技术领域Technical Field
本发明属于光伏电池参数预测技术领域,具体涉及一种光伏组件物理参数计算及输出特性预测方法及系统。The present invention belongs to the technical field of photovoltaic cell parameter prediction, and in particular relates to a method and system for calculating physical parameters of a photovoltaic module and predicting output characteristics.
背景技术Background technique
本部分的陈述仅仅是提供了与本发明相关的背景技术信息,不必然构成在先技术。The statements in this section merely provide background information related to the present invention and do not necessarily constitute prior art.
近年来,太阳能开发利用已成为全球能源转型的重要领域,光伏发电全面进入规模化发展阶段,呈现出良好的发展前景。光伏组件输出特性预测有多种模型,其中单二极管模型是使用最为广泛的光伏电池模型,在单二极管模型的准确建模和预测中,辐照度和温度是重要的因素,因此进行有效辐照度和温度的计算至关重要。In recent years, the development and utilization of solar energy has become an important area of global energy transformation. Photovoltaic power generation has entered a stage of large-scale development and has shown good development prospects. There are many models for predicting the output characteristics of photovoltaic modules, among which the single diode model is the most widely used photovoltaic cell model. In the accurate modeling and prediction of the single diode model, irradiance and temperature are important factors, so it is very important to calculate the effective irradiance and temperature.
光伏电池参数辨识和输出特性建模分两步完成:首先,在参考条件下提取模型参数,参考条件可以为出厂时的标准测量条件,也可为某实测条件;其次,根据模型参数对环境条件的依赖性,计算不同运行工况下的模型参数,实现输出特性预测。对光伏组件具体运行条件下参数辨识和输出特性预测时,需要利用参考条件下的模型参数,根据物理模型参数与环境条件的依赖关系,求解不同工况下的模型参数。在众多环境因素中,辐照度和温度是影响光伏组件物理参数和输出特性的重要因素,因此辐照度和温度的测量精度,直接影响光伏组件的参数辨识与输出特性预测精度。The identification of photovoltaic cell parameters and output characteristic modeling are completed in two steps: first, the model parameters are extracted under reference conditions. The reference conditions can be the standard measurement conditions at the factory or certain measured conditions; second, according to the dependence of the model parameters on environmental conditions, the model parameters under different operating conditions are calculated to achieve output characteristic prediction. When identifying parameters and predicting output characteristics under specific operating conditions of photovoltaic modules, it is necessary to use the model parameters under reference conditions and solve the model parameters under different conditions based on the dependence between the physical model parameters and environmental conditions. Among the many environmental factors, irradiance and temperature are important factors affecting the physical parameters and output characteristics of photovoltaic modules. Therefore, the measurement accuracy of irradiance and temperature directly affects the parameter identification and output characteristic prediction accuracy of photovoltaic modules.
也就是说,现有技术中的光伏组件输出特性预测方法中辐照度和温度的测量精度的不准确,测量辐照度和温度就是光伏组件表面的辐照度和温度,误差较大,导致光伏组件的参数辨识与输出特性预测精度降低。That is to say, the measurement accuracy of irradiance and temperature in the photovoltaic module output characteristic prediction method in the prior art is inaccurate. The measured irradiance and temperature are the irradiance and temperature on the surface of the photovoltaic module, and the error is large, resulting in reduced accuracy in parameter identification and output characteristic prediction of the photovoltaic module.
发明内容Summary of the invention
为了解决上述问题,本发明提出了一种光伏组件物理参数计算及输出特性预测方法及系统,本发明提出一组计算光伏组件内部的有效辐照度和温度的解析公式。求解多条件下光伏电池模型参数时,将求得的有效辐照度和温度代入转换方程,提高多条件下的光伏电池模型参数求解精度,进而提高光伏组件功率预测精度。In order to solve the above problems, the present invention proposes a method and system for calculating the physical parameters of photovoltaic modules and predicting the output characteristics. The present invention proposes a set of analytical formulas for calculating the effective irradiance and temperature inside the photovoltaic modules. When solving the photovoltaic cell model parameters under multiple conditions, the obtained effective irradiance and temperature are substituted into the conversion equation to improve the accuracy of solving the photovoltaic cell model parameters under multiple conditions, thereby improving the accuracy of photovoltaic module power prediction.
根据一些实施例,本发明的第一方案提供了一种光伏组件物理参数计算及输出特性预测方法,采用如下技术方案:According to some embodiments, a first solution of the present invention provides a method for calculating physical parameters of a photovoltaic module and predicting output characteristics, using the following technical solution:
一种光伏组件物理参数计算及输出特性预测方法,包括:A method for calculating physical parameters of a photovoltaic module and predicting output characteristics, comprising:
根据光伏电池的类型选择对应的等效电路模型和参数随光照温度的变化的转换方程模型;Select the corresponding equivalent circuit model and the conversion equation model of the parameters changing with the light temperature according to the type of photovoltaic cell;
确定参考条件,选择对应的等效电路模型和对应条件下的转换方程模型求取参考条件下光伏电池模型的五参数;Determine the reference conditions, select the corresponding equivalent circuit model and the conversion equation model under the corresponding conditions to obtain the five parameters of the photovoltaic cell model under the reference conditions;
基于参考条件下的光伏电池模型的五参数,运用智能优化算法,以电流均方根误差最小为目标函数,得到各条件下的有效辐照度和有效温度;Based on the five parameters of the photovoltaic cell model under reference conditions, the effective irradiance and effective temperature under each condition are obtained by using an intelligent optimization algorithm and taking the minimum current root mean square error as the objective function;
基于各条件下的有效辐照度和有效温度的转换方程模型计算各条件下的五参数;The five parameters under each condition are calculated based on the conversion equation model of effective irradiance and effective temperature under each condition;
根据各条件下的五参数预测各条件下的光伏电池的工作特性。The working characteristics of photovoltaic cells under various conditions are predicted based on the five parameters under various conditions.
进一步地,所述确定参考条件,选择对应的等效电路和对应条件下的转换方程模型求取参考条件下光伏电池模型的五参数,具体为:Furthermore, the reference condition is determined, and the corresponding equivalent circuit and the conversion equation model under the corresponding condition are selected to obtain the five parameters of the photovoltaic cell model under the reference condition, specifically:
选取参考条件;Select reference conditions;
确定短路电流点、开路电压点和最大功率点的三个独立方程;Three independent equations to determine the short-circuit current point, open-circuit voltage point, and maximum power point;
通过最大功率点处导数为零以及T+ΔT处开路电压点得到另外两个方程;The other two equations are obtained by taking the derivative to be zero at the maximum power point and the open circuit voltage point at T+ΔT;
基于上述五个方程,得到参考条件下的光伏电池模型的五参数。Based on the above five equations, the five parameters of the photovoltaic cell model under reference conditions are obtained.
进一步地,基于参考条件下的光伏电池模型的五参数,运用智能优化算法,以电流均方根误差最小为目标函数,得到各条件下的有效辐照度和有效温度,具体为:Furthermore, based on the five parameters of the photovoltaic cell model under reference conditions, the intelligent optimization algorithm is used to minimize the current root mean square error as the objective function to obtain the effective irradiance and effective temperature under each condition, specifically:
输入参考条件下的光伏电池模型的五参数进行初始化,得到初始化粒子;Input the five parameters of the photovoltaic cell model under reference conditions for initialization to obtain the initialized particles;
以电流均方根误差最小作为目标函数,检验是否达到最终需要的精度;Taking the minimum current RMS error as the objective function, check whether the final required accuracy is achieved;
如果满足精度要求即输出最优未知参数;If the accuracy requirement is met, the optimal unknown parameters are output;
若不满足精度条件,则需要进一步迭代提高精度直到满足精度要求;If the accuracy condition is not met, further iteration is required to improve the accuracy until the accuracy requirement is met;
基于最优未知参数,计算各条件下的有效辐照度和温度。Based on the optimal unknown parameters, calculate the effective irradiance and temperature under each condition.
进一步地,所述若不满足精度条件,则需要进一步迭代提高精度直到满足精度要求,具体为:Furthermore, if the accuracy condition is not met, it is necessary to further iterate to improve the accuracy until the accuracy requirement is met, specifically:
计算所有粒子的电流均方根误差;Calculate the current RMS error of all particles;
找到每次迭代误差最小的粒子和所有迭代次数中误差最小的粒子进行比较;Find the particle with the smallest error in each iteration and compare it with the particle with the smallest error in all iterations;
最终输出误差最小的未知参数结果。The final output is the unknown parameter result with the smallest error.
进一步地,所述基于最优未知参数,计算各条件下的有效辐照度和有效温度,具体为:Furthermore, the effective irradiance and effective temperature under each condition are calculated based on the optimal unknown parameters, specifically:
将最优的未知参数代入到下面的公式,具体为:Substitute the optimal unknown parameters into the following formula, which is:
Seff=S+x1+x2KT+x3 cos(δ)cos(θ)+x4ZAmin+x5Tcell;Seff =S + x1 + x2 KT + x3 cos(δ)cos(θ) + x4 ZAmin + x5 Tcell ;
Teff=Tcell+x6S+x7;Teff =Tcell +x6S +x7 ;
其中,Seff是有效辐照度,Teff是有效温度,KT是晴空因子,δ是天顶角,θ是方位角,ZAmin是天顶角最小值,Tcell是环境测量温度,S代表光照强度。Where Seff is the effective irradiance, Teff is the effective temperature, KT is the clear sky factor, δ is the zenith angle, θ is the azimuth angle, ZAmin is the minimum zenith angle, Tcell is the ambient measurement temperature, and S represents the light intensity.
进一步地,所述基于各条件下的有效辐照度和有效温度的转换方程模型计算各条件下的五参数,具体为:Furthermore, the conversion equation model based on the effective irradiance and effective temperature under each condition calculates the five parameters under each condition, specifically:
将各条件下的有效辐照度和有效温度代入到各条件下的有效辐照度和有效温度的转换方程模型;Substitute the effective irradiance and effective temperature under each condition into the conversion equation model of effective irradiance and effective temperature under each condition;
得到各条件下的五参数。The five parameters under each condition were obtained.
进一步地,所述根据各条件下的五参数预测各条件下的光伏电池的工作特性,具体为:Furthermore, the working characteristics of the photovoltaic cell under each condition are predicted according to the five parameters under each condition, specifically:
根据各条件下的五参数以及实测电压带入到输出电流公式;Substitute the five parameters under various conditions and the measured voltage into the output current formula;
得到各条件下的输出电流,进而得到一条通过有效辐照度和温度计算的I-V曲线和P-V曲线;The output current under each condition is obtained, and then an I-V curve and a P-V curve calculated by effective irradiance and temperature are obtained;
基于通过有效辐照度和温度计算的I-V曲线和P-V曲线预测各条件下的光伏电池的工作特性。The operating characteristics of photovoltaic cells under various conditions are predicted based on the I-V curve and P-V curve calculated by effective irradiance and temperature.
根据一些实施例,本发明的第二方案提供了一种光伏组件物理参数计算及输出特性预测系统,采用如下技术方案:According to some embodiments, a second solution of the present invention provides a photovoltaic module physical parameter calculation and output characteristic prediction system, which adopts the following technical solution:
一种光伏组件物理参数计算及输出特性预测系统,包括:A photovoltaic module physical parameter calculation and output characteristic prediction system, comprising:
转换方程模型确定模块,被配置为根据光伏电池的类型选择对应的等效电路模型和参数随光照温度的变化的转换方程模型;A conversion equation model determination module is configured to select a corresponding equivalent circuit model and a conversion equation model whose parameters vary with light temperature according to the type of photovoltaic cell;
参考五参数确定模块,被配置为确定参考条件,选择对应的等效电路模型和对应条件下的转换方程模型求取参考条件下光伏电池模型的五参数;A reference five-parameter determination module is configured to determine a reference condition, select a corresponding equivalent circuit model and a conversion equation model under the corresponding condition to obtain five parameters of the photovoltaic cell model under the reference condition;
物理参数确定模块,被配置为基于参考条件下的光伏电池模型的五参数,运用智能优化算法,以电流均方根误差最小为目标函数,得到各条件下的有效辐照度和有效温度;The physical parameter determination module is configured to obtain the effective irradiance and effective temperature under each condition based on the five parameters of the photovoltaic cell model under reference conditions by using an intelligent optimization algorithm and taking the minimum current root mean square error as the objective function;
五参数确定模块,被配置为基于各条件下的有效辐照度和有效温度的转换方程模型计算各条件下的五参数;A five-parameter determination module is configured to calculate the five parameters under each condition based on a conversion equation model of effective irradiance and effective temperature under each condition;
输出特性预测模块,被配置为基于各条件下的五参数预测各条件下的光伏电池的工作特性。The output characteristic prediction module is configured to predict the working characteristics of the photovoltaic cell under various conditions based on the five parameters under various conditions.
根据一些实施例,本发明的第三方案提供了一种计算机可读存储介质。According to some embodiments, a third aspect of the present invention provides a computer-readable storage medium.
一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如上述第一个方面所述的一种光伏组件物理参数计算及输出特性预测方法中的步骤。A computer-readable storage medium stores a computer program, which, when executed by a processor, implements the steps in the method for calculating physical parameters of a photovoltaic module and predicting output characteristics as described in the first aspect above.
根据一些实施例,本发明的第四方案提供了一种计算机设备。According to some embodiments, a fourth aspect of the present invention provides a computer device.
一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如上述第一个方面所述的一种光伏组件物理参数计算及输出特性预测方法中的步骤。A computer device comprises a memory, a processor and a computer program stored in the memory and executable on the processor, wherein when the processor executes the program, the steps in the method for calculating the physical parameters of a photovoltaic module and predicting the output characteristics as described in the first aspect above are implemented.
与现有技术相比,本发明的有益效果为:Compared with the prior art, the present invention has the following beneficial effects:
本发明提出计算有效辐照度和温度的解析公式,利用测量数据,通过智能优化算法拟合求得有效辐照度和温度计算公式中的各个参数,将有效辐照度和温度应用到光伏组件参数求解的转换方程中,进行光伏组件物理参数计算及输出特性预测,用于光伏组件的功率预测。本方法更加精确的计算出了有效辐照度和温度,也就是光伏组件内部实际吸收的辐照度和温度,使得光伏组件参数计算更加精确,提高了光伏组件输出特性(I-V、P-V曲线)的计算精度,提高了光伏组件的功率预测精度。The present invention proposes an analytical formula for calculating effective irradiance and temperature, uses measurement data, and fits each parameter in the effective irradiance and temperature calculation formula through an intelligent optimization algorithm, applies the effective irradiance and temperature to the conversion equation for solving the photovoltaic module parameters, calculates the physical parameters of the photovoltaic module and predicts the output characteristics, which is used for power prediction of the photovoltaic module. The method more accurately calculates the effective irradiance and temperature, that is, the irradiance and temperature actually absorbed inside the photovoltaic module, so that the calculation of photovoltaic module parameters is more accurate, improves the calculation accuracy of the photovoltaic module output characteristics (I-V, P-V curves), and improves the power prediction accuracy of the photovoltaic module.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。The accompanying drawings in the specification, which constitute a part of the present invention, are used to provide a further understanding of the present invention. The exemplary embodiments of the present invention and their descriptions are used to explain the present invention and do not constitute improper limitations on the present invention.
图1是本发明实施例中一种光伏组件物理参数计算及输出特性预测方法流程图;FIG1 is a flow chart of a method for calculating physical parameters and predicting output characteristics of a photovoltaic module according to an embodiment of the present invention;
图2是本发明实施例中单二极管模型等效电路图;FIG2 is an equivalent circuit diagram of a single diode model in an embodiment of the present invention;
图3是本发明实施例中技术流程图。FIG. 3 is a technical flow chart of an embodiment of the present invention.
具体实施方式Detailed ways
下面结合附图与实施例对本发明作进一步说明。The present invention will be further described below in conjunction with the accompanying drawings and embodiments.
应该指出,以下详细说明都是例示性的,旨在对本发明提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本发明所属技术领域的普通技术人员通常理解的相同含义。It should be noted that the following detailed descriptions are all illustrative and intended to provide further explanation of the present invention. Unless otherwise specified, all technical and scientific terms used herein have the same meanings as those commonly understood by those skilled in the art to which the present invention belongs.
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本发明的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。It should be noted that the terms used herein are only for describing specific embodiments and are not intended to limit exemplary embodiments according to the present invention. As used herein, unless the context clearly indicates otherwise, the singular form is also intended to include the plural form. In addition, it should be understood that when the terms "comprising" and/or "including" are used in this specification, it indicates the presence of features, steps, operations, devices, components and/or combinations thereof.
在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。In the absence of conflict, the embodiments of the present invention and the features of the embodiments may be combined with each other.
实施例一Embodiment 1
如图1所示,本实施例提供了一种光伏组件物理参数计算及输出特性预测方法,本实施例以该方法应用于服务器进行举例说明,可以理解的是,该方法也可以应用于终端,还可以应用于包括终端和服务器和系统,并通过终端和服务器的交互实现。服务器可以是独立的物理服务器,也可以是多个物理服务器构成的服务器集群或者分布式系统,还可以是提供云服务、云数据库、云计算、云函数、云存储、网络服务器、云通信、中间件服务、域名服务、安全服务CDN、以及大数据和人工智能平台等基础云计算服务的云服务器。终端可以是智能手机、平板电脑、笔记本电脑、台式计算机、智能音箱、智能手表等,但并不局限于此。终端以及服务器可以通过有线或无线通信方式进行直接或间接地连接,本申请在此不做限制。本实施例中,该方法包括以下步骤:As shown in Figure 1, this embodiment provides a method for calculating the physical parameters of a photovoltaic module and predicting the output characteristics. This embodiment uses the method applied to a server as an example for illustration. It is understandable that the method can also be applied to a terminal, and can also be applied to a system including a terminal and a server, and is implemented through the interaction between the terminal and the server. The server can be an independent physical server, or a server cluster or distributed system composed of multiple physical servers, or a cloud server that provides basic cloud computing services such as cloud services, cloud databases, cloud computing, cloud functions, cloud storage, network servers, cloud communications, middleware services, domain name services, security services CDN, and big data and artificial intelligence platforms. The terminal can be a smart phone, a tablet computer, a laptop computer, a desktop computer, a smart speaker, a smart watch, etc., but is not limited to this. The terminal and the server can be directly or indirectly connected via wired or wireless communication, which is not limited in this application. In this embodiment, the method includes the following steps:
根据光伏电池的类型选择对应的等效电路模型和参数随光照温度的变化的转换方程模型;Select the corresponding equivalent circuit model and the conversion equation model of the parameters changing with the light temperature according to the type of photovoltaic cell;
确定参考条件,选择对应的等效电路模型和对应条件下的转换方程模型求取参考条件下光伏电池模型的五参数;Determine the reference conditions, select the corresponding equivalent circuit model and the conversion equation model under the corresponding conditions to obtain the five parameters of the photovoltaic cell model under the reference conditions;
基于参考条件下的光伏电池模型的五参数,运用智能优化算法,以电流均方根误差最小为目标函数,得到各条件下的有效辐照度和有效温度;Based on the five parameters of the photovoltaic cell model under reference conditions, the effective irradiance and effective temperature under each condition are obtained by using an intelligent optimization algorithm and taking the minimum current root mean square error as the objective function;
基于各条件下的有效辐照度和有效温度的转换方程模型计算各条件下的五参数;The five parameters under each condition are calculated based on the conversion equation model of effective irradiance and effective temperature under each condition;
根据各条件下的五参数预测各条件下的光伏电池的工作特性。The working characteristics of photovoltaic cells under various conditions are predicted based on the five parameters under various conditions.
所述确定参考条件,选择对应的等效电路和对应条件下的转换方程模型求取参考条件下光伏电池模型的五参数,具体为:The reference conditions are determined, and the corresponding equivalent circuit and the conversion equation model under the corresponding conditions are selected to obtain the five parameters of the photovoltaic cell model under the reference conditions, specifically:
选取参考条件;Select reference conditions;
确定短路电流点、开路电压点和最大功率点的三个独立方程;Three independent equations to determine the short-circuit current point, open-circuit voltage point, and maximum power point;
通过最大功率点处导数为零以及T+ΔT处开路电压点得到另外两个方程;The other two equations are obtained by taking the derivative to be zero at the maximum power point and the open circuit voltage point at T+ΔT;
基于上述五个方程,得到参考条件下的光伏电池模型的五参数。Based on the above five equations, the five parameters of the photovoltaic cell model under reference conditions are obtained.
基于参考条件下的光伏电池模型的五参数,运用智能优化算法,以电流均方根误差最小为目标函数,得到各条件下的有效辐照度和有效温度,具体为:Based on the five parameters of the photovoltaic cell model under reference conditions, the intelligent optimization algorithm is used to minimize the current root mean square error as the objective function to obtain the effective irradiance and effective temperature under each condition, specifically:
输入参考条件下的光伏电池模型的五参数进行初始化,得到初始化粒子;Input the five parameters of the photovoltaic cell model under reference conditions for initialization to obtain the initialized particles;
以电流均方根误差最小作为目标函数,检验是否达到最终需要的精度;Taking the minimum current RMS error as the objective function, check whether the final required accuracy is achieved;
如果满足精度要求即输出最优未知参数;If the accuracy requirement is met, the optimal unknown parameters are output;
若不满足精度条件,则需要进一步迭代提高精度直到满足精度要求;If the accuracy condition is not met, further iteration is required to improve the accuracy until the accuracy requirement is met;
基于最优未知参数,计算各条件下的有效辐照度和温度。Based on the optimal unknown parameters, calculate the effective irradiance and temperature under each condition.
所述若不满足精度条件,则需要进一步迭代提高精度直到满足精度要求,具体为:If the accuracy condition is not met, further iteration is required to improve the accuracy until the accuracy requirement is met, specifically:
计算所有粒子的电流均方根误差;Calculate the current RMS error of all particles;
找到每次迭代误差最小的粒子和所有迭代次数中误差最小的粒子进行比较;Find the particle with the smallest error in each iteration and compare it with the particle with the smallest error in all iterations;
最终输出误差最小的未知参数结果。The final output is the unknown parameter result with the smallest error.
所述基于最优未知参数,计算各条件下的有效辐照度和有效温度,具体为:The effective irradiance and effective temperature under each condition are calculated based on the optimal unknown parameters, specifically:
将最优的未知参数代入到下面的公式,具体为:Substitute the optimal unknown parameters into the following formula, which is:
Seff=S+x1+x2KT+x3 cos(δ)cod(θ)+x4ZAmin+x5Tcell;Seff =S + x1 + x2 KT + x3 cos(δ)cod(θ) + x4 ZAmin + x5 Tcell ;
Teff=Tcell+x6S+x7;Teff =Tcell +x6S +x7 ;
其中,Seff是有效辐照度,Teff是有效温度,KT是晴空因子,δ是天顶角,θ是方位角,ZAmin是天顶角最小值,Tcell是环境测量温度,S代表光照强度。Where Seff is the effective irradiance, Teff is the effective temperature, KT is the clear sky factor, δ is the zenith angle, θ is the azimuth angle, ZAmin is the minimum zenith angle, Tcell is the ambient measurement temperature, and S represents the light intensity.
所述基于各条件下的有效辐照度和有效温度的转换方程模型计算各条件下的五参数,具体为:The conversion equation model based on the effective irradiance and effective temperature under each condition calculates the five parameters under each condition, specifically:
将各条件下的有效辐照度和有效温度代入到各条件下的有效辐照度和有效温度的转换方程模型;Substitute the effective irradiance and effective temperature under each condition into the conversion equation model of effective irradiance and effective temperature under each condition;
得到各条件下的五参数。The five parameters under each condition were obtained.
所述根据各条件下的五参数预测各条件下的光伏电池的工作特性,具体为:The working characteristics of the photovoltaic cell under each condition are predicted according to the five parameters under each condition, specifically:
根据各条件下的五参数以及实测电压带入到输出电流公式;Substitute the five parameters under various conditions and the measured voltage into the output current formula;
得到各条件下的输出电流,进而得到一条通过有效辐照度和温度计算的I-V曲线和P-V曲线;The output current under each condition is obtained, and then an I-V curve and a P-V curve calculated by effective irradiance and temperature are obtained;
基于通过有效辐照度和温度计算的I-V曲线和P-V曲线预测各条件下的光伏电池的工作特性。The operating characteristics of photovoltaic cells under various conditions are predicted based on the I-V curve and P-V curve calculated by effective irradiance and temperature.
进一步地,所述求取参考条件下光伏电池模型的五参数,具体为:Furthermore, the five parameters of the photovoltaic cell model under the reference conditions are obtained as follows:
本实施例基于光伏电池的单二极管模型(包括但不限于此模型)和一组转换方程(包括但不限于此组转换方程),结合提出的有效辐照度和温度计算公式,通过智能优化算法拟合出光伏组件内部实际吸收的辐照度和温度,进行多条件下光伏组件的参数求解和输出特性预测。This embodiment is based on a single diode model of a photovoltaic cell (including but not limited to this model) and a set of conversion equations (including but not limited to this set of conversion equations), combined with the proposed effective irradiance and temperature calculation formulas, and uses an intelligent optimization algorithm to fit the irradiance and temperature actually absorbed inside the photovoltaic module, and solves the parameters and predicts the output characteristics of the photovoltaic module under multiple conditions.
以单二极管模型为例,其等效电路图如图2所示。Taking a single diode model as an example, its equivalent circuit diagram is shown in FIG2 .
应用基尔霍夫电流定律,得到其I-V关系:Applying Kirchhoff's current law, we get the I-V relationship:
式中:Vt=KT/q;Where:Vt = KT/q;
Iph——光生电流;Iph - photocurrent;
I0——二极管反向饱和电流;I0 —— diode reverse saturation current;
N——二极管理想因子;N——diode ideal factor;
Rsh——并联电阻;Rsh ——parallel resistance;
Rs——串联电阻;Rs ——series resistance;
Ns——光伏电池串联数量;Ns ——Number of photovoltaic cells connected in series;
V——输出电压;V——output voltage;
I——输出电流;I——output current;
T——光伏电池温度;T——PV cell temperature;
k=1.38006×10-23J/K;k=1.38006×10-23 J/K;
q=1.60218×10-19C;q=1.60218×10-19 C;
光伏组件的物理参数随着光照温度的变化的转换方程目前还没有定论,本专利只给出一种形式的转换方程(包括但不限于这一种形式):The conversion equation of the physical parameters of photovoltaic modules with the change of light temperature has not yet been determined. This patent only provides one form of conversion equation (including but not limited to this form):
Iph=[Iph,ref+αIsc(T-Tref)]·S/Sref (2);Iph = [Iph,ref +αIsc (TTref )]·S/Sref (2);
Rs=Rs,ref (4);Rs = Rs, ref (4);
Rsh=Rsh,ref·Sref/S (5);Rsh = Rsh,ref ·Sref / S (5);
n=nref (6);n=nref (6);
其中,下标表示对应的参数在其参考条件下的值,S代表光照强度,αIsc表示短路电流的温度系数。任意工况下的五参数可以在获得参考条件下的参数后,通过转换方程得到。而本发明中将S替换成了Seff(有效辐照度),T替换成了Teff(有效温度),如下:Wherein, the subscripts represent the values of the corresponding parameters under their reference conditions, S represents the light intensity, and αIsc represents the temperature coefficient of the short-circuit current. The five parameters under any working condition can be obtained by the conversion equation after obtaining the parameters under the reference conditions. In the present invention, S is replaced by Seff (effective irradiance) and T is replaced by Teff (effective temperature), as follows:
Iph=[Iph,ref+αIsc(Teff-Tref)]·Seff/Sref (7);Iph = [Iph,ref +αIsc (Teff -Tref )] ·Seff /Sref (7);
Rs=Rs,ref (9);Rs = Rs, ref (9);
Rsh=Rsh,ref·Sref/Seff (10);Rsh = Rsh,ref ·Sref /Seff (10);
n=nref (11);n = nref (11);
其中Seff和Teff的计算公式如下:The calculation formulas of Seff and Teff are as follows:
Seff=S+x1+x2KT+x3 cos(δ)cos(θ)+x4ZAmin+x5Tcell (12);Seff =S + x1 + x2 KT + x3 cos(δ)cos(θ) + x4 ZAmin + x5 Tcell (12);
Teff=Tcell+x6S+x7 (13);Teff =Tcell +x6S +x7 (13);
式中:KT——晴空因子;Where: KT ——clear sky factor;
δ——天顶角;δ——zenith angle;
θ——方位角;θ——azimuth;
ZAmin——天顶角最小值;ZAmin —— minimum zenith angle;
Tcell——环境测量温度;Tcell ——ambient measurement temperature;
式中,天顶角和方位角的计算是通过SPA计算器,输入光伏站点的经纬度和时区信息,就可以通过SPA算法输出天顶角和方位角,晴空因子是通过全球辐照度除以地外全球辐照度来获得的。In the formula, the zenith angle and azimuth angle are calculated through the SPA calculator. By inputting the latitude and longitude and time zone information of the photovoltaic site, the zenith angle and azimuth angle can be output through the SPA algorithm. The clear sky factor is obtained by dividing the global irradiance by the extraterrestrial global irradiance.
要想得到Seff和Teff,首先要选取一参考条件S=1000W/m2,T=25℃(包含但不限于此工作条件),然后对此条件下的光伏电池模型进行参数求解,光伏电池模型在参考条件下的参数求解方法可以选择解析计算法(包括但不限于这一种方法),具体求解步骤如下:To obtain Seff and Teff , we first need to select a reference condition S = 1000 W/m2, T = 25°C (including but not limited to this working condition), and then solve the parameters of the photovoltaic cell model under this condition. The parameter solution method of the photovoltaic cell model under the reference condition can be an analytical calculation method (including but not limited to this method). The specific solution steps are as follows:
首先用到的是短路电流点、开路电压点和最大功率点的三个独立方程,然后再通过最大功率点处导数为零以及T+ΔT处开路电压点得到另外两个方程,通过以上5个独立的方程(14)-(18)进行解析求解。The first three independent equations used are the short-circuit current point, the open-circuit voltage point, and the maximum power point. The other two equations are then obtained by taking the derivative at the maximum power point as zero and the open-circuit voltage point at T+ΔT. The above five independent equations (14)-(18) are then solved analytically.
0=Iph,ref-Io,ref(Expoc-1)-GSH,refVoc,ref (14);0 = Iph,ref - Io,ref (Expoc -1) - GSH,ref Voc,ref (14);
Isc,ref=Iph,ref-Io,ref(Expsc-1)-Gsh,refRs,refIsc,ref (15);Isc,ref =Iph,ref -Io,ref (Expsc -1)-Gsh,ref Rs,ref Isc,ref (15);
Imp,ref=Iph,ref-Io,ref(Expmp-1)-Gsh,ref(Vmp,ref+Rs,refImp,ref) (16);Imp,ref =Iph,ref -Io,ref (Expmp -1) -Gsh,ref (Vmp,ref +Rs,ref Imp,ref ) (16);
其中,上式中Among them, in the above formula
得到参考条件下的5参数后,就可以运用转换方程(7)-(11)求解任意工作条件下的5参数,在公式(12)和(13)中x1,x2,x3,x4,x5,x6,x7均为未知常数,适用于任意光照和温度条件,求解时需要用到GCPSO拟合技术(包括但不限于这一种方法),首先输入各项使用到的参数以及初始化粒子,然后进入循环,检验是否达到最终需要的精度,如果满足精度要求即输出参数,若不满足精度条件需要进一步迭代提高精度直到满足精度要求,在迭代过程中一般采用平均均方根误差作为目标函数进行寻优,其定义为公式(22),计算每个粒子的找到每次迭代误差最小的粒子和所有迭代次数中误差最小的粒子进行比较,最终输出误差最小的参数结果。After obtaining the five parameters under reference conditions, the conversion equations (7)-(11) can be used to solve the five parameters under any working conditions. In formulas (12) and (13),x1 ,x2 ,x3 ,x4 ,x5 ,x6 ,x7 are all unknown constants, which are applicable to any lighting and temperature conditions. GCPSO fitting technology (including but not limited to this method) is required for solving. First, input the parameters used and initialize the particles, and then enter the loop to check whether the final required accuracy is achieved. If the accuracy requirements are met, the parameters are output. If the accuracy requirements are not met, further iteration is required to improve the accuracy until the accuracy requirements are met. In the iterative process, the average root mean square error is generally used. As the objective function for optimization, it is defined as formula (22), calculating the Find the particle with the smallest error in each iteration and compare it with the particle with the smallest error in all iterations, and finally output the parameter result with the smallest error.
其中,Np代表所有曲线上点的数目,Nl代表所有曲线的数目,N代表每条曲线上的点的数目,I(j,i)和分别代表实测电流和计算电流。用来表示计算值与实测值之间的误差,其值越小代表误差越小。根据误差最小即可求得7个未知常数。WhereNp represents the number of points on all curves,Nl represents the number of all curves, N represents the number of points on each curve, I(j,i) and Represent the measured current and calculated current respectively. To express the error between the calculated value and the measured value, the smaller the value, the smaller the error. The seven unknown constants can be obtained by minimizing the error.
求解过程中由于公式(1)是超越方程,无法直接计算得到I(j,i)和因此本专利利用Lambert W函数(包括但不限于此方法)来求解超越方程得到电流的计算值,经简化后输出电流I的显式表达式为In the solution process, since formula (1) is a transcendental equation, it is impossible to directly calculate I(j,i) and Therefore, this patent uses Lambert W function (including but not limited to this method) to solve the transcendental equation to obtain the calculated value of the current. After simplification, the explicit expression of the output current I is:
求得x1,x2,x3,x4,x5,x6,x77个未知常数后,各工作条件下计算的有效辐照度和温度就可以求得,将其带入公式(7)-(11)即可得到各工作条件下光伏电池的5参数,将实测电压带入到公式(23)中可求得通过有效辐照度和温度计算的电流I,进而可以绘制出一条通过有效辐照度和温度计算的I-V曲线和P-V曲线,进行更加精确的功率预测。After obtaining the seven unknown constantsx1 ,x2 ,x3 ,x4 ,x5 ,x6 ,x7 , the effective irradiance and temperature calculated under each working condition can be obtained. Substituting them into formulas (7)-(11) can obtain the five parameters of the photovoltaic cell under each working condition. Substituting the measured voltage into formula (23) can obtain the current I calculated by the effective irradiance and temperature, and then an IV curve and PV curve calculated by the effective irradiance and temperature can be drawn to make a more accurate power prediction.
本发明要解决的具体问题Specific problems to be solved by the present invention
本发明提出有效辐照度和温度的概念,用解析公式计算有效辐照度和温度的方法。将光伏电池内部吸收的辐照度和温度进行计算,通过智能优化算法拟合的方法求出公式中的未知常数,然后将有效辐照度和温度代入转换方程中,本发明不需要选择特定的转换方程,并且适用于各种光伏电池等效电路模型,采用不同工况下的大量I-V数据求取任意条件下的参数,使计算结果更为合理和准确。本发明通过运用有效辐照度和温度,使得光伏功率预测的精度大大提升。The present invention proposes the concepts of effective irradiance and temperature, and uses analytical formulas to calculate effective irradiance and temperature. The irradiance and temperature absorbed inside the photovoltaic cell are calculated, and the unknown constants in the formula are obtained by fitting the intelligent optimization algorithm, and then the effective irradiance and temperature are substituted into the conversion equation. The present invention does not need to select a specific conversion equation, and is applicable to various photovoltaic cell equivalent circuit models. A large amount of I-V data under different working conditions is used to obtain parameters under any conditions, so that the calculation results are more reasonable and accurate. The present invention greatly improves the accuracy of photovoltaic power prediction by using effective irradiance and temperature.
本发明的具体过程为,选择光伏电池等效电路模型和对应参数随光照温度的变化的转换方程模型,求取参考条件下光伏电池模型的未知参数,采用公式(14)求解出有效辐照度和温度的计算公式,将其带入转换方程中,求得各条件下的光伏电池模型参数,从而准确快速的预测各辐照度和温度条件下的光伏电池的工作特性。其总技术流程图如图3所示。The specific process of the present invention is to select a photovoltaic cell equivalent circuit model and a conversion equation model of corresponding parameters changing with light temperature, obtain unknown parameters of the photovoltaic cell model under reference conditions, use formula (14) to solve the calculation formula of effective irradiance and temperature, bring it into the conversion equation, and obtain the photovoltaic cell model parameters under various conditions, so as to accurately and quickly predict the working characteristics of the photovoltaic cell under various irradiance and temperature conditions. The overall technical flow chart is shown in Figure 3.
实施例二Embodiment 2
本实施例提供了一种光伏组件物理参数计算及输出特性预测系统,包括:This embodiment provides a photovoltaic module physical parameter calculation and output characteristic prediction system, including:
转换方程模型确定模块,被配置为根据光伏电池的类型选择对应的等效电路模型和参数随光照温度的变化的转换方程模型;A conversion equation model determination module is configured to select a corresponding equivalent circuit model and a conversion equation model whose parameters vary with light temperature according to the type of photovoltaic cell;
参考五参数确定模块,被配置为确定参考条件,选择对应的等效电路模型和对应条件下的转换方程模型求取参考条件下光伏电池模型的五参数;A reference five-parameter determination module is configured to determine a reference condition, select a corresponding equivalent circuit model and a conversion equation model under the corresponding condition to obtain five parameters of the photovoltaic cell model under the reference condition;
物理参数确定模块,被配置为基于参考条件下的光伏电池模型的五参数,运用智能优化算法,以电流均方根误差最小为目标函数,得到各条件下的有效辐照度和有效温度;The physical parameter determination module is configured to obtain the effective irradiance and effective temperature under each condition based on the five parameters of the photovoltaic cell model under reference conditions by using an intelligent optimization algorithm and taking the minimum current root mean square error as the objective function;
五参数确定模块,被配置为基于各条件下的有效辐照度和有效温度的转换方程模型计算各条件下的五参数;A five-parameter determination module is configured to calculate the five parameters under each condition based on a conversion equation model of effective irradiance and effective temperature under each condition;
输出特性预测模块,被配置为基于各条件下的五参数预测各条件下的光伏电池的工作特性。The output characteristic prediction module is configured to predict the working characteristics of the photovoltaic cell under various conditions based on the five parameters under various conditions.
上述模块与对应的步骤所实现的示例和应用场景相同,但不限于上述实施例一所公开的内容。需要说明的是,上述模块作为系统的一部分可以在诸如一组计算机可执行指令的计算机系统中执行。The examples and application scenarios implemented by the above modules and corresponding steps are the same, but are not limited to the contents disclosed in the above embodiment 1. It should be noted that the above modules as part of the system can be executed in a computer system such as a set of computer executable instructions.
上述实施例中对各个实施例的描述各有侧重,某个实施例中没有详述的部分可以参见其他实施例的相关描述。The description of each embodiment in the above embodiments has different emphases. For parts not described in detail in a certain embodiment, reference can be made to the relevant descriptions of other embodiments.
所提出的系统,可以通过其他的方式实现。例如以上所描述的系统实施例仅仅是示意性的,例如上述模块的划分,仅仅为一种逻辑功能划分,实际实现时,可以有另外的划分方式,例如多个模块可以结合或者可以集成到另外一个系统,或一些特征可以忽略,或不执行。The proposed system can be implemented in other ways. For example, the system embodiment described above is only illustrative, and the division of the modules is only a logical function division. In actual implementation, there may be other division methods, such as multiple modules can be combined or integrated into another system, or some features can be ignored or not executed.
实施例三Embodiment 3
本实施例提供了一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现如上述实施例一所述的一种光伏组件物理参数计算及输出特性预测方法中的步骤。This embodiment provides a computer-readable storage medium on which a computer program is stored. When the program is executed by a processor, the steps in the method for calculating physical parameters of a photovoltaic module and predicting output characteristics as described in the first embodiment above are implemented.
实施例四Embodiment 4
本实施例提供了一种计算机设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如上述实施例一所述的一种光伏组件物理参数计算及输出特性预测方法中的步骤。This embodiment provides a computer device, including a memory, a processor, and a computer program stored in the memory and executable on the processor. When the processor executes the program, the steps in the method for calculating physical parameters of photovoltaic modules and predicting output characteristics as described in the first embodiment above are implemented.
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用硬件实施例、软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。Those skilled in the art will appreciate that embodiments of the present invention may be provided as methods, systems, or computer program products. Therefore, the present invention may take the form of hardware embodiments, software embodiments, or embodiments combining software and hardware. Moreover, the present invention may take the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) containing computer-usable program codes.
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present invention is described with reference to the flowchart and/or block diagram of the method, device (system), and computer program product according to the embodiment of the present invention. It should be understood that each process and/or box in the flowchart and/or block diagram, as well as the combination of the process and/or box in the flowchart and/or block diagram can be implemented by computer program instructions. These computer program instructions can be provided to a processor of a general-purpose computer, a special-purpose computer, an embedded processor or other programmable data processing device to produce a machine, so that the instructions executed by the processor of the computer or other programmable data processing device produce a device for implementing the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing device to work in a specific manner, so that the instructions stored in the computer-readable memory produce a manufactured product including an instruction device that implements the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions may also be loaded onto a computer or other programmable data processing device so that a series of operational steps are executed on the computer or other programmable device to produce a computer-implemented process, whereby the instructions executed on the computer or other programmable device provide steps for implementing the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random AccessMemory,RAM)等。A person skilled in the art can understand that all or part of the processes in the above-mentioned embodiments can be implemented by instructing the relevant hardware through a computer program, and the program can be stored in a computer-readable storage medium, and when the program is executed, it can include the processes of the embodiments of the above-mentioned methods. The storage medium can be a disk, an optical disk, a read-only memory (ROM) or a random access memory (RAM), etc.
上述虽然结合附图对本发明的具体实施方式进行了描述,但并非对本发明保护范围的限制,所属领域技术人员应该明白,在本发明的技术方案的基础上,本领域技术人员不需要付出创造性劳动即可做出的各种修改或变形仍在本发明的保护范围以内。Although the above describes the specific implementation mode of the present invention in conjunction with the accompanying drawings, it is not intended to limit the scope of protection of the present invention. Technical personnel in the relevant field should understand that various modifications or variations that can be made by technical personnel in the field without creative work on the basis of the technical solution of the present invention are still within the scope of protection of the present invention.
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202410493007.5ACN118313140B (en) | 2024-04-23 | 2024-04-23 | Photovoltaic module physical parameter calculation and output characteristic prediction method and system |
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| CN202410493007.5ACN118313140B (en) | 2024-04-23 | 2024-04-23 | Photovoltaic module physical parameter calculation and output characteristic prediction method and system |
| Publication Number | Publication Date |
|---|---|
| CN118313140Atrue CN118313140A (en) | 2024-07-09 |
| CN118313140B CN118313140B (en) | 2024-11-01 |
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| CN202410493007.5AActiveCN118313140B (en) | 2024-04-23 | 2024-04-23 | Photovoltaic module physical parameter calculation and output characteristic prediction method and system |
| Country | Link |
|---|---|
| CN (1) | CN118313140B (en) |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20150188415A1 (en)* | 2013-12-30 | 2015-07-02 | King Abdulaziz City For Science And Technology | Photovoltaic systems with maximum power point tracking controller |
| CN104778352A (en)* | 2015-03-31 | 2015-07-15 | 国家电网公司 | Seven-parameter photovoltaic cell output characteristic modeling method based on STFT (Short Time Fourier Transform) operator |
| US20160226253A1 (en)* | 2015-02-03 | 2016-08-04 | King Fahd University Of Petroleum And Minerals | Neuro-fuzzy control system for grid-connected photovoltaic systems |
| CN108365822A (en)* | 2018-04-12 | 2018-08-03 | 山东大学 | The prediction technique and system of photovoltaic cell working characteristics under the conditions of different illumination temperatures |
| CN113011000A (en)* | 2021-02-08 | 2021-06-22 | 山东大学 | Method and system for predicting multi-condition parameters of working characteristics of photovoltaic cell |
| US20210194424A1 (en)* | 2019-04-25 | 2021-06-24 | Shandong University | Method and system for power prediction of photovoltaic power station based on operating data of grid-connected inverters |
| CN113033136A (en)* | 2021-02-08 | 2021-06-25 | 山东大学 | Simplified photovoltaic cell physical parameter extraction optimization method and system |
| CN113779733A (en)* | 2021-09-18 | 2021-12-10 | 国网江苏省电力有限公司常州供电分公司 | A hybrid optimization identification method of photovoltaic module model parameters |
| CN117150809A (en)* | 2023-09-22 | 2023-12-01 | 山东崇实电力科技有限公司 | Newton-Laportson method-based photovoltaic module parameter estimation method and system |
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| US20150188415A1 (en)* | 2013-12-30 | 2015-07-02 | King Abdulaziz City For Science And Technology | Photovoltaic systems with maximum power point tracking controller |
| US20160226253A1 (en)* | 2015-02-03 | 2016-08-04 | King Fahd University Of Petroleum And Minerals | Neuro-fuzzy control system for grid-connected photovoltaic systems |
| CN104778352A (en)* | 2015-03-31 | 2015-07-15 | 国家电网公司 | Seven-parameter photovoltaic cell output characteristic modeling method based on STFT (Short Time Fourier Transform) operator |
| CN108365822A (en)* | 2018-04-12 | 2018-08-03 | 山东大学 | The prediction technique and system of photovoltaic cell working characteristics under the conditions of different illumination temperatures |
| US20210194424A1 (en)* | 2019-04-25 | 2021-06-24 | Shandong University | Method and system for power prediction of photovoltaic power station based on operating data of grid-connected inverters |
| CN113011000A (en)* | 2021-02-08 | 2021-06-22 | 山东大学 | Method and system for predicting multi-condition parameters of working characteristics of photovoltaic cell |
| CN113033136A (en)* | 2021-02-08 | 2021-06-25 | 山东大学 | Simplified photovoltaic cell physical parameter extraction optimization method and system |
| CN113779733A (en)* | 2021-09-18 | 2021-12-10 | 国网江苏省电力有限公司常州供电分公司 | A hybrid optimization identification method of photovoltaic module model parameters |
| CN117150809A (en)* | 2023-09-22 | 2023-12-01 | 山东崇实电力科技有限公司 | Newton-Laportson method-based photovoltaic module parameter estimation method and system |
| Title |
|---|
| 刘默;唐吉玉;刘祥;: "基于Simulink的三结聚光太阳能电池建模与仿真研究", 电子设计工程, no. 10, 20 May 2019 (2019-05-20)* |
| 杨宏超;程若发;吕彩艳;王雪微;: "光伏组件内部参数辨识与输出特性研究", 电子技术应用, no. 01, 6 January 2018 (2018-01-06)* |
| 郭长兴;沈娜;韩凤琴;林涛;杨上兴;: "太阳能光伏电池多参数输出特性的研究", 新能源进展, no. 02, 31 December 2017 (2017-12-31)* |
| 陈建东;黄仕华;: "任意辐照强度和温度下的光伏组件输出特性模拟仿真", 激光与光电子学进展, no. 02, 10 February 2016 (2016-02-10)* |
| Publication number | Publication date |
|---|---|
| CN118313140B (en) | 2024-11-01 |
| Publication | Publication Date | Title |
|---|---|---|
| Shamshirband et al. | Daily global solar radiation prediction from air temperatures using kernel extreme learning machine: A case study for Iran | |
| Zhi et al. | A physical model with meteorological forecasting for hourly rooftop photovoltaic power prediction | |
| Zhou et al. | Prediction of the ground temperature with ANN, LS-SVM and fuzzy LS-SVM for GSHP application | |
| Huang et al. | Improvement in artificial neural network-based estimation of grid connected photovoltaic power output | |
| CN110556820B (en) | Method and device for determining an energy system operating scenario | |
| CN114004424A (en) | A photovoltaic power prediction method, system, device and storage medium | |
| CN107562992B (en) | Photovoltaic array maximum power tracking method based on SVM and particle swarm algorithm | |
| Chang et al. | Interpretable machine learning in sustainable edge computing: A case study of short-term photovoltaic power output prediction | |
| CN110380444B (en) | Capacity planning method for distributed wind power orderly access to power grid under multiple scenes based on variable structure Copula | |
| CN117613883A (en) | Method and device for predicting generated power, computer equipment and storage medium | |
| CN108376294A (en) | A kind of heat load prediction method of energy supply feedback and meteorologic factor | |
| CN105356451A (en) | Probability trend calculating method considering large-scale photovoltaic grid-connected power generation system | |
| CN113033136B (en) | Simplified method and system for extraction and optimization of physical parameters of photovoltaic cells | |
| KR20210047627A (en) | Apparatus and method for estimating solar power | |
| Laudani et al. | Very fast and accurate procedure for the characterization of photovoltaic panels from datasheet information | |
| Dou et al. | Elman neural network based short-term photovoltaic power forecasting using association rules and kernel principal component analysis | |
| Chen et al. | Static photovoltaic models’ parameter extraction using reinforcement learning strategy adapted local gradient Nelder-Mead Runge Kutta method | |
| Bao et al. | Hybrid short-term load forecasting using principal component analysis and mea-elman network | |
| CN118313140B (en) | Photovoltaic module physical parameter calculation and output characteristic prediction method and system | |
| CN113011000B (en) | Method and system for predicting multi-condition parameters of working characteristics of photovoltaic cell | |
| CN118036529A (en) | Method and system for calculating effective irradiance and temperature for photovoltaic prediction | |
| CN108256668A (en) | Photovoltaic power generation output forecasting method based on harmony search-Elman algorithms | |
| Wang et al. | Wind power prediction based on nonlinear partial least square | |
| CN111753252A (en) | A method and system for random variable sample generation based on Nataf transform | |
| Huang et al. | Optimal prediction intervals of wind power generation based on FA-ELM |
| Date | Code | Title | Description |
|---|---|---|---|
| PB01 | Publication | ||
| PB01 | Publication | ||
| SE01 | Entry into force of request for substantive examination | ||
| SE01 | Entry into force of request for substantive examination | ||
| GR01 | Patent grant | ||
| GR01 | Patent grant |