipment set in the logic module 3 is applied to each power generation equipment respectively. The logic module 3 is provided with submodules at the lower level, including:
选择单元31,用于选择逻辑模块3中设定的发电设备运行状态参数可视化图形的生成逻辑,基于选择的生成逻辑生成发电设备运行状态参数可视化图形;A selection unit 31 is used to select the generation logic of the power generation equipment operating state parameter visualization graph set in the logic module 3, and generate the power generation equipment operating state parameter visualization graph based on the selected generation logic;
其中,选择单元31在选择生成逻辑时,由系统端用户手动控制选择指定生成逻辑生成发电设备运行状态参数可视化图形,选择单元31初始默认选择逻辑为选择所有生成逻辑生成发电设备运行状态参数可视化图形;When selecting the generation logic, the selection unit 31 is manually controlled by the system end user to select the specified generation logic to generate the visualization graph of the operating status parameters of the power generation equipment. The initial default selection logic of the selection unit 31 is to select all generation logics to generate the visualization graph of the operating status parameters of the power generation equipment.
可视化模块4,用于接收逻辑模块3中基于发电设备运行状态参数可视化图形生成逻辑,生成的发电设备运行状态参数可视化图形,对发电设备运行状态参数可视化图形进行显示;A visualization module 4 is used to receive the visualization graph of the operating status parameters of the power generation equipment generated by the logic module 3 based on the visualization graph generation logic of the operating status parameters of the power generation equipment, and display the visualization graph of the operating status parameters of the power generation equipment;
分析模块5,用于获取可视化模块4中生成的发电设备运行状态参数可视化图形,基于发电设备运行状态参数可视化图形分析发电设备运行风险;Analysis module 5, used for obtaining the visualization graph of the operating status parameters of the power generation equipment generated in visualization module 4, and analyzing the operating risk of the power generation equipment based on the visualization graph of the operating status parameters of the power generation equipment;
分析模块5内部设置有子模块包括:The analysis module 5 is internally provided with submodules including:
队列单元51,用于获取分析模块5中分析到的各发电设备风险判定值,基于发电设备风险判定值对各发电设备对应运行状态参数可视化图形进行升序排列;The queue unit 51 is used to obtain the risk judgment value of each power generation equipment analyzed in the analysis module 5, and to arrange the visual graphics of the operating status parameters corresponding to each power generation equipment in ascending order based on the risk judgment value of the power generation equipment;
其中,队列单元51中各发电设备对应运行状态参数可视化图形升序排列结果向协调模块6发送,协调模块6基于各发电设备对应运行状态参数可视化图形升序排列结果,对可视化模块4中发电设备运行状态参数可视化图形显示顺序进行对应协调,使处于排列结果前置位的运行状态参数可视化图形优先显示供系统端用户读取;The ascending arrangement result of the visualization graphics of the operating status parameters corresponding to each power generation device in the queue unit 51 is sent to the coordination module 6. The coordination module 6 coordinates the display order of the visualization graphics of the operating status parameters of the power generation devices in the visualization module 4 based on the ascending arrangement result of the visualization graphics of the operating status parameters corresponding to each power generation device, so that the visualization graphics of the operating status parameters in the front position of the arrangement result are displayed first for system end users to read;
协调模块6,用于协调可视化模块4中显示的发电设备运行状态参数可视化图形的顺序;A coordination module 6, used for coordinating the order of the visualization graphics of the operating status parameters of the power generation equipment displayed in the visualization module 4;
单片机1通过介质电性连接有采集模块2,单片机1下级通过介质电性连接有储存单元11及管理单元12,单片机1通过介质电性连接有逻辑模块3,逻辑模块3下级通过介质电性连接有选择单元31,单片机1通过介质电性连接有可视化模块4,可视化模块4通过无线网络交互连接有分析模块5及协调模块6,分析模块5内部通过介质电性连接有队列单元51,协调模块6通过无线网络与可视化模块5交互连接。The single-chip computer 1 is electrically connected to the acquisition module 2 through a medium, the single-chip computer 1 is electrically connected to the storage unit 11 and the management unit 12 through a medium, the single-chip computer 1 is electrically connected to the logic module 3 through a medium, the logic module 3 is electrically connected to the selection unit 31 through a medium, the single-chip computer 1 is electrically connected to the visualization module 4 through a medium, the visualization module 4 is interactively connected to the analysis module 5 and the coordination module 6 through a wireless network, the analysis module 5 is electrically connected to the queue unit 51 through a medium, and the coordination module 6 is interactively connected to the visualization module 5 through a wireless network.
在本实施例中,单片机1控制采集模块2运行采集发电设备的运行状态参数,储存单元11同步接收采集模块2中采集的发电设备运行状态参数,对发电设备运行状态参数进行储存,管理单元12实时识别发电设备运行状态参数来源,基于发电设备运行状态参数来源,对储存单元11中储存的发电设备运行状态参数进行区分管理,逻辑模块3进一步设定发电设备运行状态参数的可视化图形的生成逻辑,基于发电设备运行状态参数可视化图形的生成逻辑,生成发电设备运行状态参数的可视化图形,选择单元31同步选择逻辑模块3中设定的发电设备运行状态参数可视化图形的生成逻辑,基于选择的生成逻辑生成发电设备运行状态参数可视化图形,再由可视化模块4运行接收逻辑模块3中基于发电设备运行状态参数可视化图形生成逻辑,生成的发电设备运行状态参数可视化图形,对发电设备运行状态参数可视化图形进行显示,分析模块5后置运行获取可视化模块4中生成的发电设备运行状态参数可视化图形,基于发电设备运行状态参数可视化图形分析发电设备运行风险,队列单元51实时获取分析模块5中分析到的各发电设备风险判定值,基于发电设备风险判定值对各发电设备对应运行状态参数可视化图形进行升序排列,最后通过协调模块6协调可视化模块4中显示的发电设备运行状态参数可视化图形的顺序。In this embodiment, the single chip microcomputer 1 controls the acquisition module 2 to operate and acquire the operating status parameters of the power generation equipment, the storage unit 11 synchronously receives the operating status parameters of the power generation equipment acquired in the acquisition module 2, and stores the operating status parameters of the power generation equipment, the management unit 12 identifies the source of the operating status parameters of the power generation equipment in real time, and distinguishes and manages the operating status parameters of the power generation equipment stored in the storage unit 11 based on the source of the operating status parameters of the power generation equipment, the logic module 3 further sets the generation logic of the visualization graph of the operating status parameters of the power generation equipment, and generates the visualization graph of the operating status parameters of the power generation equipment based on the generation logic of the visualization graph of the operating status parameters of the power generation equipment, the selection unit 31 synchronously selects the generation logic of the visualization graph of the operating status parameters of the power generation equipment set in the logic module 3, and generates the visualization graph based on the selected generation logic. The visualization module 4 then runs the logic for generating the visualization graph of the operating status parameters of the power generation equipment in the receiving logic module 3 to generate the visualization graph of the operating status parameters of the power generation equipment, and displays the visualization graph of the operating status parameters of the power generation equipment. The analysis module 5 then runs to obtain the visualization graph of the operating status parameters of the power generation equipment generated in the visualization module 4, and analyzes the operating risk of the power generation equipment based on the visualization graph of the operating status parameters of the power generation equipment. The queue unit 51 obtains the risk judgment value of each power generation equipment analyzed in the analysis module 5 in real time, and arranges the corresponding visualization graphs of the operating status parameters of each power generation equipment in ascending order based on the risk judgment value of the power generation equipment. Finally, the coordination module 6 coordinates the order of the visualization graphs of the operating status parameters of the power generation equipment displayed in the visualization module 4.
通过上述实施例中系统运行,为发电设备的日常运行状态参数带来了可视化参数读取条件,从而更加便捷的对发电设备进行日常运行安全维护。Through the operation of the system in the above embodiment, visual parameter reading conditions are provided for the daily operation status parameters of the power generation equipment, thereby making it more convenient to perform daily operation safety maintenance of the power generation equipment.
实施例2:Embodiment 2:
在具体实施层面,在实施例1的基础上,本实施例参照图1对实施例1中一种发电设备运行状态参数可视化系统做进一步具体说明:At the specific implementation level, based on Example 1, this example further specifically illustrates a power generation equipment operating status parameter visualization system in Example 1 with reference to FIG. 1 :
单片机1在作为传输路径节点传输采集模块2采集到的发电设备运行状态参数时,同步遍历执行传输操作的发电设备运行状态参数,对发电设备运行状态参数的完整性进行判定,并在判定到不完整的发电设备运行状态参数,对不完整的发电设备运行状态参数进行标记,发电设备运行状态电参数的标记与发电设备运行状态参数一同向储存单元11传输;When the single-chip computer 1 is used as a transmission path node to transmit the power generation equipment operating state parameters collected by the collection module 2, it synchronously traverses the power generation equipment operating state parameters that perform the transmission operation, determines the integrity of the power generation equipment operating state parameters, and marks the incomplete power generation equipment operating state parameters when determining that the power generation equipment operating state parameters are incomplete. The mark of the power generation equipment operating state parameters is transmitted to the storage unit 11 together with the power generation equipment operating state parameters;
其中,单片机1对发电设备运行状态参数完整性的判定逻辑,即判定发电设备运行状态参数中是否包含:发电设备运行启停状态、发电设备位置信息、发电设备发电功率、振动频率、温度及累计运行时间的操作,单片机1对不完整发电设备运行状态参数进行标记的操作,即对不完整的发电设备运行状态参数中,每一组发电设备运行状态参数的文件名称添加相同的文字标记后缀。Among them, the single chip computer 1 determines the logic of the integrity of the operating status parameters of the power generation equipment, that is, whether the operating status parameters of the power generation equipment include: the start and stop status of the power generation equipment, the location information of the power generation equipment, the power generation power of the power generation equipment, the vibration frequency, the temperature and the accumulated operating time. The single chip computer 1 marks the incomplete operating status parameters of the power generation equipment, that is, in the incomplete operating status parameters of the power generation equipment, the same text mark suffix is added to the file name of each group of operating status parameters of the power generation equipment.
通过上述设置,为系统采集模块2与单片机1及其下级子模块的运行,提供了进一步的运行逻辑限定,使系统运行更加稳定。Through the above settings, further operation logic limitations are provided for the operation of the system acquisition module 2, the single-chip microcomputer 1 and its lower-level sub-modules, making the system operation more stable.
如图1所示,逻辑模块3中设定的发电设备运行状态参数可视化图形的生成逻辑包括:As shown in FIG1 , the generation logic of the visualization graph of the operating status parameters of the power generation equipment set in the logic module 3 includes:
逻辑1:访问储存单元11,于储存单元11中调取发电设备运行状态参数中发电设备发电功率参数,基于发电设备发电功率参数的采集时间戳对各组发电设备发电功率参数进行排序,进一步构建横纵数轴,以横轴表示时间、纵轴表示发电设备发电功率,对调取的发电设备运行状态参数中发电设备发电功率参数进行表示;Logic 1: access the storage unit 11, retrieve the power generation parameters of the power generation equipment in the power generation equipment operation status parameters in the storage unit 11, sort the power generation parameters of each group of power generation equipment based on the acquisition timestamp of the power generation parameters of the power generation equipment, further construct a horizontal and vertical axis, with the horizontal axis representing time and the vertical axis representing the power generation of the power generation equipment, and represent the power generation parameters of the power generation equipment in the retrieved power generation equipment operation status parameters;
逻辑2:访问储存单元11,于储存单元11中调取发电设备运行状态参数中振动频率参数,基于发电设备振动频率的采集时间戳对各组发电设备振动频率进行排序,进一步构建横纵数轴,以横轴表示时间、纵轴表示发电设备振动频率,对调取的发电设备运行状态参数中发电设备振动频率进行表示;Logic 2: access the storage unit 11, retrieve the vibration frequency parameter in the power generation equipment operating status parameter in the storage unit 11, sort the vibration frequencies of each group of power generation equipment based on the acquisition timestamp of the vibration frequencies of the power generation equipment, further construct a horizontal and vertical axis, with the horizontal axis representing time and the vertical axis representing the vibration frequency of the power generation equipment, and represent the vibration frequency of the power generation equipment in the retrieved operating status parameter of the power generation equipment;
逻辑3:访问储存单元11,于储存单元11中调取发电设备运行状态参数中温度参数,基于发电设备温度参数的采集时间戳对各组发电设备温度参数进行排序,进一步构建横纵数轴,以横轴表示时间、纵轴表示发电设备温度参数,对调取的发电设备运行状态参数中发电设备温度参数进行表示;Logic 3: access the storage unit 11, retrieve the temperature parameters in the power generation equipment operating status parameters in the storage unit 11, sort each group of power generation equipment temperature parameters based on the acquisition timestamp of the power generation equipment temperature parameters, further construct a horizontal and vertical axis, with the horizontal axis representing time and the vertical axis representing the power generation equipment temperature parameters, and represent the power generation equipment temperature parameters in the retrieved power generation equipment operating status parameters;
逻辑4:访问储存单元11,于储存单元11中调取发电设备运行状态参数中累计运行时间参数,基于发电设备累计运行时间参数的采集时间戳对各组发电设备累计运行时间参数进行排序,进一步构建横纵数轴,以横轴表示时间、纵轴表示发电设备累计运行时间参数,对调取的发电设备运行状态参数中发电设备累计运行时间参数进行表示;Logic 4: access the storage unit 11, retrieve the cumulative operating time parameter in the operating state parameter of the power generation equipment in the storage unit 11, sort the cumulative operating time parameters of each group of power generation equipment based on the acquisition timestamp of the cumulative operating time parameter of the power generation equipment, further construct a horizontal and vertical axis, with the horizontal axis representing time and the vertical axis representing the cumulative operating time parameter of the power generation equipment, and represent the cumulative operating time parameter of the power generation equipment in the retrieved operating state parameter of the power generation equipment;
其中,横纵数轴上表示的发电设备发电功率、振动频率、温度及累计运行时间均以折线形式表示数值变更趋势。Among them, the power generation equipment's power generation, vibration frequency, temperature and cumulative operating time shown on the horizontal and vertical axes are all expressed in the form of broken lines to show the trend of numerical changes.
通过上述设置,对逻辑模块3中设定的发电设备运行状态参数可视化图形提供了指定的生成逻辑。Through the above settings, a specified generation logic is provided for the visualization graph of the operating status parameters of the power generation equipment set in the logic module 3.
实施例3:Embodiment 3:
在具体实施层面,在实施例1的基础上,本实施例参照图1对实施例1中一种发电设备运行状态参数可视化系统做进一步具体说明:At the specific implementation level, based on Example 1, this example further specifically illustrates a power generation equipment operating status parameter visualization system in Example 1 with reference to FIG. 1 :
可视化模块4由任意一种计算机显示屏所集成,可视化模块4运行阶段,于各组表示相同发电设备运行状态参数的发电设备运行状态参数可视化图形中获取发电设备运行状态参数,对基于可视化图形中对应相同采集时间戳获取到的发电设备运行状态参数进行累积求和,进一步基于求和结果生成表示所有发电设备相同运行状态参数的可视化图形;The visualization module 4 is integrated by any computer display screen. During the operation phase of the visualization module 4, the operating state parameters of the power generation equipment are obtained from each group of visualization graphs of the operating state parameters of the power generation equipment representing the same operating state parameters of the power generation equipment, and the operating state parameters of the power generation equipment obtained based on the corresponding same acquisition timestamp in the visualization graph are accumulated and summed, and a visualization graph representing the same operating state parameters of all power generation equipment is further generated based on the summation result;
其中,发电设备运行状态参数可视化图形对应发电设备运行状态参数中存在标记时,可视化模块4运行生成的表示所有发电设备相同运行状态参数的可视化图形中,不包括发电设备运行状态参数缺失的表示所有发电设备相同运行状态参数的可视化图形。Among them, when there is a mark in the operating status parameter of the power generation equipment corresponding to the visualization graphic of the operating status parameter of the power generation equipment, the visualization module 4 runs to generate a visualization graphic representing the same operating status parameters of all power generation equipment, which does not include the visualization graphic representing the same operating status parameters of all power generation equipment where the operating status parameters of the power generation equipment are missing.
如图1所示,分析模块5在基于发电设备运行状态参数可视化图形分析发电设备运行风险时,服从:As shown in FIG1 , when analyzing the operating risk of power generation equipment based on the visualized graph of the operating status parameters of the power generation equipment, the analysis module 5 follows:
; ;
式中:为两组发电设备基于各自运行状态参数层面的相似性;为发电设备对应运行状态参数可视化图形的总量;为发电设备a与发电设备b中第i组运行状态参数可视化图形的相似性;为运行状态参数可视化图形中横轴上的点的集合;为两组发电设备对应运行状态参数可视化图形中基于横轴上第v点确定的各自纵轴上值的差值;Where: The similarity of two groups of power generation equipment based on their respective operating status parameters; The total amount of visualization graphs of the corresponding operating status parameters of the power generation equipment; The similarity of the visualization graphs of the i-th group of operating status parameters between the power generation equipment a and the power generation equipment b; A collection of points on the horizontal axis of the operation status parameter visualization graph; is the difference between the values on the respective vertical axes determined based on the vth point on the horizontal axis in the visualization graph of the operating status parameters of the two groups of power generation equipment;
其中,表示两组发电设备中同一运行状态参数可视化图形的相似性表示对的求均,基于上述逻辑,以一组发电设备为风险分析目标,剩余发电设备为风险分析参考目标,对风险分析目标与所有风险分析参考目标的相似性进行求取,进一步对各组求取结果进行求和再求均的操作。in, Represents the similarity of visualization graphs of the same operating status parameters in two groups of power generation equipment Express Based on the above logic, a group of power generation equipment is taken as the risk analysis target, and the remaining power generation equipment is taken as the risk analysis reference target. The similarity between the risk analysis target and all the risk analysis reference targets is obtained, and the results of each group are further summed and averaged.
如图1所示,每组发电设备均作为风险分析目标或风险分析参考目标,各组发电设备作为风险分析目标时,均执行对风险分析目标与所有风险分析参考目标的相似性进行求取,进一步对各组求取结果进行求和再求均的操作,最终求取结果记作风险判定值。As shown in Figure 1, each group of power generation equipment is used as a risk analysis target or a risk analysis reference target. When each group of power generation equipment is used as a risk analysis target, the similarity between the risk analysis target and all risk analysis reference targets is calculated, and the results of each group are further summed and averaged. The final result is recorded as the risk judgment value.
在本实施例中,通过上述系统运行逻辑设定及发电设备运行风险分析逻辑的设定,使系统稳定输出发电设备运行状态参数可视化图形,并对发电设备的运行安全分析带来分析效果。In this embodiment, through the above-mentioned system operation logic setting and power generation equipment operation risk analysis logic setting, the system can stably output the visualization graph of the power generation equipment operation status parameters and bring analysis effect to the operation safety analysis of the power generation equipment.
综上而言,上述实施例中系统在运行过程中,通过发电设备的运行状态参数采集,构建了发电设备各项运行状态参数的可视化图形,为发电设备管理端用户带来了发电设备运行状态参数的可视化读取条件,借此,一定程度的提升发电设备维护效率,降低发电设备维护成本,并进一步根据构建的发电设备运行状态参数可视化图形的分析,确定发电设备运行风险,再将分析到的发电设备运行风险应用到发电设备运行状态参数可视化图形的输出逻辑当中,使得发电设备运行状态参数可视化图形输出顺序,进一步显现图形对应发电设备的运行风险,使得发电设备的可视化图形在被发电设备管理端用户读取时,同时还能了解到各可视化图形对应发电设备的运行风险情况,进而对发电设备作出更加高效的运行安全维护管理,保证发电设备日常运行安全稳定。In summary, in the above embodiment, during operation, the system collects the operating status parameters of the power generation equipment and constructs a visualization graph of the operating status parameters of the power generation equipment, which provides the users of the power generation equipment management end with the visualization reading conditions of the operating status parameters of the power generation equipment, thereby improving the maintenance efficiency of the power generation equipment to a certain extent and reducing the maintenance cost of the power generation equipment. Further, based on the analysis of the constructed visualization graph of the operating status parameters of the power generation equipment, the operating risk of the power generation equipment is determined, and then the analyzed operating risk of the power generation equipment is applied to the output logic of the visualization graph of the operating status parameters of the power generation equipment, so that the output sequence of the visualization graph of the operating status parameters of the power generation equipment further shows the operating risk of the power generation equipment corresponding to the graph, so that when the visualization graph of the power generation equipment is read by the users of the power generation equipment management end, the operating risk of the power generation equipment corresponding to each visualization graph can be understood at the same time, thereby making more efficient operation safety maintenance management of the power generation equipment to ensure the safe and stable daily operation of the power generation equipment.
以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不会使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。The above embodiments are only used to illustrate the technical solutions of the present invention, rather than to limit the same. Although the present invention has been described in detail with reference to the aforementioned embodiments, those skilled in the art should understand that the technical solutions described in the aforementioned embodiments may still be modified, or some of the technical features may be replaced by equivalents. Such modifications or replacements will not cause the essence of the corresponding technical solutions to deviate from the spirit and scope of the technical solutions of the embodiments of the present invention.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202410720330.1ACN118317000B (en) | 2024-06-05 | 2024-06-05 | Power generation equipment operation state parameter visualization system |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202410720330.1ACN118317000B (en) | 2024-06-05 | 2024-06-05 | Power generation equipment operation state parameter visualization system |
| Publication Number | Publication Date |
|---|---|
| CN118317000Atrue CN118317000A (en) | 2024-07-09 |
| CN118317000B CN118317000B (en) | 2024-08-20 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202410720330.1AActiveCN118317000B (en) | 2024-06-05 | 2024-06-05 | Power generation equipment operation state parameter visualization system |
| Country | Link |
|---|---|
| CN (1) | CN118317000B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN118798690A (en)* | 2024-09-13 | 2024-10-18 | 沈阳中德开网络信息有限公司 | A productivity value assessment management method |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20140181756A1 (en)* | 2012-12-21 | 2014-06-26 | Business Objects Software Ltd. | Visualization interaction design for cross-platform utilization |
| CN111522894A (en)* | 2020-04-16 | 2020-08-11 | 北京龙软科技股份有限公司 | A coal mine visualization management and control system based on temporal GIS |
| US11108661B1 (en)* | 2019-02-20 | 2021-08-31 | Cloudera, Inc. | Apparatus and method for processing streaming data and forming visualizations thereof |
| US20220158829A1 (en)* | 2020-11-16 | 2022-05-19 | Magnet Forensics Inc. | Computer system, device, and method for securing sensitive data in the cloud |
| WO2023115842A1 (en)* | 2021-12-24 | 2023-06-29 | 中国电力科学研究院有限公司 | Data-driven offline and online integrated simulation system and method for power distribution network |
| CN117073770A (en)* | 2023-08-17 | 2023-11-17 | 青岛西格流体技术有限公司 | Water pump flow monitoring system and monitoring method based on visualization |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20140181756A1 (en)* | 2012-12-21 | 2014-06-26 | Business Objects Software Ltd. | Visualization interaction design for cross-platform utilization |
| US11108661B1 (en)* | 2019-02-20 | 2021-08-31 | Cloudera, Inc. | Apparatus and method for processing streaming data and forming visualizations thereof |
| CN111522894A (en)* | 2020-04-16 | 2020-08-11 | 北京龙软科技股份有限公司 | A coal mine visualization management and control system based on temporal GIS |
| US20220158829A1 (en)* | 2020-11-16 | 2022-05-19 | Magnet Forensics Inc. | Computer system, device, and method for securing sensitive data in the cloud |
| WO2023115842A1 (en)* | 2021-12-24 | 2023-06-29 | 中国电力科学研究院有限公司 | Data-driven offline and online integrated simulation system and method for power distribution network |
| CN117073770A (en)* | 2023-08-17 | 2023-11-17 | 青岛西格流体技术有限公司 | Water pump flow monitoring system and monitoring method based on visualization |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| CN118798690A (en)* | 2024-09-13 | 2024-10-18 | 沈阳中德开网络信息有限公司 | A productivity value assessment management method |
| Publication number | Publication date |
|---|---|
| CN118317000B (en) | 2024-08-20 |
| Publication | Publication Date | Title |
|---|---|---|
| CN112803592B (en) | Intelligent fault early warning method and system suitable for distributed power station | |
| CN102474450B (en) | Method and system for message aggregation of distributed generators | |
| CN118317000A (en) | A visualization system for operating status parameters of power generation equipment | |
| CN117312293B (en) | Electric power multisource heterogeneous data management and intelligent analysis method and system | |
| KR100461626B1 (en) | Method for displaying the operating conditions of an installation | |
| CN115711206A (en) | Aerogenerator blade icing state monitoring system based on clustering weight | |
| CN116882132A (en) | A wind turbine performance evaluation method and device | |
| CN104333325A (en) | Photovoltaic power station inverter system operation state monitoring visualization method | |
| CN120106344A (en) | A carbon flow calculation method based on the electric-carbon interaction | |
| CN119401662A (en) | User-side power consumption abnormality monitoring system and method based on machine learning | |
| CN118468172B (en) | An intelligent monitoring and fault diagnosis system for new energy wind farms | |
| CN118427266A (en) | Power generation and water level monitoring method and system based on spring task | |
| CN107248036A (en) | A kind of intelligent credit rating method and apparatus | |
| CN114966282A (en) | Automatic detection system and method for power grid energy consumption and carbon emission | |
| CN117846945A (en) | Machine pump energy efficiency real-time monitoring system and method based on dial plate intelligent identification | |
| CN114816638A (en) | A smart energy data visualization method and device | |
| KR102635460B1 (en) | Method and apparatus for analyzing abnormal production based on phothovoltaic remote monitoring | |
| CN120233175B (en) | Power system subsynchronous oscillation source positioning method based on measurement data | |
| CN220207754U (en) | A handheld machine for maintenance of power grid equipment | |
| CN113034304A (en) | Panoramic analysis system and method based on indexes of power distribution network | |
| CN109742810A (en) | Wind-powered electricity generation Centralized Monitoring management system and management method | |
| JP2019140811A (en) | Remote monitoring device, remote monitoring method, and program | |
| CN119204658A (en) | Methods, devices, equipment, media and products for assessing risk status of power generation equipment | |
| CN115690482A (en) | A wind turbine fault diagnosis method and system based on CNN and heat map | |
| CN119070393A (en) | A real-time monitoring and analysis system for new energy stations |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |