Movatterモバイル変換


[0]ホーム

URL:


CN118247409B - An image processing system for virtual reality - Google Patents

An image processing system for virtual reality
Download PDF

Info

Publication number
CN118247409B
CN118247409BCN202410657873.3ACN202410657873ACN118247409BCN 118247409 BCN118247409 BCN 118247409BCN 202410657873 ACN202410657873 ACN 202410657873ACN 118247409 BCN118247409 BCN 118247409B
Authority
CN
China
Prior art keywords
task
actual
task scheduling
virtual
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202410657873.3A
Other languages
Chinese (zh)
Other versions
CN118247409A (en
Inventor
戴敏
周毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Civil Aviation Flight University of China
Original Assignee
Civil Aviation Flight University of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Civil Aviation Flight University of ChinafiledCriticalCivil Aviation Flight University of China
Priority to CN202410657873.3ApriorityCriticalpatent/CN118247409B/en
Publication of CN118247409ApublicationCriticalpatent/CN118247409A/en
Application grantedgrantedCritical
Publication of CN118247409BpublicationCriticalpatent/CN118247409B/en
Activelegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Classifications

Landscapes

Abstract

The invention relates to the technical field of virtual reality, in particular to an image processing system for virtual reality, which comprises: the system comprises a resource management module, a task scheduling module and an algorithm management module; determining the current actual range of the virtual scene according to the obtained relative position of the virtual object; determining task scheduling ranking and task scheduling modes according to the current actual resource demand of the current actual range and the next operation parameter; and determining an actual resource allocation strategy according to the task scheduling rank and the task scheduling mode. According to the invention, the task scheduling sequences under different conditions are flexibly adjusted, so that the resource allocation is more reasonable and efficient; the method has the advantages that better resource management and task scheduling effects are provided in the aspects of resource demand estimation, virtual accuracy consideration and task scheduling ranking; and adopting different execution modes according to the task scheduling modes so as to improve the resource utilization rate and the user experience to the greatest extent.

Description

Translated fromChinese
一种用于虚拟现实的图像处理系统An image processing system for virtual reality

技术领域Technical Field

本发明涉及虚拟现实技术领域,特别是指一种用于虚拟现实的图像处理系统。The present invention relates to the field of virtual reality technology, and in particular to an image processing system for virtual reality.

背景技术Background Art

在虚拟场景中,当虚拟对象进行移动时,从而切换虚拟场景范围,在切换虚拟场景改变呈现范围时,常常发生卡顿和不流畅的情况;由于切换场景范围时,需要重新加载大量的图形资源和纹理,导致图形渲染压力增大,影响流畅度以及需要加载新的场景数据、模型、纹理等资源,如果资源加载速度慢或者资源过多,会导致卡顿现象;因此,需要提前加载可能需要用到的资源或利用空余算力实现对于优化卡顿算力的分配,从而减少切换场景时的加载时间。In a virtual scene, when a virtual object moves, the virtual scene range is switched. When the virtual scene is switched to change the presentation range, jamming and stuttering often occur. When the scene range is switched, a large amount of graphic resources and textures need to be reloaded, which increases the pressure on graphic rendering, affecting the smoothness. New scene data, models, textures and other resources need to be loaded. If the resource loading speed is slow or there are too many resources, jamming will occur. Therefore, it is necessary to load the resources that may be needed in advance or use the spare computing power to optimize the allocation of computing power to reduce jamming, thereby reducing the loading time when switching scenes.

中国专利申请公开号CN108921050A公开了一种基于移动端的虚拟现实图像处理系统,包括:视线计算模块、多层次渲染模块以及显示模块;所述视线计算模块用于控制移动端的摄像头实时获取用户脸部图像,通过用户脸部图像实时确定用户瞳孔位置,并根据用户瞳孔位置确定用户视线区域,所述视线区域不占满所述移动端的整个显示屏;所述多层次渲染模块用于通过累进网格算法中的点分裂算法对视线区域内待播放图像的底层数据进行点分裂得到高层网格数据,通过累进网格算法中的边折叠算法处理视线区域以外待播放图像的底层数据的得到底层网格数据;所述显示模块用于将多层次渲染模块处理后的待播放图像数据分屏变换后显示给用户,使用户看到虚拟现实的图像。Chinese patent application publication number CN108921050A discloses a virtual reality image processing system based on a mobile terminal, including: a sight line calculation module, a multi-level rendering module and a display module; the sight line calculation module is used to control the camera of the mobile terminal to obtain a user's facial image in real time, determine the user's pupil position in real time through the user's facial image, and determine the user's sight line area according to the user's pupil position, and the sight line area does not occupy the entire display screen of the mobile terminal; the multi-level rendering module is used to perform point splitting on the bottom layer data of the image to be played in the sight line area through the point splitting algorithm in the progressive grid algorithm to obtain high-level grid data, and process the bottom layer data of the image to be played outside the sight line area through the edge folding algorithm in the progressive grid algorithm to obtain the bottom layer grid data; the display module is used to display the image data to be played processed by the multi-level rendering module to the user after split-screen transformation, so that the user can see the virtual reality image.

由此可见,当前的虚拟现实图像处理系统运行效率低,无法使得资源分配更加合理和高效。It can be seen that the current virtual reality image processing system has low operating efficiency and cannot make resource allocation more reasonable and efficient.

发明内容Summary of the invention

为此,本发明的目的是提供一种用于虚拟现实的图像处理系统,用于克服当前的虚拟现实图像处理系统运行效率低,无法使得资源分配更加合理和高效的问题。To this end, an object of the present invention is to provide an image processing system for virtual reality, so as to overcome the problem that the current virtual reality image processing system has low operating efficiency and cannot make resource allocation more reasonable and efficient.

为实现上述目的,本发明提供一种用于虚拟现实的图像处理系统,包括:To achieve the above object, the present invention provides an image processing system for virtual reality, comprising:

资源管理模块,用以获取虚拟对象的相对位置,并根据所述相对位置确定虚拟场景的当前实际范围;A resource management module, used to obtain the relative position of the virtual object and determine the current actual range of the virtual scene according to the relative position;

任务调度模块,用以根据所述当前实际范围的当前实际资源需求结合下一操作参数确定任务调度排名和任务调度模式;A task scheduling module, used to determine a task scheduling ranking and a task scheduling mode according to the current actual resource demand of the current actual range combined with the next operation parameter;

算力管理模块,用以根据所述任务调度排名和所述任务调度模式确定实际资源分配策略。The computing power management module is used to determine the actual resource allocation strategy according to the task scheduling ranking and the task scheduling mode.

进一步地,所述资源管理模块包括:视觉跟踪单元、位置确定单元和场景呈现单元;Further, the resource management module includes: a visual tracking unit, a position determination unit and a scene presentation unit;

所述视觉跟踪单元用以实时追踪所述虚拟对象在虚拟环境中的实际位置;The visual tracking unit is used to track the actual position of the virtual object in the virtual environment in real time;

所述位置确定单元用以根据所述实际位置结合标准参考点坐标确定所述虚拟对象在所述虚拟场景内的所述相对位置;The position determination unit is used to determine the relative position of the virtual object in the virtual scene according to the actual position combined with the standard reference point coordinates;

所述场景呈现单元用以根据所述虚拟对象的当前操作参数结合所述相对位置确定所述当前实际范围;其中,所述当前操作参数包括:当前交互元素数量、当前操作动作类型和当前操作动作复杂度。The scene presentation unit is used to determine the current actual range according to the current operation parameters of the virtual object in combination with the relative position; wherein the current operation parameters include: the current number of interactive elements, the current operation action type and the current operation action complexity.

进一步地,所述任务调度模块包括:判断单元、任务队列管理单元和调度算法单元;Furthermore, the task scheduling module includes: a judgment unit, a task queue management unit and a scheduling algorithm unit;

所述判断单元用以根据所述下一操作参数预估下一实际资源需求,并根据所述下一实际资源需求结合所述当前实际资源需求确定优先规则的类型;所述优先规则包括:第一优先规则和第二优先规则;The judgment unit is used to estimate the next actual resource demand according to the next operation parameter, and determine the type of priority rule according to the next actual resource demand combined with the current actual resource demand; the priority rule includes: a first priority rule and a second priority rule;

所述任务队列管理单元用以管理待处理的各任务队列,使得各任务队列按照所述优先规则进行排列以得到所述任务调度排名;所述待处理的各任务队列包括:当前场景任务和下一场景任务;所述第一优先规则为优先执行所述当前场景任务;所述第二优先规则为优先执行所述下一场景任务;The task queue management unit is used to manage each task queue to be processed, so that each task queue is arranged according to the priority rule to obtain the task scheduling ranking; each task queue to be processed includes: a current scene task and a next scene task; the first priority rule is to give priority to the execution of the current scene task; the second priority rule is to give priority to the execution of the next scene task;

所述调度算法单元用以根据所述下一操作参数的操作类型确定所述下一场景任务的所述任务调度模式。The scheduling algorithm unit is used to determine the task scheduling mode of the next scenario task according to the operation type of the next operation parameter.

进一步地,所述算力管理模块包括:性能监控单元、算力分配单元和算力确定单元;Further, the computing power management module includes: a performance monitoring unit, a computing power allocation unit and a computing power determination unit;

所述性能监控单元用以获取所述虚拟环境的实际虚拟速率;The performance monitoring unit is used to obtain the actual virtual rate of the virtual environment;

所述算力分配单元用以根据所述实际虚拟速率确定实际算力分配比例;The computing power allocation unit is used to determine the actual computing power allocation ratio according to the actual virtual rate;

所述算力确定单元用以根据所述任务调度排名、所述任务调度模式和所述实际算力分配比例确定所述实际资源分配策略。The computing power determination unit is used to determine the actual resource allocation strategy according to the task scheduling ranking, the task scheduling mode and the actual computing power allocation ratio.

进一步地,所述场景呈现单元根据所述当前交互元素数量和所述当前操作动作复杂度对预设的固定移动距离进行修正以得到实际移动距离;并以所述虚拟对象为原点,以所述实际移动距离为半径确定所述虚拟场景的所述当前实际范围。Furthermore, the scene presentation unit corrects the preset fixed moving distance according to the current number of interactive elements and the complexity of the current operation action to obtain the actual moving distance; and determines the current actual range of the virtual scene with the virtual object as the origin and the actual moving distance as the radius.

进一步地,所述判断单元根据第一差值绝对值结合预设的优先规则评价值确定所述优先规则的类型;Furthermore, the judgment unit determines the type of the priority rule according to the absolute value of the first difference combined with a preset priority rule evaluation value;

若所述第一差值绝对值大于所述优先规则评价值且所述当前实际资源需求小于所述下一实际资源需求,则所述判断单元判定以所述第二优先规则进行排列以得到第二任务调度排名;If the absolute value of the first difference is greater than the priority rule evaluation value and the current actual resource demand is less than the next actual resource demand, the judgment unit determines to arrange according to the second priority rule to obtain a second task scheduling ranking;

其中,所述第一差值绝对值为所述当前实际资源需求和所述下一实际资源需求的差值。The absolute value of the first difference is the difference between the current actual resource demand and the next actual resource demand.

进一步地,若所述第一差值绝对值小于等于所述优先规则评价值,则所述判断单元判定以所述第一优先规则进行排列以得到第一任务调度排名;Further, if the absolute value of the first difference is less than or equal to the priority rule evaluation value, the judgment unit determines to arrange according to the first priority rule to obtain a first task scheduling ranking;

若所述第一差值绝对值大于所述优先规则评价值且所述当前实际资源需求大于所述下一实际资源需求,则所述判断单元判定以所述第一优先规则进行排列以得到所述第一任务调度排名。If the absolute value of the first difference is greater than the priority rule evaluation value and the current actual resource demand is greater than the next actual resource demand, the judgment unit determines to arrange according to the first priority rule to obtain the first task scheduling ranking.

进一步地,所述调度算法单元根据下一操作动作类型确定所述下一场景任务的所述任务调度模式;Further, the scheduling algorithm unit determines the task scheduling mode of the next scenario task according to the next operation action type;

若所述当前操作动作类型和所述下一操作动作类型一致,则所述调度算法单元判定所述下一操作参数的类型为可持续操作,且所述下一场景任务的所述任务调度模式为第一模式;If the current operation action type is consistent with the next operation action type, the scheduling algorithm unit determines that the type of the next operation parameter is sustainable operation, and the task scheduling mode of the next scene task is the first mode;

若所述当前操作动作类型和所述下一操作动作类型不一致,则所述调度算法单元判定所述下一操作参数的类型为不可持续操作,且所述下一场景任务的所述任务调度模式为第二模式;If the current operation action type and the next operation action type are inconsistent, the scheduling algorithm unit determines that the type of the next operation parameter is an unsustainable operation, and the task scheduling mode of the next scene task is the second mode;

其中,所述下一操作参数包括所述下一操作动作类型。The next operation parameter includes the next operation action type.

进一步地,所述算力分配单元根据所述实际虚拟速率结合预设的标准虚拟Furthermore, the computing power allocation unit calculates the actual virtual rate in combination with the preset standard virtual rate.

速率确定所述实际算力分配比例;The actual computing power allocation ratio is determined by the speed;

若所述实际虚拟速率大于等于所述标准虚拟速率,则所述算力分配单元判定以标准算力分配比例作为所述实际算力分配比例;If the actual virtual rate is greater than or equal to the standard virtual rate, the computing power allocation unit determines to use the standard computing power allocation ratio as the actual computing power allocation ratio;

若所述实际虚拟速率小于所述标准虚拟速率,则所述算力分配单元判定对所述标准算力分配比例进行调节以得到所述实际算力分配比例;If the actual virtual rate is less than the standard virtual rate, the computing power allocation unit determines to adjust the standard computing power allocation ratio to obtain the actual computing power allocation ratio;

其中,所述标准算力分配比例为,第一模式所用的第一算力:第二模式所用的第二算力等于1:1。The standard computing power allocation ratio is: the first computing power used in the first mode: the second computing power used in the second mode is equal to 1:1.

进一步地,所述算力确定单元根据所述第一任务调度排名和所述第二任务调度排名对所述任务调度排名进行判定,以及根据所述第一模式和所述第二模式对所述任务调度模式进行判定,以确定所述实际资源分配策略。Furthermore, the computing power determination unit determines the task scheduling ranking according to the first task scheduling ranking and the second task scheduling ranking, and determines the task scheduling mode according to the first mode and the second mode, so as to determine the actual resource allocation strategy.

与现有技术相比,本发明的有益效果在于,通过视觉跟踪单元实时追踪虚拟对象的实际位置,并利用位置确定单元结合标准参考点坐标确定虚拟对象在虚拟场景内的相对位置,准确地获取虚拟对象的位置信息,为后续的任务调度和资源分配提供准确的基础数据;根据当前操作参数和相对位置确定当前实际范围,使得根据用户的操作行为动态地调整虚拟场景的呈现,提供更具交互性和沉浸感的用户体验;通过预估下一操作参数的实际资源需求和当前实际资源需求确定优先规则的类型,并将待处理的任务队列按照优先规则进行排列,得到任务调度排名,从而实现将资源分配给优先级较高的任务,提高任务处理效率和用户满意度;根据下一操作参数的操作类型确定下一场景任务的任务调度模式,使得任务调度可以依据具体的任务类型和用户需求来灵活调整,提供更好的用户体验;通过获取虚拟环境的实际虚拟速率,并根据虚拟速率确定实际算力分配比例,从而根据任务调度排名、任务调度模式和实际算力分配比例确定实际资源分配策略,实现根据实际情况动态地分配资源,提高系统的性能和资源利用率。Compared with the prior art, the beneficial effects of the present invention are that the actual position of the virtual object is tracked in real time by the visual tracking unit, and the relative position of the virtual object in the virtual scene is determined by the position determination unit in combination with the standard reference point coordinates, so as to accurately obtain the position information of the virtual object and provide accurate basic data for subsequent task scheduling and resource allocation; the current actual range is determined according to the current operation parameters and the relative position, so that the presentation of the virtual scene is dynamically adjusted according to the user's operation behavior, providing a more interactive and immersive user experience; the type of priority rule is determined by estimating the actual resource demand of the next operation parameter and the current actual resource demand, and the task queue to be processed is arranged according to the priority rule to obtain the task scheduling ranking, so as to achieve the allocation of resources to tasks with higher priority, improve the task processing efficiency and user satisfaction; the task scheduling mode of the next scene task is determined according to the operation type of the next operation parameter, so that the task scheduling can be flexibly adjusted according to the specific task type and user needs, and provide a better user experience; by obtaining the actual virtual rate of the virtual environment and determining the actual computing power allocation ratio according to the virtual rate, the actual resource allocation strategy is determined according to the task scheduling ranking, the task scheduling mode and the actual computing power allocation ratio, so as to achieve dynamic allocation of resources according to the actual situation and improve the performance and resource utilization of the system.

尤其,通过虚拟对象的相对位置确定虚拟场景的初始范围,确保虚拟场景的初始范围与虚拟对象的位置相匹配,实现直观地感受到虚拟对象的存在和位置,提高交互的可信度和沉浸感;根据当前交互元素数量和当前操作动作复杂度对固定移动距离进行修正得到实际移动距离,通过考虑交互元素数量和操作复杂度,并根据具体场景和需求自适应地调整移动距离,实现更精确的场景呈现;通过第一计算调节参数和第二计算调节参数可以根据具体需求进行设定,实现根据不同的场景和应用需求,自由地调节参数,达到最佳的场景呈现效果,实现调节参数的可配置性;通过场景呈现单元以虚拟对象为原点,以实际移动距离为半径确定虚拟场景的当前实际范围,使得让用户以虚拟对象为焦点,围绕它进行交互和探索,提供更加个性化和自由的用户体验。In particular, the initial range of the virtual scene is determined by the relative position of the virtual object to ensure that the initial range of the virtual scene matches the position of the virtual object, so that the existence and position of the virtual object can be intuitively felt, and the credibility and immersion of the interaction are improved; the fixed moving distance is corrected according to the current number of interactive elements and the complexity of the current operation action to obtain the actual moving distance, and the moving distance is adaptively adjusted according to the specific scene and needs by considering the number of interactive elements and the complexity of the operation, so as to achieve more accurate scene presentation; the first calculation adjustment parameter and the second calculation adjustment parameter can be set according to specific needs, so that the parameters can be freely adjusted according to different scenes and application needs to achieve the best scene presentation effect and realize the configurability of the adjustment parameters; the scene presentation unit uses the virtual object as the origin and the actual moving distance as the radius to determine the current actual range of the virtual scene, so that the user can focus on the virtual object, interact and explore around it, and provide a more personalized and free user experience.

尤其,通过根据当前实际范围确定当前实际资源需求,从而提前做好资源的分配和调度,确保虚拟过程正常运行;通过考虑下一场景任务的交互元素数量和操作动作复杂度,任预测下一个场景的资源需求,为后续的资源调度做准备;通过根据虚拟精准度设定不同的补偿参数,可以更好地适应不同场景的需求,保证虚拟环境与现实的相似度,并提供更高的用户体验;根据当前实际资源需求和下一实际资源需求计算第一差值绝对值,并根据不同的情况进行任务调度排名;可以灵活调整不同情况下的任务调度顺序,使得资源分配更加合理和高效;实现在资源需求预估、虚拟精准度考虑和任务调度排名方面提供更好的资源管理和任务调度效果。In particular, by determining the current actual resource demand based on the current actual range, resources can be allocated and scheduled in advance to ensure the normal operation of the virtual process; by considering the number of interactive elements and the complexity of the operation actions of the next scene task, the resource demand of the next scene can be predicted to prepare for subsequent resource scheduling; by setting different compensation parameters according to the virtual accuracy, it can better adapt to the needs of different scenes, ensure the similarity between the virtual environment and the reality, and provide a higher user experience; calculate the absolute value of the first difference based on the current actual resource demand and the next actual resource demand, and rank the task scheduling according to different situations; the task scheduling order in different situations can be flexibly adjusted to make resource allocation more reasonable and efficient; and provide better resource management and task scheduling effects in terms of resource demand estimation, virtual accuracy consideration and task scheduling ranking.

尤其,通过根据操作类型确定任务调度模式:调度算法单元可以根据下一操作参数的操作类型确定下一场景任务的任务调度模式;通过判断当前操作动作类型和下一操作动作类型是否一致,可以将下一场景任务划分为可持续操作和不可持续操作,从而选择合适的任务调度模式;根据虚拟速率调整算力分配:性能监控单元通过获取虚拟环境的实际虚拟速率与预设的速率阈值进行比较来判断是否需要调整算力分配;从而动态调节算力分配比例,使虚拟环境能够更好地适应实际运行需求;根据任务调度排名、任务调度模式和实际算力分配比例来确定实际资源分配策略;根据不同的情况,可以优先执行当前场景任务还是下一场景任务,并根据任务调度模式采取不同的执行模式,以最大程度地提高资源利用率和用户体验。In particular, by determining the task scheduling mode according to the operation type: the scheduling algorithm unit can determine the task scheduling mode of the next scenario task according to the operation type of the next operation parameter; by judging whether the current operation action type and the next operation action type are consistent, the next scenario task can be divided into sustainable operation and unsustainable operation, thereby selecting a suitable task scheduling mode; adjusting the computing power allocation according to the virtual rate: the performance monitoring unit determines whether the computing power allocation needs to be adjusted by obtaining the actual virtual rate of the virtual environment and comparing it with the preset rate threshold; thereby dynamically adjusting the computing power allocation ratio so that the virtual environment can better adapt to actual operation needs; determining the actual resource allocation strategy based on the task scheduling ranking, task scheduling mode and actual computing power allocation ratio; depending on different situations, the current scenario task or the next scenario task can be executed first, and different execution modes can be adopted according to the task scheduling mode to maximize resource utilization and user experience.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1为本发明实施例用于虚拟现实的图像处理系统的结构示意图;FIG1 is a schematic diagram of the structure of an image processing system for virtual reality according to an embodiment of the present invention;

图2为本发明实施例用于虚拟现实的图像处理系统中资源管理模块的结构示意图;2 is a schematic diagram of the structure of a resource management module in an image processing system for virtual reality according to an embodiment of the present invention;

图3为本发明实施例用于虚拟现实的图像处理系统中任务调度模块的结构示意图;3 is a schematic diagram of the structure of a task scheduling module in an image processing system for virtual reality according to an embodiment of the present invention;

图4为本发明实施例用于虚拟现实的图像处理系统中算力管理模块的结构示意图;4 is a schematic diagram of the structure of a computing power management module in an image processing system for virtual reality according to an embodiment of the present invention;

图中包括:资源管理模块1、任务调度模块2、算力管理模块3、视觉跟踪单元11、位置确定单元12、场景呈现单元13、判断单元21、任务队列管理单元22、调度算法单元23、性能监控单元31、算力分配单元32和算力确定单元33。The figure includes: a resource management module 1, a task scheduling module 2, a computing power management module 3, a visual tracking unit 11, a position determination unit 12, a scene presentation unit 13, a judgment unit 21, a task queue management unit 22, a scheduling algorithm unit 23, a performance monitoring unit 31, a computing power allocation unit 32 and a computing power determination unit 33.

具体实施方式DETAILED DESCRIPTION

为了使本发明的目的和优点更加清楚明白,下面结合实施例对本发明作进一步描述;应当理解,此处所描述的具体实施例仅仅用于解释本发明,并不用于限定本发明。In order to make the objects and advantages of the present invention more clearly understood, the present invention is further described below in conjunction with embodiments; it should be understood that the specific embodiments described herein are only used to explain the present invention and are not used to limit the present invention.

下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非在限制本发明的保护范围。The preferred embodiments of the present invention are described below with reference to the accompanying drawings. It should be understood by those skilled in the art that these embodiments are only used to explain the technical principles of the present invention and are not intended to limit the protection scope of the present invention.

需要说明的是,在本发明的描述中,术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方向或位置关系的术语是基于附图所示的方向或位置关系,这仅仅是为了便于描述,而不是指示或暗示所述装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。It should be noted that, in the description of the present invention, terms such as "up", "down", "left", "right", "inside" and "outside" indicating directions or positional relationships are based on the directions or positional relationships shown in the drawings. This is merely for the convenience of description and does not indicate or imply that the device or element must have a specific orientation, be constructed and operated in a specific orientation. Therefore, it cannot be understood as a limitation on the present invention.

请参阅图1-图4所示,图1为本发明实施例用于虚拟现实的图像处理系统的结构示意图;图2为本发明实施例用于虚拟现实的图像处理系统中资源管理模块的结构示意图;图3为本发明实施例用于虚拟现实的图像处理系统中任务调度模块的结构示意图;图4为本发明实施例用于虚拟现实的图像处理系统中算力管理模块的结构示意图。Please refer to Figures 1 to 4, where Figure 1 is a schematic diagram of the structure of an image processing system for virtual reality according to an embodiment of the present invention; Figure 2 is a schematic diagram of the structure of a resource management module in an image processing system for virtual reality according to an embodiment of the present invention; Figure 3 is a schematic diagram of the structure of a task scheduling module in an image processing system for virtual reality according to an embodiment of the present invention; and Figure 4 is a schematic diagram of the structure of a computing power management module in an image processing system for virtual reality according to an embodiment of the present invention.

本发明提供一种用于虚拟现实的图像处理系统,包括:The present invention provides an image processing system for virtual reality, comprising:

资源管理模块1,用以获取虚拟对象的相对位置,并根据所述相对位置确定虚拟场景的当前实际范围;其包括:视觉跟踪单元11、位置确定单元12和场景呈现单元13;The resource management module 1 is used to obtain the relative position of the virtual object and determine the current actual range of the virtual scene according to the relative position; it includes: a visual tracking unit 11, a position determination unit 12 and a scene presentation unit 13;

所述视觉跟踪单元11用以实时追踪所述虚拟对象在虚拟环境中的实际位置;The visual tracking unit 11 is used to track the actual position of the virtual object in the virtual environment in real time;

所述位置确定单元12用以根据所述实际位置结合标准参考点坐标确定所述虚拟对象在所述虚拟场景内的所述相对位置;The position determination unit 12 is used to determine the relative position of the virtual object in the virtual scene according to the actual position combined with the standard reference point coordinates;

所述场景呈现单元13用以根据对所述虚拟对象的当前操作参数结合所述相对位置确定所述当前实际范围;The scene presentation unit 13 is used to determine the current actual range according to the current operation parameters of the virtual object combined with the relative position;

任务调度模块2,用以根据所述当前实际范围的当前实际资源需求结合下一操作参数确定任务调度排名和任务调度模式;其包括:判断单元21、任务队列管理单元22和调度算法单元23;The task scheduling module 2 is used to determine the task scheduling ranking and the task scheduling mode according to the current actual resource demand of the current actual range combined with the next operation parameter; it includes: a judgment unit 21, a task queue management unit 22 and a scheduling algorithm unit 23;

所述判断单元21用以根据所述下一操作参数预估下一实际资源需求,并根据所述下一实际资源需求结合所述当前实际资源需求确定优先规则的类型;所述优先规则包括:第一优先规则和第二优先规则;The judgment unit 21 is used to estimate the next actual resource demand according to the next operation parameter, and determine the type of priority rule according to the next actual resource demand combined with the current actual resource demand; the priority rule includes: a first priority rule and a second priority rule;

所述任务队列管理单元22用以管理待处理的各任务队列,使得各任务队列按照所述优先规则进行排列以得到所述任务调度排名;所述待处理的各任务队列包括:当前场景任务和下一场景任务;所述第一优先规则为优先执行所述当前场景任务;所述第二优先规则为优先执行所述下一场景任务;The task queue management unit 22 is used to manage each task queue to be processed, so that each task queue is arranged according to the priority rule to obtain the task scheduling ranking; each task queue to be processed includes: a current scene task and a next scene task; the first priority rule is to give priority to the execution of the current scene task; the second priority rule is to give priority to the execution of the next scene task;

所述调度算法单元23用以根据所述下一操作参数的操作类型确定所述下一场景任务的所述任务调度模式;The scheduling algorithm unit 23 is used to determine the task scheduling mode of the next scene task according to the operation type of the next operation parameter;

算力管理模块3,用以根据所述任务调度排名和所述任务调度模式确定实际资源分配策略;其包括:性能监控单元31、算力分配单元32和算力确定单元33;A computing power management module 3, used to determine the actual resource allocation strategy according to the task scheduling ranking and the task scheduling mode; it includes: a performance monitoring unit 31, a computing power allocation unit 32 and a computing power determination unit 33;

所述性能监控单元31用以获取所述虚拟环境的实际虚拟速率;The performance monitoring unit 31 is used to obtain the actual virtual rate of the virtual environment;

所述算力分配单元32用以根据所述实际虚拟速率确定实际算力分配比例;The computing power allocation unit 32 is used to determine the actual computing power allocation ratio according to the actual virtual rate;

所述算力确定单元33用以根据所述任务调度排名、所述任务调度模式和所述实际算力分配比例确定所述实际资源分配策略。The computing power determination unit 33 is used to determine the actual resource allocation strategy according to the task scheduling ranking, the task scheduling mode and the actual computing power allocation ratio.

本发明实施例通过视觉跟踪单元实时追踪虚拟对象的实际位置,并利用位置确定单元结合标准参考点坐标确定虚拟对象在虚拟场景内的相对位置,准确地获取虚拟对象的位置信息,为后续的任务调度和资源分配提供准确的基础数据;根据当前操作参数和相对位置确定当前实际范围,使得根据用户的操作行为动态地调整虚拟场景的呈现,提供更具交互性和沉浸感的用户体验;通过预估下一操作参数的实际资源需求和当前实际资源需求确定优先规则的类型,并将待处理的任务队列按照优先规则进行排列,得到任务调度排名,从而实现将资源分配给优先级较高的任务,提高任务处理效率和用户满意度;根据下一操作参数的操作类型确定下一场景任务的任务调度模式,使得任务调度可以依据具体的任务类型和用户需求来灵活调整,提供更好的用户体验;通过获取虚拟环境的实际虚拟速率,并根据虚拟速率确定实际算力分配比例,从而根据任务调度排名、任务调度模式和实际算力分配比例确定实际资源分配策略,实现根据实际情况动态地分配资源,提高系统的性能和资源利用率。The embodiment of the present invention tracks the actual position of the virtual object in real time through the visual tracking unit, and uses the position determination unit to determine the relative position of the virtual object in the virtual scene in combination with the standard reference point coordinates, accurately obtains the position information of the virtual object, and provides accurate basic data for subsequent task scheduling and resource allocation; determines the current actual range according to the current operation parameter and the relative position, so that the presentation of the virtual scene is dynamically adjusted according to the user's operation behavior, providing a more interactive and immersive user experience; determines the type of priority rule by estimating the actual resource demand of the next operation parameter and the current actual resource demand, and arranges the task queue to be processed according to the priority rule to obtain the task scheduling ranking, thereby allocating resources to tasks with higher priority, improving task processing efficiency and user satisfaction; determines the task scheduling mode of the next scene task according to the operation type of the next operation parameter, so that the task scheduling can be flexibly adjusted according to the specific task type and user needs, and provides a better user experience; obtains the actual virtual rate of the virtual environment, and determines the actual computing power allocation ratio according to the virtual rate, thereby determining the actual resource allocation strategy according to the task scheduling ranking, the task scheduling mode and the actual computing power allocation ratio, and dynamically allocates resources according to the actual situation, improving the performance and resource utilization of the system.

具体而言,本实施例中所述视觉跟踪单元11用以实时追踪所述虚拟对象在所述虚拟环境中的所述实际位置A1(X1,Y2,Z3),所述标准参考点坐标为A0(X0,Y0,Z0);Specifically, the visual tracking unit 11 in this embodiment is used to track the actual position A1 (X1, Y2, Z3) of the virtual object in the virtual environment in real time, and the standard reference point coordinates are A0 (X0, Y0, Z0);

所述位置确定单元12根据所述实际位置A1(X1,Y2,Z3)和所述标准参考点坐标为A0(X0,Y0,Z0)确定所述相对位置A’(X1’,Y2’,Z3’);The position determination unit 12 determines the relative position A’ (X1’, Y2’, Z3’) according to the actual position A1 (X1, Y2, Z3) and the standard reference point coordinates A0 (X0, Y0, Z0);

A’(X1’,Y2’,Z3’)=A1(X1,Y2,Z3)-A0(X0,Y0,Z0);A’(X1’, Y2’, Z3’)=A1(X1, Y2, Z3)-A0(X0, Y0, Z0);

在具体实施过程中,所述标准参考点坐标A0(X0,Y0,Z0)的设定与所述虚拟环境的坐标系相关,标准参考点坐标的设定取决于虚拟环境中所采用的坐标系,本实施例不作具体限定,例如:In the specific implementation process, the setting of the standard reference point coordinates A0 (X0, Y0, Z0) is related to the coordinate system of the virtual environment. The setting of the standard reference point coordinates depends on the coordinate system used in the virtual environment, which is not specifically limited in this embodiment. For example:

世界坐标系,其为虚拟环境的全局坐标系,用来描述整个虚拟环境中各参照对象的位置和方向;对于该坐标系下,所述标准参考点坐标为以所述世界坐标系的原点为参考点进行设定的坐标点;The world coordinate system is a global coordinate system of the virtual environment, which is used to describe the position and direction of each reference object in the entire virtual environment; for this coordinate system, the standard reference point coordinates are coordinate points set with the origin of the world coordinate system as the reference point;

局部坐标系,其为相对于某个参照对象的坐标系,用以描述该参照对象自身的位置和方向;对于该坐标系下,所述标准参考点坐标为以该参照对象自身为参照点进行设定的坐标点或以与该参照对象成固定距离、固定角度的位置为参照点进行设定的坐标点;A local coordinate system is a coordinate system relative to a reference object, used to describe the position and direction of the reference object itself; in this coordinate system, the standard reference point coordinates are coordinate points set with the reference object itself as the reference point or with a position at a fixed distance and fixed angle to the reference object as the reference point;

用户坐标系,其为根据用户需求设定的坐标系,用来描述用户需求的位置和方向;User coordinate system, which is a coordinate system set according to user requirements and used to describe the position and direction required by the user;

标准参考点坐标A0(X0,Y0,Z0)的设定为了提供一个统一的参考点,使得在虚拟环境中的虚拟对象的位置和方向能够被准确地描述和控制;根据不同的应用场景和需求,可以选择不同的坐标系作为标准参考点坐标的设定基准;通过结合标准参考点坐标和虚拟对象的实际位置,可以准确地确定虚拟对象在虚拟场景内的相对位置坐标,从而实现对虚拟对象在三维空间中的定位和控制。The standard reference point coordinates A0 (X0, Y0, Z0) are set to provide a unified reference point so that the position and direction of virtual objects in the virtual environment can be accurately described and controlled. According to different application scenarios and requirements, different coordinate systems can be selected as the basis for setting the standard reference point coordinates. By combining the standard reference point coordinates and the actual position of the virtual object, the relative position coordinates of the virtual object in the virtual scene can be accurately determined, thereby realizing the positioning and control of the virtual object in three-dimensional space.

具体而言,本实施例中所述场景呈现单元13能够获取所述当前操作参数,当前操作参数包括:当前交互元素数量、当前操作动作类型和当前操作动作复杂度;Specifically, in this embodiment, the scene presentation unit 13 can obtain the current operation parameters, which include: the current number of interactive elements, the current operation action type and the current operation action complexity;

所述场景呈现单元13根据所述相对位置确定所述虚拟场景的初始范围;所述初始范围为以所述虚拟对象为原点,以固定移动距离为半径所形成的区域;The scene presentation unit 13 determines the initial range of the virtual scene according to the relative position; the initial range is an area formed by taking the virtual object as the origin and a fixed moving distance as the radius;

其中,所述固定移动距离的设定与虚拟场景的应用目的有关,不同的虚拟场景设置有不同的固定移动距离,固定移动距离的设定应根据具体的应用需求来确定,例如,虚拟现实游戏可能需要更大的范围来支持玩家的移动和互动,因此,固定移动距离的设置应较大,从而确保场景大小能够提供良好的用户体验,避免场景过小导致用户感到拥挤,而对于虚拟培训则需要更小的范围来集中用户注意力,因此,固定移动距离的设置应较小,避免用户迷失在虚拟场景中;The setting of the fixed moving distance is related to the application purpose of the virtual scene. Different virtual scenes are set with different fixed moving distances. The setting of the fixed moving distance should be determined according to specific application requirements. For example, virtual reality games may require a larger range to support the movement and interaction of players. Therefore, the setting of the fixed moving distance should be larger to ensure that the scene size can provide a good user experience and avoid the scene being too small to cause users to feel crowded. For virtual training, a smaller range is required to focus the user's attention. Therefore, the setting of the fixed moving distance should be smaller to avoid users getting lost in the virtual scene.

所述场景呈现单元13根据所述当前交互元素数量B1和所述当前操作动作复杂度B2对所述固定移动距离D进行修正以得到实际移动距离D1;The scene presentation unit 13 corrects the fixed moving distance D according to the current number of interactive elements B1 and the current operation action complexity B2 to obtain an actual moving distance D1;

D1=[1-B1×a-B2×b]×D;D1=[1-B1×a-B2×b]×D;

其中,a为所述当前交互元素数量B1对所述实际移动距离D1的第一计算调节参数;b为所述当前操作动作复杂度B2对所述实际移动距离D1的第二计算调节参数;Wherein, a is a first calculation adjustment parameter of the current number of interactive elements B1 for the actual moving distance D1; b is a second calculation adjustment parameter of the current operation action complexity B2 for the actual moving distance D1;

在具体实施过程中,所述第一计算调节参数a设定为0.7,所述第二计算调节参数b设定为0.8,具体设定还受到当前交互元素数量和当前操作动作复杂度的影响,例如,对于虚拟航空模拟中,若仅为模拟飞行,并未有如光照变化、地形、天空和其他环境因素的交互元素,且操作动作仅为直线飞行,则第一计算调节参数a应设定为0,第二计算调节参数应设定为0;若为模拟空中交通管制训练,需将大量的航空数据可视化,以展示复杂的空中交通网络、航线和航空器动态信息,因此,此时的交互因素为空中交通网络、航线和航空器动态信息,且操作动作除直线飞行外,还涉及起飞和降落,则第一计算调节参数a应设定为0.8,第二计算调节参数应设定为0.9;In the specific implementation process, the first calculation adjustment parameter a is set to 0.7, and the second calculation adjustment parameter b is set to 0.8. The specific settings are also affected by the number of current interactive elements and the complexity of the current operation action. For example, in virtual aviation simulation, if it is only simulated flight, there are no interactive elements such as lighting changes, terrain, sky and other environmental factors, and the operation action is only straight-line flight, then the first calculation adjustment parameter a should be set to 0, and the second calculation adjustment parameter should be set to 0; if it is to simulate air traffic control training, a large amount of aviation data needs to be visualized to display complex air traffic networks, routes and aircraft dynamic information. Therefore, the interactive factors at this time are air traffic networks, routes and aircraft dynamic information, and the operation action involves take-off and landing in addition to straight-line flight, then the first calculation adjustment parameter a should be set to 0.8, and the second calculation adjustment parameter should be set to 0.9;

所述场景呈现单元13以所述虚拟对象为原点,以所述实际移动距离为半径确定所述虚拟场景的所述当前实际范围。The scene presentation unit 13 determines the current actual range of the virtual scene with the virtual object as the origin and the actual moving distance as the radius.

本发明实施例通过虚拟对象的相对位置确定虚拟场景的初始范围,确保虚拟场景的初始范围与虚拟对象的位置相匹配,实现直观地感受到虚拟对象的存在和位置,提高交互的可信度和沉浸感;根据当前交互元素数量和当前操作动作复杂度对固定移动距离进行修正得到实际移动距离,通过考虑交互元素数量和操作复杂度,并根据具体场景和需求自适应地调整移动距离,实现更精确的场景呈现;通过调节参数的可配置性:第一计算调节参数和第二计算调节参数可以根据具体需求进行设定,实现根据不同的场景和应用需求,自由地调节参数,达到最佳的场景呈现效果,通过以虚拟对象为原点的场景范围确定:场景呈现单元以虚拟对象为原点,以实际移动距离为半径确定虚拟场景的当前实际范围,使得让用户以虚拟对象为焦点,围绕它进行交互和探索,提供更加个性化和自由的用户体验。The embodiment of the present invention determines the initial range of the virtual scene through the relative position of the virtual object, ensures that the initial range of the virtual scene matches the position of the virtual object, realizes intuitive perception of the existence and position of the virtual object, and improves the credibility and immersion of the interaction; corrects the fixed moving distance according to the current number of interactive elements and the complexity of the current operation action to obtain the actual moving distance, and adaptively adjusts the moving distance according to the specific scene and needs by considering the number of interactive elements and the complexity of the operation, so as to achieve more accurate scene presentation; through the configurability of adjustment parameters: the first calculation adjustment parameter and the second calculation adjustment parameter can be set according to specific needs, so as to achieve the best scene presentation effect by freely adjusting the parameters according to different scenes and application needs, and determine the scene range with the virtual object as the origin: the scene presentation unit determines the current actual range of the virtual scene with the virtual object as the origin and the actual moving distance as the radius, so that the user can focus on the virtual object, interact and explore around it, and provide a more personalized and free user experience.

具体而言,本实施例中所述任务调度模块2能够根据所述当前实际范围确定该当前实际范围所需的所述当前实际资源需求Q1;并根据所述下一操作参数预估下一实际范围的下一实际资源需求Q2;Specifically, the task scheduling module 2 in this embodiment can determine the current actual resource demand Q1 required for the current actual range according to the current actual range; and estimate the next actual resource demand Q2 of the next actual range according to the next operation parameter;

Q2=B1’×k1+B2’×k2;Q2=B1’×k1+B2’×k2;

其中,B1’为所述下一场景任务的下一交互元素数量;B2’所述下一场景任务的下一操作动作复杂度;k1为所述下一交互元素数量B1’对所述下一实际资源需求Q2的第一计算补偿参数;k2为所述下一操作动作复杂度B2’对所述下一实际资源需求Q2的第二计算补偿参数;Among them, B1' is the number of next interactive elements of the next scenario task; B2' is the complexity of the next operation action of the next scenario task; k1 is the first calculation compensation parameter of the next interactive element number B1' to the next actual resource demand Q2; k2 is the second calculation compensation parameter of the next operation action complexity B2' to the next actual resource demand Q2;

在本实施例中,所述第一计算补偿参数k1和所述第二计算补偿参数k2的具体设定还受到应用目标场景的虚拟精准度影响,所述虚拟精准度为虚拟与现实间的相似度,例如,对于虚拟现实游戏,该应用目标场景的虚拟精准度需达到90%以上,则第一计算补偿参数k1应设置为0.2,所述第二计算补偿参数k2设置应设置为0.3,对于模拟空中交通管制训练,该应用目标场景的虚拟精准度需达到99%以上,则第一计算补偿参数k1应设置为0.8,所述第二计算补偿参数k2设置应设置为0.9;In this embodiment, the specific settings of the first calculation compensation parameter k1 and the second calculation compensation parameter k2 are also affected by the virtual accuracy of the application target scene, and the virtual accuracy is the similarity between virtual and reality. For example, for a virtual reality game, the virtual accuracy of the application target scene needs to reach more than 90%, then the first calculation compensation parameter k1 should be set to 0.2, and the second calculation compensation parameter k2 should be set to 0.3. For simulated air traffic control training, the virtual accuracy of the application target scene needs to reach more than 99%, then the first calculation compensation parameter k1 should be set to 0.8, and the second calculation compensation parameter k2 should be set to 0.9;

所述判断单元21根据所述当前实际资源需求Q1和所述下一实际资源需求Q2计算第一差值绝对值S1,S1=|Q1-Q2|;The judgment unit 21 calculates a first difference absolute value S1 according to the current actual resource demand Q1 and the next actual resource demand Q2, where S1=|Q1-Q2|;

若S1≤S10,则所述判断单元21判定以所述第一优先规则进行排列以得到第一任务调度排名;If S1≤S10, the judgment unit 21 determines to arrange according to the first priority rule to obtain a first task scheduling ranking;

若S1>S10且Q1>Q2,则所述判断单元21判定以所述第一优先规则进行排列以得到所述第一任务调度排名;If S1>S10 and Q1>Q2, the judgment unit 21 determines to arrange according to the first priority rule to obtain the first task scheduling ranking;

若S1>S10且Q1<Q2,则所述判断单元21判定以所述第二优先规则进行排列以得到第二任务调度排名;If S1>S10 and Q1<Q2, the judgment unit 21 determines to arrange according to the second priority rule to obtain a second task scheduling ranking;

其中,S10为所述判断模块内设定的优先规则评价值;Wherein, S10 is the priority rule evaluation value set in the judgment module;

在本实施例中,所述优先规则评价值S10设定为0.3,具体设定还受到实际应用的流畅度指标的影响,在本实施例中,所述实际应用的流畅度指标为在切换当前虚拟场景和下一虚拟场景时,发生卡顿的几率为10%以下,实际应用的流畅度指标还受到虚拟应用的影响,对于模拟空中交通管制训练,该场景下的流畅度指标应达到5%以下,此时,优先规则评价值S10应设定为0.1。In this embodiment, the priority rule evaluation value S10 is set to 0.3. The specific setting is also affected by the fluency index of the actual application. In this embodiment, the fluency index of the actual application is that the probability of lag when switching between the current virtual scene and the next virtual scene is less than 10%. The fluency index of the actual application is also affected by the virtual application. For simulated air traffic control training, the fluency index in this scenario should be less than 5%. At this time, the priority rule evaluation value S10 should be set to 0.1.

本发明实施例通过根据当前实际范围确定当前实际资源需求,从而提前做好资源的分配和调度,确保虚拟过程正常运行;通过考虑下一场景任务的交互元素数量和操作动作复杂度,任预测下一个场景的资源需求,为后续的资源调度做准备;通过根据虚拟精准度设定不同的补偿参数,可以更好地适应不同场景的需求,保证虚拟环境与现实的相似度,并提供更高的用户体验;根据当前实际资源需求和下一实际资源需求计算第一差值绝对值,并根据不同的情况进行任务调度排名;可以灵活调整不同情况下的任务调度顺序,使得资源分配更加合理和高效;实现在资源需求预估、虚拟精准度考虑和任务调度排名方面提供更好的资源管理和任务调度效果。The embodiment of the present invention determines the current actual resource demand according to the current actual range, so as to allocate and schedule resources in advance and ensure the normal operation of the virtual process; by considering the number of interactive elements and the complexity of operation actions of the next scene task, the resource demand of the next scene is predicted to prepare for subsequent resource scheduling; by setting different compensation parameters according to the virtual accuracy, it can better adapt to the needs of different scenes, ensure the similarity between the virtual environment and the reality, and provide a higher user experience; calculate the absolute value of the first difference according to the current actual resource demand and the next actual resource demand, and rank the task scheduling according to different situations; the task scheduling order in different situations can be flexibly adjusted to make resource allocation more reasonable and efficient; and provide better resource management and task scheduling effects in terms of resource demand estimation, virtual accuracy consideration and task scheduling ranking.

具体而言,本实施例中所述调度算法单元23用以根据所述下一操作参数的操作类型确定所述下一场景任务的所述任务调度模式;其中,所述下一操作参数包括:下一交互元素数量、下一操作动作类型和下一操作动作复杂度;Specifically, the scheduling algorithm unit 23 in this embodiment is used to determine the task scheduling mode of the next scene task according to the operation type of the next operation parameter; wherein the next operation parameter includes: the number of next interactive elements, the type of next operation action and the complexity of next operation action;

若所述当前操作动作类型和所述下一操作动作类型一致,则所述调度算法单元23判定所述下一操作参数的类型为可持续操作,且所述下一场景任务的所述任务调度模式为第一模式;If the current operation action type is consistent with the next operation action type, the scheduling algorithm unit 23 determines that the type of the next operation parameter is sustainable operation, and the task scheduling mode of the next scene task is the first mode;

若所述当前操作动作类型和所述下一操作动作类型不一致,则所述调度算法单元23判定所述下一操作参数的类型为不可持续操作,且所述下一场景任务的所述任务调度模式为第二模式;If the current operation action type and the next operation action type are inconsistent, the scheduling algorithm unit 23 determines that the type of the next operation parameter is an unsustainable operation, and the task scheduling mode of the next scene task is the second mode;

所述性能监控单元31用以获取所述虚拟环境的所述实际虚拟速率V1;The performance monitoring unit 31 is used to obtain the actual virtual rate V1 of the virtual environment;

若V1≥V0,则所述算力分配单元32判定所述实际算力分配比例为标准算力分配比例;If V1≥V0, the computing power allocation unit 32 determines that the actual computing power allocation ratio is the standard computing power allocation ratio;

若V1<V0,则所述算力分配单元32对所述标准算力分配比例进行调节以确定所述实际算力分配比例;If V1<V0, the computing power allocation unit 32 adjusts the standard computing power allocation ratio to determine the actual computing power allocation ratio;

其中,V0为所述算力分配单元32内设定的标准虚拟速率;所述标准虚拟速率受到所述应用目标场景的虚拟精准度的影响;所述标准算力分配比例为:第一模式所用的第一算力:第二模式所用的第二算力=1:1;Wherein, V0 is the standard virtual rate set in the computing power allocation unit 32; the standard virtual rate is affected by the virtual accuracy of the application target scenario; the standard computing power allocation ratio is: the first computing power used in the first mode: the second computing power used in the second mode = 1:1;

所述算力确定单元33用以根据所述任务调度排名、所述任务调度模式和所述实际算力分配比例确定所述实际资源分配策略;The computing power determination unit 33 is used to determine the actual resource allocation strategy according to the task scheduling ranking, the task scheduling mode and the actual computing power allocation ratio;

若所述任务调度排名为所述第一任务调度排名,所述任务调度模式为所述第一模式,则算力确定单元33判定所述实际资源分配策略为:优先执行所述当前场景任务,再执行所述下一场景任务,且对下一场景任务以预估算力,提前加载的模式进行执行;If the task scheduling ranking is the first task scheduling ranking, and the task scheduling mode is the first mode, the computing power determination unit 33 determines that the actual resource allocation strategy is: the current scenario task is executed first, and then the next scenario task is executed, and the next scenario task is executed in a mode of estimated power and pre-loaded;

若所述任务调度排名为所述第一任务调度排名,所述任务调度模式为所述第二模式,则算力确定单元33判定所述实际资源分配策略为:优先执行所述当前场景任务,再执行所述下一场景任务,且对下一场景任务以启动空余算力的模式进行执行;If the task scheduling ranking is the first task scheduling ranking, and the task scheduling mode is the second mode, the computing power determination unit 33 determines that the actual resource allocation strategy is: firstly execute the current scenario task, then execute the next scenario task, and execute the next scenario task in a mode of starting spare computing power;

若所述任务调度排名为所述第二任务调度排名,所述任务调度模式为所述第一模式,则算力确定单元33判定所述实际资源分配策略为:优先执行所述下一场景任务,再执行所述当前场景任务,且对下一场景任务以预估算力,提前加载的模式进行执行;If the task scheduling ranking is the second task scheduling ranking, and the task scheduling mode is the first mode, the computing power determination unit 33 determines that the actual resource allocation strategy is: firstly execute the next scenario task, then execute the current scenario task, and execute the next scenario task in a mode of estimated power and pre-loaded;

若所述任务调度排名为所述第二任务调度排名,所述任务调度模式为所述第二模式,则算力确定单元33判定所述实际资源分配策略为:优先执行所述下一场景任务,再执行所述当前场景任务,且对下一场景任务以启动空余算力的模式进行执行。If the task scheduling ranking is the second task scheduling ranking, and the task scheduling mode is the second mode, the computing power determination unit 33 determines that the actual resource allocation strategy is: first execute the next scenario task, then execute the current scenario task, and execute the next scenario task in a mode of starting spare computing power.

本发明实施例通过根据操作类型确定任务调度模式:调度算法单元可以根据下一操作参数的操作类型确定下一场景任务的任务调度模式;通过判断当前操作动作类型和下一操作动作类型是否一致,可以将下一场景任务划分为可持续操作和不可持续操作,从而选择合适的任务调度模式;根据虚拟速率调整算力分配:性能监控单元通过获取虚拟环境的实际虚拟速率与预设的速率阈值进行比较来判断是否需要调整算力分配;从而动态调节算力分配比例,使虚拟环境能够更好地适应实际运行需求;根据任务调度排名、任务调度模式和实际算力分配比例来确定实际资源分配策略;根据不同的情况,可以优先执行当前场景任务还是下一场景任务,并根据任务调度模式采取不同的执行模式,以最大程度地提高资源利用率和用户体验。The embodiment of the present invention determines the task scheduling mode according to the operation type: the scheduling algorithm unit can determine the task scheduling mode of the next scenario task according to the operation type of the next operation parameter; by judging whether the current operation action type and the next operation action type are consistent, the next scenario task can be divided into sustainable operation and unsustainable operation, so as to select a suitable task scheduling mode; the computing power allocation is adjusted according to the virtual rate: the performance monitoring unit determines whether the computing power allocation needs to be adjusted by obtaining the actual virtual rate of the virtual environment and comparing it with the preset rate threshold; thereby dynamically adjusting the computing power allocation ratio so that the virtual environment can better adapt to actual operation requirements; the actual resource allocation strategy is determined according to the task scheduling ranking, the task scheduling mode and the actual computing power allocation ratio; according to different situations, the current scenario task or the next scenario task can be executed first, and different execution modes can be adopted according to the task scheduling mode to maximize resource utilization and user experience.

本发明中各所述计算补偿参数、计算调节参数的作用有两个,一是平衡公式左右纲量,二是调节数值结果,在本实施例中不进行具体赋值,且,本实施例中各计算公式用于直观反映各数值间的调节关系,例如正相关,负相关,在无特殊说明的前提下,未具体限定数值的参数数值均取正。The calculation compensation parameters and the calculation adjustment parameters described in the present invention have two functions: one is to balance the left and right dimensions of the formula, and the other is to adjust the numerical results. No specific assignment is performed in this embodiment. In addition, the calculation formulas in this embodiment are used to intuitively reflect the adjustment relationship between the numerical values, such as positive correlation and negative correlation. Unless otherwise specified, the parameter values that are not specifically limited to numerical values are all positive.

至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征做出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。So far, the technical solutions of the present invention have been described in conjunction with the preferred embodiments shown in the accompanying drawings. However, it is easy for those skilled in the art to understand that the protection scope of the present invention is obviously not limited to these specific embodiments. Without departing from the principle of the present invention, those skilled in the art can make equivalent changes or substitutions to the relevant technical features, and the technical solutions after these changes or substitutions will fall within the protection scope of the present invention.

以上所述仅为本发明的优选实施例,并不用于限制本发明;对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above description is only a preferred embodiment of the present invention and is not intended to limit the present invention. For those skilled in the art, the present invention may have various modifications and variations. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present invention shall be included in the protection scope of the present invention.

Claims (6)

CN202410657873.3A2024-05-272024-05-27 An image processing system for virtual realityActiveCN118247409B (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN202410657873.3ACN118247409B (en)2024-05-272024-05-27 An image processing system for virtual reality

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN202410657873.3ACN118247409B (en)2024-05-272024-05-27 An image processing system for virtual reality

Publications (2)

Publication NumberPublication Date
CN118247409A CN118247409A (en)2024-06-25
CN118247409Btrue CN118247409B (en)2024-08-13

Family

ID=91554886

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN202410657873.3AActiveCN118247409B (en)2024-05-272024-05-27 An image processing system for virtual reality

Country Status (1)

CountryLink
CN (1)CN118247409B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN105719333A (en)*2014-12-022016-06-29上海联影医疗科技有限公司3D image data processing method and 3D image data processing device
CN113395654A (en)*2021-06-112021-09-14广东工业大学Method for task unloading and resource allocation of multiple unmanned aerial vehicles of edge computing system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
WO2020005907A1 (en)*2018-06-252020-01-02Pike Enterprises, LlcVirtual reality training and evaluation system
JP2024529892A (en)*2021-07-142024-08-14ストロング フォース ティエクス ポートフォリオ 2018,エルエルシー System and method for integrating gaming engine and smart contract
WO2023009580A2 (en)*2021-07-282023-02-02Multinarity LtdUsing an extended reality appliance for productivity
CN115460216A (en)*2022-09-092022-12-09中国电信股份有限公司Calculation force resource scheduling method and device, calculation force resource scheduling equipment and system
CN115586957B (en)*2022-11-252023-04-14阿里巴巴(中国)有限公司Task scheduling system, method and device and electronic equipment
CN117290066A (en)*2023-08-182023-12-26湖南大学Scheduling method and system based on computing power network computing system architecture

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN105719333A (en)*2014-12-022016-06-29上海联影医疗科技有限公司3D image data processing method and 3D image data processing device
CN113395654A (en)*2021-06-112021-09-14广东工业大学Method for task unloading and resource allocation of multiple unmanned aerial vehicles of edge computing system

Also Published As

Publication numberPublication date
CN118247409A (en)2024-06-25

Similar Documents

PublicationPublication DateTitle
KR20220083839A (en) A method and apparatus for displaying a virtual scene, and an apparatus and storage medium
CN111773709B (en)Scene map generation method and device, computer storage medium and electronic equipment
WO2019055091A1 (en)Varying modality of user experiences with a mobile device based on context
CN110114746A (en)The method and virtual reality device of display virtual real picture
JP7612884B2 (en) Position mark display method, device, equipment, and computer program
CN108290071B (en)Media, apparatus, system, and method for determining resource allocation for performing rendering with prediction of player&#39;s intention
US12067223B2 (en)Context aware annotations for collaborative applications
CN118426973B (en)Scheduling method of rendering engine
JP7403249B2 (en) Systems and methods for foveal simulation
US20230401772A1 (en)Animation frame display method and apparatus, device, and storage medium
US20240345717A1 (en)Operation method and apparatus, and electronic device and computer-readable storage medium
US20230267063A1 (en)Real-time latency measurements in streaming systems and applications
CN117808938A (en)Digital man driving method, device and storage medium
CN118247409B (en) An image processing system for virtual reality
CN117453386A (en) Memory bandwidth allocation in multi-entity systems
CN119537009A (en) A method to speed up image rendering under lvgl
CN111402353B (en)Cloud-end drawing calculation method based on self-adaptive virtualization drawing production line
CN116701471B (en) BIM data scheduling method, device and computer-readable storage medium
CN119206140A (en) Virtual scene display method and device, storage medium, and electronic device
CN112468865B (en)Video processing method, VR terminal and computer readable storage medium
CN115202792A (en)Method, apparatus, device and storage medium for scene switching
CN114288647A (en)Artificial intelligence game engine based on AI Designer, game rendering method and device
US20240071138A1 (en)Computing apparatus, method, and non-transitory computer readable storage medium thereof
US20230400975A1 (en)Thermal management of an electronic device
CN120066653A (en)Display method, device and equipment of application interface and storage medium

Legal Events

DateCodeTitleDescription
PB01Publication
PB01Publication
SE01Entry into force of request for substantive examination
SE01Entry into force of request for substantive examination
GR01Patent grant
GR01Patent grant

[8]ページ先頭

©2009-2025 Movatter.jp