Movatterモバイル変換


[0]ホーム

URL:


CN118172913A - An intelligent power battery thermal runaway warning system - Google Patents

An intelligent power battery thermal runaway warning system
Download PDF

Info

Publication number
CN118172913A
CN118172913ACN202410594502.5ACN202410594502ACN118172913ACN 118172913 ACN118172913 ACN 118172913ACN 202410594502 ACN202410594502 ACN 202410594502ACN 118172913 ACN118172913 ACN 118172913A
Authority
CN
China
Prior art keywords
power battery
module
thermal runaway
preset
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202410594502.5A
Other languages
Chinese (zh)
Other versions
CN118172913B (en
Inventor
王涛
魏建国
秦琦冰
高永存
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Weifang University
Original Assignee
Weifang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Weifang UniversityfiledCriticalWeifang University
Priority to CN202410594502.5ApriorityCriticalpatent/CN118172913B/en
Publication of CN118172913ApublicationCriticalpatent/CN118172913A/en
Application grantedgrantedCritical
Publication of CN118172913BpublicationCriticalpatent/CN118172913B/en
Activelegal-statusCriticalCurrent
Anticipated expirationlegal-statusCritical

Links

Classifications

Landscapes

Abstract

Translated fromChinese

本发明涉及动力电池技术领域,尤其涉及一种智能动力电池热失控预警系统,所述系统包括,信息获取模块,获取动力电池运行数据、压力数据和动力电池参数;异常分析模块,对动力电池运行状态的异常性进行分析;温度分析模块,对动力电池模组温度的异常性进行分析;预警模块,向用户进行动力电池热失控预警;冷却管理模块,对下一监测周期冷却液的流量进行管理,并根据动力电池的能量密度与动力电池的充放电次数对管理过程进行优化;预警迭代模块,根据获取的管理周期内的动力电池容量对下一管理周期动力电池的热失控预警过程进行迭代。本发明提高了动力电池的热失控预警效率与动力电池的安全性。

The present invention relates to the technical field of power batteries, and in particular to an intelligent power battery thermal runaway warning system, the system comprising an information acquisition module for acquiring power battery operation data, pressure data and power battery parameters; an abnormality analysis module for analyzing the abnormality of the power battery operation state; a temperature analysis module for analyzing the abnormality of the power battery module temperature; an early warning module for providing a power battery thermal runaway warning to a user; a cooling management module for managing the flow of coolant in the next monitoring cycle, and optimizing the management process according to the energy density of the power battery and the number of charge and discharge times of the power battery; and an early warning iteration module for iterating the thermal runaway warning process of the power battery in the next management cycle according to the power battery capacity acquired in the management cycle. The present invention improves the thermal runaway warning efficiency of the power battery and the safety of the power battery.

Description

Translated fromChinese
一种智能动力电池热失控预警系统An intelligent power battery thermal runaway warning system

技术领域Technical Field

本发明涉及动力电池技术领域,尤其涉及一种智能动力电池热失控预警系统。The present invention relates to the technical field of power batteries, and in particular to an intelligent power battery thermal runaway early warning system.

背景技术Background technique

现有技术中,电池管理系统通常通过监控电池的温度、电压和电流来评估其工作状态。但是,这些参数往往只能提供有限的信息,并且在热失控发生初期,这些指标可能尚未出现明显异常,从而错失最佳预警时机。In the prior art, battery management systems usually evaluate the working status of batteries by monitoring the temperature, voltage and current of the battery. However, these parameters can only provide limited information, and in the early stage of thermal runaway, these indicators may not show obvious abnormalities, thus missing the best warning opportunity.

中国专利公开号:CN110370984A公开了一种动力电池热失控预警方法,通过电池单体电压和电池单体温度的实时检测数据,计算最低电池单体电压对平均电压的异常偏移,计算最高单体温度对平均温度的异常偏移。检测电池模组的电池值,并根据上述各种检测参数,计算荷电状态的异常偏移。同时实时检测可燃气体浓度和气体压力,判断可燃气体浓度是否达到阈值,气体压力是否达到阈值。综合考虑以上各参数,进行热失控预警。通过该方法可以在热失控发生前将热失控预警出来,从而很大程度降低了热失控造成的危害。本申请将有助于提高动力电池安全管理的可靠性,减少锂离子动力电池安全性事故的发生;由此可见,该方案在对动力电池进行热失控预警时,仅针对电压、温度与可燃气体进行分析,存在动力电池的热失控预警效率低、动力电池的安全性低的问题。China Patent Publication No.: CN110370984A discloses a thermal runaway early warning method for power batteries. Through the real-time detection data of battery cell voltage and battery cell temperature, the abnormal deviation of the lowest battery cell voltage to the average voltage is calculated, and the abnormal deviation of the highest cell temperature to the average temperature is calculated. The battery value of the battery module is detected, and the abnormal deviation of the state of charge is calculated according to the above-mentioned various detection parameters. At the same time, the concentration of combustible gas and the gas pressure are detected in real time to determine whether the concentration of combustible gas reaches the threshold and whether the gas pressure reaches the threshold. Taking the above parameters into consideration, a thermal runaway early warning is performed. Through this method, a thermal runaway early warning can be issued before the thermal runaway occurs, thereby greatly reducing the harm caused by the thermal runaway. This application will help to improve the reliability of power battery safety management and reduce the occurrence of safety accidents of lithium-ion power batteries; it can be seen that when the scheme performs thermal runaway early warning on the power battery, it only analyzes the voltage, temperature and combustible gas, and there are problems such as low efficiency of thermal runaway early warning of the power battery and low safety of the power battery.

发明内容Summary of the invention

为此,本发明提供一种智能动力电池热失控预警系统,用以克服现有技术中动力电池的热失控预警效率低、动力电池的安全性低的问题。To this end, the present invention provides an intelligent power battery thermal runaway warning system to overcome the problems of low thermal runaway warning efficiency and low safety of power batteries in the prior art.

为实现上述目的,本发明提供一种智能动力电池热失控预警系统,所述系统包括,To achieve the above object, the present invention provides an intelligent power battery thermal runaway warning system, the system comprising:

信息获取模块,用以获取动力电池运行数据、压力数据和动力电池参数;An information acquisition module is used to obtain power battery operation data, pressure data and power battery parameters;

异常分析模块,用以根据获取的动力电池的充电功率、动力电池放电功率和动力电池电流对动力电池运行状态的异常性进行分析;An abnormality analysis module, used to analyze the abnormality of the power battery operation state according to the acquired power battery charging power, power battery discharging power and power battery current;

温度分析模块,用以根据动力电池运行状态异常性的分析结果与动力电池模组温度对动力电池模组温度的异常性进行分析;A temperature analysis module, used to analyze the abnormality of the power battery module temperature according to the analysis result of the abnormality of the power battery operation state and the power battery module temperature;

预警模块,用以根据动力电池模组温度异常性的分析结果与动力电池模组压力向用户进行动力电池热失控预警;The early warning module is used to warn users of thermal runaway of the power battery based on the analysis results of the power battery module temperature anomaly and the power battery module pressure;

冷却管理模块,用以根据监测周期内动力电池的热失控预警结果与动力电池内阻对下一监测周期冷却液的流速进行管理,还用以根据动力电池的能量密度对管理过程进行一次优化,还用以根据动力电池的充放电次数对管理过程进行二次优化;A cooling management module is used to manage the flow rate of the coolant in the next monitoring cycle according to the thermal runaway warning result of the power battery and the internal resistance of the power battery during the monitoring cycle, and to optimize the management process once according to the energy density of the power battery, and to optimize the management process twice according to the number of charge and discharge times of the power battery;

预警迭代模块,用以根据获取的管理周期内的动力电池容量对下一管理周期动力电池的热失控预警过程进行迭代。The early warning iteration module is used to iterate the thermal runaway early warning process of the power battery in the next management cycle according to the power battery capacity obtained in the management cycle.

进一步地,所述异常分析模块设有功率分析单元,所述功率分析单元用以将获取的动力电池的充电功率a0、放电功率b0分别与预设充电功率a1预设放电功率b1进行比对,并根据比对结果对动力电池充放电功率的异常性进行分析,其中:Furthermore, the abnormality analysis module is provided with a power analysis unit, which is used to compare the acquired charging power a0 and discharging power b0 of the power battery with the preset charging power a1 and the preset discharging power b1, and analyze the abnormality of the charging and discharging power of the power battery according to the comparison results, wherein:

当a0≤a1或b0≤b1时,所述功率分析单元判定动力电池的充放电功率正常;When a0≤a1 or b0≤b1, the power analysis unit determines that the charging and discharging power of the power battery is normal;

当a0>a1或b0>b1时,所述功率分析单元判定动力电池的充放电功率异常。When a0>a1 or b0>b1, the power analysis unit determines that the charging and discharging power of the power battery is abnormal.

进一步地,所述异常分析模块设有状态分析单元,所述状态分析单元用以根据动力电池充放电功率的异常分析结果与动力电池的电流c0对动力电池运行状态的异常性进行分析,其中:Furthermore, the abnormality analysis module is provided with a state analysis unit, and the state analysis unit is used to analyze the abnormality of the power battery operation state according to the abnormal analysis result of the power battery charging and discharging power and the current c0 of the power battery, wherein:

当动力电池的充放电功率正常时,若c0≤c1,所述状态分析单元判定动力电池的运行状态正常;若c0>c1,所述状态分析单元判定动力电池的运行状态异常;When the charge and discharge power of the power battery is normal, if c0≤c1, the state analysis unit determines that the operation state of the power battery is normal; if c0>c1, the state analysis unit determines that the operation state of the power battery is abnormal;

当动力电池的充放电功率异常且a0>a1时,若c0≤c1×[1-sin(a0-a1)×(π/2)/(a0+a1)],所述状态分析单元判定动力电池的运行状态正常;若c0>c1×[1-sin(a0-a1)×(π/2)/(a0+a1)],所述状态分析单元判定动力电池的运行状态异常;When the charge and discharge power of the power battery is abnormal and a0>a1, if c0≤c1×[1-sin(a0-a1)×(π/2)/(a0+a1)], the state analysis unit determines that the operation state of the power battery is normal; if c0>c1×[1-sin(a0-a1)×(π/2)/(a0+a1)], the state analysis unit determines that the operation state of the power battery is abnormal;

当动力电池的充放电功率异常且b0>b1时,若c0≤c1×[1-sin(b0-b1)×(π/2)/(b0+b1)],所述状态分析单元判定动力电池的运行状态正常;若c0>c1×[1-sin(b0-b1)×(π/2)/(b0+b1)],所述状态分析单元判定动力电池的运行状态异常。When the charging and discharging power of the power battery is abnormal and b0>b1, if c0≤c1×[1-sin(b0-b1)×(π/2)/(b0+b1)], the state analysis unit determines that the operating state of the power battery is normal; if c0>c1×[1-sin(b0-b1)×(π/2)/(b0+b1)], the state analysis unit determines that the operating state of the power battery is abnormal.

进一步地,所述温度分析模块根据动力电池运行状态异常性的分析结果与获取的动力电池模组温度对动力电池模组的温度异常等级进行划分,其中:Furthermore, the temperature analysis module classifies the temperature abnormality level of the power battery module according to the analysis result of the abnormality of the power battery operation state and the acquired power battery module temperature, wherein:

当动力电池的运行状态正常时,若f0i≤f1,所述温度分析模块判定编号为i的动力电池模组的温度正常;若f1<f0i<f2时,所述温度分析模块判定编号为i的动力电池模组的温度一级异常;若f0i>f2时,所述温度分析模块判定编号为i的动力电池模组的温度二级异常;When the operating state of the power battery is normal, if f0i≤f1, the temperature analysis module determines that the temperature of the power battery module numbered i is normal; if f1<f0i<f2, the temperature analysis module determines that the temperature of the power battery module numbered i is abnormal at the first level; if f0i>f2, the temperature analysis module determines that the temperature of the power battery module numbered i is abnormal at the second level;

当动力电池的运行状态异常时,若f0i≤f3,所述温度分析模块判定编号为i的动力电池模组的温度正常;若f3<f0i<f4时,所述温度分析模块判定编号为i的动力电池模组的温度一级异常;若f0i>f4时,所述温度分析模块判定编号为i的动力电池模组的温度二级异常;When the operating state of the power battery is abnormal, if f0i≤f3, the temperature analysis module determines that the temperature of the power battery module numbered i is normal; if f3<f0i<f4, the temperature analysis module determines that the temperature of the power battery module numbered i is abnormal at the first level; if f0i>f4, the temperature analysis module determines that the temperature of the power battery module numbered i is abnormal at the second level;

其中,f0i为编号为i的动力电池模组的温度,f1为第一预设温度阈值,f2为第二预设温度阈值,f3为第三预设温度阈值,f4为第四预设温度阈值,f3<f1<f4<f2。Among them, f0i is the temperature of the power battery module numbered i, f1 is the first preset temperature threshold, f2 is the second preset temperature threshold, f3 is the third preset temperature threshold, f4 is the fourth preset temperature threshold, and f3<f1<f4<f2.

进一步地,所述预警模块设有压力分析单元,所述压力分析单元用以将各动力电池模组压力与各预设压力进行比对,并根据比对结果对动力电池模组压力的风险等级进行分析,其中:Furthermore, the early warning module is provided with a pressure analysis unit, which is used to compare the pressure of each power battery module with each preset pressure, and analyze the risk level of the power battery module pressure according to the comparison result, wherein:

当p0i≤p1时,所述压力分析单元判定编号为i的动力电池模组的压力正常;When p0i≤p1, the pressure analysis unit determines that the pressure of the power battery module numbered i is normal;

当p1<p0i<p2时,所述压力分析单元判定编号为i的动力电池模组的压力风险等级为低风险;When p1<p0i<p2, the pressure analysis unit determines that the pressure risk level of the power battery module numbered i is low risk;

当p0i≥p2时,所述压力分析单元判定编号为i的动力电池模组的压力风险等级为高风险;When p0i≥p2, the pressure analysis unit determines that the pressure risk level of the power battery module numbered i is high risk;

其中,p0i为编号为i的动力电池模组的压力,p1第一预设压力,p2为第二预设压力。Among them, p0i is the pressure of the power battery module numbered i, p1 is the first preset pressure, and p2 is the second preset pressure.

进一步地,所述预警模块设有预警单元,所述预警单元根据动力电池模组压力风险等级的分析结果与温度异常等级的划分结果向用户进行动力电池热失控预警,其中:Furthermore, the warning module is provided with a warning unit, which provides a power battery thermal runaway warning to the user according to the analysis result of the power battery module pressure risk level and the classification result of the temperature abnormality level, wherein:

当s1>0或s2>0时,所述预警单元判定动力电池的热失控风险为高风险,并向用户进行动力电池热失控高风险预警;When s1>0 or s2>0, the warning unit determines that the thermal runaway risk of the power battery is high risk, and issues a high risk warning of thermal runaway of the power battery to the user;

当s1=0且s2=0时,若w1×s3/i0+w2×s4/i0≤m1,所述预警单元判定动力电池的热失控风险为低风险,不向用户进行预警,若m1<w1×s3/i0+w2×s4/i0<m2,所述预警单元判定动力电池的热失控风险为中风险,并向用户进行动力电池热失控中风险预警,若w1×s3/i0+w2×s4/i0≥m2,所述预警单元判定动力电池的热失控风险为高风险,并向用户进行动力电池热失控高风险预警;When s1=0 and s2=0, if w1×s3/i0+w2×s4/i0≤m1, the early warning unit determines that the thermal runaway risk of the power battery is low risk and does not issue an early warning to the user; if m1<w1×s3/i0+w2×s4/i0<m2, the early warning unit determines that the thermal runaway risk of the power battery is medium risk and issues an early warning of medium risk of thermal runaway of the power battery to the user; if w1×s3/i0+w2×s4/i0≥m2, the early warning unit determines that the thermal runaway risk of the power battery is high risk and issues an early warning of high risk of thermal runaway of the power battery to the user;

其中,s1为温度二级异常的动力电池模组的数量,s2为高风险压力等级的动力电池模组的数量,s3为温度一级异常的动力电池模组的数量,s4为低风险压力等级的动力电池模组的数量,i0为动力电池包中动力电池模组的数量,w1为预设温度权重,w2为预设压力权重,w1+w2=1且w1<w2,m1为第一预设异常系数,m2为第二预设异常系数。Among them, s1 is the number of power battery modules with level 2 temperature abnormalities, s2 is the number of power battery modules with high-risk pressure levels, s3 is the number of power battery modules with level 1 temperature abnormalities, s4 is the number of power battery modules with low-risk pressure levels, i0 is the number of power battery modules in the power battery pack, w1 is the preset temperature weight, w2 is the preset pressure weight, w1+w2=1 and w1<w2, m1 is the first preset abnormality coefficient, and m2 is the second preset abnormality coefficient.

进一步地,所述冷却管理模块设有冷却管理单元,所述冷却管理单元用以根据监测周期内动力电池的热失控预警结果与动力电池的内阻n0对下一监测周期冷却液的流速进行管理,其中:Furthermore, the cooling management module is provided with a cooling management unit, which is used to manage the flow rate of the coolant in the next monitoring cycle according to the thermal runaway warning result of the power battery in the monitoring cycle and the internal resistance n0 of the power battery, wherein:

当n0≤n1时,若α×z1+z2≤z0,所述冷却管理单元将下一监测周期冷却液的流速设为U1,设定U1=u0;若α×z1+z2>z0,所述冷却管理单元将下一监测周期冷却液的流速设为U2,设定U2=u0×{1+(π/2)×arctan[sin(α×z1+z2-z0)/(α×z1+z2+z0)]};When n0≤n1, if α×z1+z2≤z0, the cooling management unit sets the flow rate of the coolant in the next monitoring cycle to U1, and sets U1=u0; if α×z1+z2>z0, the cooling management unit sets the flow rate of the coolant in the next monitoring cycle to U2, and sets U2=u0×{1+(π/2)×arctan[sin(α×z1+z2-z0)/(α×z1+z2+z0)]};

当n0>n1时,若α×z1+z2≤z0×[1-β×(n0-n1)/(n1+n0)],所述冷却管理单元将下一监测周期冷却液的流速设为U3,设定U3=u0;若α×z1+z2>z0×[1-β×(n0-n1)/(n1+n0)],所述冷却管理单元将下一监测周期冷却液的流速设为U4,设定U4=u0×{1+(π/2)×arctan{sin{α×z1+z2-z0×[1-β×(n0-n1)/(n1+n0)]}/{α×z1+z2+z0×[1-β×(n0-n1)/(n1+n0)]}};When n0>n1, if α×z1+z2≤z0×[1-β×(n0-n1)/(n1+n0)], the cooling management unit sets the flow rate of the coolant in the next monitoring cycle to U3, and sets U3=u0; if α×z1+z2>z0×[1-β×(n0-n1)/(n1+n0)], the cooling management unit sets the flow rate of the coolant in the next monitoring cycle to U4, and sets U4=u0×{1+(π/2)×arctan{sin{α×z1+z2-z0×[1-β×(n0-n1)/(n1+n0)]}/{α×z1+z2+z0×[1-β×(n0-n1)/(n1+n0)]}};

其中,当Uu≥u1时,Uu的取值为u1,Uu为冷却液流速的分析结果,u=1,2,3,4;u1为冷却液流速阈值,n1为预设内阻,α为预设调整系数,z1为监测周期内动力电池热失控中风险预警的次数,z2为监测周期内动力电池热失控高风险预警的次数,z0为预设预警阈值,u0为预设冷却液流速,β为调节系数。Among them, when Uu≥u1, the value of Uu is u1, Uu is the analysis result of the coolant flow rate, u=1,2,3,4; u1 is the coolant flow rate threshold, n1 is the preset internal resistance, α is the preset adjustment coefficient, z1 is the number of medium risk warnings of power battery thermal runaway during the monitoring period, z2 is the number of high risk warnings of power battery thermal runaway during the monitoring period, z0 is the preset warning threshold, u0 is the preset coolant flow rate, and β is the adjustment coefficient.

进一步地,所述冷却管理模块设有第一优化单元,所述第一优化单元用以将动力电池的能量密度k0与预设密度k1进行比对,并根据比对结果对冷却液流速的管理过程进行一次优化,其中:Furthermore, the cooling management module is provided with a first optimization unit, which is used to compare the energy density k0 of the power battery with the preset density k1, and optimize the management process of the coolant flow rate according to the comparison result, wherein:

当k0≤k1时,所述第一优化单元判定动力电池的能量密度正常,不进行优化;When k0≤k1, the first optimization unit determines that the energy density of the power battery is normal and does not perform optimization;

当k0>k1时,所述第一优化单元判定电池的能量密度异常,并对冷却液流速的管理过程进行一次优化,将优化后的预设冷却液流速设为u0’,设定:When k0>k1, the first optimization unit determines that the energy density of the battery is abnormal, and optimizes the management process of the coolant flow rate, and sets the optimized preset coolant flow rate to u0', setting:

u0’=u0×{1+{exp{sin(k0-k1)×(π/2)/(k0+k1)}-1}/2}。u0’=u0×{1+{exp{sin(k0-k1)×(π/2)/(k0+k1)}-1}/2}.

进一步地,所述冷却管理模块设有第二优化单元,所述第二优化单元用以将动力电池的充放电次数r0与预设次数r1进行比对,并根据比对结果对冷却液流速的管理过程进行二次优化,其中:Furthermore, the cooling management module is provided with a second optimization unit, which is used to compare the charge and discharge times r0 of the power battery with the preset times r1, and perform secondary optimization on the management process of the coolant flow rate according to the comparison result, wherein:

当r0≤r1时,所述第二优化单元判定动力电池的充放电次数正常,不进行优化;When r0≤r1, the second optimization unit determines that the number of charge and discharge times of the power battery is normal and does not perform optimization;

当r0>r1时,所述第二优化单元判定动力电池的充放电次数异常,并对冷却液流速的管理过程进行二次优化,将优化后的预设能量密度设为k1’,设定k1’={1-ln[(r0-r1)/(r0+r1)+1]}。When r0>r1, the second optimization unit determines that the charge and discharge times of the power battery are abnormal, and performs secondary optimization on the management process of the coolant flow rate, and sets the optimized preset energy density to k1', setting k1'={1-ln[(r0-r1)/(r0+r1)+1]}.

进一步地,所述预警迭代模块将管理周期内获取的动力电池容量y0对下一管理周期动力电池的热失控预警过程进行迭代,其中:Furthermore, the warning iteration module iterates the thermal runaway warning process of the power battery in the next management cycle using the power battery capacity y0 obtained in the management cycle, wherein:

当(y1-y0)/y1≤Y时,所述预警迭代模块判定当前管理周期动力电池的容量衰减正常,不进行迭代;When (y1-y0)/y1≤Y, the early warning iteration module determines that the capacity decay of the power battery in the current management cycle is normal and does not perform iteration;

当(y1-y0)/y1>Y时,所述预警迭代模块判定当前管理周期动力电池的容量衰减异常,并对下一管理周期动力电池的热失控预警过程进行迭代,所述预警迭代模块将迭代后的第一预设异常系数设为m1’,设定:m1’=m1×{1-γ×[(y1-y0)/y1-Y]/[(y1-y0)/y1+Y]},将迭代后的第二预设异常系数设为m2’,设定m2’=m2×{1-γ×[(y1-y0)/y1-Y]/[(y1-y0)/y1+Y]};When (y1-y0)/y1>Y, the early warning iteration module determines that the capacity attenuation of the power battery in the current management cycle is abnormal, and iterates the thermal runaway early warning process of the power battery in the next management cycle. The early warning iteration module sets the first preset abnormal coefficient after iteration to m1', setting: m1'=m1×{1-γ×[(y1-y0)/y1-Y]/[(y1-y0)/y1+Y]}, sets the second preset abnormal coefficient after iteration to m2', setting m2'=m2×{1-γ×[(y1-y0)/y1-Y]/[(y1-y0)/y1+Y]};

其中,y1为与当前管理周期相邻的上一管理周期的动力电池容量,Y为预设衰减比例,γ为更新系数。Among them, y1 is the power battery capacity of the previous management cycle adjacent to the current management cycle, Y is the preset attenuation ratio, and γ is the update coefficient.

与现有技术相比,本发明的有益效果在于,所述异常分析模块通过设置预设充电功率与预设放电功率以提高动力电池充放电功率异常性分析的准确性,进而提高了动力电池运行状态的准确性,从而提高了动力电池热失控预警的准确性,通过设置预设电流以提高动力电池运行状态的准确性,从而提高了动力电池热失控预警的准确性,所述温度分析模块通过设置预设温度阈值以提高动力电池温度异常等级分析的准确性,从而提高了动力电池热失控预警的准确性,所述预警模块通过设置预设压力以提高动力电池压力风险等级分析的准确性,从而提高了动力电池热失控预警的准确性,通过设置各预设权重与各预设异常系数以提高动力电池热失控预警的准确性,所述冷却管理模块通过设置预设冷却液流速、调节系数与预设内阻以提高冷却液流速管理的准确性,从而提高了动力电池的热失控预警效率与动力电池的安全性,通过设置预设密度以减少能量密度过大对冷却液流速管理的影响,进而提高冷却液流速管理的准确性,从而提高了动力电池的热失控预警效率与动力电池的安全性,通过设置预设次数以减少动力电池充放电次数过多对冷却液流速管理的影响,进而提高冷却液流速管理的准确性,从而提高了动力电池的热失控预警效率与动力电池的安全性,所述预警迭代模块通过设置预设衰减比例与预设更新系数以提高动力电池热失控预警的准确性,进而提高冷却液流速管理的准确性,最终提高了动力电池的热失控预警效率与动力电池的安全性。Compared with the prior art, the beneficial effects of the present invention are that the abnormality analysis module improves the accuracy of the abnormality analysis of the power battery charging and discharging power by setting a preset charging power and a preset discharging power, thereby improving the accuracy of the power battery operating state, thereby improving the accuracy of the power battery thermal runaway warning, and by setting a preset current to improve the accuracy of the power battery operating state, thereby improving the accuracy of the power battery thermal runaway warning, the temperature analysis module improves the accuracy of the power battery temperature abnormality level analysis by setting a preset temperature threshold, thereby improving the accuracy of the power battery thermal runaway warning, the warning module improves the accuracy of the power battery pressure risk level analysis by setting a preset pressure, thereby improving the accuracy of the power battery thermal runaway warning, and by setting each preset weight and each preset abnormality coefficient to improve the accuracy of the power battery thermal runaway warning, the cooling management module The block improves the accuracy of coolant flow rate management by setting a preset coolant flow rate, adjustment coefficient and preset internal resistance, thereby improving the thermal runaway warning efficiency of the power battery and the safety of the power battery. The block reduces the influence of excessive energy density on coolant flow rate management by setting a preset density, thereby improving the accuracy of coolant flow rate management, thereby improving the thermal runaway warning efficiency of the power battery and the safety of the power battery. The block reduces the influence of excessive power battery charge and discharge times on coolant flow rate management by setting a preset number of times, thereby improving the accuracy of coolant flow rate management, thereby improving the thermal runaway warning efficiency of the power battery and the safety of the power battery. The warning iteration module improves the accuracy of thermal runaway warning of the power battery by setting a preset attenuation ratio and a preset update coefficient, thereby improving the accuracy of coolant flow rate management, and ultimately improving the thermal runaway warning efficiency of the power battery and the safety of the power battery.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

图1为本实施例一种智能动力电池热失控预警系统的结构示意图;FIG1 is a schematic structural diagram of an intelligent power battery thermal runaway warning system according to the present embodiment;

图2为本实施例异常分析模块的结构示意图;FIG2 is a schematic diagram of the structure of an abnormality analysis module in this embodiment;

图3为本实施例预警模块的结构示意图;FIG3 is a schematic diagram of the structure of the early warning module of this embodiment;

图4为本实施例冷却管理模块的结构示意图。FIG4 is a schematic diagram of the structure of the cooling management module of this embodiment.

具体实施方式Detailed ways

为了使本发明的目的和优点更加清楚明白,下面结合实施例对本发明作进一步描述;应当理解,此处所描述的具体实施例仅仅用于解释本发明,并不用于限定本发明。In order to make the objects and advantages of the present invention more clearly understood, the present invention is further described below in conjunction with embodiments; it should be understood that the specific embodiments described herein are only used to explain the present invention and are not used to limit the present invention.

下面参照附图来描述本发明的优选实施方式。本领域技术人员应当理解的是,这些实施方式仅仅用于解释本发明的技术原理,并非在限制本发明的保护范围。The preferred embodiments of the present invention are described below with reference to the accompanying drawings. It should be understood by those skilled in the art that these embodiments are only used to explain the technical principles of the present invention and are not intended to limit the protection scope of the present invention.

需要说明的是,在本发明的描述中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域技术人员而言,可根据具体情况理解上述术语在本发明中的具体含义。It should be noted that in the description of the present invention, unless otherwise clearly specified and limited, the terms "installed", "connected" and "connected" should be understood in a broad sense, for example, it can be a fixed connection, a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, or it can be the internal communication of two components. For those skilled in the art, the specific meanings of the above terms in the present invention can be understood according to specific circumstances.

请参阅图1所示,其为本实施例一种智能动力电池热失控预警系统的结构示意图,所述系统包括,Please refer to FIG1 , which is a schematic diagram of the structure of an intelligent power battery thermal runaway warning system according to this embodiment. The system includes:

信息获取模块,用以获取动力电池运行数据、压力数据和动力电池参数;所述动力电池为若干动力电池模组组成的电池包,所述动力电池模组由若干动力电池单元组成;所述动力电池的运行数据包括动力电池的充电功率、放电功率、电流、动力电池充放电次数和动力电池模组温度;所述压力数据为动力电池模组压力,所述动力电池模组压力为气体压力;所述动力电池的参数包括动力电池内阻、动力电池容量与动力电池能量密度;本实施例中不对动力电池运行数据、压力数据和动力电池参数的获取方式作具体限定,本领域技术人员可自由设置,只需满足动力电池运行数据、压力数据和动力电池参数的获取要求即可,其中,动力电池运行数据可通过BMS系统获取,压力数据可通过压力传感器获取,动力电池容量可通过多速率放电法获取,动力电池内阻可通过内阻测试仪获取,动力电池能量密度可通过交互获取;An information acquisition module is used to acquire power battery operation data, pressure data and power battery parameters; the power battery is a battery pack composed of a plurality of power battery modules, and the power battery module is composed of a plurality of power battery units; the power battery operation data includes the charging power, discharging power, current, number of charge and discharge times of the power battery and the power battery module temperature of the power battery; the pressure data is the power battery module pressure, and the power battery module pressure is the gas pressure; the power battery parameters include the power battery internal resistance, power battery capacity and power battery energy density; in this embodiment, no specific limitation is made on the acquisition method of the power battery operation data, pressure data and power battery parameters, and those skilled in the art can freely set them, as long as the acquisition requirements of the power battery operation data, pressure data and power battery parameters are met, wherein the power battery operation data can be acquired through the BMS system, the pressure data can be acquired through the pressure sensor, the power battery capacity can be acquired through the multi-rate discharge method, the power battery internal resistance can be acquired through the internal resistance tester, and the power battery energy density can be acquired through interaction;

异常分析模块,用以根据获取的动力电池的充电功率、动力电池放电功率和动力电池电流对动力电池运行状态的异常性进行分析,异常分析模块与所述信息获取模块连接;an abnormality analysis module, used to analyze the abnormality of the power battery operation state according to the acquired charging power, discharging power and current of the power battery, the abnormality analysis module being connected to the information acquisition module;

温度分析模块,用以根据动力电池运行状态异常性的分析结果与动力电池模组温度对动力电池模组温度的异常性进行分析,温度异常性与所述异常分析模块连接;A temperature analysis module, used to analyze the abnormality of the power battery module temperature according to the analysis result of the abnormality of the power battery operation state and the power battery module temperature, and the temperature abnormality is connected to the abnormality analysis module;

预警模块,用以根据动力电池模组温度异常性的分析结果与动力电池模组压力向用户进行动力电池热失控预警,预警模块与所述温度分析模块连接;An early warning module, used to provide a power battery thermal runaway early warning to the user based on the analysis result of power battery module temperature anomaly and power battery module pressure, the early warning module is connected to the temperature analysis module;

冷却管理模块,用以根据监测周期内动力电池的热失控预警结果与动力电池内阻对下一监测周期冷却液的流速进行管理,还用以根据动力电池的能量密度对管理过程进行一次优化,还用以根据动力电池的充放电次数对管理过程进行二次优化,冷却管理模块与所述预警模块连接;本实施例中不对监测周期的设置做具体限定,本领域技术人员可自由设置,只需满足监测周期的设计要求即可,其中,监测周期可设置为30天、60天等;A cooling management module is used to manage the flow rate of the coolant in the next monitoring period according to the thermal runaway warning result of the power battery in the monitoring period and the internal resistance of the power battery, and is also used to optimize the management process once according to the energy density of the power battery, and is also used to optimize the management process twice according to the number of charge and discharge times of the power battery. The cooling management module is connected to the warning module. In this embodiment, the setting of the monitoring period is not specifically limited, and those skilled in the art can freely set it as long as the design requirements of the monitoring period are met. Among them, the monitoring period can be set to 30 days, 60 days, etc.;

预警迭代模块,用以根据获取的管理周期内的动力电池容量对下一管理周期动力电池的热失控预警过程进行迭代,管理迭代模块与所述预警模块连接;本实施例中不对管理周期的设置作具体限定,本领域技术人员可自由设置,只需满足管理周期的设计要求即可,其中,管理周期的设置应大于监测周期的设置,管理周期可设置为180天、360天等。The early warning iteration module is used to iterate the thermal runaway early warning process of the power battery in the next management cycle according to the power battery capacity obtained in the management cycle. The management iteration module is connected to the early warning module. In this embodiment, no specific limitation is made to the setting of the management cycle. Those skilled in the art can set it freely as long as the design requirements of the management cycle are met. Among them, the setting of the management cycle should be greater than the setting of the monitoring cycle. The management cycle can be set to 180 days, 360 days, etc.

请参阅图2所示,其为本实施例异常分析模块的结构示意图,所述异常分析模块包括,Please refer to FIG. 2 , which is a schematic diagram of the structure of the abnormality analysis module of this embodiment. The abnormality analysis module includes:

功率分析单元,用以根据获取的动力电池的充电功率和放电功率对动力电池充放电功率的异常性进行分析;A power analysis unit, used to analyze the abnormality of the charging and discharging power of the power battery according to the acquired charging power and discharging power of the power battery;

状态分析单元,用以根据动力电池充放电功率的异常分析结果与动力电池的电流对动力电池运行状态的异常性进行分析,状态分析单元与所述功率分析单元连接。The state analysis unit is used to analyze the abnormality of the power battery operation state according to the abnormal analysis result of the power battery charging and discharging power and the current of the power battery. The state analysis unit is connected to the power analysis unit.

请参阅图3所示,其为本实施例预警模块的结构示意图,所述预警模块包括,Please refer to FIG3, which is a schematic diagram of the structure of the early warning module of this embodiment. The early warning module includes:

压力分析单元,用以根据获取的各动力电池模组压力对动力电池模组压力的风险等级进行分析;A pressure analysis unit, used to analyze the risk level of the power battery module pressure according to the acquired pressure of each power battery module;

预警单元,用以根据动力电池模组压力风险等级的分析结果与温度异常等级的划分结果向用户进行动力电池热失控预警,预警单元与所述压力分析单元连接。The early warning unit is used to provide a power battery thermal runaway early warning to the user according to the analysis result of the power battery module pressure risk level and the classification result of the temperature abnormality level. The early warning unit is connected to the pressure analysis unit.

请参阅图4所示,其为本实施例预警模块的结构示意图,所述预警模块包括,Please refer to FIG4, which is a schematic diagram of the structure of the early warning module of this embodiment. The early warning module includes:

冷却管理单元,用以根据监测周期内动力电池的热失控预警结果与动力电池的内阻对下一监测周期冷却液的流速进行管理;A cooling management unit is used to manage the flow rate of the coolant in the next monitoring cycle according to the thermal runaway warning result of the power battery in the monitoring cycle and the internal resistance of the power battery;

第一优化单元,用以根据动力电池的能量密度对冷却液流速的管理过程进行一次优化,第一优化单元与所述冷却管理单元连接;A first optimization unit, used for optimizing the management process of the coolant flow rate according to the energy density of the power battery, the first optimization unit being connected to the cooling management unit;

第二优化单元,用以根据动力电池的充放电次数对冷却液流速的管理过程进行二次优化,第二优化单元与所述第一优化单元连接。The second optimization unit is used to perform secondary optimization on the management process of the coolant flow rate according to the number of charge and discharge times of the power battery, and the second optimization unit is connected to the first optimization unit.

具体而言,本实施例所述智能动力电池热失控预警系统应用于新能源汽车的动力电池热失控预警,通过对动力电池的运行状态与动力电池模组的温度进行分析,并根据分析结果与动力电池模组的压力向用户进行动力电池热失控预警,根据预警结果对冷却过程进行管理,本发明提高了动力电池的热失控预警效率与动力电池的安全性。Specifically, the intelligent power battery thermal runaway warning system described in this embodiment is applied to the power battery thermal runaway warning of new energy vehicles. It analyzes the operating status of the power battery and the temperature of the power battery module, and issues a power battery thermal runaway warning to the user based on the analysis results and the pressure of the power battery module. The cooling process is managed according to the warning results. The present invention improves the thermal runaway warning efficiency of the power battery and the safety of the power battery.

具体而言,所述功率分析单元将获取的动力电池的充电功率a0、放电功率b0分别与预设充电功率a1预设放电功率b1进行比对,并根据比对结果对动力电池充放电功率的异常性进行分析,其中:Specifically, the power analysis unit compares the acquired charging power a0 and discharging power b0 of the power battery with the preset charging power a1 and the preset discharging power b1, and analyzes the abnormality of the charging and discharging power of the power battery according to the comparison results, wherein:

当a0≤a1或b0≤b1时,所述功率分析单元判定动力电池的充放电功率正常;When a0≤a1 or b0≤b1, the power analysis unit determines that the charging and discharging power of the power battery is normal;

当a0>a1或b0>b1时,所述功率分析单元判定动力电池的充放电功率异常。When a0>a1 or b0>b1, the power analysis unit determines that the charging and discharging power of the power battery is abnormal.

具体而言,所述功率分析单元通过设置预设充电功率与预设放电功率以提高动力电池充放电功率异常性分析的准确性,进而提高了动力电池运行状态的准确性,从而提高了动力电池热失控预警的准确性,最终提高了动力电池的热失控预警效率与动力电池的安全性;本实施例中不对预设充电功率与预设放电功率的取值做具体限定,本领域技术人员可自由设置,只需满足预设充电功率与预设放电功率的取值要求即可,其中,a1的最佳取值为50kw,b1的最佳取值为100kw。Specifically, the power analysis unit improves the accuracy of the abnormal analysis of the power battery charging and discharging power by setting the preset charging power and the preset discharging power, thereby improving the accuracy of the power battery operating state, thereby improving the accuracy of the power battery thermal runaway warning, and ultimately improving the thermal runaway warning efficiency of the power battery and the safety of the power battery; in this embodiment, there is no specific limitation on the values of the preset charging power and the preset discharging power, and technical personnel in this field can set them freely as long as the value requirements of the preset charging power and the preset discharging power are met. Among them, the optimal value of a1 is 50kw, and the optimal value of b1 is 100kw.

具体而言,所述状态分析单元根据动力电池充放电功率的异常分析结果与动力电池的电流c0对动力电池运行状态的异常性进行分析,其中:Specifically, the state analysis unit analyzes the abnormality of the power battery operation state according to the abnormal analysis result of the power battery charge and discharge power and the current c0 of the power battery, wherein:

当动力电池的充放电功率正常时,若c0≤c1,所述状态分析单元判定动力电池的运行状态正常;若c0>c1,所述状态分析单元判定动力电池的运行状态异常;When the charge and discharge power of the power battery is normal, if c0≤c1, the state analysis unit determines that the operation state of the power battery is normal; if c0>c1, the state analysis unit determines that the operation state of the power battery is abnormal;

当动力电池的充放电功率异常且a0>a1时,若c0≤c1×[1-sin(a0-a1)×(π/2)/(a0+a1)],所述状态分析单元判定动力电池的运行状态正常;若c0>c1×[1-sin(a0-a1)×(π/2)/(a0+a1)],所述状态分析单元判定动力电池的运行状态异常;When the charge and discharge power of the power battery is abnormal and a0>a1, if c0≤c1×[1-sin(a0-a1)×(π/2)/(a0+a1)], the state analysis unit determines that the operation state of the power battery is normal; if c0>c1×[1-sin(a0-a1)×(π/2)/(a0+a1)], the state analysis unit determines that the operation state of the power battery is abnormal;

当动力电池的充放电功率异常且b0>b1时,若c0≤c1×[1-sin(b0-b1)×(π/2)/(b0+b1)],所述状态分析单元判定动力电池的运行状态正常;若c0>c1×[1-sin(b0-b1)×(π/2)/(b0+b1)],所述状态分析单元判定动力电池的运行状态异常;When the charge and discharge power of the power battery is abnormal and b0>b1, if c0≤c1×[1-sin(b0-b1)×(π/2)/(b0+b1)], the state analysis unit determines that the operation state of the power battery is normal; if c0>c1×[1-sin(b0-b1)×(π/2)/(b0+b1)], the state analysis unit determines that the operation state of the power battery is abnormal;

其中,c1为预设电流。Wherein, c1 is the preset current.

具体而言,所述状态分析单元通过设置预设电流以提高动力电池运行状态的准确性,从而提高了动力电池热失控预警的准确性,最终提高了动力电池的热失控预警效率与动力电池的安全性;本实施例中不对预设电流的取值做具体限定,本领域技术人员可自由设置,只需满足预设电流的取值要求即可,其中,c1的最佳取值为400A。Specifically, the state analysis unit improves the accuracy of the power battery operating state by setting a preset current, thereby improving the accuracy of the power battery thermal runaway warning, and ultimately improving the thermal runaway warning efficiency of the power battery and the safety of the power battery; in this embodiment, no specific limitation is made to the value of the preset current, and those skilled in the art can set it freely as long as the value requirement of the preset current is met, among which the optimal value of c1 is 400A.

具体而言,所述温度分析模块根据动力电池运行状态异常性的分析结果与获取的动力电池模组温度对动力电池模组的温度异常等级进行划分,其中:Specifically, the temperature analysis module classifies the temperature abnormality level of the power battery module according to the analysis result of the abnormality of the power battery operation state and the acquired power battery module temperature, wherein:

当动力电池的运行状态正常时,若f0i≤f1,所述温度分析模块判定编号为i的动力电池模组的温度正常;若f1<f0i<f2时,所述温度分析模块判定编号为i的动力电池模组的温度一级异常;若f0i>f2时,所述温度分析模块判定编号为i的动力电池模组的温度二级异常;When the operating state of the power battery is normal, if f0i≤f1, the temperature analysis module determines that the temperature of the power battery module numbered i is normal; if f1<f0i<f2, the temperature analysis module determines that the temperature of the power battery module numbered i is abnormal at the first level; if f0i>f2, the temperature analysis module determines that the temperature of the power battery module numbered i is abnormal at the second level;

当动力电池的运行状态异常时,若f0i≤f3,所述温度分析模块判定编号为i的动力电池模组的温度正常;若f3<f0i<f4时,所述温度分析模块判定编号为i的动力电池模组的温度一级异常;若f0i>f4时,所述温度分析模块判定编号为i的动力电池模组的温度二级异常;When the operating state of the power battery is abnormal, if f0i≤f3, the temperature analysis module determines that the temperature of the power battery module numbered i is normal; if f3<f0i<f4, the temperature analysis module determines that the temperature of the power battery module numbered i is abnormal at the first level; if f0i>f4, the temperature analysis module determines that the temperature of the power battery module numbered i is abnormal at the second level;

其中,f0i为编号为i的动力电池模组的温度,f1为第一预设温度阈值,f2为第二预设温度阈值,f3为第三预设温度阈值,f4为第四预设温度阈值,f3<f1<f4<f2。Among them, f0i is the temperature of the power battery module numbered i, f1 is the first preset temperature threshold, f2 is the second preset temperature threshold, f3 is the third preset temperature threshold, f4 is the fourth preset temperature threshold, and f3<f1<f4<f2.

具体而言,所述温度分析模块通过设置预设温度阈值以提高动力电池温度异常等级分析的准确性,从而提高了动力电池热失控预警的准确性,最终提高了动力电池的热失控预警效率与动力电池的安全性;本实施例中不对预设温度阈值的取值做具体限定,本领域技术人员可自由设置,只需满足预设温度阈值的取值要求即可,其中,当动力电池为锂离子电池时,f3的最佳取值为46℃,f1的最佳取值为50℃,f4的最佳取值为56℃,f2的最佳取值为60℃。Specifically, the temperature analysis module improves the accuracy of the power battery temperature anomaly level analysis by setting a preset temperature threshold, thereby improving the accuracy of the power battery thermal runaway warning, and ultimately improving the thermal runaway warning efficiency of the power battery and the safety of the power battery; in this embodiment, no specific limitation is made to the value of the preset temperature threshold, and those skilled in the art can set it freely, as long as the value requirement of the preset temperature threshold is met. Among them, when the power battery is a lithium-ion battery, the optimal value of f3 is 46°C, the optimal value of f1 is 50°C, the optimal value of f4 is 56°C, and the optimal value of f2 is 60°C.

具体而言,所述压力分析单元将各动力电池模组压力与各预设压力进行比对,并根据比对结果对动力电池模组压力的风险等级进行分析,其中:Specifically, the pressure analysis unit compares the pressure of each power battery module with each preset pressure, and analyzes the risk level of the power battery module pressure according to the comparison result, wherein:

当p0i≤p1时,所述压力分析单元判定编号为i的动力电池模组的压力正常;When p0i≤p1, the pressure analysis unit determines that the pressure of the power battery module numbered i is normal;

当p1<p0i<p2时,所述压力分析单元判定编号为i的动力电池模组的压力风险等级为低风险;When p1<p0i<p2, the pressure analysis unit determines that the pressure risk level of the power battery module numbered i is low risk;

当p0i≥p2时,所述压力分析单元判定编号为i的动力电池模组的压力风险等级为高风险;When p0i≥p2, the pressure analysis unit determines that the pressure risk level of the power battery module numbered i is high risk;

其中,p0i为编号为i的动力电池模组的压力,p1第一预设压力,p2为第二预设压力,p1<p2。Among them, p0i is the pressure of the power battery module numbered i, p1 is the first preset pressure, p2 is the second preset pressure, and p1<p2.

具体而言,所述压力分析单元通过设置预设压力以提高动力电池压力风险等级分析的准确性,从而提高了动力电池热失控预警的准确性,最终提高了动力电池的热失控预警效率与动力电池的安全性;本实施例中不对预设压力的取值做具体限定,本领域技术人员可自由设置,只需满足预设压力的取值要求即可,其中,p1的最佳取值为1.45×105pa,p2的最佳取值为1.5×105pa。Specifically, the pressure analysis unit improves the accuracy of the power battery pressure risk level analysis by setting a preset pressure, thereby improving the accuracy of the power battery thermal runaway warning, and ultimately improving the thermal runaway warning efficiency of the power battery and the safety of the power battery; in this embodiment, no specific limitation is made to the value of the preset pressure, and those skilled in the art can set it freely as long as the value requirement of the preset pressure is met, wherein the optimal value of p1 is 1.45×105 Pa, and the optimal value of p2 is 1.5×105 Pa.

具体而言,所述预警单元根据动力电池模组压力风险等级的分析结果与温度异常等级的划分结果向用户进行动力电池热失控预警,其中:Specifically, the warning unit provides a power battery thermal runaway warning to the user based on the analysis results of the power battery module pressure risk level and the classification results of the temperature abnormality level, wherein:

当s1>0或s2>0时,所述预警单元判定动力电池的热失控风险为高风险,并向用户进行动力电池热失控高风险预警;When s1>0 or s2>0, the warning unit determines that the thermal runaway risk of the power battery is high risk, and issues a high risk warning of thermal runaway of the power battery to the user;

当s1=0且s2=0时,若w1×s3/i0+w2×s4/i0≤m1,所述预警单元判定动力电池的热失控风险为低风险,不向用户进行预警,若m1<w1×s3/i0+w2×s4/i0<m2,所述预警单元判定动力电池的热失控风险为中风险,并向用户进行动力电池热失控中风险预警,若w1×s3/i0+w2×s4/i0≥m2,所述预警单元判定动力电池的热失控风险为高风险,并向用户进行动力电池热失控高风险预警;When s1=0 and s2=0, if w1×s3/i0+w2×s4/i0≤m1, the early warning unit determines that the thermal runaway risk of the power battery is low risk, and does not issue an early warning to the user; if m1<w1×s3/i0+w2×s4/i0<m2, the early warning unit determines that the thermal runaway risk of the power battery is medium risk, and issues an early warning of medium risk of thermal runaway of the power battery to the user; if w1×s3/i0+w2×s4/i0≥m2, the early warning unit determines that the thermal runaway risk of the power battery is high risk, and issues an early warning of high risk of thermal runaway of the power battery to the user;

其中,s1为温度二级异常的动力电池模组的数量,s2为高风险压力等级的动力电池模组的数量,s3为温度一级异常的动力电池模组的数量,s4为低风险压力等级的动力电池模组的数量,i0为动力电池包中动力电池模组的数量,w1为预设温度权重,w2为预设压力权重,w1+w2=1且w1<w2,m1为第一预设异常系数,m2为第二预设异常系数,m1<m2。Among them, s1 is the number of power battery modules with level 2 temperature abnormalities, s2 is the number of power battery modules with high-risk pressure levels, s3 is the number of power battery modules with level 1 temperature abnormalities, s4 is the number of power battery modules with low-risk pressure levels, i0 is the number of power battery modules in the power battery pack, w1 is the preset temperature weight, w2 is the preset pressure weight, w1+w2=1 and w1<w2, m1 is the first preset abnormality coefficient, m2 is the second preset abnormality coefficient, m1<m2.

具体而言,所述预警单元通过设置各预设权重与各预设异常系数以提高动力电池热失控预警的准确性,进而提高冷却液流速管理的准确性,最终提高了动力电池的热失控预警效率与动力电池的安全性;本实施例中不对各预设权重与各预设异常系数的取值做具体限定,本领域技术人员可自由设置,只需满足各预设权重与各预设异常系数的取值要求即可,其中,w1的最佳取值为0.45,w2的最佳取值为0.55,m1的最佳取值为0.23,m2的最佳取值为0.45。Specifically, the warning unit improves the accuracy of thermal runaway warning of the power battery by setting preset weights and preset abnormal coefficients, thereby improving the accuracy of coolant flow rate management, and ultimately improving the thermal runaway warning efficiency of the power battery and the safety of the power battery; in this embodiment, no specific limitation is made on the values of the preset weights and the preset abnormal coefficients, and those skilled in the art can set them freely as long as the value requirements of the preset weights and the preset abnormal coefficients are met, among which the optimal value of w1 is 0.45, the optimal value of w2 is 0.55, the optimal value of m1 is 0.23, and the optimal value of m2 is 0.45.

具体而言,所述冷却管理单元根据监测周期内动力电池的热失控预警结果与动力电池的内阻n0对下一监测周期冷却液的流速进行管理,其中:Specifically, the cooling management unit manages the flow rate of the coolant in the next monitoring period according to the thermal runaway warning result of the power battery in the monitoring period and the internal resistance n0 of the power battery, wherein:

当n0≤n1时,若α×z1+z2≤z0,所述冷却管理单元将下一监测周期冷却液的流速设为U1,设定U1=u0;若α×z1+z2>z0,所述冷却管理单元将下一监测周期冷却液的流速设为U2,设定U2=u0×{1+(π/2)×arctan[sin(α×z1+z2-z0)/(α×z1+z2+z0)]};When n0≤n1, if α×z1+z2≤z0, the cooling management unit sets the flow rate of the coolant in the next monitoring cycle to U1, and sets U1=u0; if α×z1+z2>z0, the cooling management unit sets the flow rate of the coolant in the next monitoring cycle to U2, and sets U2=u0×{1+(π/2)×arctan[sin(α×z1+z2-z0)/(α×z1+z2+z0)]};

当n0>n1时,若α×z1+z2≤z0×[1-β×(n0-n1)/(n1+n0)],所述冷却管理单元将下一监测周期冷却液的流速设为U3,设定U3=u0;若α×z1+z2>z0×[1-β×(n0-n1)/(n1+n0)],所述冷却管理单元将下一监测周期冷却液的流速设为U4,设定U4=u0×{1+(π/2)×arctan{sin{α×z1+z2-z0×[1-β×(n0-n1)/(n1+n0)]}/{α×z1+z2+z0×[1-β×(n0-n1)/(n1+n0)]}};When n0>n1, if α×z1+z2≤z0×[1-β×(n0-n1)/(n1+n0)], the cooling management unit sets the flow rate of the coolant in the next monitoring cycle to U3, and sets U3=u0; if α×z1+z2>z0×[1-β×(n0-n1)/(n1+n0)], the cooling management unit sets the flow rate of the coolant in the next monitoring cycle to U4, and sets U4=u0×{1+(π/2)×arctan{sin{α×z1+z2-z0×[1-β×(n0-n1)/(n1+n0)]}/{α×z1+z2+z0×[1-β×(n0-n1)/(n1+n0)]}};

其中,当Uu≥u1时,Uu的取值为u1,Uu为冷却液流速的分析结果,u=1,2,3,4;u1为冷却液流速阈值,n1为预设内阻,α为预设调整系数,z1为监测周期内动力电池热失控中风险预警的次数,z2为监测周期内动力电池热失控高风险预警的次数,z0为预设预警阈值,u0为预设冷却液流速,β为调节系数。Among them, when Uu≥u1, the value of Uu is u1, Uu is the analysis result of the coolant flow rate, u=1,2,3,4; u1 is the coolant flow rate threshold, n1 is the preset internal resistance, α is the preset adjustment coefficient, z1 is the number of medium risk warnings of power battery thermal runaway during the monitoring period, z2 is the number of high risk warnings of power battery thermal runaway during the monitoring period, z0 is the preset warning threshold, u0 is the preset coolant flow rate, and β is the adjustment coefficient.

具体而言,所述冷却管理单元通过设置预设冷却液流速、调节系数与预设内阻以提高冷却液流速管理的准确性,从而提高了动力电池的热失控预警效率与动力电池的安全性;本实施例中不对预设冷却液流速、调节系数与预设内阻的取值做具体限定,本领域技术人员可自由设置,只需满足预设冷却液流速、调节系数与预设内阻的取值要求即可,其中,当监测周期为30天时,u1的最佳取值为15L/min,u2的最佳取值为8L/min,α的最佳取值为0.25,β的最佳取值为0.56,n1的最佳取值为100毫欧,z0的最佳取值为5。Specifically, the cooling management unit improves the accuracy of coolant flow rate management by setting a preset coolant flow rate, an adjustment coefficient and a preset internal resistance, thereby improving the thermal runaway warning efficiency of the power battery and the safety of the power battery; in this embodiment, there is no specific limitation on the values of the preset coolant flow rate, the adjustment coefficient and the preset internal resistance, and those skilled in the art can set them freely, as long as the value requirements of the preset coolant flow rate, the adjustment coefficient and the preset internal resistance are met. Among them, when the monitoring period is 30 days, the optimal value of u1 is 15L/min, the optimal value of u2 is 8L/min, the optimal value of α is 0.25, the optimal value of β is 0.56, the optimal value of n1 is 100 milliohms, and the optimal value of z0 is 5.

具体而言,所述第一优化单元将动力电池的能量密度k0与预设密度k1进行比对,并根据比对结果对冷却液流速的管理过程进行一次优化,其中:Specifically, the first optimization unit compares the energy density k0 of the power battery with the preset density k1, and optimizes the coolant flow rate management process according to the comparison result, wherein:

当k0≤k1时,所述第一优化单元判定动力电池的能量密度正常,不进行优化;When k0≤k1, the first optimization unit determines that the energy density of the power battery is normal and does not perform optimization;

当k0>k1时,所述第一优化单元判定电池的能量密度异常,并对冷却液流速的管理过程进行一次优化,将优化后的预设冷却液流速设为u0’,设定:When k0>k1, the first optimization unit determines that the energy density of the battery is abnormal, and optimizes the management process of the coolant flow rate, and sets the optimized preset coolant flow rate to u0', setting:

u0’=u0×{1+{exp{sin(k0-k1)×(π/2)/(k0+k1)}-1}/2}。u0’=u0×{1+{exp{sin(k0-k1)×(π/2)/(k0+k1)}-1}/2}.

具体而言,所述第一优化单元通过设置预设密度以减少能量密度过大对冷却液流速管理的影响,进而提高冷却液流速管理的准确性,从而提高了动力电池的热失控预警效率与动力电池的安全性;本实施例中不对预设密度的取值做具体限定,本领域技术人员可自由设置,只需满足预设密度的取值要求即可,其中,当动力电池为锂离子电池时,k1的最佳取值为300 Wh/kg。Specifically, the first optimization unit reduces the influence of excessive energy density on coolant flow rate management by setting a preset density, thereby improving the accuracy of coolant flow rate management, thereby improving the thermal runaway warning efficiency of the power battery and the safety of the power battery; in this embodiment, no specific limitation is made to the value of the preset density, and those skilled in the art can set it freely, as long as the value requirement of the preset density is met. Among them, when the power battery is a lithium-ion battery, the optimal value of k1 is 300 Wh/kg.

具体而言,所述第二优化单元将动力电池的充放电次数r0与预设次数r1进行比对,并根据比对结果对冷却液流速的管理过程进行二次优化,其中:Specifically, the second optimization unit compares the charge and discharge times r0 of the power battery with the preset times r1, and performs secondary optimization on the management process of the coolant flow rate according to the comparison result, wherein:

当r0≤r1时,所述第二优化单元判定动力电池的充放电次数正常,不进行优化;When r0≤r1, the second optimization unit determines that the number of charge and discharge times of the power battery is normal and does not perform optimization;

当r0>r1时,所述第二优化单元判定动力电池的充放电次数异常,并对冷却液流速的管理过程进行二次优化,将优化后的预设能量密度设为k1’,设定k1’={1-ln[(r0-r1)/(r0+r1)+1]}。When r0>r1, the second optimization unit determines that the charge and discharge times of the power battery are abnormal, and performs secondary optimization on the management process of the coolant flow rate, and sets the optimized preset energy density to k1', setting k1'={1-ln[(r0-r1)/(r0+r1)+1]}.

具体而言,所述第二优化单元通过设置预设次数以减少动力电池充放电次数过多对冷却液流速管理的影响,进而提高冷却液流速管理的准确性,从而提高了动力电池的热失控预警效率与动力电池的安全性;本实施例中不对预设次数的取值做具体限定,本领域技术人员可自由设置,只需满足预设次数的取值要求即可,其中,当动力电池为锂离子电池时,r1的最佳取值为1000次。Specifically, the second optimization unit reduces the impact of excessive charge and discharge times of the power battery on the coolant flow rate management by setting a preset number of times, thereby improving the accuracy of the coolant flow rate management, thereby improving the thermal runaway warning efficiency of the power battery and the safety of the power battery; in this embodiment, no specific limitation is made to the value of the preset number of times, and those skilled in the art can set it freely, as long as the value requirement of the preset number of times is met. Among them, when the power battery is a lithium-ion battery, the optimal value of r1 is 1000 times.

具体而言,所述预警迭代模块将管理周期内获取的动力电池容量y0对下一管理周期动力电池的热失控预警过程进行迭代,其中:Specifically, the warning iteration module iterates the thermal runaway warning process of the power battery in the next management cycle using the power battery capacity y0 obtained in the management cycle, wherein:

当(y1-y0)/y1≤Y时,所述预警迭代模块判定当前管理周期动力电池的容量衰减正常,不进行迭代;When (y1-y0)/y1≤Y, the early warning iteration module determines that the capacity decay of the power battery in the current management cycle is normal and does not perform iteration;

当(y1-y0)/y1>Y时,所述预警迭代模块判定当前管理周期动力电池的容量衰减异常,并对下一管理周期动力电池的热失控预警过程进行迭代,所述预警迭代模块将迭代后的第一预设异常系数设为m1’,设定:m1’=m1×{1-γ×[(y1-y0)/y1-Y]/[(y1-y0)/y1+Y]},将迭代后的第二预设异常系数设为m2’,设定m2’=m2×{1-γ×[(y1-y0)/y1-Y]/[(y1-y0)/y1+Y]};When (y1-y0)/y1>Y, the early warning iteration module determines that the capacity attenuation of the power battery in the current management cycle is abnormal, and iterates the thermal runaway early warning process of the power battery in the next management cycle. The early warning iteration module sets the first preset abnormal coefficient after iteration to m1', setting: m1'=m1×{1-γ×[(y1-y0)/y1-Y]/[(y1-y0)/y1+Y]}, sets the second preset abnormal coefficient after iteration to m2', setting m2'=m2×{1-γ×[(y1-y0)/y1-Y]/[(y1-y0)/y1+Y]};

其中,y1为与当前管理周期相邻的上一管理周期的动力电池容量,Y为预设衰减比例,γ为更新系数。Among them, y1 is the power battery capacity of the previous management cycle adjacent to the current management cycle, Y is the preset attenuation ratio, and γ is the update coefficient.

具体而言,所述预警迭代模块通过设置预设衰减比例与预设更新系数以提高动力电池热失控预警的准确性,进而提高冷却液流速管理的准确性,最终提高了动力电池的热失控预警效率与动力电池的安全性;本实施例中不对预设衰减比例与预设更新系数的取值做具体限定,本领域技术人员可自由设置,只需满足预设衰减比例与预设更新系数的取值要求即可,其中,当管理周期为180天时,Y的最佳取值为0.02,γ的最佳取值为0.68。Specifically, the early warning iteration module improves the accuracy of the thermal runaway early warning of the power battery by setting a preset attenuation ratio and a preset update coefficient, thereby improving the accuracy of the coolant flow rate management, and ultimately improving the thermal runaway early warning efficiency of the power battery and the safety of the power battery; in this embodiment, no specific limitation is made to the values of the preset attenuation ratio and the preset update coefficient, and those skilled in the art can set them freely, as long as the value requirements of the preset attenuation ratio and the preset update coefficient are met. Among them, when the management period is 180 days, the optimal value of Y is 0.02, and the optimal value of γ is 0.68.

至此,已经结合附图所示的优选实施方式描述了本发明的技术方案,但是,本领域技术人员容易理解的是,本发明的保护范围显然不局限于这些具体实施方式。在不偏离本发明的原理的前提下,本领域技术人员可以对相关技术特征做出等同的更改或替换,这些更改或替换之后的技术方案都将落入本发明的保护范围之内。So far, the technical solutions of the present invention have been described in conjunction with the preferred embodiments shown in the accompanying drawings. However, it is easy for those skilled in the art to understand that the protection scope of the present invention is obviously not limited to these specific embodiments. Without departing from the principle of the present invention, those skilled in the art can make equivalent changes or substitutions to the relevant technical features, and the technical solutions after these changes or substitutions will fall within the protection scope of the present invention.

Claims (10)

Translated fromChinese
1.一种智能动力电池热失控预警系统,其特征在于,包括,1. An intelligent power battery thermal runaway warning system, characterized in that it includes:信息获取模块,用以获取动力电池运行数据、压力数据和动力电池参数;An information acquisition module is used to obtain power battery operation data, pressure data and power battery parameters;异常分析模块,用以根据获取的动力电池的充电功率、动力电池放电功率和动力电池电流对动力电池运行状态的异常性进行分析;An abnormality analysis module, used to analyze the abnormality of the power battery operation state according to the acquired power battery charging power, power battery discharging power and power battery current;温度分析模块,用以根据动力电池运行状态异常性的分析结果与动力电池模组温度对动力电池模组温度的异常性进行分析;A temperature analysis module, used to analyze the abnormality of the power battery module temperature according to the analysis result of the abnormality of the power battery operation state and the power battery module temperature;预警模块,用以根据动力电池模组温度异常性的分析结果与动力电池模组压力向用户进行动力电池热失控预警;The early warning module is used to warn users of thermal runaway of the power battery based on the analysis results of the power battery module temperature anomaly and the power battery module pressure;冷却管理模块,用以根据监测周期内动力电池的热失控预警结果与动力电池内阻对下一监测周期冷却液的流速进行管理,还用以根据动力电池的能量密度对管理过程进行一次优化,还用以根据动力电池的充放电次数对管理过程进行二次优化;A cooling management module is used to manage the flow rate of the coolant in the next monitoring cycle according to the thermal runaway warning result of the power battery and the internal resistance of the power battery during the monitoring cycle, and to optimize the management process once according to the energy density of the power battery, and to optimize the management process twice according to the number of charge and discharge times of the power battery;预警迭代模块,用以根据获取的管理周期内的动力电池容量对下一管理周期动力电池的热失控预警过程进行迭代。The early warning iteration module is used to iterate the thermal runaway early warning process of the power battery in the next management cycle according to the power battery capacity acquired in the management cycle.2.根据权利要求1所述的智能动力电池热失控预警系统,其特征在于,所述异常分析模块设有功率分析单元,所述功率分析单元用以将获取的动力电池的充电功率a0、放电功率b0分别与预设充电功率a1预设放电功率b1进行比对,并根据比对结果对动力电池充放电功率的异常性进行分析,其中:2. The intelligent power battery thermal runaway warning system according to claim 1 is characterized in that the abnormal analysis module is provided with a power analysis unit, and the power analysis unit is used to compare the acquired charging power a0 and discharging power b0 of the power battery with the preset charging power a1 and the preset discharging power b1, and analyze the abnormality of the power battery charging and discharging power according to the comparison results, wherein:当a0≤a1或b0≤b1时,所述功率分析单元判定动力电池的充放电功率正常;When a0≤a1 or b0≤b1, the power analysis unit determines that the charging and discharging power of the power battery is normal;当a0>a1或b0>b1时,所述功率分析单元判定动力电池的充放电功率异常。When a0>a1 or b0>b1, the power analysis unit determines that the charging and discharging power of the power battery is abnormal.3.根据权利要求2所述的智能动力电池热失控预警系统,其特征在于,所述异常分析模块设有状态分析单元,所述状态分析单元用以根据动力电池充放电功率的异常分析结果与动力电池的电流c0对动力电池运行状态的异常性进行分析,其中:3. The intelligent power battery thermal runaway warning system according to claim 2, characterized in that the abnormal analysis module is provided with a state analysis unit, and the state analysis unit is used to analyze the abnormality of the power battery operation state according to the abnormal analysis result of the power battery charging and discharging power and the current c0 of the power battery, wherein:当动力电池的充放电功率正常时,若c0≤c1,所述状态分析单元判定动力电池的运行状态正常;若c0>c1,所述状态分析单元判定动力电池的运行状态异常;When the charge and discharge power of the power battery is normal, if c0≤c1, the state analysis unit determines that the operation state of the power battery is normal; if c0>c1, the state analysis unit determines that the operation state of the power battery is abnormal;当动力电池的充放电功率异常且a0>a1时,若c0≤c1×[1-sin(a0-a1)×(π/2)/(a0+a1)],所述状态分析单元判定动力电池的运行状态正常;若c0>c1×[1-sin(a0-a1)×(π/2)/(a0+a1)],所述状态分析单元判定动力电池的运行状态异常;When the charge and discharge power of the power battery is abnormal and a0>a1, if c0≤c1×[1-sin(a0-a1)×(π/2)/(a0+a1)], the state analysis unit determines that the operation state of the power battery is normal; if c0>c1×[1-sin(a0-a1)×(π/2)/(a0+a1)], the state analysis unit determines that the operation state of the power battery is abnormal;当动力电池的充放电功率异常且b0>b1时,若c0≤c1×[1-sin(b0-b1)×(π/2)/(b0+b1)],所述状态分析单元判定动力电池的运行状态正常;若c0>c1×[1-sin(b0-b1)×(π/2)/(b0+b1)],所述状态分析单元判定动力电池的运行状态异常。When the charging and discharging power of the power battery is abnormal and b0>b1, if c0≤c1×[1-sin(b0-b1)×(π/2)/(b0+b1)], the state analysis unit determines that the operating state of the power battery is normal; if c0>c1×[1-sin(b0-b1)×(π/2)/(b0+b1)], the state analysis unit determines that the operating state of the power battery is abnormal.4.根据权利要求3所述的智能动力电池热失控预警系统,其特征在于,所述温度分析模块根据动力电池运行状态异常性的分析结果与获取的动力电池模组温度对动力电池模组的温度异常等级进行划分,其中:4. The intelligent power battery thermal runaway warning system according to claim 3 is characterized in that the temperature analysis module divides the temperature abnormality level of the power battery module according to the analysis result of the abnormality of the power battery operation state and the acquired power battery module temperature, wherein:当动力电池的运行状态正常时,若f0i≤f1,所述温度分析模块判定编号为i的动力电池模组的温度正常;若f1<f0i<f2时,所述温度分析模块判定编号为i的动力电池模组的温度一级异常;若f0i>f2时,所述温度分析模块判定编号为i的动力电池模组的温度二级异常;When the operating state of the power battery is normal, if f0i≤f1, the temperature analysis module determines that the temperature of the power battery module numbered i is normal; if f1<f0i<f2, the temperature analysis module determines that the temperature of the power battery module numbered i is abnormal at the first level; if f0i>f2, the temperature analysis module determines that the temperature of the power battery module numbered i is abnormal at the second level;当动力电池的运行状态异常时,若f0i≤f3,所述温度分析模块判定编号为i的动力电池模组的温度正常;若f3<f0i<f4时,所述温度分析模块判定编号为i的动力电池模组的温度一级异常;若f0i>f4时,所述温度分析模块判定编号为i的动力电池模组的温度二级异常;When the operating state of the power battery is abnormal, if f0i≤f3, the temperature analysis module determines that the temperature of the power battery module numbered i is normal; if f3<f0i<f4, the temperature analysis module determines that the temperature of the power battery module numbered i is abnormal at the first level; if f0i>f4, the temperature analysis module determines that the temperature of the power battery module numbered i is abnormal at the second level;其中,f0i为编号为i的动力电池模组的温度,f1为第一预设温度阈值,f2为第二预设温度阈值,f3为第三预设温度阈值,f4为第四预设温度阈值,f3<f1<f4<f2。Among them, f0i is the temperature of the power battery module numbered i, f1 is the first preset temperature threshold, f2 is the second preset temperature threshold, f3 is the third preset temperature threshold, f4 is the fourth preset temperature threshold, and f3<f1<f4<f2.5.根据权利要求4所述的智能动力电池热失控预警系统,其特征在于,所述预警模块设有压力分析单元,所述压力分析单元用以将各动力电池模组压力与各预设压力进行比对,并根据比对结果对动力电池模组压力的风险等级进行分析,其中:5. The intelligent power battery thermal runaway warning system according to claim 4, characterized in that the warning module is provided with a pressure analysis unit, the pressure analysis unit is used to compare the pressure of each power battery module with each preset pressure, and analyze the risk level of the power battery module pressure according to the comparison result, wherein:当p0i≤p1时,所述压力分析单元判定编号为i的动力电池模组的压力正常;When p0i≤p1, the pressure analysis unit determines that the pressure of the power battery module numbered i is normal;当p1<p0i<p2时,所述压力分析单元判定编号为i的动力电池模组的压力风险等级为低风险;When p1<p0i<p2, the pressure analysis unit determines that the pressure risk level of the power battery module numbered i is low risk;当p0i≥p2时,所述压力分析单元判定编号为i的动力电池模组的压力风险等级为高风险;When p0i≥p2, the pressure analysis unit determines that the pressure risk level of the power battery module numbered i is high risk;其中,p0i为编号为i的动力电池模组的压力,p1第一预设压力,p2为第二预设压力。Among them, p0i is the pressure of the power battery module numbered i, p1 is the first preset pressure, and p2 is the second preset pressure.6.根据权利要求5所述的智能动力电池热失控预警系统,其特征在于,所述预警模块设有预警单元,所述预警单元根据动力电池模组压力风险等级的分析结果与温度异常等级的划分结果向用户进行动力电池热失控预警,其中:6. The intelligent power battery thermal runaway warning system according to claim 5, characterized in that the warning module is provided with a warning unit, and the warning unit provides a power battery thermal runaway warning to the user according to the analysis result of the power battery module pressure risk level and the classification result of the temperature abnormality level, wherein:当s1>0或s2>0时,所述预警单元判定动力电池的热失控风险为高风险,并向用户进行动力电池热失控高风险预警;When s1>0 or s2>0, the warning unit determines that the thermal runaway risk of the power battery is high risk, and issues a high risk warning of thermal runaway of the power battery to the user;当s1=0且s2=0时,若w1×s3/i0+w2×s4/i0≤m1,所述预警单元判定动力电池的热失控风险为低风险,不向用户进行预警,若m1<w1×s3/i0+w2×s4/i0<m2,所述预警单元判定动力电池的热失控风险为中风险,并向用户进行动力电池热失控中风险预警,若w1×s3/i0+w2×s4/i0≥m2,所述预警单元判定动力电池的热失控风险为高风险,并向用户进行动力电池热失控高风险预警;When s1=0 and s2=0, if w1×s3/i0+w2×s4/i0≤m1, the early warning unit determines that the thermal runaway risk of the power battery is low risk, and does not issue an early warning to the user; if m1<w1×s3/i0+w2×s4/i0<m2, the early warning unit determines that the thermal runaway risk of the power battery is medium risk, and issues an early warning of medium risk of thermal runaway of the power battery to the user; if w1×s3/i0+w2×s4/i0≥m2, the early warning unit determines that the thermal runaway risk of the power battery is high risk, and issues an early warning of high risk of thermal runaway of the power battery to the user;其中,s1为温度二级异常的动力电池模组的数量,s2为高风险压力等级的动力电池模组的数量,s3为温度一级异常的动力电池模组的数量,s4为低风险压力等级的动力电池模组的数量,i0为动力电池包中动力电池模组的数量,w1为预设温度权重,w2为预设压力权重,w1+w2=1且w1<w2,m1为第一预设异常系数,m2为第二预设异常系数。Among them, s1 is the number of power battery modules with level 2 temperature abnormalities, s2 is the number of power battery modules with high-risk pressure levels, s3 is the number of power battery modules with level 1 temperature abnormalities, s4 is the number of power battery modules with low-risk pressure levels, i0 is the number of power battery modules in the power battery pack, w1 is the preset temperature weight, w2 is the preset pressure weight, w1+w2=1 and w1<w2, m1 is the first preset abnormality coefficient, and m2 is the second preset abnormality coefficient.7.根据权利要求6所述的智能动力电池热失控预警系统,其特征在于,所述冷却管理模块设有冷却管理单元,所述冷却管理单元用以根据监测周期内动力电池的热失控预警结果与动力电池的内阻n0对下一监测周期冷却液的流速进行管理,其中:7. The intelligent power battery thermal runaway warning system according to claim 6, characterized in that the cooling management module is provided with a cooling management unit, and the cooling management unit is used to manage the flow rate of the coolant in the next monitoring cycle according to the thermal runaway warning result of the power battery in the monitoring cycle and the internal resistance n0 of the power battery, wherein:当n0≤n1时,若α×z1+z2≤z0,所述冷却管理单元将下一监测周期冷却液的流速设为U1,设定U1=u0;若α×z1+z2>z0,所述冷却管理单元将下一监测周期冷却液的流速设为U2,设定U2=u0×{1+(π/2)×arctan[sin(α×z1+z2-z0)/(α×z1+z2+z0)]};When n0≤n1, if α×z1+z2≤z0, the cooling management unit sets the flow rate of the coolant in the next monitoring cycle to U1, and sets U1=u0; if α×z1+z2>z0, the cooling management unit sets the flow rate of the coolant in the next monitoring cycle to U2, and sets U2=u0×{1+(π/2)×arctan[sin(α×z1+z2-z0)/(α×z1+z2+z0)]};当n0>n1时,若α×z1+z2≤z0×[1-β×(n0-n1)/(n1+n0)],所述冷却管理单元将下一监测周期冷却液的流速设为U3,设定U3=u0;若α×z1+z2>z0×[1-β×(n0-n1)/(n1+n0)],所述冷却管理单元将下一监测周期冷却液的流速设为U4,设定U4=u0×{1+(π/2)×arctan{sin{α×z1+z2-z0×[1-β×(n0-n1)/(n1+n0)]}/{α×z1+z2+z0×[1-β×(n0-n1)/(n1+n0)]}};When n0>n1, if α×z1+z2≤z0×[1-β×(n0-n1)/(n1+n0)], the cooling management unit sets the flow rate of the coolant in the next monitoring cycle to U3, and sets U3=u0; if α×z1+z2>z0×[1-β×(n0-n1)/(n1+n0)], the cooling management unit sets the flow rate of the coolant in the next monitoring cycle to U4, and sets U4=u0×{1+(π/2)×arctan{sin{α×z1+z2-z0×[1-β×(n0-n1)/(n1+n0)]}/{α×z1+z2+z0×[1-β×(n0-n1)/(n1+n0)]}};其中,当Uu≥u1时,Uu的取值为u1,Uu为冷却液流速的分析结果,u=1,2,3,4;u1为冷却液流速阈值,n1为预设内阻,α为预设调整系数,z1为监测周期内动力电池热失控中风险预警的次数,z2为监测周期内动力电池热失控高风险预警的次数,z0为预设预警阈值,u0为预设冷却液流速,β为调节系数。Among them, when Uu≥u1, the value of Uu is u1, Uu is the analysis result of the coolant flow rate, u=1,2,3,4; u1 is the coolant flow rate threshold, n1 is the preset internal resistance, α is the preset adjustment coefficient, z1 is the number of medium risk warnings of power battery thermal runaway during the monitoring period, z2 is the number of high risk warnings of power battery thermal runaway during the monitoring period, z0 is the preset warning threshold, u0 is the preset coolant flow rate, and β is the adjustment coefficient.8.根据权利要求7所述的智能动力电池热失控预警系统,其特征在于,所述冷却管理模块设有第一优化单元,所述第一优化单元用以将动力电池的能量密度k0与预设密度k1进行比对,并根据比对结果对冷却液流速的管理过程进行一次优化,其中:8. The intelligent power battery thermal runaway warning system according to claim 7, characterized in that the cooling management module is provided with a first optimization unit, the first optimization unit is used to compare the energy density k0 of the power battery with the preset density k1, and optimize the management process of the coolant flow rate according to the comparison result, wherein:当k0≤k1时,所述第一优化单元判定动力电池的能量密度正常,不进行优化;When k0≤k1, the first optimization unit determines that the energy density of the power battery is normal and does not perform optimization;当k0>k1时,所述第一优化单元判定电池的能量密度异常,并对冷却液流速的管理过程进行一次优化,将优化后的预设冷却液流速设为u0’,设定:When k0>k1, the first optimization unit determines that the energy density of the battery is abnormal, and optimizes the management process of the coolant flow rate, and sets the optimized preset coolant flow rate to u0', setting:u0’=u0×{1+{exp{sin(k0-k1)×(π/2)/(k0+k1)}-1}/2}。u0’=u0×{1+{exp{sin(k0-k1)×(π/2)/(k0+k1)}-1}/2}.9.根据权利要求8所述的智能动力电池热失控预警系统,其特征在于,所述冷却管理模块设有第二优化单元,所述第二优化单元用以将动力电池的充放电次数r0与预设次数r1进行比对,并根据比对结果对冷却液流速的管理过程进行二次优化,其中:9. The intelligent power battery thermal runaway warning system according to claim 8, characterized in that the cooling management module is provided with a second optimization unit, the second optimization unit is used to compare the charge and discharge times r0 of the power battery with the preset times r1, and perform secondary optimization on the management process of the coolant flow rate according to the comparison result, wherein:当r0≤r1时,所述第二优化单元判定动力电池的充放电次数正常,不进行优化;When r0≤r1, the second optimization unit determines that the number of charge and discharge times of the power battery is normal and does not perform optimization;当r0>r1时,所述第二优化单元判定动力电池的充放电次数异常,并对冷却液流速的管理过程进行二次优化,将优化后的预设能量密度设为k1’,设定k1’={1-ln[(r0-r1)/(r0+r1)+1]}。When r0>r1, the second optimization unit determines that the charge and discharge times of the power battery are abnormal, and performs secondary optimization on the management process of the coolant flow rate, and sets the optimized preset energy density to k1', setting k1'={1-ln[(r0-r1)/(r0+r1)+1]}.10.根据权利要求6所述的智能动力电池热失控预警系统,其特征在于,所述预警迭代模块将管理周期内获取的动力电池容量y0对下一管理周期动力电池的热失控预警过程进行迭代,其中:10. The intelligent power battery thermal runaway warning system according to claim 6, characterized in that the warning iteration module iterates the thermal runaway warning process of the power battery in the next management cycle using the power battery capacity y0 obtained in the management cycle, wherein:当(y1-y0)/y1≤Y时,所述预警迭代模块判定当前管理周期动力电池的容量衰减正常,不进行迭代;When (y1-y0)/y1≤Y, the early warning iteration module determines that the capacity decay of the power battery in the current management cycle is normal and does not perform iteration;当(y1-y0)/y1>Y时,所述预警迭代模块判定当前管理周期动力电池的容量衰减异常,并对下一管理周期动力电池的热失控预警过程进行迭代,所述预警迭代模块将迭代后的第一预设异常系数设为m1’,设定:m1’=m1×{1-γ×[(y1-y0)/y1-Y]/[(y1-y0)/y1+Y]},将迭代后的第二预设异常系数设为m2’,设定m2’=m2×{1-γ×[(y1-y0)/y1-Y]/[(y1-y0)/y1+Y]};When (y1-y0)/y1>Y, the early warning iteration module determines that the capacity attenuation of the power battery in the current management cycle is abnormal, and iterates the thermal runaway early warning process of the power battery in the next management cycle. The early warning iteration module sets the first preset abnormal coefficient after iteration to m1', setting: m1'=m1×{1-γ×[(y1-y0)/y1-Y]/[(y1-y0)/y1+Y]}, sets the second preset abnormal coefficient after iteration to m2', setting m2'=m2×{1-γ×[(y1-y0)/y1-Y]/[(y1-y0)/y1+Y]};其中,y1为与当前管理周期相邻的上一管理周期的动力电池容量,Y为预设衰减比例,γ为更新系数。Among them, y1 is the power battery capacity of the previous management cycle adjacent to the current management cycle, Y is the preset attenuation ratio, and γ is the update coefficient.
CN202410594502.5A2024-05-142024-05-14 An intelligent power battery thermal runaway warning systemActiveCN118172913B (en)

Priority Applications (1)

Application NumberPriority DateFiling DateTitle
CN202410594502.5ACN118172913B (en)2024-05-142024-05-14 An intelligent power battery thermal runaway warning system

Applications Claiming Priority (1)

Application NumberPriority DateFiling DateTitle
CN202410594502.5ACN118172913B (en)2024-05-142024-05-14 An intelligent power battery thermal runaway warning system

Publications (2)

Publication NumberPublication Date
CN118172913Atrue CN118172913A (en)2024-06-11
CN118172913B CN118172913B (en)2024-07-26

Family

ID=91355013

Family Applications (1)

Application NumberTitlePriority DateFiling Date
CN202410594502.5AActiveCN118172913B (en)2024-05-142024-05-14 An intelligent power battery thermal runaway warning system

Country Status (1)

CountryLink
CN (1)CN118172913B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN118571048A (en)*2024-06-182024-08-30新汽有限公司 Vehicle information collection system
CN119230988A (en)*2024-11-282024-12-31奥为科技(南京)有限公司 A voltage detection device and detection method for a series battery pack for dynamic balancing

Citations (5)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN110370984A (en)*2019-06-262019-10-25清华大学Power battery thermal runaway method for early warning
CN111460664A (en)*2020-04-012020-07-28吉林大学 A nonlinear cooling optimization method for new energy vehicle power battery
CN112186298A (en)*2019-10-282021-01-05百度(美国)有限责任公司Control logic for battery cooling system
KR20230123266A (en)*2022-02-162023-08-23주식회사 엘지에너지솔루션Battery Module Comprising Insulation Oil and Battery Pack Comprising the Same
CN117734430A (en)*2022-09-152024-03-22优跑汽车技术(上海)有限公司Whole car safety coefficient and car of thermal runaway hierarchical warning

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN110370984A (en)*2019-06-262019-10-25清华大学Power battery thermal runaway method for early warning
CN112186298A (en)*2019-10-282021-01-05百度(美国)有限责任公司Control logic for battery cooling system
CN111460664A (en)*2020-04-012020-07-28吉林大学 A nonlinear cooling optimization method for new energy vehicle power battery
KR20230123266A (en)*2022-02-162023-08-23주식회사 엘지에너지솔루션Battery Module Comprising Insulation Oil and Battery Pack Comprising the Same
CN117734430A (en)*2022-09-152024-03-22优跑汽车技术(上海)有限公司Whole car safety coefficient and car of thermal runaway hierarchical warning

Cited By (2)

* Cited by examiner, † Cited by third party
Publication numberPriority datePublication dateAssigneeTitle
CN118571048A (en)*2024-06-182024-08-30新汽有限公司 Vehicle information collection system
CN119230988A (en)*2024-11-282024-12-31奥为科技(南京)有限公司 A voltage detection device and detection method for a series battery pack for dynamic balancing

Also Published As

Publication numberPublication date
CN118172913B (en)2024-07-26

Similar Documents

PublicationPublication DateTitle
CN118172913B (en) An intelligent power battery thermal runaway warning system
CN114430080B (en) A method for identifying abnormal self-discharge of power battery cells based on operating data
CN116632983B (en)Charging and discharging control system suitable for outdoor energy storage power supply
WO2024146353A1 (en)Active safety three-level prevention and control system and method for battery energy storage power station
CN115366683B (en) A fault diagnosis strategy based on multi-dimensional model fusion for new energy vehicle power battery
CN117341476B (en)Battery differential pressure fault early warning method and system
CN117665595A (en)Battery state monitoring method, device, electronic equipment and storage medium
CN114487856A (en) Thermal runaway early warning method and system for battery in battery swapping station
CN116754984A (en) A battery consistency detection method and related devices
WO2024244155A1 (en)Hierarchical diagnostic early warning method for faults in electrochemical energy storage system, system, and device
CN115951231A (en) Automobile power battery fault early warning method based on single battery voltage correlation
CN119182199A (en)Battery pack state balance control method and system based on battery charge and discharge
CN119001461A (en)Active safety early warning method of lithium ion battery based on end cloud cooperation
CN117686935B (en)Battery RUL prediction method based on voltage probability density
CN118884257A (en) A Fault Diagnosis Method for Energy Storage Grid Connected with Distributed Generation
CN118790052A (en) A real-time online monitoring system for new energy vehicles
CN118722330A (en) A control method for intelligently regulating power battery voltage
Gao et al.Research on intelligent diagnosis strategy and treatment method of EV charging fault
CN118483616A (en) A method and system for intelligent monitoring and management of lithium battery packs based on cloud computing
CN118393388A (en) An intelligent power battery health assessment system
CN117031309A (en)Abnormality detection method for balance characterization and state health perception of energy storage battery stack cluster
CN113884894B (en) On-line monitoring method of battery cluster inconsistency based on external characteristics
CN117034553A (en)Power battery safety evaluation method and system for multistage fuzzy comprehensive evaluation
CN112858926A (en)Lithium battery module safety monitoring management system and management method thereof
CN112305424A (en) A method and system for real-time alarming of abnormal data in a ternary lithium cascade energy storage power station

Legal Events

DateCodeTitleDescription
PB01Publication
PB01Publication
SE01Entry into force of request for substantive examination
SE01Entry into force of request for substantive examination
GR01Patent grant
GR01Patent grant

[8]ページ先頭

©2009-2025 Movatter.jp